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Temperature regulation in nonlinear and highly dynamic processes such as the continuous stirred-tank 
heater (CSTH) is a challenging task due to the inherent system nonlinearities and disturbances. This 
study proposes a novel metaheuristic-driven control strategy, combining the two degrees of freedom-
PID acceleration (2DOF-PIDA) controller with the recently developed starfish optimization algorithm 
(SFOA) for temperature control of the CSTH process. The 2DOF-PIDA controller enhances system 
performance by decoupling setpoint tracking and disturbance rejection, while the SFOA ensures 
optimal tuning of controller parameters by leveraging its powerful exploration and exploitation 
capabilities. Simulation results validate the effectiveness of the proposed approach, demonstrating 
improved tracking accuracy, disturbance rejection, and robustness compared to conventional 
methods. The combination of 2DOF-PIDA and SFOA provides a flexible and efficient solution for 
controlling highly nonlinear systems, with significant implications for industrial temperature regulation 
applications.

Keywords  Nonlinear continuous stirred-tank heater (CSTH), Starfish optimization algorithm (SFOA), 
Temperature control of highly nonlinear system, Two degrees of freedom-PID acceleration (2DOF-PIDA) 
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List of symbols
ρ	� Tank fluid density
ρc	� Heating fluid density
D	� Tank diameter
A	� Tank inside section area
Ac	� Jacket heat transfer area
Cp	� Tank fluid heat capacity
Cpc	� Heating fluid heat capacity
g	� Gravity constant
KL	� Level transmitter gain
KT 	� Temperature transmitter gain
KvL	� Level control valve constant
KvT 	� Temperature control valve constant
KxL	� Level control valve stem constant
KxT 	� Temperature control valve stem constant
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Qi	� Normal tank inlet fluid flow rate
Ti	� Fluid inlet temperature
Tci	� Heating fluid inlet temperature
Tsp	� Temperature controller set-point
TL	� Level transmitter time constant
TT 	� Temperature transmitter time constant
TvL	� Level control valve time constant
TvT 	� Temperature control valve time constant
Pcp	� Heating fluid pump discharge pressure
Pcr 	� Heating fluid system return pressure
Rc	� Heating system pipe nominal flow resistance
RvT 	� Temperature control valve rangeability
U 	� Overall heat-transfer coefficient
Vc	� Heat jacket volume
Wc	� Heating jacket wide
Hc	� Heating jacket height
Ht	� Tank wall height
Hsp	� Level controller set-point
M	� Fluid mass in the tank
β	� Weighting factor for proportional term sensitivity to setpoint changes
CF	� Cost function
Os,norm	� Normalized percent overshoot
Ess,norm	� Normalized percent steady-state error
tset,norm	� Normalized settling time
trise,norm	� Normalized rise time
Nps	� Population Size
Tmax	� Maximum Iteration
MSA	� Mantis Search Algorithm
u (t)	� Control signal (heating power)
Kp	� Proportional gain
β	� Weighting factor for setpoint tracking
T 	� Measured temperature of the fluid
dT 	� Rate of change of the measured temperature
dTset	� Rate of change of the setpoint temperature
Qin	� Inlet flow rate
Qout	� Outlet flow rate
Tt	� Tank fluid temperature
Tin	� Inlet fluid temperature
Th	� Heating jacket temperature
Cp	� Specific heat capacity of the tank fluid
U 	� Overall heat transfer coefficient
A	� Heat transfer area
Qh	� Heat transfer from the heating jacket to the tank fluid
ρf 	� Fluid density
NSPC	� Nonlinear Subspace Predictive Control
GA	� Genetic Algorithms
BLS	� Broad Learning System
LWPR	� Locally Weighted Projection Regression
IAE	� Integral of Absolute Error
RMPLS	� Recursive Modified Partial Least Squares
SFOA	� Starfish optimization algorithm
AO	� Aquila Optimizer
HBA	� Honey Badger Algorithm
GCRA	� Greater Cane Rat Algorithm
PID	� Proportional-Integral-Derivative
2DOF-PIDA	� Two Degrees of Freedom-PID Acceleration
CSTH	� Continuously Stirred Tank Heater
2DoF	� Two-Degree-of-Freedom
ANN	� Artificial Neural Network
SPID	� Standard Proportional-Integral-Derivative

The control of nonlinear processes poses significant challenges due to their complex dynamics, inherent 
instabilities, and susceptibility to external disturbances1. Among such systems, the continuous stirred-tank heater 
(CSTH) serves as a classical benchmark for testing control strategies2, particularly in temperature regulation, 
where precise and robust control is crucial. This motivates the exploration of advanced control methods capable 
of addressing the unique nonlinearities and dynamic behaviors of CSTH processes while overcoming the 
limitations of conventional approaches.

Conventional control strategies, such as proportional-integral-derivative (PID) controllers and their 
variations, have been widely applied in industrial applications due to their simplicity and reliability3. These 
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controllers, including two-degrees-of-freedom (2DOF) PID schemes4, have demonstrated considerable success 
in achieving satisfactory performance for linear or mildly nonlinear systems. However, as highlighted in the 
literature, traditional methods often fail to deliver optimal results in highly nonlinear environments like CSTH. 
This shortfall emphasizes the need for optimization techniques that can refine controller parameters and improve 
overall system performance5.

Recent advancements in metaheuristic algorithms have addressed the shortcomings of traditional tuning 
methods by offering robust solutions for highly nonlinear optimization problems6. Bio-inspired algorithms, such 
as the starfish optimization algorithm (SFOA)7, greater cane rat algorithm (GCRA)8, honey badger algorithm 
(HBA)9, and aquila optimizer (AO)10,11, have shown remarkable potential in achieving global optimal solutions. 
These techniques strike a fine balance between exploration and exploitation phases, making them suitable 
for complex control tasks. Among them, SFOA has demonstrated superior convergence rates and robustness, 
particularly in applications involving nonlinear constraints. Yet, the specific impact of these algorithms in CSTH 
temperature control systems remains underexplored.

