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Abstract

This paper seeks to enhance the performance of Mel Frequency Cepstral Coefficients

(MFCCs) for detecting abnormal heart sounds. Heart sounds are first pre-processed to

remove noise and then segmented into S1, systole, S2, and diastole intervals, with thirteen

MFCCs estimated from each segment, yielding 52 MFCCs per beat. Finally, MFCCs are

used for heart sound classification. For that purpose, a single classifier and an innovative

ensemble classifier strategy are presented and compared. In the single classifier strategy,

the MFCCs from nine consecutive beats are averaged to classify heart sounds by a single

classifier (either a support vector machine (SVM), the k nearest neighbors (kNN), or a deci-

sion tree (DT)). Conversely, the ensemble classifier strategy employs nine classifiers (either

nine SVMs, nine kNN classifiers, or nine DTs) to individually assess beats as normal or

abnormal, with the overall classification based on the majority vote. Both methods were

tested on a publicly available phonocardiogram database. The heart sound classification

accuracy was 91.95% for the SVM, 91.9% for the kNN, and 87.33% for the DT in the single

classifier strategy. Also, the accuracy was 93.59% for the SVM, 91.84% for the kNN, and

92.22% for the DT in the ensemble classifier strategy. Overall, the results demonstrated that

MFCCs were more effective than other features, including time, time-frequency, and
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statistical features, evaluated in similar studies. In addition, the ensemble classifier strategy

improved the accuracies of the DT and the SVM by 4.89% and 1.64%, implying that the

averaging of MFCCs across multiple phonocardiogram beats in the single classifier strategy

degraded the important cues that are required for detecting the abnormal heart sounds, and

therefore should be avoided.

1 Introduction

The mechanical activities of the heart and blood flow generate heart sounds [1]. The graphical

representation of the heart sounds is usually called a phonocardiogram (PCG). A phonocar-

diogram typically comprises four components: S1 sound, systole, S2 sound, and diastole. How-

ever, there can be other sounds in a PCG [1].

Phonocardiograms can be used to develop assistive intelligent systems to detect cardiovas-

cular diseases [2–5]. In general, such a system is composed of four steps: preprocessing, seg-

mentation, feature extraction, and classification [5,6]. These steps are briefly reviewed below,

but an exhaustive review of these techniques can be found here [5,7].

Preprocessing usually involves removing undesirable noises, artifacts, and spikes. Some of

the techniques that have been used in other studies for PCG preprocessing include the normal-

ization of PCGs to have zero mean [8], low-pass filtering [9,10], high-pass filtering from 10 Hz

and normalization [11], band-pass filtering from 40 Hz to 400 Hz [12], band-pass filtering

from 20 or 25 Hz to 400 Hz [12–14], band-pass filtering from 5 Hz to 700 Hz [15], band-pass

filtering from 2 Hz to 100 Hz, and discrete wavelet transform (DWT) [16]. Sometimes, no pre-

processing is applied [17].

Segmentation aims to find the S1, systole, S2, and diastole intervals in a PCG signal.

Schmidt et al. (2010) used a duration-dependent hidden Markov model (DHMM) for PCG

segmentation [18]. This method was extended by Springer et al. (2015) [19] using hidden

semi-Markov models (HSMM) and logistic regression. This method has been adopted in

many studies [3,12,13]. In [15], Mel-Scaled Wavelet Transform (MSWT) and dynamic thresh-

olding were used for PCG segmentation while durations of systole and diastole were analyzed

to find S1 and S2 in [10]. The PCG segmentation [11] was based on Shannon energy, envelope

smoothing, and peak finding. Similarly, Jaros et al. (2023) [16] applied 3rd-order Shannon

energy, envelope detection by low-pass filtering, thresholding, and the k-means algorithm.

The PCG segmentation method proposed by Alonso-Arévalo et al. (2021) was based on spec-

tral change detection and genetic algorithms [20]. Many of the PCG segmentation methods

are reviewed here [21]. It is also necessary to mention that no segmentation strategies were

used in some previous studies [8,9,17].

