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ABSTRACT
This study introduces a novel master–slave architecture featuring an improved gradient-based optimizer (ImGBO) to effectively
tune a cascaded proportional-integral (PI) and proportional-derivative with filter (PDN) controller specifically for DC motor speed
regulation. The core novelty of this work lies in enhancing the traditional GBO algorithm by integrating an experience-based
perturbed learning mechanism and an adaptive local search strategy, significantly enhancing its ability to balance exploration and
exploitation during optimization. The proposed ImGBO-based cascaded PI-PDN controller is comprehensively evaluated against
traditional GBO, recent metaheuristics and advanced proportional-integral-derivative (PID) and fractional-order PID (FOPID)
controllers. Significant improvements were observed, with the proposed method demonstrating exceptionally short rise (0.0089 s)
and settling times (0.0140 s), no overshoot, and minimal steady-state error (0.0017%). Stability analysis via pole placement and
Bode plots affirmed the robust and stable operation of the controller, exhibiting a phase margin of 71.6640˚ and infinite gain
margin. These results strongly support the suitability and effectiveness of the ImGBO-based approach for precision-critical DC
motor control applications.
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1 | Introduction

1.1 | Background

Direct current (DC) motors have been indispensable compo-
nents in various industrial and engineering applications, exten-
sively utilized where precise speed control and dynamic respon-
siveness are paramount. Due to their advantageous character-
istics, such as excellent controllability, linear torque-speed pro-
files, and straightforward control schemes, DC motors remain
pivotal in automation, robotics, electric vehicles, and numer-
ous other applications demanding high accuracy and reliability
[1, 2]. However, precise speed regulation of DC motors under
varying loads and operating conditions remains a challenging
problem. Traditional control approaches, such as conventional
proportional-integral-derivative (PID) controllers [3], have long
been employed due to their simplicity and ease of implemen-
tation. Nonetheless, these conventional methods often struggle
to deliver the desired robustness and stability, especially under
fluctuating operational conditions and parameter uncertainties
[4]. Therefore, contemporary research is increasingly focused on
developing advanced and robust control techniques, aiming to
significantly enhance DC motor control performance by min-
imizing overshoot, reducing steady-state error, and improving
dynamic responsiveness [5, 6].

Among the modern control strategies, cascaded controllers
have gained substantial interest [7]. Cascaded architectures
can improve system response by effectively managing distur-
bances, suppressing noise, and maintaining high dynamic stabil-
ity, thereby offering considerable advantages over traditional PID
and fractional order PID (FOPID) schemes [8–15]. Despite these
benefits, optimal tuning of cascaded controllers poses substantial
complexities, requiring advanced optimization techniques capa-
ble of systematically exploring large parameter spaces to identify
optimal solutions [16]. Metaheuristic optimization algorithms
have emerged as powerful tools to address this challenge, demon-
strating significant potential in achieving precise parameter tun-
ing for advanced control architectures [17–22].

1.2 | Related Works

In recent literature, various approaches have been investigated to
enhance DC motor speed control. Traditional control methods,
such as PID controllers, have been widely optimized using meta-
heuristics, demonstrating improved performance. For instance,
Puangdownreong [4] applied the cuckoo search algorithm to
optimize PID parameters, effectively achieving robust speed con-
trol with good tracking accuracy. Guo and Mohamed [5] pre-
sented an adaptive neuro-fuzzy inference system-based hybrid
PID controller, significantly enhancing the motor’s dynamic per-
formance by reducing steady-state error and overshoot.

Recently, FOPID controllers have also received notable attention
due to their additional tuning flexibility through fractional calcu-
lus. Izci et al. [6] optimized a fractional-order PID controller using
an improved slime mold algorithm, demonstrating superior tran-
sient response and improved robustness compared to conven-
tional PID controllers. Similarly, Zare et al. [9] proposed an opti-
mal fractional-order tilt integral derivative (FOTID) controller,

achieving notable improvements in both stability and dynamic
performance metrics of DC motor speed control systems.

Alternative robust control schemes, such as sliding-mode con-
trol, have been explored by researchers like Chen and Kuo
[2], who designed a double-integral sliding-mode controller
achieving robust and rapid response characteristics for brushless
DC motor control. Advanced fuzzy logic controllers integrated
with metaheuristics have also been proposed; Subramani et al.
[17] introduced an improved African buffalo optimization-based
Takagi-Sugeno-Kang fuzzy proportional-integral (PI) controller,
significantly enhancing the motor’s dynamic performance and
reliability. Akbari-Hasanjani et al. [11] earlier provided insights
into fuzzy PID controllers demonstrating the adaptability and
improved control precision when encountering varying opera-
tional conditions.

Novel optimization algorithms are continuously introduced to
enhance DC motor control further. Jabari et al. [7] recently
utilized a multi-stage fractional-order PD (1+PI) controller
optimized via the pelican optimization algorithm, resulting
in improved transient performance, significantly reduced set-
tling time, and lower steady-state errors. Similarly, Ayinla
et al. [23] effectively implemented the leader-based Har-
ris hawks optimization algorithm, demonstrating considerable
enhancement in robustness and system response accuracy for
DC motor speed control. Furthermore, recent advancements
by Ekinci et al. [3] included a comprehensive comparative
study on mountain gazelle optimizer for DC motors, vali-
dating superior control performance in challenging scenar-
ios. Güven et al. [24] also demonstrated robust results utiliz-
ing a modified jellyfish search algorithm, optimizing PID con-
troller parameters to significantly enhance control reliability and
accuracy.

Additionally, nonlinearity-focused approaches were explored by
Çelik et al. [25], who designed a nonlinear PI controller offering
improved speed regulation capabilities by effectively handling
nonlinearities inherent in PMDC motor drives. Despite these
extensive contributions, challenges such as balancing exploration
and exploitation in the optimization process, avoiding premature
convergence, and achieving optimal parameter tuning in com-
plex controller structures still require further investigation. Con-
sequently, the continued development and refinement of robust
and efficient control and optimization methods remain a priority
research direction [26–28].

1.3 | Motivation

Despite substantial advancements in DC motor speed con-
trol achieved through various classical and advanced meth-
ods, achieving an optimal balance between robustness, preci-
sion, and dynamic responsiveness continues to be challenging
[29–31]. Conventional control schemes such as PID and even
advanced fractional-order PID controllers, while widely utilized,
often suffer from performance limitations when subjected to
varying operational conditions, including load fluctuations and
external disturbances. Additionally, ensuring a proper balance
between global exploration and local exploitation remains prob-
lematic in traditional optimization strategies, often leading to
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premature convergence or suboptimal solutions. These limita-
tions motivate the current study, focusing specifically on over-
coming the inherent challenges in parameter optimization for
cascaded proportional-integral (PI) and proportional-derivative
(PDN) controllers. This work aims to address the existing gaps by
introducing an enhanced gradient-based optimization approach
(ImGBO) that leverages experience-based perturbed learning
and adaptive local search mechanisms. Such enhancements aim
not only to effectively avoid premature convergence but also to
deliver a highly balanced search strategy, significantly improv-
ing control precision and robustness. The pursuit of these goals
aligns closely with the practical demands of industries and
applications that require exceptional accuracy, rapid response
times, and stable motor control under varying operational
scenarios.

