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Abstract: The aim of this work is to examine some q-analogs and differential properties of the gamma
integral operator and its convolution products. The q-gamma integral operator is introduced in two
versions in order to derive pertinent conclusions regarding the q-exponential functions. Also, new
findings on the q-trigonometric, q-sine, and q-cosine functions are extracted. In addition, novel results
for first and second-order q-differential operators are established and extended to Heaviside unit
step functions. Lastly, three crucial convolution products and extensive convolution theorems for the
q-analogs are also provided.
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1. Introduction

Within the subject of the classical mathematical analysis, one essential topic of study is
the quantum (or q-) calculus. It focuses on a useful theoretical generalization of differentia-
tion and integration processes. Notably, Bernoulli and Euler’s functions are the roots of a
lengthy heritage in quantum calculus. But due to its many uses, it has drawn the attention
of modern mathematicians in recent years [1,2]. An application of the said theory spans var-
ious symmetrical mathematical domains including number theory, symmetry of orthogonal
polynomials, combinatorics, relativity theory, fractional calculus and mechanics [3–11]. The
intriguing relationship between quantum calculus and these areas continues to captivate
scholars from around the world. In the field of literature, significant advancements and
practical implementations of the q-calculus theory have emerged, particularly in the realm
of mathematical physics [12–17]. These developments revolve around hypergeometric
functions, polynomials and many others, which have extensive applications in several areas
such as partitions, symmetry, integral transforms and number theory [3,18–28]. This article
discusses two q-analogs of a gamma integral operator and their application to various
classes of polynomials and special functions. It also establishes some convolution theorems
for the given analogs. Below, are some definitions and concepts from the q-calculus theory.
For 0 < q < 1, the concept of the q-analog dqϑ(ξ) = ϑ(ξ)− ϑ(qξ) of the differential of a
function ϑ was the first stone in the quantum calculus theory, which led to the idea of the
q-derivative [29]

dqϑ(ξ)

dqξ
=

ϑ(ξ)− ϑ(qξ)

(1 − q)ξ
.
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While it is highly beneficial to think about an object’s unique q-analog, scientists occasionally
think about several q-analogs of the same object. The factorial of an integer j, the integer j,
and the binomial coefficient ( j

n) each have q-analogs defined as follows [30]

[j]q =
1 − qj

1 − q
,
(
[j]q
)

! =


j

∏
k=1

[k]q , j = 1, 2, 3, ...

1, j = 0
and

[
j
n

]
q
=

n

∏
k=1

1 − qj−k+1

1 − qk .

The examination of the q-analogs of the classical integral transforms is a subject that
garners attention from both physicists and mathematicians [15,31]. Starting from the q-Jackson’s
definition [1], several authors including Purohit and Kalla [32], Atici [33], Salem et al. [31],
Hahn [14], Albayrak et al. [29], Ucar [34], Al-Omari [35–37], Won Sang et al. [38], Al-salam [39]
have explored different aspects of the q-integral theory. The gamma integral transform is
defined for a function ϑ by [40]

ĝj(ϑ; ϵ) =
1

ϵjΓ(j)

∫ ∞

0
ϑ

(
ξ

j

)
ξ j−1 exp

(
−ξ

ϵ

)
dξ, ϵ ∈ [0, ∞), (1)

where ϑ is a mapping of certain exponential growth conditions. The gamma function and
its approximation properties to absolutely continuous and locally bounded functions are
given in [40]. The first type q-analog of the gamma operator ĝj given in (1) is defined
by [41]

ĝj,q(ϑ; ϵ) =
1

ϵjΓq(j)

∫ ∞

0
ϑ

(
ξ

[j]q

)
ξ j−1Eq

(
−qξ

ϵ

)
dqξ, (2)

where ϑ ∈ C[0, ∞), 0 < q < 1 and j is a natural number. The operators ĝj,q are positive,
linear and ĝj,q → ĝj as q → 1−. By making a change on variables, (2) can be written as

ĝj,q(ϑ; ϵ) =
jj

ϵjΓq(j)

∫ ∞

0
ϑ(ξ)ξ j−1Eq

(
−qjξ

ϵ

)
dqξ, (3)

while the q-analog of the gamma operator of type two can be defined as

gj,q(ϑ; ϵ) =
jj

ϵjΓq(j)

