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H I G H L I G H T S

• The article investigates oversampling strategies for imbalanced data classification.
• Compares between deep methodologies and conventional oversampling techniques.
• Identifies of difficulties and restrictions associated with applying deep approaches.
• Also, recommends future research directions and addresses challenges in the problem.
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A B S T R A C T

There are inherent issues with classifying imbalanced data, especially in classifying minority class samples. With
an emphasis on the use of deep generative methodologies, this study offers a thorough investigation of over-
sampling strategies for imbalanced data classification. This paper begins with a summary of unbalanced data
categorization and the need for oversampling techniques. Then traditional approaches including SMOTE,
ADASYN, and random oversampling are introduced and discussed. This study then discusses deep generative
models and how oversampling may be used to address imbalanced data problem using Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs). A comparative study between deep generative and
conventional oversampling techniques is performed concerning a comprehensive evaluation of the difficulties,
restrictions, and possible risks associated with applying deep generative approaches. The paper concludes with
recommendations for future researches and highlights the need for addressing challenges in oversampling ap-
proaches for imbalanced data classification.

1. Introduction

Imbalanced data classification refers to machine learning tasks
where the distribution of classes in the dataset is uneven, with far fewer
examples belonging to one minority class compared to other majority
classes [1,2]. This imbalance poses significant challenges for training
accurate classifiers, as most algorithms optimize for overall accuracy
which biases models towards the majority class [3], ignoring or mis-
classifying the under-represented minority [4]. The two basic strategies
for dealing with imbalanced data classification are classifier-level and
data-level approaches. To address this issue, classifier-level strategies

use ensemble methods and cost-sensitive learning, whereas data-level
solutions mostly use resampling methodologies and synthetic data
generation.

Data-level solutions to address the class imbalance usually involve
resampling the dataset [5], either by undersampling the majority classes
or oversampling the minority class, to balance the class distribution [6,
7]. Recently, deep generative models like generative adversarial net-
works (GANs) [8,9,10,11] and variational autoencoders (VAEs) [12]
have emerged as a promising approach for oversampling by syntheti-
cally generating new minority class examples [13,14,15]. These models
can capture multidimensional distributions of classes from limited data
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and produce diverse realistic samples [1,2,16]. In addition to these ap-
proaches, a novel method called Generative Adversarial Network Syn-
thesis for Oversampling (GANSO) [17] has been proposed, which
integrates the concept of vector Markov Random Fields (vMRF) with the
adversarial learning framework of GANs to synthesize new samples. By
incorporating structural information through the vMRF model, GANSO
aims to generate realistic minority class instances, even in scenarios with
extreme data scarcity.

Compared to conventional oversampling techniques like SMOTE [4]
which interpolate between minority examples, deep generative over-
sampling can create more varied data points while preserving intrinsic
data characteristics [1,7,18]. GANSO, in particular, leverages the vMRF
model to capture relevant structural information and generate synthetic
instances that maintain the original data properties [17]. Augmenting
real training data with such synthesized minority examples helps clas-
sifiers better learn patterns of under-represented classes [19]. Experi-
ments have shown improved classifier performance on imbalanced
datasets after oversampling them using deep generative models across
domains like image analysis [20], network security [11,21] medical
diagnosis [22,23] and industrial defect detection [24].

However, deep generative models have some limitations. GANs
struggle with training stability and mode collapse [25,26] generating
limited sample diversity. VAEs tend to overfit to data and exhibit pos-
terior collapse [12], affecting generalization. Hybrid models like
VAE-GANs [27] and medGAN [22] aim to address these issues but add
architectural complexity [28]. In general, challenges remain in effec-
tively covering minority class data distributions, especially with extreme
imbalance ratios [29]. Carefully designed evaluation schemes are also
needed to truly demonstrate improved real-world performance [30].
Recent focus has been on conditional architectures for guided genera-
tion [31], attention mechanisms [24], and architectural innovations
[32] to improve sample quality and diversity. Domain specific tailored
solutions have also emerged, like 3D-HyperGAMO for spectral-spatial
satellite image data [33].

In addition to alleviating the class imbalance problem, deep gener-
ative models have shown promise in addressing the broader challenge of
data scarcity, where there is an insufficient number of training samples
across all classes, not just the minority class. The extent to which these
deep generative approaches can be applied to scenarios of general data
scarcity, beyond just class imbalance, is an important consideration.
Techniques like proxy learning curve analysis can be used to quantify
the degree of data scarcity and estimate the required sample sizes for
each class [34]. By exploring the application of deep generative methods
to data-scarce regimes, regardless of class distributions, their true ca-
pabilities in augmenting limited datasets can be better understood.

In this paper, we provide a comprehensive review of various mi-
nority oversampling [35] methods using deep generative models
including GANs, VAEs, conditional GANs (CGANs), conditional VAEs
(CVAEs), Balancing GAN (BAGAN), Adversarially Regularized Autoen-
coder (ARAE), Gaussian Generative Adversarial Network (G-GAN), Mi-
nority Oversampling Generative Adversarial Network (MoGAN),
3D-HyperGAMO framework, Improved VAEGAN, and Generative
Adversarial Network Synthesis for Oversampling (GANSO). Their rela-
tive strengths and weaknesses are analyzed compared to traditional
oversampling techniques like SMOTE, ADASYN and random over-
sampling in terms of the ability to effectively capture characteristics of
the rare minority data for intelligent diverse sample generation. This
assists with tackling the significant problem of imbalanced class distri-
butions in training datasets across a variety of domains [36].

2. Imbalanced data classification

Learning from uneven, skewed data where one or more classes have
significantly fewer samples poses an innate challenge for machine
learning models [37,38,39,40]. Besides accuracy, metrics like speci-
ficity, sensitivity, precision and recall get affected for under-represented

classes [41]. A labeled dataset is defined as (X, Y) =
{(
xi, yi

)
, i = 1, 2,…, n

}
, where xi represents the features of the ith

observation and yi ∈ {1,2,…, L} gives its class label, with L being the
total number of classes. In the labeled dataset (X,Y), ρl is defined as the
fraction of samples belonging to class l :

ρl =
1
n
∑n

i=1
1(yi=l ), l = 1, 2,…, L,

where 1(A) is the indicator function of the event A, and n is the total
number of samples.

The dataset (X,Y) is considered imbalanced if:

minl ρl ≪maxl ρJ .

This inequality highlights that the minimum fraction of samples for
one class (indexed by l ) is much smaller than the maximum fraction for
another class (indexed by J ). The severity of imbalance is described by
the fraction of minority classes |ms |

L and the imbalance ratio (IR), defined
as:

IR =
max

l
ρJ

min
l

ρl

.