Quantitative features are extracted from the PCG segments in the third step of PCG pro-

cessing. Various types of PCG features have been used in different applications. These types

include time-domain features [3,10–13,15], spectral features [8,11–13], time-frequency fea-

tures [3,10–12,15], time-scale features [8,11,13], Mel Frequency Cepstral Coefficients

[3,10,11,15,22], and features estimated by convolutional neural networks (CNNs) [9]. Some

feature selection strategies, such as linear discriminant analysis [10], correlation-based feature

selection [13], and genetic algorithms, [11] have been used for dimensionality reduction.

The fourth step of PCG processing involves training and testing a classification model to

detect underlying diseases [5,6]. Classification methods that have been used in applications of

PCGs include convolutional neural networks (CNNs) [17,23], artificial neural networks
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(ANNs) [3,9,10,15], deep neural networks [12], the k nearest neighbors algorithm (kNN)

[3,11,15], decision trees (DT) [3,8], long short-term memory (LSTM) networks [3], ensemble clas-

sifiers [3,13], support vector machines (SVMs)[15], and hidden Markov models (HMMs) [24].

This study aimed to investigate the performance of MFCCs in discriminating abnormal

PCGs from normal ones. MFCCs were first used in speech processing applications [25], but

later in other applications such as PCG processing. MFCCs were selected because they are

weakly-correlated and highly discriminating features of audio signals, providing compact

spectral representations successfully used in speech processing applications [26]. Despite that,

they have performed modestly in some PCG processing applications [3,10]. Therefore, the

main goal of this study was to enhance the performance of MFCCs for PCG classification into

normal/abnormal classes. For that purpose, two classification strategies are presented: 1) a sin-

gle-classifier strategy, which takes as input the average MFCCs from multiple PCG beats, and

2) an innovative ensemble-classifier strategy comprising of an ensemble of 9 classifiers, each of

which takes as input the MFCCs from a different PCG beat.

The rest of this article is organized as follows: Section 2 describes the PCG database used for

evaluation of the proposed method, MFCC estimation, and the two classification strategies.

Section 3 presents the results in detail. Section 4 discusses the results and compares them with

similar studies. Section 5 presents this study’s conclusions.

2 Materials and methods

2.1 Heart sounds database

The PhysioNET CinC 2016 PCG database [27,28] was used to evaluate the PCG classification meth-

ods proposed in this paper. The signals of this database have been collected from healthy subjects

and patients with such heart diseases as heart valve defects and coronary artery problems. The

researchers that contributed to the PhysioNET CinC 2016 PCG database include Syed (2003) [29]

and Syed et al. (2007) [30] at Massachusetts Institute of Technology, Schmidt et al. (2010, 2015)

[18,31] at Aalborg University, Papadaniil and Hadjileontiadis (2014) [32] at Aristotle University of

Thessaloniki, Naseri et al. (2013) [33] at K. N. Toosi University of Technology, Moukadem et al.

(2013) [34] at University of Haute Alsace, Tang et al. (2010) [35] at Dalian University, Samieinasab

and Sameni (2015) [36] at Shiraz University, and Skejby Sygehus Hospital, Denmark [27].

The potential confounding variables such as the sample size, age, gender, nationality, and

the individual state at the recording time are not a concern as the database contains a large

number of signals from subjects with different age groups/genders/nationalities, in different

states (rest or exercise), in different places (hospital or home), and with the signals obtained

using different recording stethoscopes, leading to the validity, unbiasedness, and generalizabil-

ity of the results.

Overall, the signals lasted from 5 to 120 seconds and were resampled to a rate of 2000 sam-

ples/s [27]. The PhysioNET CinC 2016 PCG database contains 6 datasets (labeled A to F) that

contain 3153 signals (2488 from the healthy subjects and 665 from the patients). Dataset A

(including 490 signals) was used to train the segmentation model introduced in section 2.2.2.

and datasets B to F were used to evaluate our single-classifier and ensemble classifier strategies

described in section 2.2.4. There are a total of 2744 signals in datasets B to F. Two hundred

sixty-two of them that are labeled as “uncertain” are noisy signals and, therefore, were ignored.