Temperature regulation in CSTH systems has long been a critical challenge in process industries due to the 
highly nonlinear and multivariable nature of these systems. However, almost no significant studies has been 
performed over the years to improve performance and robustness in CSTH processes. In a study conducted by 
Gao, et al.12 data-driven predictive control strategy utilizing recursive modified partial least squares (RMPLS) 
and locally weighted projection regression (LWPR) was introduced. This method effectively regressed local linear 
models to adapt to dynamic process conditions, significantly outperforming traditional model-free adaptive 
control methods in predictive accuracy and robustness. Mahmood and Nawaf13 analyzed the PID-cascade 
control architecture for CSTH systems, highlighting its strengths in disturbance rejection and setpoint tracking. 
However, the study emphasized its limitations in handling strong nonlinearities, particularly under varying 
operational conditions, necessitating advanced controller designs​. Tao, et al.14 proposed a broad learning system 
(BLS)-aided predictive control strategy to address computational challenges associated with neural network-
based controllers. The approach reduced computational complexity while maintaining high predictive accuracy 
and control precision, making it a viable choice for real-time CSTH applications​.

In a complementary direction, Wu and Yang15 developed a Nonlinear subspace predictive control (NSPC) 
framework incorporating locally weighted projection regression (LWPR). This method addressed nonlinear 
dynamics effectively by constructing localized models, yielding enhanced tracking and predictive performance 
in CSTH benchmarks​. Several studies have also focused on the role of metaheuristic optimization in enhancing 
CSTH control. For instance, Dhanasekar and Vijayachitra2 explored hybrid optimization techniques, combining 
genetic algorithms (GA), pattern search, and Fmin search to optimize PID controller parameters. Their 
approach improved system stability and reduced steady-state error in CSTH processes​. Similarly, Hashim, et al.9 
introduced the HBA, demonstrating its efficiency in balancing exploration and exploitation to achieve optimal 
control in nonlinear systems​​.

Artificial neural network (ANN)-based control strategies have also gained traction. Ang, et al.16 implemented 
ANN controllers for CSTH systems, leveraging their adaptability to nonlinear dynamics and disturbance rejection. 
The study demonstrated the potential of ANN-based controllers to handle system complexities more effectively 
than traditional methods​. Further, Ahmed, et al.17 investigated advanced PID tuning methods, including Ziegler-
Nichols and fuzzy logic approaches, highlighting their limitations under dynamic conditions and proposing 
enhancements to improve performance in CSTH applications​. Finally, Li and Jiang18 demonstrated the use of 
CSTH as an educational platform for process control. They showcased practical applications of PID and cascade 
controllers, emphasizing the importance of integrating theoretical knowledge with real-world system dynamics​
. Table 1 presents a review of key contributions from the literature to establish the foundation and identify the 
gaps addressed in this study.

Despite the significant advancements highlighted above, there remains a gap in the integration of novel 
metaheuristic algorithms, such as the SFOA, with advanced controllers like the 2DOF-PIDA. To address 
these gaps, this paper proposes a novel control strategy that combines the 2DOF-PIDA controller with SFOA. 
The 2DOF-PIDA controller introduces enhanced flexibility for decoupling setpoint tracking and disturbance 
rejection, while SFOA optimizes the controller parameters to ensure optimal performance. This seamless 
integration provides a promising framework for overcoming the challenges associated with temperature 
regulation in CSTH processes, setting the stage for its validation through simulation and comparative analysis.

Article Method Theory Findings

Ref.13 Cascade PID control analysis 
for nonlinear CSTH processes

Combination of PID and cascade 
architecture

Effective disturbance rejection but limited 
performance in nonlinear conditions

Ref.14 BLS integrated with predictive 
control

Broad Learning for reduced computation 
and higher precision

Reduced computational complexity and
 improved precision in CSTH applications

Ref.2 Hybrid optimization using GA, 
Pattern Search, and Fmin Search

Combining metaheuristics for advanced
 PID tuning

Improved stability and reduced errors
 in CSTH control

Ref.9 Metaheuristic optimization
 with HBA

Exploration and exploitation balance
 in metaheuristics

Efficient optimization for nonlinear 
CSTH tuning

Ref.18 Implementation of PID and cascade 
control in education

Practical teaching applications for
 nonlinear control

Strengthened practical understanding of 
control strategies

Table 1.  Overview of the previous research.
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The paper is organized as follows: section  “Modeling of CSTH temperature control system” introduces 
the mathematical modeling of the CSTH system. Section  “Mathematical model of starfish optimization 
algorithm (SFOA)” presents the optimization using the SFOA algorithm. Additionally, in this section, the 
SFOA optimization technique is discussed, emphasizing its effectiveness in parameter tuning. Section “Novel 
temperature control design approach for CSTH process” focuses on the implementation of the 2DOF-PIDA 
controller for the continuously stirred tank heater, optimized via SFOA to improve stability and system 
response. Section “Simulation results” provides simulation results and a detailed comparison with other widely 
used controllers and meta-heuristic optimization techniques. Lastly, section  “Conclusion and future work” 
summarizes the key conclusions and suggests future research directions.

Modeling of CSTH temperature control system
The CSTH plays a vital role in industrial temperature control applications. It functions by maintaining a consistent 
heating process within a tank, utilizing a jacketed heating mechanism to precisely regulate temperature levels. 
The CSTH system integrates complex dynamic processes, such as fluid flow, heat transfer, and control strategies, 
which are represented through nonlinear mathematical models. Achieving accurate modeling and parameter 
optimization is crucial to ensuring the system’s efficiency and effective performance. Figure  1 illustrates the 
general schematic of the CSTH system19,20.