∫ ∞

0
ϑ(ξ)ξ j−1eq

(
−qjξ

ϵ

)
dqξ. (4)

Indeed, Eq(ξ) and eq(ξ), ξ is a real number, are the q-analogs of the exponential function
defined by [29]

Eq(ξ) =
∞

∑
k=0

q
k(k−1)

2
ξk

[k]q!
= (ξ; q)∞ and eq(ξ) =

∞

∑
k=0

ξk

[k]q!
=

1
(ξ; q)∞

, |ξ| < |1 − q|−1. (5)

Therefore, the q-analogs of the remarkable gamma function are, respectively, expressed in
terms of the q-exponential functions Eq and eq as [30]

Γq(ξ) =
∫ ∞

0
γξ−1Eq(−qγ)dqγ and Γ̂q(ξ) =

∫ ∞

0
γξ−1eq(−γ)dqγ. (6)

The preliminary result that is necessary for the sequel is as follows [30]

Lemma 1. Γq(ξ + 1) = [ξ]qΓq(ξ), Γq(j + 1) = [j]q! and Γ̂q(j) = q−j (j−1)
2 Γq(j), j ∈ N.

By a benefit of the facts

sinq(rξ) =
1
2i
(
eq(irξ)− eq(−irξ)

)
and Sinq(rξ) =

1
2i
(
Eq(irξ)− Eq(−irξ)

)
, (7)
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and making use of the standard properties of the q-exponential functions it is noted from
(7) that

sinq(rξ) =
∞

∑
k=0

(−1)k q
k(k−1)

2

[2k + 1]q!
(rξ)2k+1 and Sinq(rξ) =

∞

∑
k=0

(−1)k

[2k + 1]q!
(rξ)2k+1. (8)

Similarly, by taking into account the facts

cosq(rξ) =
1
2
(
eq(irξ) + eq(−irξ)

)
and Cosq(rξ) =

1
2
(
Eq(irξ) + Eq(−irξ)

)
(9)

and utilizing the standard properties of q-exponential functions, (9) gives rise to

cosq(rξ) =
∞

∑
k=0

(−1)k 1
[2k]q!

(rξ)2k and Cosq(rξ) =
∞

∑
k=0

(−1)kq

(
2k
k

)

[2k]q!
(rξ)2k. (10)

This article is divided into three sections, each with its own set of results. In Section 1,
we provided definitions related to q-analogs of specific functions and presented some
preliminary findings. Section 2 utilizes the q-gamma integral operators, specifically those
of the first and second types, on specific sets of polynomials, q-sine and q-cosine functions
and q-exponential functions as well. Section 3 presents the introduction of a specific
q-differential operator and delves into the discussion surrounding q-gamma integrals.

2. q-Gamma Operators of Certain Functions

Within this section, we will acquire outcomes related to the first type of gamma
operators applied to various classes of power functions, polynomials and different forms
of trigonometric functions.

Theorem 1. Let r be an arbitrary real number and m ∈ N. Then, we have

(i)ĝj,q(ξ
r; ϵ) =

ϵr

jrΓq(j)
Γq(r + j), j ∈ N. (ii)ĝj,q(ξ

m; ϵ) =
ϵm

jmΓq(j)
[m + j − 1]q!, j ∈ N.

Proof. It is satisfactory to establish the validity of the first part as the proof for the second
part of this result follows a similar line of reasoning taking into account Lemma 1. By
making use of (3), we write

ĝj,q(ξ
r; ϵ) =

jj

ϵjΓq(j)

∫ ∞

0
ξr+j−1Eq

(
−qjξ

ϵ

)
dqξ. (11)

Through the application of variable transformations,
jξ
ϵ

= γ, ξ =
ϵγ

j
, dqξ =

ϵ

j
dqγ , the

integral Equation (11) can be modified to yield

ĝj,q(ξ
r; ϵ) =

jj

ϵjΓq(j)

∫ ∞

0

(
ϵγ

j

)r+j−1
Eq(−qγ)

ϵ

j
dqγ

=
jj

ϵjΓq(j)

∫ ∞

0

ϵr+j−1γr+j−1

jr+j−1 Eq(−qγ)
ϵ

j
dqγ

=
ϵr

jrΓq(j)

∫ ∞

0
γr+j−1Eq(−qγ)

ϵ

j
dqγ

=
ϵr

jr
Γq(r + j)

Γq(j)
.
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Theorem 1 is, therefore, proved.