There remained 2482 signals (including 296 signals from the patient class and 2186 from the

healthy class). Only signals with at least 9 PCG beats were used in this study. Among the

remaining 2482 signals, 2137 PCGs (including 218 abnormal and 1919 normal PCGs) met this

criterion and, therefore, were used to evaluate our single-classifier and ensemble-classifier

strategies as described in section 2.2.4.
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2.2 The proposed method for the classification of heart sounds

The proposed method for heart sound classification includes four stages: pre-processing, seg-

mentation, feature extraction, and classification. These stages are explained in detail as follows.

2.2.1 Preprocessing. All the signals are first resampled from 2000 Hz to 1000 Hz to reduce

the computational cost. They are then preprocessed using a band-pass filter from 25 to 400 Hz.

2.2.2 Segmentation. The preprocessed signals are segmented using the sophisticated

supervised method proposed by Springer et al. (2015) [19]. This method includes a feature

extraction step followed by a four-class classifier (S1, systole, S2, and diastole). The features

were extracted using the Hilbert envelope, power spectrum density, and wavelet transform.

The classifier assigns labels 1, 2, 3, and 4 to the PCG samples that belong to S1, systole, S2, and

diastole, respectively.

2.2.3 Feature extraction. In this step, MFCCs are estimated for PCG signals. The MFCCs,

which represent the short-term power spectrum of an audio signal, might be similar to the

principles of structural-energy dynamics observed in friction processes [37]. The Mel scale is

used to approximate the performance of the auditory system, which uses a non-linear fre-

quency scale instead of a linear one. Estimation of MFCCs involves the following steps [38]:

1. The PCG signal is divided into frames.

2. Discrete Fourier Transform (DFT) of each PCG frame is computed.

3. The power spectrum of each frame is estimated using a Mel filter bank.

4. The logarithm of the power coefficients is calculated.

5. The discrete cosine transformation of the log power coefficients is computed.

To extract the MFCCs, we first divide the PCG signal into 24 ms frames. Adjacent frames

overlap by 18 ms. Next, each frame is multiplied by a Hamming window, and then the

64-point DFT coefficients of the windowed frame are computed. Assuming that Xi [k] denotes

the DFT coefficients of the ith windowed frame of the PCG signal, we estimate the power spec-

trum of this frame as |Xi [k]|2/N. Then we calculate the power of this frame within all Mel

bands. For that purpose, we use M = 20 triangular filters [10]. The frequency response of

themth filter, Hm(k), is defined as follows [38]:

Hm kð Þ ¼

0; k < kf ðmÞ

k � kf ðmÞ
kf ðmþ 1Þ � kf ðmÞ

; kf ðmÞ � k < kf ðmþ 1Þ

kf ðmþ 2Þ � k
kf ðmþ 2Þ � kf ðmþ 1Þ

; kf ðmþ 1Þ � k � kf ðmþ 2Þ

0: k > kf ðmþ 2Þ

; 0 � m � M � 1ð1Þ

8
>>>>>>>>>><

>>>>>>>>>>:

Where the variable kf(m) is the index for the center frequency of the mth triangular filter. A

total of cap M plus 2 frequencies are required to design M filters. The relationship between the

frequency in the Mel scale (fmel) and the frequency in Hertz is calculated from the following

equation [38]:

fmel ¼ 2595 log
10

1þ
f

700

� �

ð2Þ

The minimum and maximum Mel frequencies are calculated for fmin = 0 and fmax = 400 Hz

using Eq (2). Afterwards, we find M+2 equally-spaced Mel frequencies from the minimum to
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the maximum Mel frequencies. The obtained M+2 Mel frequencies are converted back to the

Hz scale using the inverse of Eq (2). With the M+2 frequencies required for designing M trian-

gular filters available, the kf index for the jth frequency is calculated as:

kf jð Þ ¼
f ðjÞ
fs

N
� �

; 0 � j � M þ 1 ð3Þ

Where f(j) is one of the M+2 designed frequencies in Hz, fs is the sampling frequency, and

N is the number of DFT coefficients. Now, the frequency response of these filters can be

obtained using Eq (1).