The behavior of the CSTH system is governed by fundamental principles, including mass balance, energy 
balance, and heat transfer. The mass balance equation upholds the conservation of mass throughout the 
system21,22:

	
dM

dt
= ρf Qin − ρf Qout� (1)

In the mass balance equation, M denotes the mass of the fluid within the tank, while ρf  represents the fluid 
density. The terms Qin and Qout correspond to the inlet and outlet flow rates, respectively.

The energy balance equation characterizes the dynamic changes in the fluid temperature inside the tank, 
taking into account both heat transfer mechanisms and flow dynamics. This equation provides insights into 
how thermal energy is distributed and conserved within the system, ensuring efficient temperature regulation21:

	
d (TtM)

dt
= ρf CpQin (Tin − Tt) + UA (Th − Tt)� (2)

In the energy balance equation, the parameters are defined as follows: Tt represents the temperature of the 
fluid inside the tank while Tin and Th denote the inlet fluid temperature and the heating jacket temperature, 
respectively. The specific heat capacity of the tank fluid is denoted by Cp, whereas U represents the overall heat 
transfer coefficient, and A is the heat transfer area.

Fig. 1.  Schematic representation of CSTH control system.
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The heat transfer equation quantitatively measures the thermal energy transferred from the heating jacket 
to the tank fluid, ensuring effective temperature regulation and process stability within the system. The heat 
transfer equation quantifies the amount of thermal energy transferred from the heating jacket to the fluid tank, 
ensuring efficient temperature regulation within the system. It is expressed as13:

	 Qh = UA (Th − Tt)� (3)

This equation highlights the dependence of heat transfer on the temperature difference between the heating 
jacket and the tank fluid, as well as the efficiency of the heat exchange surface.

Transfer function model of CSTH
To develop the transfer function model of the CSTH system, we apply the Laplace transform to the energy 
balance equation:

	 (MCP s + ρf CP Qin) Tt (s) = ρf CP QinTt (s) + UATh (s)� (4)

Rearranging for Tt (s) :

	
Tt (s) = 1

MCP s + ρf CP Qin
× [ρf CP QinTt (s) + UATh (s)]� (5)

Defining the time constant τ = M
ρf Qin

, the transfer function relating the heater power Qh (s) to the tank 
tempreture Tt (s) is:

	
G (s) = Tt (s)

Qh (s) = 1
τs + 1 � (6)

Similarly, the transfer function from the inlet temperature Tin (s) to the output temperature is:

	
G (s) = Tt (s)

Tin (s) = ρf CP Qin

τs + 1 � (7)

This transfer function model effectively represents the dynamic behavior of the CSTH system, capturing the heat 
transfer and flow characteristics.

Comprehensive parameters defining the CSTH control system
The parameters listed in Table 2 thoroughly describe the physical, thermal, and control characteristics of the 
CSTH process. These parameters are essential for accurately modeling, analyzing, and controlling system 
behavior, ensuring optimal performance and stability under varying operational conditions19,20.

Fluid properties
The tank fluid has a density (ρ) of 1200 kg/m3 and a specific heat capacity (Cp) of 4190 J/(kg°C), both of which 
are crucial for energy and mass balance equations. Similarly, the heating fluid possesses a density (ρc) of 800 kg/
m3 and a specific heat capacity (Cpc) of 2400 J/(kg°C), enabling precise modeling of heat transfer between the 
heating jacket and the tank fluid.

Geometric dimensions
The design dimensions of the tank and heating jacket significantly influence heat transfer efficiency and fluid 
dynamics. The tank features a diameter (D) of 0.3 m, an internal cross-sectional area (A) of 0.0225π m2, and a 
wall height Ht of 0.9 m. The heating jacket is characterized by a heat transfer area Ac of 0.2025π m2, a width Wc 
of 0.02 m, a height Hc of 0.6 m, and a volume Vc of 0.0044π m3. These parameters are fundamental to evaluating 
heat exchange effectiveness and fluid behavior.

Thermal properties
The overall heat transfer coefficient (U) of 440 J/(°C s m2) defines the system’s capacity to transfer heat from the 
heating jacket to the tank fluid. The heating fluid inlet temperature (Tci) of 320 °C and the process fluid inlet 
temperature (Ti) of 24 °C establishes the driving temperature gradient necessary for effective heat transfer.

Control system parameters
Key control parameters ensure accurate regulation of fluid level and temperature. The level transmitter has a gain 
KL of 125%/m with a time constant (TL) of 2 s, while the temperature transmitter has a gain (KT ) of 2%/°C and 
a time constant (TT ) of 15 s. The level control valve features a constant (KvL) of 0.000015 and a stem constant 
(KxL) of 0.01%. Similarly, the temperature control valve has a constant (KvT ) of 0.000003 and a stem constant 
KxT  of 0.01%. The valve time constants are TvL  = 3 s and TvT  ​ = 5 s, respectively.

Fluid dynamics parameters
The nominal tank inlet flow rate (Qi) of 0.0007 m3/s, and the pipe flow resistance (Rc) of the heating fluid 
system is 55 × 106 kPa/(m3/s)2. The heating fluid pump discharge pressure (Pcp) is 414 kPa, while the return 
pressure (Pcr) is 138 kPa, ensuring appropriate pressure conditions for system operation.
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Control set-points
The system operates with a temperature controller set-point (Tsp) of 38 °C and a level controller set-point (Hsp) 
of 0.7 m, defining the desired operational targets for the CSTH system.

Additional parameters
The gravity constant (g) of 9.8  m/s2 is critical for fluid behavior calculations within the tank. Moreover, 
the temperature control valve rangeability (RvT ) of 50 provides flexibility in adjusting flow rates to meet 
operational demands. Collectively, these parameters establish a robust foundation for the design, simulation, 
and optimization of the CSTH system, ensuring its efficiency and stability under diverse operational conditions.