Theorem 2. Let r be an arbitrary real number and m ∈ N. Then, the following assertions hold

(i)gj,q(ξ
r; ϵ) =

ϵr

jrΓq(j)
q
−(r+j)(r+j−1)

2 Γq(r + j). (ii)gj,q(ξ
m; ϵ) =

ϵm

jmΓq(j)
q
−(m+j)(m+j−1)

2 [m + j − 1]!.

Proof. It is enough to establish the validity of the first part as the proof for the second part
of the theorem follows a similar logical technique and Lemma 1. By (3) and (5) we write

gj,q(ξ
r; ϵ) =

jj

ϵjΓq(j)

∫ ∞

0
ξr+j−1eq

(
−qjξ

ϵ

)
dqξ.

Hence, by assuming ξ =
ϵγ

j
, and using Lemma 1, Γ̂q(j) = q

−j(j−1)
2 Γq(j), j ∈ N , we obtain

gj,q(ξ
r; ϵ) =

jj

ϵjΓq(j)

∫ ∞

0
γr+j−1eq(−qγ)

ϵ

j
dqγ

=
ϵr

jrΓq(j)

∫ ∞

0
γr+j−1eq(−qγ)

ϵ

j
dqγ

=
ϵr

jrΓq(j)
q
−(r+j)(r+j−1)

2 Γq(r + j).

This ends the proof of our result.

Theorem 3. Let r be a positive real number. Then, the following statements are true.

(i) ĝj,q
(
Eq(rξ); ϵ

)
=

1
Γq(j)

∞
∑

k=0
q

k(k−1)
2

(
rϵ

j

)k [k + j − 1]!
[k]q!

, j ∈ N.

(ii) ĝj,q
(
eq(rξ); ϵ

)
=

1
Γq(j)

∞
∑

k=0

(
rϵ

j

)k [k + j − 1]!
[k]q!

, j ∈ N.

Proof. In order to demonstrate part (i), we utilize (3) to write

ĝj,q
(
eq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0
eq(rξ)ξ j−1Eq

(
−qjξ

ϵ

)
dqξ. (12)

Therefore, following ([29], (5)) and employing the change in variables γ =
jξ
ϵ

, dqξ =
ϵ

j
dqγ

on (12) yield

ĝj,q
(
eq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0

∞

∑
k=0

rkξk

[k]q!
ξ j−1Eq

(
−qjξ

ϵ

)
dqξ

=
jj

ϵjΓq(j)

∫ ∞

0

∞

∑
k=0

rkϵkγkϵ

nk[k]q!j
ϵj−1

jj−1 Eq(−qγ)dqγ

=
ϵj

Γq(j)

∞

∑
k=0

1
jk[k]q!

∫ ∞

0
γ2j−1Eq(−qγ)dqγ.

Hence, motivating the above integral equation indicates to have

ĝj,q
(
eq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

rkϵk

[k]q!jk

∫ ∞

0
γk+j−1Eq(−qγ)dqγ. (13)
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According to the definition of Γq(j), we can conclude that (13) has the form

ĝj,q
(
eq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

rkϵk

[k]q!jk Γq(k + j). (14)

By applying ([29], Theorem 1), we rewrite (14) in the combined infinite series form

ĝj,q
(
eq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

rkϵk

[k]q!jk [k + j − 1]q! =
1

Γq(j)

∞

∑
k=0

(
rϵ

j

)k [k + j − 1]!
[k]q!

.

The proof for the validity of (ii) is analogous. Hence, the proof is finished.

Theorem 4. Let r represent any positive real number, and gj,q denote the q-gamma integral of the
second type. Then, the following statements hold true.

(i)gj,q
(
eq(rξ); ϵ

)
=

jj

Γq(j)

∞

∑
k=0

qk(k−1)

[k]q!