The core issue is that most algorithms inherently maximize overall
accuracy, virtually ignoring minority categories during training [42,43].
Both data-level and algorithm-level solutions attempt addressing this
long-standing problem [44,45,46].

Earlier works focused extensively on sampling-based remedies
involving replicating or removing training instances [46,47]. Under-
sampling diminishes samples from majority classes through random
elimination. But it risks losing vital characteristics [48]. Simple random
oversampling augments minority data by duplicating samples identical
to existing ones. However, identical replicated data hardly provides new
information to models, often making them prone to only memorizing
training instances [49,50,51].

Oversampling techniques like SMOTE interpolate synthetic new data
points between existing minority samples rather than just making extra
copies [52,53]. This expands the minority class decision boundary
rather than overfitting limited points. Borderline-SMOTE and ADASYN
further guide oversampling to emphasize complex neighborhoods with
significant class overlaps [54,55]. However, a key limitation is that all
interpolation methodologies only consider local relationships during
sample generation rather than capturing global distributions [56,57].

The latest breakthroughs in deep generative modeling allow
approximating actual minority class distributions instead of just
expanding sample clusters [58,59]. Models like generative adversarial
networks (GANs) and variational autoencoders (VAEs) can realistically
simulate data characteristics rather than simply extra/interpolating
limited samples [27,60,61]. Conditional variants facilitate targeted
generation for designated difficult minority classes [62,63]. Augmenting
real data with such synthetically oversampled global data characteristics
can significantly improve model generalization capability over localized
oversampling [2,64,65].

3. Oversampling techniques

Oversampling refers to the technique of increasing the number of
samples from the minority class in an imbalanced dataset to balance out
the class distribution. It is a data-level approach to tackle the problem of
learning from uneven, skewed data where one class is under-represented
compared to other classes [1,66,67].

By replicating or generating additional synthetic minority class
samples and combining them with the original dataset, oversampling
reduces the extent of imbalance in the training data fed to machine
learning models. This enables classifiers to better learn the patterns of
minority classes that may have been previously ignored due to their
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small sample size [2,68]. The rest of this section continues with a short
introduction on the main approaches in this regard.

In the past two decades, oversampling techniques have gone through
a revolution as depicted in Fig. 1. This revolution can be split into two
periods: the Traditional Methods Era (2000–2014) and Deep Generative
Models Era (2014-present). The traditional era commenced with the use
of rudimentary methods such as Random sampling methods and pro-
gressed to the use of more advanced methods such as SMOTE [4] and
ADASYN [55], which exploited interpolation and density based syn-
thetic sample generation approaches. The field witnessed a drastic
transformation with the introduction of deep generative models starting
from 2014 beginning with GANs and VAEs. However, that period also
ushered in more complex approaches such as CGAN and more advanced
architectures such as BAGAN [86], ARAE [88] and medGAN [22]. More
recently, GANSO [17], MoGAN [95], 3D-HyperGAMO [33], and
Improved VAEGAN [32] have improved these approaches by addressing
some domain and architectural specific issues. These methods and how
they helped solve the class imbalance problem are mentioned in the
following sections.

3.1. Synthetic minority oversampling technique (SMOTE)

SMOTE generates new synthetic minority data points by interpo-
lating between several nearest minority class neighbors but it focuses
only on minority data and ignores class overlaps [4].

The SMOTE algorithm first identifies the minority class examples in
the imbalanced dataset. For each minority class sample, it calculates the
KNN nearest minority class neighbors [69]. The parameter KNN is typi-
cally set to 5. This uses a distance metric like Euclidean distance between
two samples in feature space. Next, the algorithm randomly chooses one
of those KNN minority class neighbors. Then, it creates a new synthetic
data point along the line segment joining the current minority sample
and its selected neighbor. This synthetic point will have attribute values
interpolated between the two points based on a random number be-
tween 0 and 1. This process repeats for each minority class sample as
needed, generating new synthetic neighbors until the minority class is
sufficiently oversampled to achieve a desired level of balance with the
majority class.

The key insight is that rather than arbitrarily replicating minority
class samples, SMOTE creates new examples based on characteristics of
existing minority points. This helps the decision regions associated with
the minority class examples to grow larger and less specific [57,70].

3.2. Adaptive synthetic sampling (ADASYN)

ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced
Learning) [55] is an algorithm for generating synthetic minority class
examples to balance imbalanced datasets. The key idea behind ADASYN
is to adaptively generate more synthetic data samples for those minority
examples that are harder to learn, according to their distributions. In
that sense, ADASYN is similar to SMOTE – both utilize synthetic data
generation to overcome class imbalance. However, SMOTE produces the
same number of synthetic samples for each minority example, while
ADASYN decides the number of synthetic examples based on the dis-
tribution density r̂ i of each minority example i, generating more exam-
ples for “difficult” cases. As such, ADASYN not only reduces bias
resulting from the imbalanced data distribution, but also enables
adaptive shifting of the decision boundary toward difficult examples.

The algorithm takes as input the imbalanced training dataset Dtr with
m examples

{
xi, yi

}
, where xi is a data instance, yi ∈ Y = {1, − 1} is the

class label, ms is the number of minority class examples, and ml is the
number of majority class examples. Then, the algorithm proceeds with
the following steps:

1. Calculate degree of class imbalance according to Eq. (1) [55]:

d = ms/ml (1)

where d ∈ (0,1].
2. If d < dth (where dth is a preset threshold):

a) Calculate number of synthetic minority samples to generate based on
Eq. (2) [55]:

Ssyn = (ml − ms) × β (2)

here, β ∈ [0, 1] controls desired balance level after generation.
b) For each minority example xi, find KNN nearest neighbors and
calculate ratio ri using Eq. (3) [55]:

ri = Δi/KNN, i = 1,…,ms (3)

where Δi is number of majority class neighbors.
c) Normalize ri as r̂ i distribution:

r̂ i = ri
/∑ms

i=1
ri

Fig. 1. Research Timeline of Oversampling Evolution from Traditional to Deep Generative Approaches (2000–2024): Timeline showing the progression of over-
sampling techniques from Traditional Methods Era to Deep Generative Models Era. The evolution demonstrates the transformation from basic approaches like
Random Oversampling and SMOTE to sophisticated deep learning-based methods such as GANs, VAEs, and their variants for handling imbalanced data classifi-
cation problems.
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d) Compute synthetic samples to generate for each xi based on Eq. (4)
[55]:

gi = r̂i × Ssyn (4)

e) Generate gi synthetic samples for each xi:

− Randomly pick a neighbor xzi
− Generate sample according to Eq. (5) [55]:

si = xi +(xzi − xi) × λ (5)

− where λ is a random number in [0,1].