Murrill-tuned PID control method
The standard PID controller used in Murrill’s tuning method is represented as23:

	
Gc (s) = Kp

(
1 + 1

Tis
+ Tds

)
� (8)

where, Kp, Ti and Td are proportional gain, integral time constant and derivative time constant respectivly.

Tuning formulas for PID controller  For moderate dead-time systems, where 0.5 ⩽ θ
τ
⩽ 1.5, the following 

empirical tuning rules apply:

	
Kc = 1.2

KP

(
τ

θ

)
, Ti = 2θ, Td = 0.5θ� (9)

Parameter Value Unit

ρ (tank fluid density) 1200 kg/m3

ρc  (heating fluid density) 800 kg/m3

D (tank diameter) 0.3 m

A (tank inside section area) 0.0225 × π m2

Ac  (jacket heat transfer area) 0.2025 × π m2

Cp  (tank fluid heat capacity) 4190 J/(kg°C)

Cpc  (heating fluid heat capacity) 2400 J/(kg°C)

g (gravity constant) 9.8 m/s2

KL  (level transmitter gain) 125 %m

KT  (temperature transmitter gain) 2 %/°C

KvL  (level control valve constant) 0.000015 -

KvT  (temperature control valve constant) 0.000003 -

KxL  (level control valve stem constant) 0.01 %

KxT  (temperature control valve stem constant) 0.01 %

Qi  (normal tank inlet fluid flow rate) 0.0007 m3/s

T i  (fluid inlet temperature) 24 °C

T ci  (heating fluid inlet temperature) 320 °C

T sp  (temperature controller set-point) 38 °C

T L  (level transmitter time constant) 2 s

T T  (temperature transmitter time constant) 15 s

T vL  (level control valve time constant) 3 s

T vT  (temperature control valve time constant) 5 s

P cp  (heating fluid pump discharge pressure) 414 kPa

P cr  (heating fluid system return pressure) 138 kPa

Rc  (heating system pipe nominal flow resistance) 55 × 106 kPa/(m3/s)2

RvT  (temperature control valve rangeability) 50 -

U  (overall heat-transfer coefficient) 440 J/(°Csm2)

V c  (heat jacket volume) 0.0044 × π m3

W c  (heating jacket wide) 0.02 m

Hc  (heating jacket height) 0.6 m

Ht  (tank wall height) 0.9 m

Hsp  (level controller set-point) 0.7 m

Table 2.  Definition of parameters in CSTH system19,20.
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These formulas ensure a well-balanced response with minimal oscillations while maintaining a trade-off between 
stability and performance.

Standard PID (SPID) controller and Murrill-tuned control method
The standard proportional-integral-derivative (SPID) controller is a widely utilized control strategy in industrial 
applications, providing effective regulation of system dynamics by combining proportional, integral, and 
derivative actions. The transfer function of the SPID controller serves as a mathematical representation of the 
system’s dynamic behavior in the frequency domain, allowing for the analysis of stability and performance 
characteristics. The general expression of the transfer function incorporates the proportional gain, which 
directly responds to the current error; the integral gain, which accumulates past errors to eliminate steady-state 
deviations; and the derivative gain, which anticipates future errors to improve stability. Transfer function of the 
SPID controller is expressed as follows24:

	
CSP ID (s) = U (s)

E (s) = Kp

(
1 + 1

Tis
+ Tds

αdTds + 1

)
� (10)

In this study19, the Murrill-tuned SPID control method was applied to a CSTH system, demonstrating its 
effectiveness in temperature regulation. Figure 2 refers to the time response of the Murrill-tuned SPID-controlled 
CSTH temperature control system. The system’s setpoint (YT,sp (t)) was increased from 76 to 81%, and the 
corresponding response was analyzed to evaluate the controller’s performance.

The observed results illustrate the controller’s ability to accurately track setpoint changes while maintaining 
stability and minimizing overshoot. The Murrill tuning method is critical in refining the PID parameters to 
balance response speed and system stability, ensuring optimal performance under varying operating conditions. 
The time response characteristics obtained from the implementation highlight the practical benefits of using this 
tuning approach in industrial temperature control applications.

Fig. 2.  Time response of Murrill-tuned SPID controlled CSTH temperature control system.
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Mathematical model of starfish optimization algorithm (SFOA)
The starfish optimization algorithm (SFOA) is a bio-inspired metaheuristic approach designed to solve 
optimization problems by imitating the natural behaviors of starfish, including exploration, preying, and 
regeneration. The algorithm aims to balance exploration, which ensures a thorough search of the solution space, 
and exploitation, which refines the search towards the optimal solution. In the initialization phase, the positions 
of the starfish, representing candidate solutions, are randomly generated within the defined search space. This 
can be expressed mathematically as:

	 Xij = lj + (uj − lj) , r ∈ (1, 0)� (11)

where Xij  represents the position of the ith starfish in the jth dimension, and lj , ujare the lower and upper 
bounds of the search space, respectively. The exploration phase of SFOA employs a hybrid search pattern that 
depends on the problem’s dimensionality. For high-dimensional problems where D > 5, the search strategy 
utilizes a five-dimensional approach inspired by the movement of the starfish’s arms. The position update 
formula in this case is:

	





Y
(t)

i,p = X
(t)
i,p + α

(
X

(t)
best,p − X

(t)
i,p

)
× cos (θ) r ⩽ 0.5

Y
(t)

i,p = X
(t)
i,p − α

(
X

(t)
best,p − X

(t)
i,p

)
× sin (θ) r > 0.5

� (12)

where α is defined as (2r − 1) π and θ is calculated as π
2

(
T

Tmax

)
. In contrast, for problems with D ≤ 5, a 

unidimensional search pattern is applied, where the position update is given by:

	
Y

(t)
i,q = EtX

(t)
i,p + A1

(
X

(t)
k1,p − X

(t)
i,p

)
+ A2

(
X

(t)
k2,p − X

(t)
i,p

)
� (13)