(
rϵ

j

)
[k + j − 1]q!.

(ii) gj,q
(
Eq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(
rϵ

j

)k [k + j − 1]q!

[k]q!
.

Proof. We establish Part (i) as proving the second equation is analogous. By employing
(4) and (5) we write

gj,q
(
eq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0
eq(rξ)ξ j−1eq

(
−qjξ

ϵ

)
dqξ.

That is,

gj,q
(
eq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0

∞

∑
k=0

q
k(k−1)

2
(rξ)k

[k]q!
ξ j−1eq

(
−qjξ

ϵ

)
dqξ. (15)

Changing the variables as
jξ
ϵ

= γ, dqξ =
ϵ

j
dqγ in (15) and the following simple motiva-

tion reveals

gj,q
(
eq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∞

∑
k=0

q
k(k−1)

2

[k]q!

∫ ∞

0

rkϵkγk

jk

(
ϵγ

j

)j−1
eq(−qγ)

ϵ

j
dqγ

=
1

Γq(j)

∞

∑
k=0

q
k(k−1)

2

[k]q!
rkϵk

jk

∫ ∞

0
γk+j−1eq(−qγ)

ϵ

j
dqγ

=
1

Γq(j) ∑
qk(k−1)

[k]q!

(
rϵ

j

)k
Γq(k + j).

Hence, the theorem is proved.

Theorem 5. Let r be an arbitrary positive real number and j ∈ N. Then, the assertions that follow
hold true.
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(i) ĝj,q
(
Cosq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k

[2k]q!

(
rϵ

j

)2k
Γq(2k + j).

(ii) ĝj,q
(
Sinq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k

[2k + 1]q!

(
rϵ

j

)2k+1
Γq(2k + j + 1).

(iii) ĝj,q
(
cosq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)kq
k(k−1)

2

[2k]q!

(
rϵ

j

)2k
Γq(2k + j).

(iv) ĝj,q
(
sinq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k q
k(k−1)

2

[2k + 1]q!

(
rϵ

j

)2k+1
Γq(2k + j − 1).

Proof. To demonstrate the first part of the theorem, we make use of (3) and utilize (8) to yield

ĝj,q
(
Cosq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0
Cosq(rξ)ξ j−1Eq

(
−qjξ

ϵ

)
dqξ.

This can be simply explained as

ĝj,q
(
Cosq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0

∞

∑
k=0

(−1)k (rξ)2k

[2k]q!
ξ j−1Eq

(
−q

jξ
ϵ

)
dqξ. (16)

Hence, by using an appropriate change in variables, ξ =
ϵγ

j
, (16) can be expressed as

ĝj,q
(
Cosq(rξ); ϵ

)
=

jj

ϵjΓq(j)

∫ ∞

0

∞

∑
k=0

(−1)k

[2k]q!

(
rϵγ

j

)2k( ϵγ

j

)j−1
Eq(−qγ)

ϵ

j
dqγ

=
1

Γq(j)

∞

∑
k=0

(−1)k

[2k]q!

(
rϵ

j

)2k ∫ ∞

0
γ2k+j−1Eq(−qγ)dqγ

=
1

Γq(j)

∞

∑
k=0

(−1)k

[2k]q!

(
rϵ

j

)2k
Γq(2k + j).

Following analogous proof, which is similar to that employed above, we derive a proof for
(ii). Hence, the proof of the result is finished.

In the following, we declare the following result without proof. The provided result
has an easy demonstration that is comparable to the proof of Theorem 5.

Theorem 6. Let r be a positive real number and j ∈ N. Then, the assertions that follow hold true.

(i) gj,q
(
cosq(rξ); ϵ

)
=

1
Γq(j)

∞
∑

k=0

(−1)kq
k(k−1)

2

[2k]q!

(
rϵ
j

)2k
Γq(2k + j).

(ii) gj,q
(
sinq(rξ); ϵ

)
=

1
Γq(j)

∞
∑

k=0
(−1)k q

k(k−1)
2

[2k + 1]q!

(
rϵ
j

)2k+1
Γq(2k + j − 1).