So, in summary, ADASYN decides the number of synthetic samples
per minority example adaptively based on density distribution r̂ i to
reduce bias and also shift decision boundary focus towards difficult
examples. The key parameters are KNN, β, dth and λ.

The adaptive generation of synthetic training examples enables
ADASYN to reduce bias [56], focus more on difficult minority cases, and
improve learning performance for imbalanced classification providing
some advantages over algorithms like SMOTE.

3.3. Random oversampling

Random oversampling [4] is a simple method to deal with the class
imbalance problem in the training data. In this method, the minority
class examples (e.g. positive class) are randomly selected and duplicated
to sufficiently increase their numbers, making the class distribution
more balanced [71].

A common enhancement to random oversampling is adding a small
amount of noise, typically Gaussian, to the replicated samples. This
technique improves the diversity of the augmented dataset, helping to
mitigate some of the limitations associated with simple duplication.

The main differences between random oversampling and advanced
algorithms like SMOTE and ADASYN are:

1. SMOTE and ADASYN generate new synthetic samples while random
oversampling just replicates the existing samples.

2. SMOTE and ADASYN generate new samples by considering the
feature space neighborhood of existing minority class samples. But
random oversampling works without taking into account relation-
ships between samples.

3. SMOTE and ADASYN add new information to the dataset while
random oversampling does not provide any new information, just
duplication of existing data points.

In general, SMOTE and ADASYN are considered more advanced and
smarter approaches compared to simple random oversampling. They try
to expand the minority class decision boundary by interpolating new
points between minority class samples lying close together. This forces
the model to create larger and less specific decision regions, rather than
smaller and more specific regions.

The main advantage of random oversampling is that it is simple and
takes almost no computation. However, this advantage comes at the
price of no new information being added to the model. The duplicated
samples can also cause overfitting [72]. SMOTE and ADASYN are at-
tempts to generate new information rather than just replication.

4. Deep generative approaches

Deep generative models [1,7] can learn the underlying distribution
of a dataset X = {xi, i = 1, 2,…, n} where xi represents the features of
the ith sample. The goal is to train a model that can generate new

synthetic samples resembling the original data. Two key classes of
models are reviewed. Recent advances in deep generative models pro-
vide powerful new oversampling methods for imbalanced data [73,74].
Two prominent categories of models are GANs and VAEs.

4.1. Generative adversarial networks (GANs)

GANs [1,8,75] train a generator network to produce synthetic sam-
ples that are indistinguishable from real samples by a discriminator
network [76,77,78]. The training process is adversarial with the two
networks competing against each other [79,80,81]. GANs can capture
complex distributions and generate realistic samples. Conditional GANs
(CGANs) [82,83] allow conditioning the model on class labels which is
useful for targeted oversampling of minority classes. The general ar-
chitecture and workflow of a GAN is illustrated in Fig. 2.

GANs consist of two main components [17]. The first is a generator
Gϕ, which takes as input a random noise variable z ∼ qz(z) and aims to
generate a synthetic observation xʹ that closely resembles those
belonging to X. The second is a discriminator Dθ that has the task of
determining whether an observation is real or one that is generated by
Gϕ, The learning objectives of Gϕ and Dθ are thus in opposition to one
another and can be written as a min–max problem, given by Eq. (6) [1]:

L GAN(x;ϕ, θ) = min
ϕ
max

θ

(
Ex∼pX(x)&[log Dθ(x)]

&+ Ez∼qZ(z)
[
log
(
1 − Dθ

(
Gϕ(z)

) ) ] )
,

(6)

L GAN(x;ϕ, θ) represents the GAN loss function, where ϕ are the pa-
rameters of the generator G, and θ are the parameters of the discrimi-
nator D. Ex denotes expectation over real data distribution, Ez denotes
expectation over noise distribution, pX is the real data distribution, and
qZ is the noise distribution. Once trained, synthetic observations are
generated by first sampling z ∼ qz(z) and then passing this z to the
trained Gϕ such that xʹ = Gϕ(z).

4.2. Variational autoencoders (VAEs)

VAEs [1,12,21] learn an explicit latent space representation of the
input data using probabilistic encoder and decoder networks. By sam-
pling points from the learned latent distribution and decoding, new
samples can be generated from the prior training distribution. Condi-
tional VAEs (CVAEs) enable conditioning on class labels for minority
class oversampling. VAEs are premised on x being generated by a
random process involving a latent random variable z. Specifically, the
process is such that an observation of z is first sampled from the prior
distribution pθ(z), which in turn is used to sample an observation of x
from the conditional distribution pθ(z∣x).

The goal of the VAE is to obtain approximate maximum likelihood or
maximum a posteriori estimates of the parameters θ in situations where
both the marginal likelihood pθ(x) =

∫
pθ(z)pθ(x∣z)dz and the poste-

rior pθ(z∣x) are intractable. It does so by utilizing the distribution qϕ(z∣x)
as an approximation to intractable pθ(z∣x), and maximizing the varia-
tional lower bound for pθ(x) given by Eq. (7) [1]:

L VAE(x;ϕ, θ) = max(ϕ,θ)
(
Ez∼qϕ(z∣x)[log pθ(x∣z)] − KL

(
qϕ(z∣x) ‖ pθ(z)

) )
,

(7)

where KL denotes the Kullback-Leibler divergence, a measure of dif-
ference between two probability distributions.

Once the VAE is trained, a synthetic observation xʹ is generated by
first sampling z ∼ pθ(z) and subsequently sampling xʹ from the trained
probabilistic decoder pθ(x∣z).

Fig. 3 shows the architecture of a typical VAE. The encoder maps the
input x to a probability distribution qϕ(z∣x), from which latent variables
z are sampled. The decoder then maps these latent variables to another
probability distribution pθ(xʹ∣z), which generates the reconstructed
output xʹ. The model aims to minimize the difference between the input
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x and the reconstructed output xʹ.

4.3. Deep conditional generative models for oversampling

The following sections explore various deep conditional generative
models developed to effectively oversample the minority classes in
imbalanced datasets. These models aim to generate synthetic samples
for the minority classes, thereby reducing the imbalance and improving
the performance of machine learning algorithms trained on such data-
sets [1,7].

4.4. Conditional GANs (CGAN)

The conditional GAN (CGAN) [1,31,84] extends the classical GAN by
conditioning both the generator and discriminator on the class label y, as
illustrated in Fig. 4. The learning objective represents the same
two-player minimax game as Eq. (6), but now both models require y as
input.