The power of the ith frame in the mth Mel band, Pi[m], is estimated as:

Pi m½ � ¼ 10 log
10

1

N

X
N
2

k¼0

jXi½k�j
2
jHm½k�j

0

@

1

A; 0 � m � M � 1 ð4Þ

Finally, the MFCCs Ci[k0] of the ith frame are computed from Pi[m] by the type II discrete

cosine transformation (DCT-II) [38]:

Ci k0½ � ¼
XM� 1

m¼0

Pi½m�cos
p

M
mþ

1

2

� �

k0
� �

; 0 � k0 � M � 1 ð5Þ

The number of MFCCs is usually between 12 and 20 [3,11]. In a nutshell, for a 24-ms frame

of the PCG signal, 20 MFCCs are calculated, but only the first 13 coefficients were used in this

research. As shown in Fig 1, by averaging the MFCCs obtained for all the frames belonging to

the S1 sound, 13 features are obtained. Similarly, 13 features are calculated for each of the

other segments, i.e. systole, S2, and diastole. Therefore, 52 MFCC features are obtained for a

given PCG beat.

2.2.4 Classification. This research used two classification strategies to discriminate nor-

mal (healthy) PCGs from abnormal (pathological) ones: a single-classifier and an innovative

ensemble-classifier. In the single-classifier strategy (Fig 2A), the MFCCs for the first 9 PCG

beats are first averaged and then fed to a classifier. Since there are 52 features per beat, averag-

ing results in 52 mean MFCCs (Fig 2A), based on which the classifier determines whether the

PCG signal is normal or abnormal. Three classifier types were used in this strategy: k nearest

neighbors (kNN), support vector machine (SVM), and decision tree (DT).

In the ensemble-classifier strategy (Fig 2B), the 52 MFCCs of a given beat are fed to a dis-

tinct classifier. Since only the first 9 beats of a PCG signal are used, there are 9 different classifi-

ers. Each classifier decides whether its respective input beat is normal or abnormal. In the end,

if more normal beats are predicted by the 9 classifiers altogether, the PCG is decided to be nor-

mal, otherwise abnormal (Fig 2B). All nine classifiers are the same type (i.e., kNN, SVM, or

DT). For the kNN, k was considered 1, 3, 5, and 7. Also, linear, Gaussian, and polynomial ker-

nels were considered for the support vector machine.

As explained in section 2.1, we selected 218 abnormal and 1919 normal PCG signals with at

least 9 beats to evaluate the proposed methods. The first 9 beats were used for MFCC estima-

tion. To balance the dataset, 218 normal PCGs were randomly selected and used alongside the

218 abnormal ones to train and test the classifiers.

Ten-fold cross-validation was used to evaluate both classification strategies. During each

fold, we calculated four parameters of accuracy (Acc), sensitivity (Se), specificity (Sp), and
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modified accuracy (MAcc) by:

Acc ¼
TP þ TN

TP þ FN þ FP þ TN
ð6Þ

Se ¼
TP

TP þ FN
ð7Þ

Fig 1. Feature extraction. 13 MFFCs are extracted from each interval (i.e., S1, systole, S2, and diastole) of a given PCG

beat, summing up to 52 MFCCs for that beat.

https://doi.org/10.1371/journal.pone.0316645.g001
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Fig 2. Classification strategies. A: Single-classifier strategy: The MFCCs extracted from the first 9 beats of a PCG are

averaged and fed to a single classifier, B: Ensemble-classifier strategy: Nine classifiers are used separately to distinguish

normal beats from abnormal ones. In the end, if the number of the normal beats is more than the abnormal beats, the

PCG signal is decided to be normal; otherwise, it is abnormal.

https://doi.org/10.1371/journal.pone.0316645.g002
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Sp ¼
TN

FP þ TN
ð8Þ

MAcc ¼
Seþ Sp

2
ð9Þ

Where TP is the number of patients who were correctly classified as patients, FN is the

number of patients who were wrongly classified as healthy, FP is the number of healthy sub-

jects who were wrongly classified as patients, and TN is the number of healthy people who

were correctly classified as healthy subjects. The average parameters across the 10 folds were

calculated in the end. The 10-fold cross-validation was repeated 50 times. Each time, a random

set of 218 normal signals was selected and concatenated with the 218 abnormal PCGs. The

average results across the 50 runs are reported in section 3.

It should be noted that all analyses, including feature extraction and classification strategies,

were implemented using MATLAB programming language.