1.4 | Contribution

The primary contributions and novelties of this study can be sum-
marized as follows:

• A novel metaheuristic optimization algorithm, termed
ImGBO, is introduced. It integrates two innovative
strategies—experience-based perturbed learning (EPL)
and adaptive local search (ALS), significantly enhancing
exploration and exploitation capabilities. This improvement
addresses common optimization challenges such as pre-
mature convergence and local optima entrapment, thereby
yielding more accurate and reliable control solutions.

• A unique master–slave architecture utilizing Bode’s ideal
reference model as the master system and the cascaded
PI-PDN controller tuned by ImGBO as the slave system is
presented. This framework ensures precise conformity to
predefined dynamic performance specifications, enabling
robust and stable regulation of DC motor speed.

• Extensive comparative studies validate the effectiveness of
the proposed ImGBO-based cascaded PI-PDN controller
against traditional gradient-based optimizer (GBO) and con-
temporary metaheuristics, including flood algorithm (FLA),
RIME optimizer, and artificial hummingbird algorithm
(AHA). Furthermore, rigorous comparisons with recent PID
and FOPID-based controllers reported in the literature are
conducted, providing a holistic evaluation of the proposed
method’s relative advantages.

• The simulation results demonstrate notable improve-
ments in critical performance metrics. Specifically, the
ImGBO-based cascaded PI-PDN controller achieves excep-
tionally rapid rise (0.0089 s) and settling times (0.0140 s),
zero overshoot, and minimal steady-state error (0.0017%),
significantly surpassing the performance metrics reported
by recently documented PID and FOPID-based controllers.

• The robustness and reliability of the proposed method are
thoroughly verified via stability analyses utilizing pole place-
ment and Bode plots. The analyses confirm the superior sta-
bility characteristics of the proposed control scheme, char-
acterized by a high phase margin (71.6640˚) and infinite
gain margin, highlighting its suitability for precision-critical
applications.

Collectively, these contributions underscore the significant
advancements offered by the proposed ImGBO-based cascaded
PI-PDN controller, providing a reliable, efficient, and practi-
cally viable solution for advanced DC motor speed control
applications.

1.5 | Organization

The remainder of this manuscript is structured as follows.
Section 2 provides the detailed mathematical modeling of the
DC motor speed control system employed in the study, estab-
lishing the theoretical foundation required for controller devel-
opment. Section 3 introduces the original GBO algorithm and
thoroughly explains the proposed ImGBO, detailing its novel
EPL and ALS components. Section 4 presents the maiden
application of the proposed master–slave framework incorporat-
ing the ImGBO-tuned cascaded PI-PDN controller, clearly outlin-
ing the methodology, optimization constraints, and implemen-
tation strategy. Section 5 comprehensively discusses simulation
results, including detailed comparisons with recent metaheuris-
tic algorithms and statistical validations. Time-domain analyses,
controller effort evaluations, and extensive comparative studies
against state-of-the-art PID and FOPID controllers are included.
Stability analyses employing pole placement and Bode plots fur-
ther substantiate the robustness of the proposed control solution.
Finally, Section 6 concludes the paper by summarizing key find-
ings and contributions, underscoring the practical implications
and effectiveness of the proposed approach, and providing rec-
ommendations for future research directions.

2 | Modeling of DC Motor Speed Control System

This work employs an externally excited DC motor, where speed
control can be achieved by adjusting the armature voltage or cur-
rent. The simplified block diagram for the DC motor drive is
illustrated in Figure 1. The open loop transfer function describ-
ing the motor’s speed response to armature voltage is derived as
follows. First, for a constant flux condition, the induced voltage
𝑒𝑏(𝑡) is proportional to the rotational speed 𝜔(𝑡) and is expressed
as [32–34]:

𝑒𝑏(𝑡) = 𝐾𝑏

d𝜃(𝑡)
dt

= 𝐾𝑏𝜔(𝑡) (1)

With an armature-controlled DC motor, the applied voltage 𝑒𝑎(𝑡)
must overcome both armature circuit drop and back emf:

𝑒𝑎(𝑡) = 𝐿𝑎

𝑑𝑖𝑎(𝑡)
dt

+𝑅𝑎𝑖𝑎(𝑡) + 𝑒𝑏(𝑡) (2)

Assuming no external load, the armature current 𝑖𝑎(𝑡) generates
the torque required to overcome inertia and friction. Hence:

𝑇 (𝑡) = 𝐽
d𝜔(𝑡)

dt
+ B𝜔(𝑡) = 𝐾𝑚𝑖𝑎(𝑡) (3)

where 𝐽 is the moment of inertia, 𝐵 is the friction constant, and
𝐾𝑚 is the motor torque constant. Taking the Laplace transform
with zero initial conditions yields:

𝐸𝑏(𝑠) = 𝐾𝑏𝛺(𝑠) (4)
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FIGURE 1 | Block diagram of DC motor speed system.

𝐸𝑎(𝑠) =
(
𝐿𝑎𝑠 +𝑅𝑎

)
𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) (5)

𝑇 (𝑠) = (Js + 𝐵)𝛺(𝑠) = 𝐾𝑚𝐼𝑎(𝑠) (6)

Eliminating 𝐼𝑎(𝑠) to relate the output speed 𝛺(𝑠) to the input volt-
age 𝐸𝑎(𝑠) gives the open loop transfer function:

𝐺𝑃 (𝑠) =
𝛺(𝑠)
𝐸𝑎(𝑠)

=
𝐾𝑚(

𝐿𝑎𝑠 +𝑅𝑎

)
(Js + 𝐵) +𝐾𝑏𝐾𝑚

(7)

In keeping with parameters reported in [35, 36], the DC motor is
assigned: 𝑅𝑎 = 0.4 Ω, armature inductance 𝐿𝑎 = 2.7 H, 𝐽 = 4 ×
10−4 kg m2, 𝐵 = 2.2 × 10−3 N m s∕rad, 𝐾𝑚 = 1.5 × 10−2 N m∕A,
and electromotive force constant 𝐾𝑏 = 5 × 10−2 V s∕rad. Substi-
tuting these values into Equation (7) yields the open-loop plant
of 𝐺𝑃 (𝑠) = 0.015∕

(
0.00108𝑠2 + 0.0061𝑠 + 0.00163

)
.