L CGAN (x, y,ϕ, θ) = minϕmaxθ(Ex∼PX[log Dθ(x, y)]
+Ez∼qZ

[
log

(
1 − Dθ

(
Gϕ(z,y), y

) ) ] )
,

once trained, to sample a class y observation, firstly z ∼ qZ(z) is sampled

and then both z and y are passed to the conditional generator Gϕ to
produce xʹ = Gϕ(z,y). The CGAN was applied to handle class imbalance
in [2]. In addition, the auxiliary classifier GAN (ACGAN) [85] and the
balancing GAN (BAGAN) are two other conditional GAN variants
capable of producing class-dependent synthetic observations, as dis-
cussed in [86] respectively.

4.5. Conditional VAEs (CVAE)

A variant of VAEs is proposed [1,27] that aims to learn
class-dependent distributions, referred to as the conditional VAE
(CVAE). Conditionalizing the VAE merely requires a shift in the objec-
tive from learning parameters (θ,ϕ) that maximize a lower bound on
pθ(x) to instead learning (θ,ϕ) which maximize a similar lower bound
for the conditional distribution pθ(x∣y) given by Eq. (8) [1]:

L CVAE(x, y; θ,ϕ) = max
(ϕ,θ)

(
Ez∼qϕ(z∣x,y) [log pθ(x∣z, y)]

− KL
(
qϕ(z∣x, y) ‖ pθ(z∣y)

) )
,

(8)

L CVAE(x, y; θ,ϕ) represents the CVAE loss function, where θ are the
parameters of the generative model (decoder), and ϕ are the parameters
of the inference model (encoder). The encoder qϕ(z∣x, y) aims to

Fig. 2. General flowchart of a Generative Adversarial Network (GAN) architecture: The GAN consists of two main components: a Generator (G) and a Discriminator
(D), both implemented as multilayer neural networks. The Generator takes random noise as input and produces synthetic ’fake’ samples. The Discriminator receives
both real samples from the training data and fake samples from the Generator, attempting to distinguish between them. The Discriminator’s output is used to
compute both the Discriminator loss and the Generator loss. These losses are then used to update the respective networks through backpropagation. This adversarial
process continues iteratively, with the Generator improving at creating realistic fake samples and the Discriminator becoming better at distinguishing real from fake,
until an equilibrium is reached.

Fig. 3. VAE architecture: The model consists of an encoder that maps input x to a latent distribution, a sampling step to generate latent variables z, and a decoder
that maps z to the reconstructed output xʹ. The goal is to minimize the difference between x and xʹ [21].
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approximate the true posterior pθ(x∣z, y), while the decoder pθ(x∣z,y)
generates the output conditioned on both z and y.

Observe that z conditioned on x under the qϕ measure is independent
of y such that qϕ(z∣x, y) = qϕ(z∣x). It also bears mentioning that other
versions of the CVAE differ from the one described above, as discussed in
[21] and [27].

Fig. 5 shows the architecture of a CVAE, showing how the label in-
formation y is incorporated into both the encoder and decoder
processes.

4.6. Balancing generative adversarial network (BAGAN)

BAGAN [86] is a GAN model used for oversampling minority classes
in imbalanced image classification data to restore balance. BAGAN le-
verages an autoencoder along with the GAN structure to enable

class-conditional image generation. An autoencoder is first pretrained in
an unsupervised manner on all the training images. The decoder of the
autoencoder is used to initialize the generator G in BAGAN. And its
encoder is used to initialize the first layers of the discriminator D. This
initialization enables learning a class conditioning in the latent space of
G, where each class c is modeled via a multivariate Gaussian distribution
Nc = N (μc,Σc) estimated from encoded samples of that class. During
adversarial training, G receives as input random latent vectors Zc ∼ N c
corresponding to class label c, and tries to generate realistic fake images
of that class. While D tries to classify generated and real images as either
fake or belonging to one of the classes. Therefore, BAGAN uses the
autoencoder to facilitate conditional generation of minority class images
in order to oversample those classes and restore the balance of an
imbalanced dataset. The key mathematical concepts are: autoencoder
training via l2 loss optimization; modeling each class using the multi-
variate Gaussian Nc = N (μc,Σc) and adversarial training of G and D via
sparse categorical cross-entropy loss. The BAGAN training approach is
organized in the three steps showed in Fig. 6.

4.7. Medical generative adversarial network (medGAN)

medGAN [22,30,87] is a generative model proposed to generate
synthetic electronic health records (EHR). It combines a generative
adversarial network (GAN) with an autoencoder to handle
high-dimensional multi-label discrete variables representing events in
EHRs like diagnoses, medications, procedures etc. An autoencoder is
first pretrained in a supervised way to learn salient features of the
discrete variables. The decoder of the autoencoder is then used to
initialize the generator G of the GAN. And its encoder initializes the first
layers of the discriminator D. This allows G to generate distributed
representations of patient records, which are then decoded to synthetic
patient records by the pretrained decoder Dec. D tries to discriminate
between real patient records and synthetic ones decoded through
Dec(G(z)). Mini-batch averaging is also used to avoid mode collapse and
improve diversity of generated samples. Therefore, medGAN leverages
the autoencoder to enable effective generation of multi-label discrete
EHR data. The key mathematical aspects include: training the autoen-
coder via MSE loss defined in Eq. (9) [22]:

1
m
∑m

i=0

⃦
⃦xi − xʹ

i

⃦
⃦2
2 (9)

Fig. 4. Architecture of a Conditional Generative Adversarial Network (CGAN):
The generator Gϕ(z, y) takes random noise z and class label y as inputs to
produce synthetic data. The discriminator D receives both real data x and
generated data, along with the class label y, and tries to distinguish between
real and fake samples. Both networks are conditioned on the class label y to
enable class-specific generation and discrimination [31].

Fig. 5. CVAE architecture: This diagram illustrates the structure of a Conditional Variational Autoencoder. The encoder transforms input data x and associated labels
y into a probability distribution qϕ(z∣x, y). Latent variables z are sampled from this distribution. The decoder then uses both z and y to generate a probability
distribution pθ(xʹ∣z, y), from which the reconstructed data xʹ is sampled. The model aims to minimize the difference between x and xʹ, while utilizing label infor-
mation to improve reconstruction quality and enable class-conditional generation [21].
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or cross-entropy loss Eq. (10) [22]:

1
m
∑m

i=0
xi log xʹi + (1 − xi)log(1 − xʹ

i),

where xʹ
i = Dec(enc(xi))

(10)

m is the number of samples in the mini-batch and xʹ
i is the recon-

structed output of the autoencoder for the ith sample. enc represents the
encoder function and Dec represents the decoder function of the
autoencoder.

Adversarial training objective for GAN is similar to:

ϕg←ϕg +α∇ϕg
1
m
∑m

i=0
logD(G(zi) ),

where ϕ are the parameters of the generator G, α is the learning rate, zi is
the ith noise input.

But with discrete decoding; and mini-batch averaging to provide
useful statistics to D to encourage diversity. The equations forming the
mathematical foundation for medGAN’s working are shown in Fig. 7.