In this equation, Et represents the energy of the starfish, calculated as 
(

Tmax−T
Tmax

)
cos (θ), ensuring a gradual 

reduction of exploration over time. In the exploitation phase, SFOA introduces mechanisms inspired by starfish 
preying and regeneration behaviors to refine the search process. The preying behavior employs a two-directional 
search strategy, which adjusts the starfish positions based on their proximity to the best-known solution. This is 
formulated as:

	 Y
(t)

i = X
(t)
i + r1dm1 + r2dm2� (14)

where the distances dm are calculated between the global best solution and the individual starfish. The 
regeneration phase further improves convergence by gradually adjusting the position of the last starfish in the 
population using the following formula:

	
Y

(t)
i = exp

(
−T × N

Tmax

)
× X

(t)
i � (15)

To ensure feasible solutions, any position that exceeds the search space boundaries is adjusted as follows:

	

X
(t+1)
i =




Y
(t)

i l ⩽ Y
(t)

i ⩽ u

l Y
(t)

i < l

u Y
(t)

i > u

� (16)

The algorithm runs iteratively until a termination criterion, typically the maximum number of iterations Tmax

, is reached. Once the optimization process is complete, the best-found solution is returned. Figure 3 presents 
the flowchart of SFOA.

Novel temperature control design approach for CSTH process
2DOF-PIDA controller
The 2DOF-PIDA controller represents an advanced control technique that improves system dynamic 
performance through acceleration feedback integration with standard proportional integral derivative elements. 
The 2DOF-PIDA controller offers greater adaptability and stability than standard PID controllers, resulting 
in better performance in disturbance rejection and reference tracking. The transfer function of the proposed 
2DOF-PIDA controller can be expressed as follows:

	
U (s) = Kp

(
β × R (s) − Y (s) + 1

Tis
[R (s) − Y (s)] + Tds

αdTds + 1 [γ × R (s) − Y (s)] +
(

Tas

αaTas + 1

)2
[R (s) − Y (s)]

)
� (17)

The block diagram of the 2DOF-PIDA controller is illustrated in Fig.  4, consists of two distinct feedback 
loops. Two distinct feedback loops form the 2DOF-PIDA controller block diagram shown in Fig. 4, including 
a primary feedback loop that controls system output and an auxiliary loop that adds control action through 
acceleration feedback. The control system benefits from better handling of different system dynamics and 
external disturbances due to its dual-loop structure.
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Definition of novel cost function
The new cost function presented in this investigation seeks to improve control performance by reducing the 
deviation between the setpoint signal and temperature transmitter output throughout a set simulation interval. 
This study analyzes the system response characteristics over a complete 1000s simulation time. The cost function 
combines mathematical formulations with key performance indices like overshoot and steady-state error to 
meet set control objectives. The cost function can be expressed as follows25:

	
FIAE =

tfinal

∫
0

|e (t)| dt� (18)

where, e (t) = YT,sp (t) − YT (t) is an error between the setpoint signal and the temperature transmitter 
output, tfinal is simulation time. The proposed optimization approach aims to minimize the cost function 
(CF ), which is designed to balance between tracking accuracy and normalized overshoot. The cost function is 
mathematically defined as:

Fig. 3.  Flowchart of SFOA.
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	 CF = φ × FIAE + (1 − φ) × Os,norm� (19)

Scaling factor φ = 0.05, which prioritizes the contribution of FIAE  in the cost function while assigning a smaller 
weight to Os,norm. In addition, Os,norm is normalized percent overshoot, which measures how much the 
system output exceeds the desired setpoint. To ensure the practicality and feasibility of the optimization results, 
the control parameters are constrained within the bounds specified in Table 3, where Kp, Ti, Td, αd, β, γ, Ta 
and αa represent proportional gain, integral time constant, derivative time constant, derivative filter coefficient, 
the weighting factor for proportional action, scaling parameter, acceleration time constant, and acceleration 
filter coefficient, respectively.

Working mechanism of proposed SFOA-tuned 2DOF-PIDA control method for CSTH process
The control method presented combines the SFOA with a 2DOF-PIDA controller to maintain stable temperature 
regulation in CSTH operations. Figure 5 shows the detailed block diagram of the control strategy while the SFOA 
optimization algorithm adjusts the 2DOF-PIDA controller parameters in real-time to improve performance 
under various operational conditions and tackle non-linearities and uncertainties in the CSTH process.

The 2DOF-PIDA controller separates tuning settings to manage setpoint tracking while independently 
handling disturbance rejection. The division between functions reduces the trade-offs that exist in traditional 
single-degree-of-freedom controllers. SFOA achieves optimal parameter adjustment, which reduces overshooting 
and enhances system stability through effective exploration and exploitation of the parameter space using swarm 
intelligence.

Comparison with Murrill-tuned SPID control method
The SFOA-tuned 2DOF-PIDA controller demonstrates better performance compared to the conventional 
Murrill-tuned standard proportional-integral-derivative (SPID) controller according to a comparative 
analysis. The dynamic performance enhancement achieved by the SFOA-tuned 2DOF-PIDA control method 
is demonstrated through time response characteristics in Fig. 6. The performance of the proposed SFOA-tuned 
2DOF-PIDA controller is evaluated using key normalized time response metrics, including the normalized 
rise time (trise,norm), normalized settling time (tset,norm), normalized percent overshoot (Os,norm), and 
normalized percent steady-state error (Ess,norm).These metrics provide a standardized framework for analyzing 
the controller’s dynamic and steady-state performance. trise,norm represents the time required for the system 
response to increase from 10 to 90% of its final value. tset,norm, is defined as the time it takes for the system 
to settle within a ± 2% tolerance band around the final steady-state value. Os,norm, quantifies the percentage 
by which the response exceeds the final steady-state value during transient conditions. Finally, the Ess,norm, 
measures the deviation of the system’s output from its final value at the final time.