Theorem 7. Let r be a positive real number and j ∈ N. Then, it follows that

(i) gj,q
(
Cosq(rξ); ϵ

)
=

1
Γq(j)

∞
∑

k=0

(−1)k

[2k]q!

(
rϵ

j

)2k
q
−(2k+j)(2k+j−1)

2 Γq(2k + j).

(ii) gj,q
(
Sinq(rξ); ϵ

)
=

1
Γq(j)

∞
∑

k=0

(−1)k

[2k + 1]q!

(
rϵ

j

)2k+1
q
−(2k+j−1)(2k+j)

2 Γq(2k + j − 1).
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Proof. Proof of (i). By using a similar reasoning to the proof of Theorem 5 and Lemma 1(
Γ̂q(j) = q−j (j−1)

2 Γq(j)
)

we write

gj,q
(
Cosq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k

[2k]q!

(
rϵ

j

)2k
Γq(2k + j).

Therefore, we have

gj,q
(
Cosq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k

[2k]q!

(
rϵ

j

)2k
q
−(2k+j)(2k+j−1)

2 Γq(2k + j). (17)

Thus, (17) proves Part (i). To prove Part (ii), we use the same reasoning as before to
demonstrate that

gj,q
(
Sinq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k

[2k + 1]q!

(
rϵ

j

)2k+1
Γ̂q(2k + j − 1).

Therefore, we obtain

gj,q
(
Sinq(rξ); ϵ

)
=

1
Γq(j)

∞

∑
k=0

(−1)k

[2k + 1]q!

(
rϵ

j

)2k+1
q
−(2k+j−1)(2k+j)

2 Γq(2k + j − 1). (18)

Hence, (18) completes the proof of the theorem.

However, it is interesting to note that the findings in Theorem 7 for gj,q
(
cosq(rξ); ϵ

)
and gj,q

(
sinq(rξ); ϵ

)
may be achieved in a similar way. Thus, we would rather disregard

the comparable proofs.

3. The q-Gamma Integral for a Class of q-Differential Operators

This section covers the q-analogs of a few provided differential operators, namely ĝj,q
and gj,q. We start our study by proving the practical lemma that follows.

Lemma 2. Let ϵ > 0 and j ∈ N. If Dq,ξ denotes the q-derivative with respect to ξ, then we have

(i)Dq,ξ Eq

(
−q

jξ
ϵ

)
= ξ−1

∞

∑
k=0

(−1)kq
−(k+1)

2 jkqkϵ−k.

(ii)Dq,ξeq

(
−q

jξ
ϵ

)
= ξ−1

∞

∑
k=0

(−1)kqk jkξkϵ−k
[k]q
[k]q!

.

Proof. To prove (i), we employ Equation (5) and differentiate inside the summation to obtain

Dq,ξ Eq

(
−q

jξ
ϵ

)
= Dξ

q

∞

∑
k=0

q
−(k−1)

2

(
−q jξ

ϵ

)k

[k]q!

=
∞

∑
k=0

q
−(k−1)

2
(−1)k jkqkϵ−k[k]qξk−1

[k]q!

= ξ−1
∞

∑
k=0

(−1)kq
−(k+1)

2 jkqkϵ−k.

To prove Part (ii), it is very natural to write

Dq,ξ eq

(
−q

jξ
ϵ

)
=

∞

∑
k=0

(−1)kqk jk

ϵk ξk−1 = ξ−1
∞

∑
k=0

(−1)kqk jkξkϵ−k
[k]q
[k]q!

.
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This finishes the proof of our result.

Theorem 8. Let the differential operator be defined as ∆ξ
q = ξ1−jDq,ξ . Then, we have

ĝj,q

(
∆ξ

qϑ; ϵ
)
= − jj

ϵjΓq(j)
ϑ(0)− ĝj,q

(
ξ−jϑ; qϵ

)
, j ∈ N.

Proof. By applying the definition given in (3), we derive the following integral equation

(
ĝj,q∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)

∫ ∞

0
Dq,ξ ϑ(ξ)Eq

(
−qjξϵ−1

)
dqξ. (19)

Hence, employing the concept of the q-integration by parts for (19) (see [30]) reveals that

(
ĝj,q∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)

(
ϑ(ξ)Eq

(
−qjξϵ−1

))∞

0
−
∫ ∞

0
ϑ(qξ)Dq,ξ Eq

(
−qjξϵ−1

)
dqξ.