3 Results

Fig 3 shows the results for segmenting a PCG signal. In the staircase graph of Fig 3, levels 1, 2,

3, and 4 define the S1 sound intervals, the systole intervals, the S2 sound intervals, and the dias-

tole intervals, respectively. As the segmentation strategy we used is a sophisticated strategy pro-

posed and evaluated by Springer et al. (2015) [19], we did not evaluate its performance.

3.1. Results for the single-classifier strategy

The single-classifier was trained and tested using the 52 mean MFCCs extracted from the

PCGs, as shown in Fig 2A. For the kNN classifier, k = 3 obtained better results than 1, 5, and 7

values. For that reason, only the results for the case that k = 3 are presented. Also, the polyno-

mial kernel had better results for the SVM classifier than the linear and Gaussian kernels. For

Fig 3. Segmentation of a PCG signal. The staircase graph shows the segmentation results of the plotted PCG signal:

Level 1 shows S1 intervals, level 2 shows systole intervals, level 3 shows S2 intervals, and level 4 shows diastole intervals.

https://doi.org/10.1371/journal.pone.0316645.g003
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that reason, only the results of the SVM with the polynomial kernel are presented. The accu-

racy, sensitivity, and specificity parameters of the three classifiers (kNN, SVM, and DT) are

presented in Table 1. Both the support vector machine (Acc = 91.95%, Se = 92.78%,

Sp = 91.14%) and the kNN (Acc = 91.9%, Se = 91.41%, Sp = 92.48%) has outperformed the

decision tree (Acc = 87.33%, Se = 86.72%, Sp = 88.03%). There was no statistically significant

difference between the accuracy of the SVM and the kNN algorithm. However, the SVM had a

higher sensitivity than the kNN, while the kNN had a higher specificity. The 95% confidence

intervals for the sensitivity of the SVM and the kNN were [92.31, 93.25] and [91.11, 91.71],

respectively. Also, the 95% confidence intervals for the sensitivity of the SVM and the kNN

were [90.67, 91.61] and [92.03, 92.93], respectively.

3.2 Results for the ensemble-classifier strategy

Similar to the single-classifier strategy, for the kNN classifier, k = 3 obtained better results than

1, 5, and 7 values. For that reason, only the results for the case that k = 3 are presented. Also,

the polynomial kernel had better results for the SVM classifier than the linear and Gaussian

kernels. Therefore, only the results of the SVM with a polynomial kernel are presented. The

accuracy, sensitivity, and specificity parameters of the three classifiers (kNN, SVM, and DT)

are presented in Table 2. The SVM had the highest accuracy (93.59%) and sensitivity (95.4%)

while the kNN had the highest specificity (93.02%). The 95% confidence intervals for the accu-

racy of the kNN, SVM, and DT were [91.57, 92.11], [93.27, 93.91], [91.89, 92.55], respectively.

The 95% confidence intervals for the sensitivity of the kNN, SVM, and DT were [90.63, 91.23],

[95.05, 95.75], [93.64, 94.42], respectively. The 95% confidence intervals for the specificity of

the kNN, SVM, and DT were [92.62, 93.42], [91.4, 92.22], [90.06, 91], respectively.

3.3 Comparison of single-classifier and ensemble-classifier strategies

As shown in Fig 4, when the classifier type was either DT or SVM, the ensemble-classifier strat-

egy achieved a higher accuracy than the single-classifier strategy. In Fig 4, the error bars repre-

sent the 95% confidence intervals for the classification accuracy. On average, DT’s accuracy

improved by 4.89%, while SVM’s improved by 1.64%. There was no statistically significant dif-

ference between the accuracy of the single- and ensemble-classifier strategies when the kNN

was used.

As shown in Fig 5, when the classifier type was either DT or SVM, the ensemble-classifier

strategy achieved a higher sensitivity than the single-classifier strategy. In Fig 5, the error bars

Table 1. The results for the single-classifier strategy for the three types of classifiers: kNN (k = 3), SVM with a

polynomial kernel, and DT.

Classifier Acc (%) Se (%) Sp (%) MAcc (%)

kNN 91.9 91.41 92.48 91.95

SVM 91.95 92.78 91.14 91.96

DT 87.33 86.72 88.03 87.34

https://doi.org/10.1371/journal.pone.0316645.t001

Table 2. The results for the ensemble classification strategy for three types of classifiers: kNN (k = 3), SVM with a

polynomial kernel, and DT.