Table 4 presents a comparative analysis of time response metrics, highlighting the performance differences 
among the evaluated methods. The rise time (trise,norm) of the SFOA-tuned 2DOF-PIDA controller is 
significantly reduced, achieving a value of 50.6027 s compared to the 54.7109 s recorded for the Murrill-tuned 
SPID controller. This reduction reflects the proposed controller’s ability to respond more quickly to input changes. 

Parameters Kp T i T d αd β γ T a αa

Upper bound 20 200 100 0.25 2 10 25 0.25

Lower bound 1 20 10 0.05 0.5 0.1 10 0.05

Table 3.  Upper and lower parameter bounds.

 

Fig. 4.  Block diagram of 2DOF-PIDA controller.

 

Scientific Reports |        (2025) 15:12327 10| https://doi.org/10.1038/s41598-025-96621-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Furthermore, the settling time (tset,norm) shows a dramatic improvement, decreasing to 192.5837 s, which is 
markedly faster than the 492.3235 s required by the SPID controller. In terms of stability, the percent overshoot 
(Os,norm) is minimized to an almost negligible value of 0.0183%, a stark contrast to the 27.1128% observed in 
the SPID controller. This reduction indicates that the proposed controller excels in mitigating transient responses 
and maintaining system stability. Additionally, the steady-state error (Ess,norm) is reduced to 4.2105 × 10–5, 
showcasing an exceptional level of precision, far surpassing the SPID controller’s error of 0.0057%. The SFOA-
tuned 2DOF-PIDA controller shows improved performance through faster response times along with enhanced 
stability and accuracy, as demonstrated by these results. The advanced control approach proves appropriate 
for CSTH system temperature regulation because significant performance metric enhancements validate its 
effectiveness.

Simulation results
The statistical verification of the SFOA was conducted to validate its performance against several recent 
metaheuristic algorithms, including the greater cane rat algorithm (GCRA)8, the mantis search algorithm 
(MSA)26, the honey badger algorithm (HBA)9 and the Aquila optimizer AO10. All algorithms were evaluated 
under identical conditions with a population size of Nps = 40 and a maximum iteration limit of Tmax = 50
. The comparison involved 30 independent runs, using default parameter settings for all algorithms to ensure 
consistency and fairness.

Fig. 5.  Detailed block diagram of SFOA-tuned 2DOF-PIDA control method for CSTH temperature control 
system.
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Statistical verification of SFOA
Figure 7 depicts the performance distribution of SFOA alongside other algorithms through boxplot analysis. 
SFOA proves to be more consistent and reliable than other algorithms in cost function minimization through 
its narrower interquartile range. Detailed comparisons of key performance indicators in Table 5 support the 
findings with precise statistical metrics.

The minimum cost function value reached by SFOA was 13.4008, surpassing all other algorithms since 
GCRA had 15.1542, MSA recorded 14.1271, HBA achieved 14.8383, and AO reached 14.4750. SFOA produced 
the lowest maximum cost function value of 14.3734 among all algorithms, which shows its ability to consistently 
discover near-optimal solutions. SFOA reached a median cost function value of 13.7959, which shows its 
dependability and ability to deliver premium solutions in multiple executions. GCRA, MSA, HBA, and AO 
had median values of 15.6912, 14.4627, 15.2297, and 15.0704, respectively, which were all considerably greater. 
The superior performance of SFOA was confirmed by its average value of 13.8253 which surpassed the results 
of GCRA  (15.7913), MSA  (14.5567), HBA  (15.3380), and AO (15.0851). The calculated standard deviation 
of SFOA reached 0.2765, which is the lowest value when compared to other algorithms. Analysis shows that 
SFOA maintained the most stable performance throughout all 30 experimental runs because it had the smallest 

Time response metric SFOA-tuned 2DOF-PIDA Murrill-tuned SPID

trise,norm  (s) 50.6027 54.7109

tset,norm  (s) 192.5837 492.3235

Os,norm  (%) 0.0183 27.1128

Ess, norm  (%) 4.2105E−05 0.0057

Table 4.  Comparison of time response metrics.

 

Fig. 6.  Comparison of time responses for proposed SFOA-tuned 2DOF-PIDA and Murrill-tuned SPID control 
methods.
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variation in results. The algorithms GCRA, MSA, HBA, and AO had standard deviations measuring 0.3864, 
0.2914, 0.3846, and 0.3253, respectively, which indicated these methods produced results with greater variability. 
The combined results show that SFOA stands out among metaheuristic algorithms because it delivers better 
solutions with more stability and precision in optimization problems. The findings show that SFOA functions as 
a robust and efficient optimization tool for complex systems.

Convergence curve and optimal controller parameters
The SFOA was used to evaluate the convergence behavior and optimal parameter tuning for the 2DOF-PIDA 
controller while comparing it to results from different metaheuristic algorithms. During the optimization 
process, the development of the cost function is shown in Fig.  8, demonstrating the superior convergence 
abilities of the SFOA. The SFOA produces lower cost values with stable performance, demonstrating its superior 
ability to explore the solution space and avoid suboptimal solutions in comparison, demonstrating its superior 
ability to explore the solution space and avoid suboptimal solutions compared to other algorithms.

In terms of computational cost, the results reveal that SFOA consistently achieves faster convergence, 
requiring fewer iterations to reach an optimal solution. This characteristic is particularly beneficial for real-

Statistical metric SFOA GCRA MSA HBA AO

Minimum 13.4008 15.1542 14.1271 14.8383 14.4750

Maximum 14.3734 16.8804 15.1239 16.3060 16.0232

Median 13.7959 15.6912 14.4627 15.2297 15.0704

Average 13.8253 15.7913 14.5567 15.3380 15.0851

Standard deviation 0.2765 0.3864 0.2914 0.3846 0.3253

Table 5.  Comparison of statistical metrics for CF  cost function

 

Fig. 7.  Boxplot analysis of SFOA and other recent metaheuristic algorithms.
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time applications, where rapid optimization is essential. Furthermore, SFOA’s computational overhead remains 
manageable, making it a practical choice for embedded and industrial control applications, provided that the 
hardware meets the necessary processing requirements. The balance between exploration and exploitation 
ensures that SFOA avoids premature convergence, leading to efficient parameter tuning without excessive 
computational burden. This result underscores the feasibility of deploying SFOA in real-world industrial 
systems, where real-time optimization is a critical factor.