Therefore, by invoking Lemma 2, the previous equation becomes

(
ĝj,q∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(qξ)ξ−1

∞

∑
k=0

(−1)kq
k(k+1)

2 jkξkϵ−kdqξ

)
. (20)

Thus, the change in variables γ = qξ, dqγ = qdqξ,
(
ξ = q−1γ

)
, suggests to write (20) in

the form

(
ĝj,q∆ξ

qϑ; ϵ
)

=
jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(γ)

(
q−1γ

)−1 ∞

∑
k=0

(−1)kq
k(k+1)

2 jkq−kγkϵ−kq−1dqγ

)

=
jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(γ)γ−1

∞

∑
k=0

(−1)kq
k(k−1)

2 jkqkγkϵ−kq−1dqγ

)
.

The gained equation can be simplified as

(
ĝj,q∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(γ)γ−1Eq

(
−q

jγ
qϵ

)k
dqγ

)
.

Equivalently, it can be transferred into the simplest form

(
ĝj,q∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0

(
γ−jϑ(γ)

)
γj−1Eq

(
−q

jγ
qϵ

)
dqγ

)
. (21)

Hence, from (21) we have established that

(
ĝj,q∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)
ϑ(0)− Gj,q

(
γ−jϑ(γ); qϵ

)
.

This ends the proof.

Theorem 9. Let ∆ξ
q = ξ1−jDq,ξ and j ∈ N. Then, we have

gj,q

(
∆ξ

qϑ; ϵ
)
=

−jj

ϵjΓq(j)
ϑ(0)− gj,q

(
γ−jϑ; qϵ

)
.



Symmetry 2024, 16, 1368 9 of 13

Proof. By using (4) and pursuing an argument alike to that in Theorem 8 and Lemma 2, imply

gj,q

(
∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(qξ)ξ−1

∞

∑
k=0

(−1)qqk jkξkϵ−kdqξ

)
. (22)

Hence, by inserting the value qξ = γ in (22), we obtain

gj,q

(
∆ξ

qϑ; ϵ
)

=
jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(γ)γ−1

∞

∑
k=0

(−1)kqk jkq−1γkϵ−kdqγ

)

=
jj

ϵjΓq(j)

(
−ϑ(0)−

∫ ∞

0
ϑ(γ)γ−1

∞

∑
k=0

(−1)k jkqkγkq−kϵ−kdqγ

)
.

Thus, we have obtained that

gj,q

(
∆ξ

qϑ; ϵ
)
=

jj

ϵjΓq(j)
ϑ(0)− gj,q

(
γ−jϑ; qϵ

)
.

The proof is ended.

Theorem 10. Let ϵ > 0, ∆ξ
q = ξ1−jDq,ξ , ∆ξ,2

q =
(

∆ξ
q

)2
and j ∈ N. Then, we have

ĝj,q

(
∆ξ,2

q ϑ; ϵ
)
=

−jj

ϵjΓq(j)
∆ξ

qϑ(0) + ĝj,q

(
γ−2jϑ; q2ϵ

)
.

Proof. Let the hypothesis of the theorem hold. Then, with the aid of definitions, we write

ĝj,q

(
∆ξ

qϑ; ϵ
)

= ĝj,q

(
∆ξ

q

(
∆ξ

qϑ
)

; ϵ
)

=
jj

ϵjΓq(j)
∆ξ

qϑ(0)− ĝj,q

(
γ−j∆ξ

q

(
γ−jϑ

)
; qϵ
)

.

Making reductions, thus, provides

ĝj,q

(
∆ξ

qϑ; ϵ
)

=
−jj

ϵjΓq(j)
∆ξ

qϑ(0)−
(

−jj

ϵjΓq(j)

(
γ−jϑ

)
(0)− ĝj,q

(
γ−j
(

γ−jϑ
)

; qϵ
))

=
−jj

ϵjΓq(j)
∆ξ

qϑ(0) +
−jj

ϵjΓq(j)

(
γ−jϑ(γ)

)
(0) + ĝj,q

(
γ−2jϑ; q2ϵ

)
.