4.8. Adversarially Regularized Autoencoder (ARAE)

The Adversarially Regularized Autoencoder (ARAE) [88,89,90] is an
innovative model that integrates a discrete autoencoder with a latent
representation regularized by a Generative Adversarial Network (GAN).

This architecture comprises an encoder function encϕ that maps inputs
(such as text sequences) to a continuous latent space z, and a conditional
decoder pθ(x|z) that reconstructs the original discrete input x from the
latent code z.

A key feature of ARAE is the regularization of the latent code z. This
is achieved by aligning its distribution pQ with a prior distribution pz
through adversarial training. In this process, a critic/discriminator fw is
trained to differentiate between samples from pQ and pz. Concurrently,
the encoder encϕ is trained adversarially against fw to minimize the
Wasserstein distance between pQ and pz. The prior distribution pz can be
either fixed (e.g., Gaussian) or flexible (e.g., generated by a neural
network generator G).

This approach effectively minimizes an upper bound on the total
variation distance between the model distribution pθ and the true data
distribution pX, enabling ARAE to effectively model complex discrete
distributions [88].

The training process of ARAE alternates between three main steps:

1. Training the autoencoder (encoder and decoder) to minimize the
reconstruction loss L rec . This step is expressed mathematically in
Eq. (11) [88], which shows the objective function for minimizing the
reconstruction loss:

minϕ,ψ L rec (ϕ,ψ) = Ex∼pX
[
− logpθ

(
x∣encϕ(x)

) ]
. (11)

2. Training the critic fw to approximate the Wasserstein distance W
between distributions. Eq. (12) [88] represents this step, demon-
strating how the critic is trained to maximize the difference between
the expected values of the critic’s output for real and generated
samples:

max
w∈W

L cri (w) = Ex∼pX
[
fw
(
encϕ(x)

) ]
− Ez̃∼pz [fw(z̃)], (12)

where z̃ represents samples drawn from the prior distribution pz.
3. Adversarially training the encoder/generator to minimize W. This
final step is formulated in Eq. (13) [88], which illustrates the
objective function for training the encoder to minimize the Wasser-
stein distance:

min
ϕ

L enc (ϕ) = Ex∼pX
[
fw
(
encϕ(x)

) ]
− Ez̃∼pz [fw(z̃)]. (13)

These equations collectively form the mathematical foundation of
the ARAE model, enabling it to effectively learn and generate complex
discrete distributions.

4.9. Gaussian generative adversarial network (G-Gan)

G-GAN [29] utilizes the framework of Wasserstein Generative

Fig. 6. The three training steps of the BAGAN methodology: (a) Autoencoder training on all data classes, (b) GAN initialization using the pretrained autoencoder
components, and (c) GAN training for class-conditional image generation. The autoencoder’s decoder initializes the GAN generator, while its encoder initializes the
first layers of the discriminator [86].

Fig. 7. Architecture of medGAN: The model consists of an autoencoder
(encoder enc and decoder Dec), a generator G, and a discriminator D. Real
patient data x is encoded and reconstructed through the autoencoder. The
generator G, which includes multiple layers with non-linear activations, takes
random noise z as input and produces synthetic data, which is then processed
by the decoder Dec. The discriminator D evaluates both real and synthetic data
to distinguish between them. The generator and decoder are trained together to
produce realistic synthetic patient records that can fool the discriminator [22].
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Adversarial Network (WGAN) which demonstrates better training sta-
bility over regular GAN models [91,92,93]. In WGAN, the goal is to
match the distribution of real positive samples and fake samples
generated by the model, under the optimal transport metric of Wasser-
stein distance. This is formulated as the objective function shown in Eq.

maxw, θEx∼pX [fw(x)] − Ez∼Pz
[
fw
(
Gϕ(z)

) ]
, (14)

[29]:

max
w,θ
Ex∼pX [fw(x)] − Ez∼Pz

[
fw
(
Gϕ(z)

) ]
, (14)

where W are the parameters of the critic function fw, ϕ are the param-
eters of the generator function G, pX is the real data distribution, and Pz
is the prior noise distribution.

G-GAN [29] is a novel oversampling method to generate additional
minority class (positive) samples for imbalanced classification problems.
G-GAN is based on the WGAN framework which has better training
stability compared to regular GANs. Prior knowledge about the distri-
bution of positive samples is incorporated by fitting a Gaussian distri-
bution to the minority class data. This Gaussian distribution is used to
sample some of the input noise vectors to the generator. The input noise
vectors are a mix of samples from the fitted Gaussian distribution and
uniform random noise. This increases the diversity of the generated
samples. Multiple G-GANmodels are trained using bagging on subsets of
the positive samples. This further improves diversity and reduces
overfitting. The multiple G-GAN models generate synthetic positive
samples, which are combined to balance out the class distribution. The
fitted Gaussian distribution used to model positive samples Eq. (15) [29]
is:

N

(

z, μP,
∑

P

)

=
1

(2π)1/2|
∑
P|1/2

exp

(

−
1
2
(z − μP)

T
∑− 1

P
(z − μP)

)

,

(15)

where μP and
∑

P are the mean and covariance matrix fit to the posi-
tive samples.

The mixed input noise vectors Eq. (16) [29] are defined as:

Z =

⎧
⎪⎪⎨

⎪⎪⎩

z1, z2,…, z
⌊b2⌋

, z
⌊b2⌋+1

,…, zb

⎫
⎪⎪⎬

⎪⎪⎭

, (16)

where Z, zi, i = 1, 2,…, ⌊b/2⌋ are sampled from the uniform distribution
U(g, h) and the remaining zi are sampled from the Gaussian distribution

N
(
z; μp,

∑
P

)
. The overall architecture of G-GAN is shown in Fig. 8.

Fig. 9 shows the G-GAN algorithm with Bagging approach – training
multiple models on subsets of the data.

The key steps of the G-GAN algorithm are as follows:

First, a Gaussian distribution N
(
z; μp,

∑
P

)
is fitted to the positive

samples, where μP and
∑

P represent the mean and covariance matrix
fit to the positive data.

Next, batches of input noise vectors Z are generated using as
explained previously, Eq. (16) samples half the noise vectors from a
uniform distribution U(g,h) and the other half from the fitted Gaussian.

The WGAN generator and discriminator networks are then trained.
The generator tries to produce synthetic samples that fool the discrim-
inator, while the discriminator tries to tell apart real and fake samples.

Once training converges, the trained generator is used to produce
new synthetic positive samples. The bagging technique [94] is applied
by re-training the G-GAN models on different subsets of positive data.
This trains multiple G-GAN models. The synthetic samples from all the
G-GAN models are aggregated.