According to Table 6, the SFOA algorithm produces superior controller parameter tuning across all metrics 
when compared to other algorithms. The system achieves enhanced performance through these parameters, 
which successfully balance stability with responsiveness. Other methods demonstrate inconsistent tuning and 
suboptimal performance in some regions but the SFOA maintains uniform reliability which leads to enhanced 
control performance. These results, demonstrate that the SFOA achieves optimal solutions with better efficiency 
while delivering superior parameters for the 2DOF-PIDA controller compared to other algorithms. The SFOA 
demonstrates itself to be a powerful and efficient instrument for designing advanced control systems in industrial 
settings.

Time response analysis
A time response analysis was performed on the SFOA-tuned 2DOF-PIDA controller to measure its performance 
against other metaheuristic algorithms such as GCRA, MSA, HBA, and AO. Figure 9 shows the comparative 
time responses. Figure 10 provides a detailed view, which allows for better observation of transient behavior.

The data in Table 7 shows that the SFOA has superior performance in time response metrics when compared 
to other algorithms. The SFOA reacts to changes faster than most competitors because its rise time is less. Its 
performance features a substantially diminished settling time, which proves it stabilizes systems faster than 
alternative methods. The minimal overshoot of SFOA shows its capacity to keep control without significant 
oscillations which helps maintain system integrity and prevent damages. The steady-state error of SFOA remains 
remarkably low, which enables precise and accurate control to achieve the intended output. Comparisons of 
time response metrics demonstrate that SFOA provides superior performance in terms of speed and stability 
along with greater accuracy when contrasted with other modern metaheuristic algorithms. The algorithm 

Fig. 8.  Change of CF  cost function
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demonstrates effective and reliable performance within dynamic control systems by reducing both rise time 
and settling time while minimizing overshoot and steady-state error. The research establishes SFOA as a reliable 
optimization tool due to its strong performance in controlling systems which makes it essential for sophisticated 
industrial tasks.

Setpoint tracking performance
The performance of the SFOA-tuned 2DOF-PIDA controller in tracking setpoints under different conditions was 
evaluated to measure its precision and adaptability. The controlled system’s time response from Fig. 11 proves 
that the proposed controller successfully maintains accurate tracking despite dynamic setpoint variations. The 
SFOA-tuned controller adjusts to setpoint changes quickly with minimal response delay and negligible overshoot 
in its performance. The controller demonstrates robustness and dependability under dynamic conditions 

Fig. 9.  Comparison of time responses.

 

Parameter SFOA GCRA MSA HBA AO

Kp 8.4566 6.7742 7.4883 15.3677 10.7573

T i 125.4357 148.2619 179.0271 124.7468 91.0258

T d 40.1104 36.4294 34.2824 36.0748 33.3091

αd 0.1533 0.1812 0.1340 0.1887 0.2112

β 0.9087 1.0661 1.0713 0.7265 0.6370

γ 7.3544 6.4972 6.0058 4.1054 4.3824

T a 23.6976 23.7971 18.6869 24.4536 20.2475

αa 0.1561 0.2002 0.1838 0.1269 0.1997

Table 6.  Optimal 2DOF-PIDA controller parameters.
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by successfully stabilizing system outputs to match shifting setpoints. The controller demonstrates efficient 
management of transient and steady-state conditions through smooth transitions and rapid adjustments, which 
maintain precise tracking performance throughout various operational ranges. This part shows that the SFOA-
tuned 2DOF-PIDA controller achieves superior setpoint tracking results compared to traditional methods by 
offering faster response times and better stability and precision. Its performance establishes it as an optimal 
solution for applications that need both dynamic adaptability and consistent precision.

Disturbance rejection performance
The evaluation of the disturbance rejection capability of the SFOA-tuned 2DOF-PIDA controller focused on 
how well it maintained system stability and performance when faced with different external disturbances. The 
applied disturbance signals are illustrated in Fig. 12, which includes variations in key system parameters: Fig. 12 
includes illustrations of the applied disturbance signals, which show variations in key system parameters: (a) 
input signal changes, (b) system load variations, and (c) environmental condition fluctuations.

Figure  13 demonstrates how the SFOA-tuned 2DOF-PIDA controller manages these disturbances with 
effective suppression of external perturbations. The controller quickly restores system operations to their 
intended specifications after disturbance events occur. The system’s transient response shows minimal overshoot 

Time response metric SFOA GCRA MSA HBA AO

trise,norm  (s) 50.6027 53.6052 55.8742 53.4604 50.9800

tset,norm  (s) 192.5837 196.6382 200.4884 229.9885 294.4251

Os,norm  (%) 0.0183 1.3515 0.1929 0.5132 0.1324

Ess, norm  (%) 4.2105E − 05 7.8630E − 04 0.0048 9.1721E − 05 6.4159E − 05

Table 7.  Comparison of time response metrics for SFOA, GCRA, MSA, HBA and AO.

 

Fig. 10.  Zoomed view of Fig. 9.
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and fast settling time, which demonstrates the controller’s strength in sustaining system stability during dynamic 
and difficult scenarios. Test results demonstrate that the SFOA-tuned 2DOF-PIDA controller performs best 
when rejecting disturbances. The system maintains dependable performance through efficient disruption 
compensation, making it the preferred choice for control applications that must remain robust against 
unexpected environmental and operational variations. The controller’s ability to reject disturbances makes 
it extremely suitable for industrial systems that depend on maintaining operational integrity and efficiency 
through disturbance management.