3 | Gradient-Based Optimizer and Its Improved
Version

Gradient-based optimization (GBO) is a metaheuristic approach
inspired by Newton’s rules and utilizes gradient-related concepts
to tackle complex optimization problems [37]. GBO balances
exploration and exploitation through two main operators: the gra-
dient searching rule (GSR) and the local escaping operator (LEO).
GSR expands the search domain to avoid premature convergence,
while LEO refines promising solutions. The algorithm starts by
randomly initializing a population of candidate solutions (𝑍𝑛),
ensuring diversity in the search space. Each solution is generated
as follows:

𝑍𝑛 = 𝑍min + rand ×
(
𝑍max −𝑍min

)
, 𝑛 = 1, 2, . . . , 𝑁 (8)

where 𝑁 is the population size, rand is a random vector in [0, 1],
and 𝑍min and 𝑍max are the lower and upper boundaries of the
search domain, respectively. GSR is designed to broaden explo-
ration and reduce the likelihood of stagnation in local optima. It
updates each solution 𝑍𝑡

𝑛
in iteration 𝑡 using a numerical gradi-

ent concept and direction of movement (DM). The GSR update is
given by:

𝑍1𝑡
𝑛
= 𝑍𝑡

𝑛
− randn × 𝐵1 ×

2Δ𝑍. 𝑍𝑡
𝑛(

𝑍worst −𝑍best + 𝜀
) + rand × 𝐵2 ×

(
𝑍best −𝑍𝑡

𝑛

) (9)

where 𝑍best and 𝑍worst denote the current best and worst solu-
tions, respectively, 𝜀 ∈ [0,0.1] is a small number, randn is drawn
from a normal distribution, while rand is uniformly distributed
in [0, 1]. The parameters𝐵1 = 2.rand.𝑎 − 𝑎 and𝐵2 = 2.rand.𝑎 − 𝑎

regulate exploration and exploitation where 𝑎 and 𝐺 have the
following definitions.

𝑎 =
||||𝐺. sin

( 3𝜋
2

+ sin
(
𝐺.

3𝜋
2

))|||| (10)

𝐺 = 0.2 +
(

1 −
(
𝑡

𝑇

)3
)2

(11)

Besides, Δ𝑍 = rand(1 ∶ 𝐷). ∣ step ∣, where:

step =
(
𝑍best −𝑍𝑡

𝑟1
)
+ 𝛾

2
(12)

𝛾 = 2.rand.

(|||||
𝑍𝑡

𝑟1 +𝑍𝑡
𝑟2 +𝑍𝑡

𝑟3 +𝑍𝑡
𝑟4

4
−𝑍𝑡

𝑛

|||||
)

(13)

Here, 𝑟1, 𝑟2, 𝑟3, 𝑟4 are distinct indices in the population (𝑟1 ≠
𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑛), 𝐷 is the dimension of the solution, 𝑇 is the
maximum iteration count, and Δ𝑍 scales the movement step.
A second updated solution 𝑍2𝑡

𝑛
is formed by using 𝑍best in place

of 𝑍𝑡
𝑛
:

𝑍2𝑡
𝑛
= 𝑍best − randn × 𝐵1 ×

2Δ𝑍.𝑍𝑡
𝑛(

yp𝑚
𝑛
− yq𝑚

𝑛
+ 𝜀

) + rand × 𝐵2 ×
(
𝑍𝑡

𝑟1 −𝑍𝑡
𝑟2
) (14)

where yp𝑛 = rand.
(([

𝑌 𝑡
𝑛
+𝑍𝑡

𝑛

]
∕2

)
+ rand.Δ𝑍

)
and yq𝑛 =

rand.
(([

𝑌 𝑡
𝑛
+𝑍𝑡

𝑛

]
∕2

)
− rand.Δ𝑍

)
. Here, 𝑌 𝑡

𝑛
is the previous

iteration’s solution. A “flag” mechanism then decides whether
𝑌 𝑡
𝑛

becomes 𝑍1𝑡
𝑛

or 𝑍2𝑡
𝑛
. To balance local and global exploration,

the final solution for iteration 𝑡 + 1 is updated as:

𝑍𝑡+1
𝑛

= 𝑟𝑎 ×
(
𝑟𝑏 ×𝑍1𝑡

𝑛
+
(
1 − 𝑟𝑏

)
×𝑍2𝑡

𝑛

)
+
(
1 − 𝑟𝑎

)
×𝑍3𝑡

𝑛
(15)

𝑍3𝑚
𝑛
= 𝑍𝑡

𝑛
− 𝜌1 ×

(
𝑍2𝑡

𝑛
−𝑍1𝑡

𝑛

)
(16)

The LEO stage boosts exploitation by combining multiple solu-
tion vectors. If rand < pr, LEO produces a new candidate
𝑍𝑡

LEO via:

if rand < pr

if rand < 0.5

𝑍𝑡
LEO = 𝑍𝑡+1

𝑛
+ 𝑓1 ×

(
𝑣1 ×𝑍best − 𝑣2 ×𝑍𝑡

𝑘

)
+ 𝑓2 × 𝐵1 ×

(
𝑣3 × (𝑍2𝑡

𝑛
−𝑍1𝑡

𝑛

)
+ 𝑣2 ×

(
𝑍𝑡

𝑟1 −𝑍𝑡
𝑟2
)
)∕2

𝑍𝑡+1
𝑛

= 𝑍𝑡
LEO

else

𝑍𝑡
LEO = 𝑍best + 𝑓1 ×

(
𝑣1 ×𝑍best − 𝑣2 ×𝑍𝑡

𝑘

)
+ 𝑓2 × 𝜌1 ×

(
𝑣3 × (𝑍2𝑡

𝑛
−𝑍1𝑡

𝑛

)
+ 𝑣2 ×

(
𝑍𝑡

𝑟1 −𝑍𝑡
𝑟2
)
)∕2

𝑍𝑡+1
𝑛

= 𝑍𝑡
LEO

end

end (17)
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Here, 𝑓1 is uniformly distributed in [−1, 1], 𝑓2 follows a stan-
dard normal distribution, and pr is the switching probabil-
ity. The coefficients 𝑣1, 𝑣2, and 𝑣3 are computed as 𝑣1 = 𝐻1 ×
2 × rand +

(
1 −𝐻1

)
, 𝑣2 = 𝐻1 × rand +

(
1 −𝐻1

)
and 𝑣3 = 𝐻1 ×

rand +
(
1 −𝐻1

)
where 𝐻1 ∈ {0, 1} is determined by a compari-

son of a uniform random 𝑣1 ∈ [0, 1] with 0.5. Additionally, 𝑍𝑚
𝑘

is
updated as:

𝑍𝑚

𝑘
= 𝐻2 ×𝑍𝑡

𝑝
+
(
1 −𝐻2

)
×𝑍rand (18)

where 𝑍𝑡
𝑝

is any randomly chosen solution from the popula-
tion,𝑍rand = 𝑍min + rand(0, 1) ×

(
𝑍max −𝑍min

)
, and𝐻2 ∈ {0, 1}

depends on another random threshold 𝑣2 ∈ [0, 1]. By iteratively
applying GSR and LEO, GBO adaptively balances global explo-
ration with local refinement, demonstrating robust performance
in locating high-quality solutions.

Although GBO demonstrates promising performance, it can still
experience premature convergence and difficulties in maintain-
ing a proper balance between exploration and exploitation in
complex search spaces. In response, we propose an enhanced
variant called ImGBO, which incorporates two major enhance-
ments: experience-based perturbed learning (EPL) and an adap-
tive local search (ALS) mechanism [38]. EPL expands the
exploration capability by guiding new candidate solutions toward
promising regions, while ALS strengthens exploitation by refin-
ing the quality of solutions through collaborative updates among
elite individuals.