Finally, a subset is randomly sampled from this aggregate set to
balance out the original class distribution.

4.10. Minority oversampling generative adversarial network (MoGAN)

pg(x) = πpml (x)+ π(1 − pX(x)), (17)

MoGAN [95] (Minority Oversampling Generative Adversarial
Network) contains two interdependent networks, a generative network
G and a discriminator network D. The generative network of MoGAN
acts as an efficient oversampling technique to generate synthetic mi-
nority samples. It incorporates the majority class distribution when
generating new minority samples in order to restore balance in the
imbalanced dataset. MoGAN learns from all available data distributions
instead of interfering with only the majority data distribution. This
prevents overfitting and leads to better variety in the generated samples.
The generative network G uses a mixture data distribution to generate
minority samples as shown by Eq. (17) [95]:

where pg(x) is the generated data distribution, pml (x) is the majority
class distribution, pX(x) is the real data distribution, and π is a mixing
parameter controlling the contribution of each distribution.

Fig. 8. Diagram of G-GAN’s latent space generation and sample creation process: The model uses a combination of Gaussian and uniform distributions to generate
the latent space input for the generator. The positive class samples are used to fit a Gaussian distribution, providing the mean vector and covariance matrix. Random
noise vectors are sampled from either this Gaussian distribution or a uniform distribution U(g, h), depending on their index. The generator uses this mixed latent
space input to create fake samples, which are then evaluated by the discriminator along with real positive samples [29].
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The discriminator network D in MoGAN acts as a classifier to
distinguish between real/fake samples as well as classify them into
normal vs faulty samples simultaneously. The optimal discriminator for
the false positive rate is given by Eq. (18) [95]:

D
́
=

pX(x)
pX(x) + pg(x)

(18)

The training objective for the generator is formulated as shown in Eq.
(19) [95]:

min
ϕg
Ez∼pz

[
log

(
1 − D

(
G
(
z;ϕg

)
; θd
) ) ]

, (19)

where ϕg and θd are the parameters of the generator and discrimi-
nator respectively, and pz is the prior noise distribution and Ez denotes
expectation over noise distribution.

To handle the mixture data distribution and generate minority
samples in low-density regions, MoGAN employs a specialized loss
function based on KL divergence, as represented by Eq. (20) [95]:

min
ϕg

− Γ
(
pg
(
x;ϕg

)
+ Ex∼pg(x;ϕg)logPMj (x)

ρ
[
PMj(x) > δ

]
+ Loss(G),

where; Loss(G) = min
ϕg

‖ Ex∼pf (x)
[
f
(
G
(
z;ϕg

) ) ]
(20)

where Ex denotes expectation over the respective data distribution, Γ(.),
ρ(.) are the marginal and joint entropy function respectively, PMj(x) is
the probability of x belonging to the majority class, and δ is a threshold,
pf (x) is the distribution of fault samples, and f is a feature extraction

function.
These equations collectively define the core of the MoGAN model,

enabling it to generate diverse and realistic minority samples while
maintaining a balance between classes in fault diagnosis tasks. Fig. 10
shows the overall architecture of MoGAN.

4.11. 3D-HyperGAMO

The 3D-HyperGAMO architecture presented in Fig. 11 aims to
address the class imbalance problem for hyperspectral image (HSI)
classification [33,96]. It utilizes a generative adversarial approach to
minority oversampling [97] in order to balance the training data by
generating additional samples for classes with limited representations.

The key components of the 3D-HyperGAMO architecture include:

• 3D Patch Extractor: Extracts 3D cubes from the HSI data to retain full
spectral information;

• Conditional Feature Mapping Unit: Maps noise vectors to interme-
diate feature representations conditioned on class labels;

• Input: Random noise vector (z), One-hot encoded class label vector
(l);

• Convex 3D Patch Generator Unit (PGU): Generates new 3D HSI
patches for minority classes using the intermediate features and real
samples. The number of patches generated for class i is given by Eq.
(21) [33];

λgi = ms − ml (21)

Fig. 9. G-GAN with Bagging strategy: Multiple G-GAN models are trained on randomly sampled subsets of the positive sample set P. Each G-GAN generates a set of
new positive samples Pʹ. The final generated sample set Pʹ is created by randomly sampling from the combined output of all the G-GAN models. This approach aims to
increase diversity and reduce overfitting in the generated samples [29].

Fig. 10. Architecture of the proposed MoGAN model for imbalanced fault diagnosis: The generator G takes noise z, class labels, and real data as inputs to produce a
mixture density output. The discriminator D acts as both a classifier and fault detector, distinguishing between real/fake samples and predicting fault labels. N, F1,
F2, F3, etc. represent normal and different fault classes [95].
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where ml is the number of samples in the majority class, and ms is the
number of available samples in the i minority class.

• 3D Conditional Discriminator: Distinguishes between real and
generated 3D patches;

• 3D Classification Network: Categorizes original and generated
patches into classes.

The conditional feature mapping unit and PGU enable controlled
generation of new minority class training samples. The discriminator
provides adversarial supervision for realistic patches.

The PGU generates a class-specific feature matrix Fm for creating new
patches using Eq. (22) [33]:

Fm = Im • (Fm)T (22)

where Im is the random feature matrix and (Fm)T is the transpose of Fm.
The overall objective function is a minimax game between the

generator (G), discriminator (D), and classifier (M) networks. By opti-
mizing this function, 3D-HyperGAMO synthesizes additional training
samples to mitigate imbalance and enhance classification performance.

4.12. Improved variational autoencoder generative adversarial network
(improved VAEGAN)

Improved Variational Autoencoder Generative Adversarial Network
(improved VAEGAN [32]) is a new oversampling method for handling
imbalanced data classification problems. It is an improvement over the
original VAEGAN model by adding an extra encoder, aiming to enhance
the model’s representation ability to generate more realistic and diverse
minority class data for oversampling.

Specifically, the improved VAEGAN has two encoders E1 and E2 that
encode the input real data x into mean (μ1, μ2) and variance (σ21, σ22)
codes respectively. By fusing the outputs of the two encoders, the latent
code z is generated, which is then decoded by the decoder to generate
fake samples xʹ. Fig. 12 shows the flowchart of improved VAEGAN.

hʹ(x) =
1
̅̅̅̅̅̅
2π

√
σ0
e
−
(x− μ0)2
2σ20 (23)

The fusion of the two encoder outputs is achieved by multiplying
their probability density functions, as shown in Eq. (23) [32]:

where hʹ(x) represents the fused probability density function, σ0 is

the fused standard deviation, and μ0 is the fused mean.
The mean μ0 of the fused distribution is calculated as shown in Eq.