Comparison with SPID, 2DOF-PID and PIDA controllers
Figure 14 illustrates the convergence characteristics of the cost function for different SFOA-tuned controllers, 
providing a comparative insight into their optimization efficiency. The figure clearly demonstrates that the 
SFOA-tuned 2DOF-PIDA controller exhibits a faster and more stable convergence trend compared to the 
SFOA-tuned SPID, SFOA-tuned 2DOF-PID, and SFOA-tuned PIDA controllers. This superior convergence 
behavior underscores the ability of the 2DOF-PIDA controller, when optimized using SFOA, to rapidly reach an 
optimal solution with minimal fluctuations. The steep initial descent in the cost function highlights the effective 
exploitation phase of SFOA, where the algorithm swiftly identifies promising solutions. As iterations progress, 
the cost function stabilizes, indicating that the controller parameters are effectively fine-tuned, resulting in 
robust and well-balanced control performance. Notably, the 2DOF-PIDA controller attains the lowest final cost 
value among the tested controllers, reinforcing its superior adaptability to the nonlinear dynamics of the CSTH 
system.

Table  8 displays the optimal parameters of each controller, which were evaluated alongside their time 
response characteristics, as shown in Table 9; Fig. 15 visualizes. The tuning data shows the SFOA-tuned 2DOF-
PIDA controller reaches an optimal balance between adaptability and stability. The alternative controllers do not 
have these advanced tuning features which restrict their performance capabilities in dynamic settings.

All controllers tested show slower response times compared to the 2DOF-PIDA controller which demonstrates 
the quickest rise time and settling time to stabilize the system. The overshoot produced by this controller is 
significantly lower than those produced by SPID, 2DOF-PID, and PIDA controllers, which results in a more 

Fig. 11.  Time response of SFOA-tuned 2DOF-PIDA controlled system under varying setpoint conditions.
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stable output with minimal variations. The precision and accuracy of the 2DOF-PIDA controller in maintaining 
the desired system output are demonstrated by its nearly non-existent steady-state error.

The SFOA-tuned 2DOF-PIDA controller performs better than the SPID, 2DOF-PID, and PIDA controllers 
in every essential performance area, including speed, stability, and accuracy. The 2DOF-PIDA controller’s 
sophisticated structure, combined with its optimal tuning abilities, establish it as the best option for industrial 
applications needing precise and dependable control performance. The analysis proves that the 2DOF-PIDA 
controller stands as a strong and functional modern control solution.

Conclusion and future work
This study proposed a novel metaheuristic-driven control strategy by integrating the 2DOF-PIDA controller 
with the SFOA for temperature regulation in CSTH systems. The results demonstrated the efficacy of this 
approach in achieving significant improvements in tracking accuracy, disturbance rejection, and robustness 
compared to recently reports conventional and metaheuristic-based methods. The seamless combination of 
SFOA’s robust optimization capabilities and the enhanced flexibility of 2DOF-PIDA offers a promising solution 
for controlling highly nonlinear systems. Despite these advancements, several limitations must be acknowledged. 
First, the proposed approach was validated using simulation environments, which, while highly informative, 
may not fully capture the complexities of real-world industrial systems. Experimental validation in real-world 
CSTH systems is crucial to confirm its practical applicability. Second, while SFOA has demonstrated excellent 
performance in tuning controller parameters, its computational efficiency for larger-scale industrial processes 
with real-time constraints needs further investigation. Moreover, the study primarily focused on CSTH systems; 
thus, generalizing the proposed approach to other types of nonlinear systems requires additional research. 
From a managerial perspective, the implications of this study are substantial. The integration of advanced 
control and optimization techniques can lead to significant energy savings, enhanced process efficiency, and 
reduced operational costs in industries utilizing CSTH systems. The robustness of the proposed strategy against 
disturbances ensures greater reliability in maintaining product quality, which is critical for meeting stringent 
industry standards and customer expectations. Furthermore, the study provides a foundation for adopting 

Fig. 12.  Disturbance signals (a) change of Qi, (b) change of Ti, (c) change of Tci
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similar metaheuristic-driven control strategies in broader industrial contexts, encouraging innovation in process 
automation and optimization.

Future work should focus on real-world implementation and scalability of the proposed method, exploration 
of hybrid metaheuristic algorithms to further enhance optimization performance, and addressing computational 
challenges for real-time applications. Such advancements will pave the way for more sustainable and efficient 
industrial process control solutions.

Fig. 13.  Disturbance rejection ability of SFOA-tuned 2DOF-PIDA controlled system.
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Time response metric 2DOF-PIDA SPID 2DOF-PID PIDA

trise,norm  (s) 50.6027 59.9924 57.3929 54.2950

tset,norm  (s) 192.5837 293.8057 292.5760 312.4678

Os,norm  (%) 0.0183 1.9945 1.5057 0.7872

Ess, norm  (%) 4.2105E–05 0.0224 0.0029 0.0127

Table 9.  Comparison of time response metrics for SFOA-tuned controllers.

 

Parameter 2DOF-PIDA SPID 2DOF-PID PIDA

Kp 8.4566 7.2518 9.7872 6.2987

T i 125.4357 149.6405 120.8249 139.3074

T d 40.1104 39.0831 37.4940 41.9279

α d 0.1533 0.0916 0.0815 0.1929

β 0.9087 – 0.7594 –

γ 7.3544 – 4.7765 –

T a 23.6976 – – 8.1738

α a 0.1561 – – 0.2291

Table 8.  Optimal parameters of 2DOF-PIDA, SPID, 2DOF-PID and PIDA controllers tuned by SFOA.

 

Fig. 14.  Change of CF  cost function for SFOA-tuned controllers
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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