The EPL component aims to broaden the search space by per-
turbed sampling around the current best solution (zbest). For
a randomly selected solution 𝑧it

𝐼
, EPL computes the mean and

deviation relative to zbest, then generates a new candidate (𝑧it
new)

accordingly. The procedure is given by:

Δit
mean =

(
zbest + 𝑧it

𝐼

)
∕2 (19)

Δit
dev = abs

(
zbest − 𝑧it

𝐼

)
(20)

Δit
𝐶
= Δit

mean + rand1.Δit
dev (21)

𝑧it
new = Δit

𝐶
+ rand2.

(
zbest − Δit

𝐶

)
+ 0.95it.

(
rand3 − 0.5

)
.abs

(
zmax,𝑗 − zmin,𝑗

)
, zmax,𝑗

= max𝑗
{
𝑧it
𝐼

}
, zmin,𝑗 = min𝑗

{
𝑧it
𝐼

}
∀ (22)

Here, Δit
mean and Δit

dev capture the midpoint and absolute gap
between zbest and the random solution 𝑧it

𝐼
. The variables rand1,

rand2, rand3 ∈ [0, 1] are drawn from a uniform distribution, and
the final term in Equation (22) introduces a perturbation whose
range is adaptively updated (Δmax and Δmin) over iterations. To
mitigate performance deterioration during later stages and fur-
ther refine high-quality areas, ImGBO integrates an ALS phase
that shares information among an elite group. The method iden-
tifies each member’s best (𝑧𝑃 ) and worst (𝑧𝑊 ) solutions, as well as
the global best zbest. ALS then updates the worst candidate (𝑧𝑊 )
by attempting three possible movements in succession: (1) mov-
ing 𝑧𝑊 toward 𝑧𝑃 ; (2) moving 𝑧𝑊 toward zbest; and (3) moving
𝑧𝑊 toward the midpoint (

(
𝑧𝑃 + 𝑧best

)
∕2). The procedure stops as

soon as any of these movements yields improvement. Formally,

if 𝑧it
𝐼

is the current worst candidate in the elite group, its updated
solution 𝑧

(it+1)
𝐼

follows:

𝑧it+1
𝐼

=
⎧⎪⎨⎪⎩
𝑧ALS

1 = 2 × 𝑟1 ×
(
𝑧𝑃 − 𝑧𝑊

)
+ 𝑧𝑊 if 𝑓

(
𝑧ALS

1
) ≤ 𝑓

(
𝑧it
𝐼

)
𝑧ALS

2 = 2 × 𝑟2 ×
(
𝑧best − 𝑧𝑊

)
+ 𝑧𝑊 else if 𝑓

(
𝑧ALS

2
) ≤ 𝑓

(
𝑧it
𝐼

)
𝑧ALS

3 = 2 × 𝑟3 ×
((
𝑧𝑃 + 𝑧best

)
∕2 − 𝑧𝑊

)
+ 𝑧𝑊 otherwise

(23)

where 𝑟1, 𝑟2, 𝑟3 ∈ [0, 1] are random scaling parameters and 𝑓 is
the objective (fitness) function. This adaptive updating scheme
drives poor solutions toward promising directions, thereby
improving the overall quality of the population. Figure 2 illus-
trates the overall flow of the proposed ImGBO, showing the seam-
less integration of EPL for exploration and ALS for exploitation.

4 | Maiden Application of a Novel Control
Method for DC Motor Speed Regulation

4.1 | Cascaded PI-PDN Controller

The proposed cascaded PI–PDN controller unites two primary
components [39], one based on proportional–integral (PI) con-
trol and the other on proportional–derivative with a filter (PDN),
to deliver improved speed regulation for the DC motor. As
depicted in Figure 3, this arrangement processes the motor’s feed-
back signal in two sequential stages.

The PI stage, given in Equation (24) applies proportional (𝐾𝑃 )
and integral (𝐾𝐼 ) actions to address steady-state error and main-
tain robust low-frequency response.

𝐶PI(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
(24)

The second stage (PDN) builds upon a proportional–derivative
scheme, with an additional filter term governed by the coefficient
𝑁 [40]. Equation (25) shows how the proportional gain (𝐾PP) and
the derivative gain (𝐾𝐷) integrate with the filter 𝑁 , enhancing
transient performance and mitigating noise susceptibility.

𝐶PDN(𝑠) = 𝐾PP +𝐾𝐷

Ns
𝑠 +𝑁

(25)

Combining these two blocks results in the cascaded PI–PDN con-
troller, expressed by Equation (26) [41].

𝐶PI−PDN(𝑠) =
(
𝐾𝑃 +

𝐾𝐼

𝑠

)(
𝐾PP +𝐾𝐷

Ns
𝑠 +𝑁

)
(26)

When this unified controller is paired with the DC motor plant
𝐺𝑃 (𝑠) from Equation (7) under unity feedback, the resulting
closed-loop system can be represented by Equation (27). This
final expression captures how the PI and PDN components act
jointly to minimize overshoot, secure rapid settling, and deliver
robust steady-state accuracy for DC motor speed control.

CLTF(𝑠) =
𝐶PI−PDN(𝑠) × 𝐺𝑃 (𝑠)

1 + 𝐶PI−PDN(𝑠) × 𝐺𝑃 (𝑠)
(27)
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FIGURE 2 | Flowchart of ImGBO algorithm.

FIGURE 3 | Block diagram of cascaded PI-PDN controller.

4.2 | Constraints of Optimization Problem

Designing the cascaded PI–PDN controller within practical and
stable bounds requires formulating an optimization problem that
respects preset limits for each control parameter. These limits,
shown in Table 1, define allowable ranges for the proportional–
integral (𝐾𝑃 , 𝐾𝐼 ) and proportional–derivative–filter (𝐾PP, 𝐾𝐷,
𝑁) gains. By constraining the controller parameters to these
intervals, it is possible to avoid overly aggressive actions that
might provoke oscillations or instability, while still affording
sufficient flexibility for fine-tuning performance. In this study,
the goal is to minimize a designated cost function (the integral
of squared error in Equation (30)), with the controller parame-
ters treated as decision variables. Table 1 thus provides crucial

TABLE 1 | Bounds of PI-PDN controller.

Controller parameter Tuning range

𝐾𝑃 [0.1 − 20]
𝐾𝐼 [0.1 − 20]
𝐾PP [0.1 − 20]
𝐾𝐷 [0.1 − 20]
𝑁 [1 − 500]

boundary values that guide the optimization algorithm in explor-
ing only physically plausible or safely implementable controller
settings. This approach ensures that, while searching for the ideal
gains, the algorithm remains within a space that preserves robust-
ness and operational feasibility of the DC motor speed control
system.

6 of 16 Optimal Control Applications and Methods, 2025
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4.3 | Bode’s Ideal Transfer Function-Based
Master–Slave Approach and Application
of ImGBO Algorithm

In this investigation, a master–slave methodology [42] was
employed to enhance the speed regulation performance of a DC
motor system. Specifically, an ideal reference model [43–45] was
implemented as the master system. The primary objective of the
master system is to compel the plant’s response to closely track
a predefined reference model [46]. Subsequently, the proposed
ImGBO was employed as an optimization tool to fine-tune the
cascaded PI-PDN controller, serving as the slave system. The ulti-
mate aim is to ensure that the response of the DC motor sys-
tem effectively adheres to the reference model established by the
master system. Equation (28) defines the ideal open loop trans-
fer function, where 𝜔𝑐 represents the gain crossover frequency of
𝐿(𝑠), and 𝛼 is a real number within 0 < 𝛼 < 2 [47].