(24) [32]:

μ0 =
μ1σ22 + μ2σ21

σ21 + σ22
(24)

The variance σ20 of the fused distribution is determined by Eq. (25)
[32]:

σ20 =
σ21σ22

σ21 + σ22
(25)

The latent code z is then sampled from the distribution N
(
μ0, σ20

)
,

where N represents a normal distribution.
The improved VAEGANmodel is used to generate newminority class

samples by training the encoder(s)-decoder flow. The generated samples
are combined with the original imbalanced dataset to form an
augmented balanced dataset for training classifiers. Experiments
demonstrate improved classification performance compared to original
VAEGAN and other oversampling methods.

Fig. 11. Architecture of the proposed 3D-HyperGAMO model for addressing class imbalance in hyperspectral image classification: The model includes a 3D patch
extractor, a conditional feature mapping unit, a convex 3D patch generator (G) for minority classes, a 3D conditional discriminator (D), and a 3D classifier network
(M). This approach generates new samples for minority classes to improve classification performance on imbalanced datasets [33].

Fig. 12. Flowchart of VAEGAN: Real input data is fed into the encoder and
decoder components to produce synthesized false samples. The discriminator
then attempts to evaluate the authenticity of the generated samples versus the
real data [32].
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4.13. Generative adversarial network synthesis for oversampling
(GANSO)

GANSO [17] is a novel oversampling method that utilizes Generative
Adversarial Networks (GANs) and vector Markov Random Fields
(vMRFs) to synthesize realistic instances from a limited number of
original samples. It aims to address the challenge of training classifiers
with extremely small datasets by incorporating structural information
into the generative process. The GANSO architecture consists of two
main components: a generative block and a discriminative block, as
illustrated in Fig. 13. The generative block uses the vMRF model to
synthesize surrogates by applying the Graph Fourier Transform (GFT) on
an extended graph representation of the data. The discriminative block
implements a linear discriminant on features measuring clique similar-
ities between the synthesized and original instances. The two blocks
engage in an iterative competition until the discriminator can no longer
distinguish between the synthetic and original samples.

The key steps of the GANSO algorithm are as follows:

1. Construct an extended undirected graph G(Ve, Ee,Ae) from the orig-
inal graph G(V,E,A),where each sample is assigned to a vertex in Ve,
and edges in Ee connect vertices corresponding to samples from the
same or connected segments in the original graph.

2. Generate an initial synthetic instance s(m,0) by applying the GFT on a
selected original instance x(m). The GFT is computed using the ei-
genvectors Ue of the extended graph Laplacian matrix Le and a di-
agonal matrix Φ with random sign changes, as shown in Eq. (26)
[17]:

s(m,0) = UeΦUHe x(m) (26)

where Ue contains the eigenvectors of Le,Φ is a diagonal matrix with
random ± 1 values, and UHe is the Hermitian transpose of Ue.

3. Compute feature vectors kx(n) and k
s
(n) based on similarities between

maximal cliques of original and synthetic instances. The feature
vectors are defined in Eq. (27) [17]:

kx(n) =
[
k
(
x1(m),x

1
(n)
)
…k
(
xC(m),x

C
(n)
) ]T

ks(n) =
[
k
(
s1(m),x

1
(n)
)
…k
(
sC(m),x

C
(n)
) ]T (27)

where k(xc,yc) is a similarity measure between cliques, xc and sC

represent the cliques of the original and synthetic instances,
respectively, and C is the total number of maximal cliques.

4. Train the discriminator by finding the optimal linear discriminant
coefficients wopt,i to distinguish between original and synthetic in-
stances. The optimization problem is formulated in Eq. (28) [17]:

K⏟⏞⏞⏟
(2N×C)

⋅ w⏟⏞⏞⏟
(C×1)

= v⏟⏞⏞⏟
(2N×1)

K =
[
kx(1)…kx(N)k

s
(1)…ks(N)

]T v =
[
&1N
& − 1N

]

(28)

where K is a matrix containing the feature vectors kx(N) and k
s
(N),wopt

is the vector of optimal discriminant coefficients, and v is a vector of
labels (+1 for original instances and − 1 for synthetic instances). The
solution is given by Eq. (29) [17]:

wopt = KT
(
KKT

)− 1v (29)

5. If the discriminator achieves an error probability close to 0.5, accept
the current synthetic instance. Otherwise, proceed to the generator
step.

6. Update the generator by computing optimal correcting factors fopt,i to
modify the synthetic instance and deceive the discriminator. The
corrected feature vectors are computed as shown in Eq. (30) [17]:

ks(n,1) ≡ ks(n,0)f0 =
[
k
(
s1(m,0),x

1
(n)

)
⋅f10…k

(
sC(m,0),x

C
(n)

)
⋅fC0
]T

(30)

where f0 is a vector of correcting factors for each clique. The optimal
correcting factors are obtained by solving the system of equations in
Eq. (31) [17]:
[
ks(1,0)⋅f0…ks(N,0)⋅f0

]T
⋅wopt ,0=

[

1N
]

⇔
[
ks(1,0)⋅wopt ,0…ks(N,0)⋅wopt ,0

]T
⋅ f0⏟⏞⏞⏟

=

[

1N
]

(31)

The solution is given by Eq. (32) [17]:

fopt,0 = Ksw,0
(
Ksw,0

TKsw,0
)− 1

[1N] Ksw,0

=
[
ks(1,0)⋅wopt,0… ks(N,0)⋅Wopt,0

]T (32)

where Ksw,0 is a matrix containing the dot products between the
feature vectors ks(N,0) and the discriminant coefficients wopt,0.

7. Generate corrected cliques sc
(m,i+1) = sign

(
f copt,i

)
sc
(m,i) and reconstruct

the updated synthetic instance s(m).
8. Repeat steps 4–7 for a predefined number of iterations or until the
discriminator cannot distinguish the synthetic instance.

Fig. 13. Schematic diagram of the GANSO architecture: The generative block synthesizes instances using vMRFs and Graph Fourier Transform, while the
discriminative block evaluates their authenticity. White arrows indicate inputs; solid arrows show outputs. The iterative process continues until synthetic instances
are indistinguishable from original ones, enabling effective oversampling for imbalanced datasets [17].
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By incorporating structural information through the vMRF model
and leveraging the adversarial learning paradigm, GANSO can effec-
tively generate realistic synthetic instances from a limited number of
original samples. Experimental results on simulated and real-world
datasets demonstrate GANSO’s ability to improve classifier perfor-
mance in scenarios with extreme data scarcity, outperforming tradi-
tional oversampling methods like SMOTE.

In summary, GANSO is a promising deep generative approach for
oversampling that addresses the challenges of training classifiers with
extremely small datasets by integrating GAN-based adversarial learning
with vMRF-based structural information. Its innovative architecture and
mathematical formulation make it a valuable tool for enhancing the
performance of machine learning models in data-scarce domains.