Classifier Acc (%) Se (%) Sp (%) MAcc (%)

kNN 91.84 90.93 93.02 91.98

SVM 93.59 95.40 91.81 93.61

DT 92.22 94.03 90.53 92.28

https://doi.org/10.1371/journal.pone.0316645.t002
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Fig 4. The classification accuracy for the single- (light gray) and the ensemble classifiers (dark gray). The ensemble

classifier has outperformed the single classifier for both the decision tree (DT) and the SVM classifier types. The error

bars represent the 95% confidence interval for the classification accuracy.

https://doi.org/10.1371/journal.pone.0316645.g004

Fig 5. The classification sensitivity for the single- (light gray) and the ensemble classifiers (dark gray). The

ensemble classifier has outperformed the single classifier for both the decision tree (DT) and the SVM classifier types.

The error bars represent the 95% confidence interval for the classification sensitivity.

https://doi.org/10.1371/journal.pone.0316645.g005
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represent the 95% confidence intervals for the classification sensitivity. On average, DT’s sensi-

tivity improved by 7.31%, while SVM’s sensitivity improved by 2.62%. There was no statisti-

cally significant difference between the sensitivity of the single- and ensemble-classifier

strategies when the kNN was used.

As shown in Fig 6, when the classifier type was DT, the ensemble-classifier strategy achieved

a higher specificity than the single-classifier strategy. In Fig 6, the error bars represent the 95%

confidence intervals for the classification specificity. On average, DT’s specificity improved by

2.5%. There was no statistically significant difference between the specificity of the single- and

ensemble-classifier strategies when the kNN and SVM were used.

4 Discussion

The well-known MFCCs have been used in applications such as audio processing [38]. They

have also been used for PCG processing [3,10,11,15]. In this study, two classification strategies

were designed to investigate the performance of the MFCCs in detecting abnormal PCGs. In

the single-classifier strategy, both the SVM (Acc = 91.95%) and the kNN (Acc = 91.9%)

obtained higher classification accuracies than the DT (Acc = 87.33%). Still, there was no signifi-

cant difference between the kNN and SVM.

In the ensemble-classifier strategy, the SVM (Acc = 93.59%) produced a higher classification

accuracy than the kNN (Acc = 91.84%) and DT (Acc = 92.22%). Still, there was no significant

difference between the kNN and DT. The results suggest that MFCC averaging in the single

classifier strategy removed the discriminating cues required for abnormal PCG detection, and

therefore should be avoided in similar applications.

When comparing the two classification strategies, the accuracy of the SVM and DT

improved by 1.64% and 4.89% in the ensemble-classifier strategy, while the accuracy of the

Fig 6. The classification specificity for the single- (light gray) and the ensemble classifiers (dark gray). The

ensemble classifier has outperformed the single classifier only for the decision tree (DT) classifier type. The error bars

represent the 95% confidence interval for the classification specificity.

https://doi.org/10.1371/journal.pone.0316645.g006
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kNN did not change significantly. Overall, the accuracy, sensitivity, and specificity of the DT

increased considerably from the single-classifier strategy to the ensemble-classifier strategy.

Also, the SVM classifier in the ensemble classifier achieved the highest classification accuracy

(93.59%). One reason that the ensemble classifier outperformed the single-classifier could be

because the averaging of MFCCs across multiple PCG beats in the latter strategy removes the

individual beat differences, which are actually very important cues for detecting the abnormal

PCGs. Another reason could be that averaging requires a very accurate timing for the PCG

segments S1, systole, S2, and diastole with their respective segments in other beats. This accu-

rate timing is almost impossible in practice as phonocardiograms are non-stationary. In a nut-

shell, the results suggest that the ensemble-classifier strategy is more efficient than the single-

classifier strategy.