𝐿(𝑠) =
(𝜔𝑐

𝑠

)𝛼

(28)

𝛼 determines the slope of the magnitude curve and the phase mar-
gin of the system on the Bode plot. The amplitude is a straight
line with a constant slope (−20𝛼 dB∕dec), and −𝛼𝜋∕2 rad rep-
resents the horizontal line of the phase curve. Consequently,
the ideal reference model exhibits robustness against gain vari-
ations, maintaining a constant phase margin at 𝜋(1 − 𝛼∕2) rad
for varying gain, while only the crossover frequency, 𝜔𝑐 , under-
goes changes. Equation (29) outlines the description of the ideal
closed-loop transfer function model, CLTFmaster−slave(𝑠), with unit
feedback.

CLTFmaster−slave(𝑠) =
𝐿(𝑠)

1 + 𝐿(𝑠)
(29)

In this particular study, the values of 𝜔𝑐 and 𝛼 were set to 200
and 1, respectively, for the DC motor system. The ideal reference
model functioned as the master system, while the ImGBO-based
cascaded PI-PDN controller served as the slave system, ensuring
adherence to the ideal response dictated by the ideal reference
model.

To address the speed regulation of the DC motor in an effec-
tive and practical manner, the problem is conceptualized as a
constrained minimization problem, allowing the utilization of
optimization algorithms. In outlining the minimization problem,
this investigation follows a specific procedure for optimizing the
cascaded PI-PDN controller. Initially, the problem is represented
as 𝑋 =

[
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

]
=
[
𝐾𝑃 ,𝐾𝐼 ,𝐾PP, 𝐾𝐷,𝑁

]
. Subsequently,

the CF cost function (integral of squared error), given in follow-
ing equation [48], is employed for effective minimization through
the ImGBO.

CF = ∫
𝑡𝑓

0
[𝑒(𝑡)]2dt (30)

Here, 𝑡𝑓 is simulation time and error signal 𝑒(𝑡) = 𝜔∗
ref(𝑡) −

𝜔ref(𝑡) represents the error signal, Figure 4 visually depicts the
application of the proposed master–slave approach, incorporat-
ing the ImGBO-tuned cascaded PI-PDN controller in the DC
motor system.

5 | Detailed Simulation Results

5.1 | Comparison With More Recent
Metaheuristic Algorithms

To ensure a fair and comprehensive evaluation of the
ImGBO-based PI-PDN controller, its performance has been

FIGURE 4 | Implementation stage of proposed novel control approach.
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compared against several recently developed metaheuristic
optimization algorithms. The selection of these algorithms was
based on their demonstrated effectiveness in solving complex
optimization problems, particularly in the context of control
system tuning and dynamic performance enhancement. The
GBO [37] was chosen as a baseline for comparison, as it rep-
resents the foundational version of the proposed ImGBO. By
assessing improvements over its predecessor, we can quantify
the advantages introduced by the enhanced mechanisms of
EPL and ALS. Additionally, the flood algorithm (FLA) [49]
was included in the comparison due to its ability to explore
vast search spaces efficiently. FLA has been applied in engi-
neering optimization tasks and has demonstrated promising
results in control parameter tuning. However, its effectiveness in
fine-tuning control systems remains an open question, making it
an important benchmark. Another algorithm considered in this
study is the RIME optimizer [50], a physics-inspired metaheuris-
tic that employs a multi-phase search strategy. Given its strong
performance in optimization tasks requiring a balance between
exploration and exploitation, its inclusion provides insights into
how this approach compares against ImGBO. Finally, the artifi-
cial hummingbird algorithm (AHA) [51] was selected due to its
recent success in dynamic system optimization. AHA mimics the
unique foraging behavior of hummingbirds, which enables adap-
tive search capabilities. Given its relatively recent introduction,
evaluating AHA alongside ImGBO offers a direct comparison
between a novel bio-inspired approach and the ImGBO tech-
nique. By considering these diverse metaheuristic approaches,
this study ensures a comprehensive and well-rounded perfor-
mance assessment. The insights gained from this comparison
help establish the significance of ImGBO’s improvements in
terms of efficiency, accuracy, and robustness in DC motor speed
regulation.

5.2 | Verification of Statistical Performance
of ImGBO

To ensure the reliability and consistency of the ImGBO-based
PI-PDN controller, a statistical performance analysis was con-
ducted through 30 independent optimization runs. This approach
helps to evaluate how well ImGBO performs across multiple tri-
als, minimizing the influence of randomness in optimization out-
comes. Each run consisted of 50 iterations, with a population size
of 25, ensuring a robust search for optimal control parameters.

A key metric used for comparison is the integral of squared error
(ISE) cost function [48], which directly reflects the control accu-
racy of the system. Figure 5 presents the ISE values across mul-
tiple runs, offering insight into the consistency of the proposed
approach. Notably, ImGBO exhibits a lower and more stable error
trend compared to other metaheuristic algorithms, indicating its
superior ability to fine-tune the controller.

To further support these findings, a boxplot analysis was con-
ducted, as illustrated in Figure 6. This statistical visualization
compares the spread and distribution of ISE values for ImGBO,
GBO, FLA, RIME, and AHA. The narrower interquartile range
and no outliers in the ImGBO results demonstrate its high relia-
bility and minimal performance variance, reinforcing its robust-
ness in controller optimization.

5 10 15 20 25 30
Number of run

2

2.2

2.4

2.6

2.8

3

3.2 10-4

ImGBO GBO FLA RIME AHA

x

eulav
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FIGURE 5 | CF cost function values with respect to number of runs.

ImGBO GBO FLA RIME AHA
Algorithms

2

2.2

2.4

2.6

2.8

3

10-4

eulav F
C

x

FIGURE 6 | Boxplot analysis results of ImGBO and other algorithms.

Table 2 provides a comprehensive statistical breakdown, includ-
ing the minimum, maximum, average, standard deviation, and
median values for each optimization approach. The results
clearly indicate that ImGBO consistently achieves the low-
est ISE values across all statistical measures. Additionally, a
Wilcoxon rank-sum test [52] was performed to assess the sta-
tistical significance of ImGBO’s superiority. The extremely low
p-value (1.7344E−06) confirms that the improvements offered
by ImGBO are not random but are statistically significant com-
pared to other approaches. In summary, the statistical eval-
uation highlights that ImGBO not only reduces the control
error but also maintains stable and repeatable performance, out-
performing traditional gradient-based and bio-inspired meta-
heuristic optimizers. These findings reinforce the suitability
of ImGBO for precision-demanding applications, such as DC
motor speed regulation, where consistency and efficiency are
crucial.

8 of 16 Optimal Control Applications and Methods, 2025
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TABLE 2 | Statistical values and nonparametric results obtained from different algorithms.