Therefore, we have obtained that

ĝj,q

(
∆ξ,2

q ϑ; ϵ
)
=

−jj

ϵjΓq(j)
∆ξ

qϑ(0) + ĝj,q

(
γ−2jϑ; q2ϵ

)
.

This ends the proof.

In what follows, we state without proof the following theorem. The proof can be
derived by employing Theorem 10. Therefore, we delete the details.

Theorem 11. gj,q

(
∆ξ,2

q ϑ; ϵ
)
=

−jj

ϵjΓq(j)
∆ξ

qϑ(0) + gj,q
(
γ−2jϑ; q2ϵ

)
, j ∈ N.

4. The q-Gamma Operators for Heaviside Functions

Let us now discuss the gj,q and ĝj,q of the Heaviside function for the q-gamma operators.
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Definition 1. Let a be an arbitrary real number. Then, the Heaviside unit function is defined by

u(ξ − a) = ua(ξ) =

{
1 , ξ ≥ a
0 , 0 ≤ ξ < a

. (23)

Theorem 12. Let a be an arbitrary real number and ua denote the Heaviside function. Then, for
ϵ > 0, we have

gj,q(ua; ϵ) = q−j (j+1)
2 +

jjaj−1

ϵjΓq(j)

∞

∑
k=0

(−1)k (aqj)k

ϵk[k]q![j + k]q!
. (24)

Proof. By making use of the second type q-analog (4) of the gamma operator and employing
(23) and (24) yields

gj,q(ua; ϵ) =
jj

ϵjΓq(j)

∫ ∞

a
ξ j−1eq

(
−qjξ

ϵ

)
dqξ.

By utilizing the properties of integration, we rewrite the previous formula in the expanded form

gj,q(ua; ϵ) =
jj

ϵjΓq(j)

∫ ∞

0
ξ j−1eq

(
−qjξ

ϵ

)
dqξ − jj

ϵjΓq(j)

∫ a

0
ξ j−1eq

(
−qjξ

ϵ

)
dqξ. (25)

By employing a change in variables as
qjξ
ϵ

= t to the above improper integral, (25) can be
reformulated as

gj,q(ua; ϵ) =
jj

ϵjΓq(j)

∫ ∞

0

(
ϵ

qj

)j−1
tj−1eq(−t)

ϵ

qj
dqt − jj

ϵjΓq(j)

∫ a

0
ξ j−1eq

(
−qjξ

ϵ

)
dqξ.

Therefore, by using the series form of the exponential function eq and the definition of the
q-analogs of the gamma function given in (6), we write

gj,q(ua; ϵ) =
jj

ϵjΓq(j)

(
ϵ

qj

)j
Γ̂q(j)− jj

ϵjΓq(j)

∫ a

0
ξ j−1

∞

∑
k=0

(−1)k
(

qj
ϵ

)k 1
[k]q!

dqξ. (26)

Integrating the right hand side of (26) inside the summation and applying simple computa-
tions reveal that

gj,q(ua; ϵ) =
1

qjΓq(j)
Γ̂q(j)− jj

ϵjΓq(j)

∞

∑
k=0

(−1)k
(

qj
ϵ

)k 1
[k]q!

∫ a

0
ξ j+k−1dqξ

=
1

qjΓq(j)
Γ̂q(j)− jj

ϵjΓq(j)

∞

∑
k=0

(−1)k+1 (qj)k

ϵk[k]q![j + k]q!
aj+k−1.

Therefore, by employing Lemma 1 (Γ̂q(j) = q−j (j−1)
2 Γq(j), j ∈ N) and rearranging the terms,

we write

gj,q(ua; ϵ) = q−j (j+1)
2 +

jjaj−1

ϵjΓq(j)

∞

∑
k=0

(−1)k (aqj)k

ϵk[k]q![j + k]q!
.

The proof is, therefore, finished. The proof for the subsequent theorem is comparable to
that used for Theorem 12. Hence, we omit the details.
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Theorem 13. If u denotes the Heaviside function and ϵ > 0. Then, we have

ĝj,q(ua; ϵ) = qj +
jjaj−1

ϵjΓq(j)

∞

∑
k=0

(−1)kq
k(k−1)

2
(aqj)k

ϵk[k]q![j + k]q!
.