Table 3 compares the results of the current study with a few similar studies, which have

used the PhysioNET CinC 2016 database (section 2.1) and/or MFCCs. The classification accu-

racies presented in Table 3 were either directly reported or estimated from the data reported in

the respective articles. In the approach taken by Khan et al. (2020) [3], MFCCs were estimated

from unsegmented signals, leading to a lower accuracy of 80.68%. Unlike that, our method

benefits from the segmentation of phonocardiograms into distinct heart sound intervals (S1,

systole, S2, and diastole), which likely contributes to our higher accuracies of 91.95% and

93.59% for single and ensemble classifiers, respectively. Though MFCCs were estimated from

segmented signals in the method proposed by Milani et al. (2021) [10], S1 and S2 segmentation

was based on a simple method of systole and diastole detection, leading to a low accuracy of

83.33%. The concatenation of MFCCs with time domain features increased the accuracy from

83.33% to 93.33%, comparable to the accuracy of 93.59% achieved by our ensemble classifier,

increasing the complexity of their model while leaving its specificity (Sp = 88.24%) much

lower than that of our ensemble-classifier (Se = 91.81%).

Table 3. Comparison of the results of this study with similar studies.

Study Preprocessing Segmentation Database Features Classifier Results (%)

[3] BPF [19] [27,28] T, T-F ensemble of 100 DTs Acc: 91.23

[3] BPF N/A [27,28] MFCCs LSTM Acc: 80.68

[10] LPF systole and diastole durations [27,28] MFCCs ANN Acc: 83.33

T, MFCCs ANN Acc: 93.33

[8] Zero-mean N/A [27,28] SA & WE DT Acc: 79.33

[13] BPF [19] [27,28] T, F,

W, ST

ensemble + voting (20) Acc: 86.58

[12] BPF [19] [27,28] T, F, T-F, DNN Acc: 92.6

[9] Savitzky–Golay LPF N/A [27,28] 1-D CNN MLP Acc: 85.65

MLP Acc: 85.65

[17] PIFS N/A [27,28] N/A CNN MAcc: 85

[11] HPF &

Amplitude Normalization

Shannon energy, envelope smoothing, peak finding Private T, F,

T-F, MFCCs

kNN Acc: 98.78

[15] BPF Mel-Scaled Wavelet Transform Private T, ST,

MFCCs

MLP Acc: 99.91

Current study BPF [19] [27,28] MFCCs Single-classifier MAcc: 91.96%

Acc: 91.95%

Ensemble-classifier MAcc: 93.61%

Acc: 93.59%

LPF: Low-pass filtering, HPF: High-pass filtering, BPF: Band-pass filtering, PIFS: Partitioned iterated function systems, MLP: Multi-layer Perceptron, DNN: Deep

neural factor, T: Time-domain feature, F: Frequency-domain features, T-F: Time-frequency features, W: Wavelet features, SA: Spectral amplitude, WE: Wavelet entropy,

ST: Statistical features.

https://doi.org/10.1371/journal.pone.0316645.t003
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Features extracted in time, frequency, and time-frequency domains have also been used in

applications of PCG processing [3,8,12,13]. Langley and Murray (2017) [8] used Spectral

amplitude and wavelet entropy (2 features) to classify unsegmented PCGs, leading to an accu-

racy of 79.33%, much lower than our single-classifier (Acc = 91.95%) and ensemble-classifier

strategy (Acc = 93.59%), once again confirming that signal segmentation is essential for PCG

classification. Unlike the method proposed by Langley and Murray (2017) [8], the method pro-

posed by Khan et al. (2020) [3] classified segmented phonocardiograms using time and time-

frequency [3], reaching an accuracy of 91.23%. Similarly, Homsi and Warrick (2017) [13] used

time, frequency, statistical, and wavelet features for the classification of segmented phonocar-

diograms. They reached an accuracy of (Acc = 86.58%). Sotaquirá et al. (2018) [12] also used

similar features to classify normal/abnormal PCG cycles. They achieved an accuracy of

(Acc = 92.6%) using deep learning. This significantly improves Homsi and Warrick (2017)

[13], yet is lower than our ensemble classifier (Acc = 93.59%). The superiority of our method

(esp. our ensemble classifier), which uses MFCCs, over the methods using time and time-fre-

quency features implies that MFCCs provide a better representation for phonocardiograms

than time and time-frequency features.