Statistical measure ImGBO GBO FLA RIME AHA

Minimum 2.0155E−04 2.3746E−04 2.6148E−04 2.7018E−04 2.4032E−04
Maximum 2.2717E−04 2.6819E−04 3.0133E−04 2.9377E−04 2.7952E−04
Average 2.0989E−04 2.4581E−04 2.7169E−04 2.7966E−04 2.4903E−04
Standard deviation 6.5852E−06 7.1425E−06 8.3832E−06 5.8624E−06 8.3071E−06
Median 2.0758E−04 2.4323E−04 2.6983E−04 2.7843E−04 2.4666E−04

p-value (Wilcoxon’s test) 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06

0 10 20 30 40 50
Iteration number

10-4

10-3

10-2

ImGBO GBO FLA RIME AHA

eulav
F

C

FIGURE 7 | Change of CF cost function.

5.3 | Convergence Curve of CF Cost Function
and Obtained Cascaded PI-PDN Controller
Parameters

A crucial component in evaluating the effectiveness and con-
vergence behavior of optimization algorithms is their ability to
minimize the selected objective function consistently over itera-
tions. Figure 7 presents the convergence behavior of the ISE cost
function (CF) for ImGBO and its comparative algorithms (GBO,
FLA, RIME, and AHA) across 50 iterations. At the outset, all algo-
rithms demonstrate a rapid decline in their respective ISE values,
which indicates effective initial exploration and quick identifi-
cation of promising solutions. Particularly the proposed ImGBO
distinctly achieves an expedited convergence within roughly the
first 10 iterations, surpassing other algorithms by quickly attain-
ing a lower cost function value. After this rapid initial phase,
ImGBO continues to incrementally improve its solution, indi-
cating a robust balance between local search refinement and
global exploration. In contrast, the other algorithms (GBO, FLA,
RIME, and AHA) while initially showing comparable descent,
soon exhibit stagnation, settling into higher CF values with-
out notable subsequent improvements. Consequently, Figure 7
underscores ImGBO’s superior capability to consistently and
effectively minimize the cost function, reflecting its enhanced
optimization mechanisms. These mechanisms ensure that the
cascaded PI-PDN controller parameters tuned by ImGBO are not
only rapidly identified but also finely adjusted for optimal and
stable performance.

TABLE 3 | The obtained controller parameters via ImGBO, GBO,
FLA, RIME, and AHA algorithms.

Controller
parameter ImGBO GBO FLA RIME AHA

𝐾𝑃 4.0143 2.5612 4.0514 7.5973 3.5372
𝐾𝐼 14.1642 11.6480 8.2732 19.0290 0.7604
𝐾PP 0.9032 1.4577 1.4919 2.4694 10.6526
𝐾𝐷 3.2263 4.7603 3.0918 1.6227 3.5340
𝑁 495.4773 477.4096 496.0636 440.2394 486.9943

Further supporting these insights, Table 3 lists the optimized cas-
caded PI-PDN controller parameters obtained through ImGBO
alongside those achieved by the benchmarked algorithms. These
values reflect a well-tuned controller capable of handling distur-
bances efficiently, achieving rapid transient response, and main-
taining robust steady-state stability. In comparison, while the
other algorithms produce parameter sets that sometimes show
individual gains higher or lower, none demonstrate the cohe-
sive optimization evident in ImGBO’s result. For instance, RIME
shows an overly aggressive proportional gain coupled with a
comparatively low derivative gain, potentially leading to oscil-
latory or less stable system behavior. Conversely, AHA’s sub-
stantially higher derivative gain alongside a lower integral gain
indicates a susceptibility to noise amplification and inadequate
steady-state error compensation. The outcomes encapsulated in
Figure 7 and Table 3 reinforce the superiority of ImGBO in effec-
tively navigating the optimization landscape. This superior per-
formance stems from its adaptive local search mechanism and
experience-based perturbed learning strategy, providing a robust
optimization method that balances exploration and exploitation
proficiently. Consequently, ImGBO emerges as a highly compe-
tent and recommended approach for the cascaded PI-PDN con-
troller tuning in DC motor speed regulation applications.

5.4 | Time Response Analysis

This section meticulously examines the time-domain perfor-
mance of the cascaded PI-PDN controller tuned by the ImGBO
algorithm, systematically comparing its responses with those of
GBO, FLA, RIME, and AHA algorithms. Initially, Table 4 pro-
vides the derived closed-loop transfer functions for each consid-
ered algorithm. These transfer functions clearly indicate the dif-
ferences in system dynamics resulting from distinct tuning meth-
ods. Each transfer function encapsulates the controller’s unique
influence on the system’s speed regulation characteristics.

9 of 16
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TABLE 4 | The obtained closed-loop transfer functions for ImGBO,
GBO, FLA, RIME, and AHA algorithms.

Algorithm CLTF(𝒔) (closed-loop transfer function)

ImGBO 96.31𝑠2+366.8𝑠+95.08
0.00108𝑠4+0.5412𝑠3+99.33𝑠2+367.6𝑠+95.08

GBO 87.37𝑠2+424.1𝑠+121.6
0.00108𝑠4+0.5217𝑠3+90.28𝑠2+424.8𝑠+121.6

FLA 93.3𝑠2+235.5𝑠+91.84
0.00108𝑠4+0.5418𝑠3+96.32𝑠2+236.3𝑠+91.84

RIME 81.69𝑠2+328.5𝑠+310.3
0.00108𝑠4+0.4816𝑠3+84.38𝑠2+329.2𝑠+310.3

AHA 91.88𝑠2+295𝑠+59.17
0.00108𝑠4+0.5321𝑠3+94.85𝑠2+295.8𝑠+59.17
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FIGURE 8 | Step response for change of output speed.

Figure 8 illustrates the complete step response of the output
speed for all controller approaches. It clearly highlights the rapid
response and lack of overshoot exhibited by the ImGBO-based
PI-PDN controller compared to the other methods. The ImGBO
algorithm demonstrates superior dynamic stability and quicker
settling to the desired speed. To provide clearer insights, Figure 9
offers an enlarged view of Figure 8’s response curves. This mag-
nified visualization distinctly emphasizes the smooth transient
response of the ImGBO-based controller, further affirming its
superior performance with no discernible overshoot and rapid
stabilization.

The steady-state response analysis depicted in Figure 10 further
confirms ImGBO’s excellent tracking capability, maintaining sta-
ble and precise output speeds. In contrast, other algorithms show
slight oscillations and reduced precision in their steady-state
behavior.

Table 5 complements these visual assessments by summariz-
ing key performance metrics, including rise time, settling time,
overshoot percentage, and steady-state error percentage. The
ImGBO-based controller notably outperforms others, with the
shortest rise time (0.0089 s), quickest settling time (0.0140 s), no
overshoot, and a minimal steady-state error (0.0017%). Contrar-
ily, the other controllers present less favorable metrics, especially
RIME with the highest overshoot (0.6210%) and considerable
steady-state error (0.1118%).
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FIGURE 9 | Enlarged version of Figure 8.
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FIGURE 10 | Steady-state response analysis of ImGBO, GBO, FLA,
RIME, and AHA based PI-PDN controllers.

TABLE 5 | Time response metrics for ImGBO, GBO, FLA, RIME, and
AHA based PI-PDN controllers.