5. q-Convolution Results

This section is dedicated to setting up the convolution theorem for the q-gamma
operator. Consequently, it recommends two convolution products that justify the aimed
theorem of the q-integral operator.

Definition 2. Let ϵ be a positive real number and ϑ1 and ϑ2 be two real-valued functions. Then,
we define two convolution products between ϑ1 and ϑ2 as follows

(ϑ1 ∗ ϑ2)(ϵ) =
∫ ∞

0
ϑ1

(
ϵt−1

)
ϑ2(t)t−1dqt (27)

and
(ϑ1 × ϑ2)(ϵ) =

∫ ∞

0
tj−1ϑ2(t)ϑ1

( ϵ

t

)
dqt, (28)

provided the integral parts of (27) and (28) exist.

Now, we derive a convolution theorem for the q-gamma function as follows.

Theorem 14 (Convolution theorem). Let ∗ be defined by (27). Then, the convolution theorem
for ĝj,q is given by

ĝj,q(ϑ1 ∗ ϑ2)(ϵ) =
(

ĝj,qϑ1 × ϑ2
)
(ϵ).

Proof. By making use of (3) and (27) we derive

ĝj,q(ϑ1 ∗ ϑ2)(ϵ) =
jj

ϵjΓq(j)

∫ ∞

0
(ϑ1 ∗ ϑ2)(ξ)ξ

j−1Eq

(
−jqξ

ϵ

)
dqξ

=
jj

ϵjΓq(j)

∫ ∞

0

(∫ ∞

0
t−1ϑ1

(
ξ

t

)
ϑ2(t)dqt

)
ξ j−1Eq

(
−jqξ

ϵ

)
dqξ.

Hence, by utilizing the change in variables
ξ

t
= w and the product (28) we obtain

ĝj,q(ϑ1 ∗ ϑ2)(ϵ) =
jj

ϵjΓq(j)

∫ ∞

0

∫ ∞

0
t−1ϑ1(w)ϑ2(t)dqtwj−1Eq

(
−jqwt

ϵ

)
dqw

i.e., =
jj

ϵjΓq(j)

∫ ∞

0
tj−1ϑ2(t)

[∫ ∞

0
ϑ1(w)wj−1Eq

( −jqwt
ϵ

t

)
dqw

]
dqt

i.e., =
jj

ϵjΓq(j)

∫ ∞

0
tj−1ϑ2(t)

[∫ ∞

0
ϑ1(w)wj−1Eq

( −jqwt
ϵ

t

)
dqw

]
dqt

i.e., =
∫ ∞

0
tj−1ϑ2(t)ĝj,qϑ1

( ϵ

t

)
dqt

i.e., =
(

ĝj,qϑ1 × ϑ2
)
(ϵ).

This ends the proof.
The proof of the following convolution theorem is similar to that of Theorem 14. We,

therefore, remove the details.
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Theorem 15. Let ∗ be defined by (27). Then, the convolution theorem for gj,q is given by

gj,q(ϑ1 ∗ ϑ2)(ϵ) =
(

gj,qϑ1 † ϑ2
)
(ϵ),

where

(ϑ2 † ϑ1)(ϵ) =
∫ ∞

0
tj−1ϑ2(t)ϑ1

( ϵ

t

)
dqt and (ϑ1 ∗ ϑ2)(ϵ) =

∫ ∞

0
ϑ1

(
ϵt−1

)
, ϑ2(t)t−1dqt

provided the integrals converge.

Proof. Using a method similar to that of Theorem 14, the proof of this theorem can be
achieved by using the definition of (4) for the products † and ∗. Thus, we remove the
comparable information.

6. Conclusions

This work presented two q-analogs of the gamma integral operator and discussed
some of the new generalized operators’ properties. Certain fundamental polynomials
and q-analogs of the sine and cosine functions are applied to the q-analogs. Addition-
ally, the q-analogs are employed for certain suitable classes of first- and second-order
q-differential operators. Convolution theorems and two convolution products are also
examined. However, we intend to use our differential results in a subsequent study to solve
specific q-difference operators and provide some applications.
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