Some studies investigated the combination of MFCCs with time and time-frequency fea-

tures to improve classification accuracy. For instance, concatenation of MFCCs with time fea-

tures increased the classification accuracy from 83.33% to 93.33% in [10]. In [15],

concatenating MFCCs with time features and statistical features led to an increased accuracy

of 99.91%. Similarly, in [11], concatenating MFCCs with time features, and frequency features,

time-frequency features, and wavelet features increased the classification accuracy of tricuspid

regurgitation severity using PCGS to 98.78%. Though the PCG databases used in the last two

studies differed from the PhysioNET CinC 2016 database, the findings suggest that concatena-

tion of MFCCs with other features might be more effective for PCG applications. However,

this improved accuracy comes at the cost of increasing the complexity of the systems.

In a different approach taken by Krishnan et al. (2020) [9], a 1-D convolutional network

was proposed for feature extraction from unsegmented PCGs, reaching an accuracy of 85.65%,

a very low sensitivity of 57.78%, and a specificity of 92.98%. In another experiment, they

applied an MLP with 4 hidden layers, increasing the sensitivity from 57.78% to 86.73% while

the accuracy remained unchanged. Similarly, Riccio et al. (2023) [17] reached a modified accu-

racy of 85% using a convolutional neural network. They used Partitioned Iterated Function

Systems (PIFS) to generate 2D color images from 1D PCGs. These images were used as input

for the CNN. The results of these two studies are much lower than our single-classifier

(Acc = 91.95%) and ensemble-classifier strategy (Acc = 93.59%). This could be because a) they

used unsegmented PCGs and/or b) the features extracted by deep neural nets are less efficient

than MFCCs.

Fig 7 compares the accuracy, sensitivity, and specificity of the aforementioned methods

(cited in Table 3) with our single and ensemble classifiers. Only six of these studies, which a)

used the PhysioNET CinC 2016 database [27,28], and b) reported the accuracy, sensitivity, and

specificity directly (or it was possible to estimate them from the reported data), were included

in Fig 7. As can be seen in Fig 7, our ensemble classifier has the highest accuracy

(Acc = 93.59%) and the second highest sensitivity (Se = 95.4%). The method proposed in [10]

has the highest sensitivity (Se = 100%), but it should be emphasized that its specificity

(Sp = 88.24%) is lower than that of our ensemble classifier (Sp = 91.84%). Finally, our ensemble

classifier has the third highest specificity (Sp = 91.81%). The highest specificities were achieved

by [3] (Sp = 97.04%) and [12] (Sp = 93.8%), but both have lower sensitivities (Se = 78.81%, and

91.3%, respectively) than our ensemble classifier (Se = 95.40%). Overall, it seems that our

ensemble classifier has outperformed other studies.
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Though our ensemble-classifier achieved a high accuracy for PCG classification, our method has

a number of limitations. First, as the segmentation algorithm we used was state-of-the-art, we did

not evaluate the segmentation step. Second, the MFCCs capture only the spectral properties of the

heart sounds, while as shown in previous studies [10,11,15], temporal features can contribute to the

classification performance. Therefore, it is necessary to incorporate the temporal features of the

heart sounds into our model in future. Third, since MFCCs were effective for phonocardiogram

classification, it should be investigated whether they can effectively be used to develop a supervised

segmentation algorithm. If so, the complexity of the proposed strategies will be reduced significantly.

Last, although our results confirm that our ensemble classifier is very efficient for binary classifica-

tion problems to discriminate abnormal phonocardiograms from normal ones, it is still necessary to

evaluate it in multi-class classification problems to detect cardiovascular diseases.

5 Conclusion

The performance of MFCCs for detecting abnormal PCGs was evaluated using two classifica-

tion strategies, i.e., a single-classifier strategy and an innovative ensemble-classifier strategy. In

the single-classifier strategy, the MFCCs extracted from different PCG beats are first averaged,

and the mean MFCCs are then used to classify PCGs. However, in the ensemble-classifier

strategy, MFCCs are used by an ensemble of 9 classifiers to classify PCG beats into normal/

abnormal beats. In the end, if most beats are classified as normal, the PCG is considered nor-

mal; otherwise, it is abnormal. Both strategies were tested on a publicly available database of

PCG signals. The results showed that MFCCs were more effective than other features, includ-

ing time, time-frequency, and statistical features, evaluated in similar studies and the ensem-

ble-classifier strategy could classify PCGs with a higher accuracy, implying that the averaging

of MFCCs should be avoided in similar studies.
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