Control approach
Rise

time (s)
Settling
time (s)

Overshoot
(%)

Steady-state
error (%)

ImGBO-based PI-PDN 0.0089 0.0140 0 0.0017
GBO-based PI-PDN 0.0093 0.0147 0.3413 0.0094
FLA-based PI-PDN 0.0093 0.0157 0.1004 0.1004
RIME-based PI-PDN 0.0091 0.0142 0.6210 0.1118
AHA-based PI-PDN 0.0092 0.0149 0 0.0495

5.5 | Controller Efforts

The assessment of controller effort is crucial to understand the
practical implications and efficiency of various tuning methods
in control systems [53]. In this section, we provide a comprehen-
sive evaluation of the controller efforts for the ImGBO-based cas-
caded PI-PDN controller alongside its comparative algorithms.
Table 6 quantitatively summarizes these efforts by presenting
two critical metrics: the overall magnitude of the control sig-
nal and the energy consumed by each controller method. The

10 of 16 Optimal Control Applications and Methods, 2025
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TABLE 6 | Controller efforts for ImGBO, GBO, FLA, RIME, and AHA
based PI-PDN approaches.

Control approach 𝑼max Energy

ImGBO-based PI-PDN 6.4207E+03 4.1504E+04
GBO-based PI-PDN 5.8243E+03 3.5514E+04
FLA-based PI-PDN 6.2198E+03 3.8802E+04
RIME-based PI-PDN 5.4461E+03 3.3593E+04
AHA-based PI-PDN 6.1253E+03 3.8380E+04

ImGBO-based PI-PDN controller records a control signal magni-
tude of 6.4207× 103 and an energy expenditure of 4.1504× 104.
While these values represent slightly higher demands com-
pared to those of some alternative controllers, such as the
RIME-based method, which exhibits the lowest values (control
signal: 5.4461× 103, energy: 3.3593× 104), the increased effort of
the ImGBO-based controller is directly linked to its superior per-
formance and precision in controlling the DC motor speed. The
data from Table 6 reveal a trade-off commonly encountered in
controller design: enhanced performance typically necessitates
greater control effort. However, this additional effort required by
the ImGBO-based PI-PDN controller is justified by the signifi-
cant improvement in key dynamic performance indicators such
as rapid rise time, minimized settling time, absence of overshoot,
and extremely low steady-state errors. In comparison, although
algorithms like GBO, FLA, and AHA show slightly reduced con-
trol signal magnitudes and energy expenditures, their inferior
control performance metrics, particularly in terms of overshoot
and steady-state accuracy, highlight that their efficiency comes
at the cost of reduced control quality.

5.6 | Comparison With Recently Documented
PID Controllers

This section expands the comparative analysis by assessing the
performance of the proposed ImGBO-based cascaded PI-PDN
controller against recently documented PID controllers opti-
mized by various contemporary metaheuristic algorithms. Specif-
ically, this analysis includes comparisons with controllers tuned
by the grey wolf optimizer (GWO)-based PID [54], gazelle sim-
plex optimizer (GSO)-based PID [55], improved model of marine
predator algorithm (MMPA)-based PID [56], and hybrid Lévy
flight distribution and Nelder–Mead algorithm (LFDNM)-based
PID [57] controllers. Figure 11 visually demonstrates the step
response performance comparison of the proposed ImGBO-based
approach relative to the PID controllers tuned using the afore-
mentioned recent algorithms. The ImGBO-tuned controller
clearly exhibits a distinctly superior performance, characterized
by an exceptionally rapid response with zero overshoot, showcas-
ing remarkable dynamic stability.

Table 7 provides a detailed numerical analysis, further clari-
fying the performance disparities among the approaches. The
ImGBO-based PI-PDN controller achieves the shortest rise time
(0.0089 s), quickest settling time (0.0140 s), and an impressive
near-zero steady-state error (0.0017%). Notably, it completely
avoids overshoot. In comparison, the GWO-based PID controller
displays a notably higher rise time (0.1388 s), prolonged settling
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FIGURE 11 | Speed comparison of the proposed approach with
respect to recently documented PID controllers.

TABLE 7 | Numerical comparison of time response metrics with
respect to recently documented PID controllers.

Control approach
Rise

time (s)
Settling
time (s)

Overshoot
(%)

Steady-state
error (%)

ImGBO-based PI-PDN 0.0089 0.0140 0 0.0017
GWO-based PID 0.1388 0.2052 1.5068 0.9505
GSO-based PID 0.0365 0.0650 0 0.0080
MMPA-based PID 0.0635 0.2793 7.0060 0.4358
LFDNM-based PID 0.0462 0.0813 0.0676 0.0051

time (0.2052 s), significant overshoot (1.5068%), and substan-
tial steady-state error (0.9505%). Similarly, the MMPA-tuned PID
demonstrates even more pronounced deficiencies, with an exten-
sive overshoot (7.0060%) and a high steady-state error (0.4358%).
While GSO and LFDNM-tuned PID controllers perform relatively
better, their metrics still significantly lag behind those achieved
by the ImGBO-based method.

5.7 | Comparison With Recently Documented
FOPID Controllers

In this section, the performance of the proposed ImGBO-based
cascaded PI-PDN controller is compared against several recently
developed fractional-order PID (FOPID) controllers. These con-
trollers are optimized by advanced metaheuristic techniques,
including the improved artificial rabbits optimizer (IARO)-based
FOPID [58], hybrid stochastic fractal search (HSFS)-based FOPID
[59], manta ray foraging optimizer (MRFO)-based FOPID [35],
and chaotic atom search optimization (ChASO)-based FOPID
[36] controllers. Figure 12 visually presents the comparative step
responses for these advanced control methods. The figure clearly
highlights the ImGBO-based cascaded PI-PDN controller’s supe-
rior performance, characterized by significantly faster rise time,
shorter settling time, and complete elimination of overshoot.
These attributes underscore its exceptional capability for rapid
and stable tracking of desired speed trajectories.
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FIGURE 12 | Speed comparison of the proposed approach with
respect to recently documented FOPID controllers.

TABLE 8 | Numerical comparison of time response metrics with
respect to recently documented FOPID controllers.

Control approach
Rise

time (s)
Settling
time (s)

Overshoot
(%)

Steady-state
error (%)

ImGBO-based PI-PDN 0.0089 0.0140 0 0.0017
IARO-based FOPID 0.0205 0.0330 0.4964 0.4964
HSFS-based FOPID 0.0505 0.0766 1.7659 0.0436
MRFO-based FOPID 0.0355 0.0562 0.1520 0.0324
ChASO-based FOPID 0.0253 0.0406 0.0610 0.0591

Complementing this visual analysis, Table 8 provides quantita-
tive comparisons by explicitly detailing the rise time, settling
time, overshoot percentage, and steady-state error percentage
for each controller method. Remarkably, the ImGBO-tuned con-
troller records the shortest rise time (0.0089 s) and fastest set-
tling time (0.0140 s), coupled with zero overshoot and minimal
steady-state error (0.0017%). In contrast, the IARO-based FOPID
controller exhibits a relatively slower rise time (0.0205 s) and
settling time (0.0330 s), along with notable overshoot (0.4964%)
and significantly higher steady-state error (0.4964%). Similarly,
the HSFS-based FOPID shows considerable overshoot (1.7659%)
and steady-state error (0.0436%), while MRFO and ChASO-based
FOPIDs perform moderately better but still lag substantially
behind the proposed ImGBO-based controller. This comprehen-
sive comparative analysis clearly demonstrates the robust and
precise performance advantages offered by the ImGBO-based
cascaded PI-PDN controller. Its superior time-domain charac-
teristics strongly affirm its suitability as an advanced, practical,
and reliable controller for high-performance DC motor speed
regulation.

5.8 | Verification of Master/Slave Model-Driven
Cascaded PI-PDN Controller Tuned With
the ImGBO

In this section, we validate the effectiveness and reliability
of the proposed master–slave architecture integrated with the
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FIGURE 13 | Time response comparison of slave and master models.

ImGBO-tuned cascaded PI-PDN controller. The verification
focuses on assessing the alignment between the designed slave
system’s response and the prescribed master reference model.
Figure 13 explicitly demonstrates the comparative time-domain
responses of both the master reference model and the slave
system employing the ImGBO-based cascaded PI-PDN con-
troller. From Figure 13, it is clearly observable that the response
of the slave system closely mirrors the response provided by
the master model. This congruence confirms the appropriate-
ness and efficacy of the chosen design parameters, particularly
the selected crossover frequency (𝜔𝑐 = 200) and the slope fac-
tor (𝛼 = 1), ensuring the slave system accurately follows the
predefined ideal performance criteria established by the master
system. The highly precise matching of these two models under-
scores the robustness of the proposed controller design strategy.
The ImGBO optimization effectively identifies optimal parame-
ters for the cascaded PI-PDN controller, allowing the slave system
to achieve near-perfect adherence to the master system’s refer-
ence trajectory. This alignment ensures not only rapid and stable
responses but also robust performance under various operational
conditions.

5.9 | Stability Analysis of Proposed
ImGBO-Based PI-PDN Controller

In this section, we present a comprehensive stability analy-
sis to examine the robustness and reliability of the proposed
ImGBO-based cascaded PI-PDN controller. The stability of a con-
trol system is a fundamental requirement, essential for ensuring
safe and predictable operation under various operating condi-
tions. Table 9 outlines the numerical results from the pole anal-
ysis, detailing the pole locations, damping ratios, and natural
frequencies. The data clearly demonstrate that all system poles
are located in the left half-plane, confirming the inherent stabil-
ity of the closed-loop system. Specifically, the real-valued poles
at −0.2798 and −3.4923 indicate stable, non-oscillatory modes.
Furthermore, the complex conjugate poles at −248.68± j168.11
exhibit a high damping ratio of 0.8285, signifying rapid attenua-
tion of oscillations and reinforcing the robust dynamic response
of the system.
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TABLE 9 | Numerical values obtained from stability analysis.

Pole Damping Frequency (rad/s)

−0.2798 1 0.2798
−3.4923 1 3.4923
−248.68+ j168.11 0.8285 300.1660
−248.68− j168.11 0.8285 300.1660
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FIGURE 14 | Bode plot of open-loop system with proposed
ImGBO-based PI-PDN controller.

To further support these findings, Figure 14 presents the Bode
plot analysis, illustrating the frequency response characteris-
tics of the open-loop system when equipped with the proposed
ImGBO-based cascaded PI-PDN controller. The Bode plot anal-
ysis reveals critical stability margins and bandwidth: the gain
margin is infinite, clearly indicating that the system is highly tol-
erant to gain changes without losing stability, and the phase mar-
gin is notably high at 71.6640˚, highlighting substantial robust-
ness against phase perturbations. Additionally, the calculated
bandwidth of 246.2469 rad/s signifies the controller’s capabil-
ity to handle rapid changes in the input command efficiently
and accurately. Collectively, these stability metrics confirm that
the ImGBO-tuned cascaded PI-PDN controller not only achieves
excellent dynamic performance but also ensures robust stabil-
ity across a wide range of operational scenarios. This analysis
emphasizes the practical applicability and reliability of the pro-
posed control strategy for DC motor speed regulation tasks.

5.10 | Performance Evaluation Under Time
Delay and Actuator Saturation

To assess the robustness of the proposed ImGBO-based PI-PDN
controller under practical constraints, an additional simulation
was carried out incorporating a control input saturation of ±200
and a time delay of 0.002 s. These conditions emulate common
nonlinearities found in real-time systems, such as actuator limita-
tions and communication delays. As illustrated in Figure 15, the
controller maintains excellent tracking performance despite the
introduced challenges. The system exhibits only minor overshoot
and quickly stabilizes, closely following the reference speed. This
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FIGURE 15 | Output speed response under time delay (𝑡𝑑 = 0.002 s)
and saturation limit (±2000).

result demonstrates the robustness of the proposed control strat-
egy and highlights its strong potential for real-time applications
involving nonlinear components and delay-sensitive systems.

6 | Conclusion

In this research, a cascaded PI-PDN controller tuned through
the proposed ImGBO was developed and thoroughly tested for
the DC motor speed regulation task. The principal novelty
and contribution of this study stem from the introduction of
experience-based perturbed learning and adaptive local search
strategies within the traditional GBO framework. These enhance-
ments significantly improved the optimization efficiency, lead-
ing to substantial improvements in the performance metrics
of the cascaded PI-PDN controller. Simulation comparisons
revealed the superiority of the ImGBO-tuned controller over tra-
ditional GBO, recent metaheuristic methods, and advanced PID
and FOPID controllers. The ImGBO-based controller achieved
remarkable transient dynamics, evidenced by a rise time of
0.0089 s, settling time of 0.0140 s, zero overshoot, and steady-state
error of only 0.0017%. Additionally, rigorous stability analyses
confirmed robust system performance, achieving a notably high
phase margin (71.6640˚) and an infinite gain margin, reinforcing
the reliability and robustness of the proposed method. Beyond
the transient and steady-state advantages, the proposed controller
also performed well under energy considerations. Although the
controller effort was slightly higher than that of certain alterna-
tives, the trade-off was justified by the significant improvements
in precision and response time.

Future research can build upon the findings of this study in
several meaningful directions. A primary avenue involves the
experimental validation of the proposed ImGBO-based cascaded
PI-PDN controller on a physical DC motor setup, which would
offer critical insights into its real-world performance and the
practical challenges associated with implementation. Addition-
ally, the adaptability of the ImGBO framework could be explored
in more complex or nonlinear systems, such as robotic manipula-
tors, multi-motor coordination platforms, and renewable energy
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conversion systems, where dynamic conditions and uncertain-
ties pose greater control challenges. Another promising direc-
tion lies in the integration of real-time adaptation mechanisms
or hybrid intelligent strategies, which could further strengthen
the controller’s robustness in dynamically changing environ-
ments. Moreover, the application of multi-objective optimiza-
tion techniques would allow the controller to address multiple
performance criteria simultaneously, such as minimizing energy
consumption, suppressing control-induced noise, and achieving
smoother actuation, all of which are crucial in industrial and
embedded applications. Collectively, these directions not only
offer opportunities to enhance the practicality and versatility of
the proposed control strategy but also underscore its potential
to serve as a reliable and high-performing solution in diverse
real-world control scenarios.
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