4.14. Discussions

Deep generative models can be harder to train due to additional
neural network components. The models may also require more data
compared to simpler oversampling techniques. Overall, though, deep
generative minority oversampling is a very promising direction for
handling highly imbalanced datasets across a variety of problem
domains.

The bar chart in Fig. 14 shows the growing attention towards using
Generative Adversarial Networks (GANs) for oversampling in recent
years.

As observed, the frequency of occurrence mention of the keywords
“GAN” and “oversampling” in scientific papers has notably increased
since 2018. Our analysis indicates this rising trend reflects intensifying
efforts to harness GANs capabilities to address data imbalance by syn-
thetically oversampling minority classes.

However, open challenges remain around ensuring training stability,
diversity among generated samples, and rigorous, transparent bench-
marking. Further research and development are vital to demonstrate
performance improvements over current approaches on real-world
problems. Evaluating advancements on class-specific metrics is critical.

Table 1 presents a comparative analysis of various deep generative
models that have been employed for minority oversampling to handle
class imbalance. Key criteria used for comparison include the type of
data the models have been applied on, the datasets utilized in the
referenced studies, the evaluation metrics measured, the reported per-
formance results, disadvantages or limitations of the methods, and their
advantages. In addition to the models discussed, the Generative
Adversarial Network Synthesis for Oversampling (GANSO) approach has
shown promising results in generating realistic minority class samples
by incorporating vector Markov Random Field (vMRF) structural in-
formation into the GAN framework. GANSO has been applied to various
data types, including EEG, fMRI, and ECG signals, and has demonstrated
the ability to improve classifier performance in scenarios with extreme

data scarcity.
As can be observed, techniques like generative adversarial networks

(GANs), variational autoencoders (VAEs), conditional GANs (CGANs),
conditional VAEs (CVAEs), and Balancing GAN (BAGAN) have been
tested on image data, while Adversarially Regularized Autoencoder
(ARAE), Gaussian Generative Adversarial Network (G-GAN), and Med-
ical GAN (medGAN) handle textual, numerical and electronic health
record data respectively. Performance is quantified using metrics like
overall precision, recall, F1-scores, group-mean accuracy, balanced ac-
curacy and others depending on context. GANSO, being a relatively new
approach, has been evaluated using metrics such as classification ac-
curacy and learning curves on real-world datasets, showcasing its po-
tential for enhancing minority class representation.

The results showcase some relative strengths and weaknesses of the
models. For instance, CGANs achieve stable training but worst test
performance among comparable GAN techniques as per the MNIST case
study. In contrast, CVAEs produce better F1-scores but have higher
computational overhead. GANSO, on the other hand, leverages the
vMRF model to capture structural information and generate realistic
samples, but may face challenges in scalability and training complexity
as the data dimensionality increases. Comparisons on criteria such as
sample quality, diversity, computational complexity, scalability and
training stability highlight areas needing improvement across models.

The structured analysis of various minority oversampling techniques
using deep generative models and their characteristics facilitated
through Table 1 sets the context for further sections discussing current
challenges, shortcomings, comparative analysis and future opportu-
nities in this rapidly evolving subfield of machine learning research.

5. Challenges of oversampling with deep generative approaches

Each of explained models has its own distinct advantages and limi-
tations w.r.t scalability, training complexity and potential biases which
should be considered based on data type and application requirements.

5.1. Scalability

GANs are very popular as generative content models for high quality
and high-resolution images, but their main challenge still remains
scalability to very large dataset sizes. Increasing image sizes signifi-
cantly increases the number of parameters required to generate samples,
leading to increased training time and computational costs. In addition
to hardware limitations, the efficiency of very high dimensional neural
networks also decreases. VAEs also face scalability challenges with
increasing data dimensions, as the number of parameters and the
complexity of the latent space increases rapidly, reducing model effi-
ciency. Although the extra conditional input in CVAE partially controls
this issue, it is still challenging for large datasets.

BAGAN utilizes both VAE and GAN components, so it has even
higher computational costs compared to independent GAN and VAE.
Since it requires separate training of VAE and GAN components, it can
lead to a significant drop in efficiency at large data dimensions. ARAE
has the advantage that unlike GAN and VAE, it does not require model
structure adjustments for different input sizes and uses a standard ar-
chitecture for different datasets. But very long sequence inputs still
cause scalability issues leading to reduced efficiency.

G-GAN is designed specifically for small-sized low-dimensional nu-
merical data, so when volumes become very large or input dimensions
become too high, it faces serious scalability constraints. MoGAN benefits
from convolutional architectures that scale well to large image data. It
also uses group normalization that accelerates the training. On the other
hand, medGAN employs convolutional networks suitable for large im-
ages and uses techniques like importance sampling for better compu-
tational efficiency. 3D-HyperGAMO is designed for hyperspectral
imagery data containing large volumes of spatio-spectral information,
and utilizes convolutional networks capable of processing such large

Fig. 14. Growth of Attention to GAN for Oversampling as suggested by Scopus
indexed articles.
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Table 1
Comparative Analysis of Deep Generative Models for Minority Oversampling.

Model Data Type Dataset Evaluation Metric Result Performance at
Different Imbalance
Ratios (IR)

Disadvantages Advantages

SMOTE [1] Image MNIST Prec.(Overall)
Recall(Overall)
F1 Score (Overall)

0.920
0.906
0.905

IR = 80 (F1 =0.905)
IR = 320 (F1 =0.392)

Sensitive to hyperparameters Best performance in 4 out of 12 experiments

RANDOM [1] Image MNIST Prec.(Overall)
Recall(Overall)
F1 Score (Overall)

0.919
0.904
0.902

IR = 80 (F1 =0.868)
IR = 320 (F1 =0.529)

May overfit Best performance in 2 out of 12 experiments

CGAN [1] Image MNIST Prec.(Overall)
Recall(Overall)
F1 Score (Overall)

0.900
0.873
0.869

IR = 80 (F1 =0.816)
IR = 320 (F1 =0.147)

Worst performance Stable training

CVAE [1] Image MNIST Prec.(Overall)
Recall(Overall)
F1 Score (Overall)

0.916
0.909
0.908

IR = 80 (F1 =0.908)
IR = 320 (F1 =0.662)

High computational cost Best performance in 6 out of 12 experiments

ADASYN [30] Tabular
(discrete)

Adult Dataset F1 Score (Mean) 0.811 IR = 0.28 (F1 =0.537)
IR = 0.33 (F1 =0.727)

Applicable only for classification
tasks

Simple and fast oversampling
(Std) 0.055

VAE [30] Tabular
(discrete)

Adult Dataset F1 Score (Mean) 0.820 IR = 0.28 (F1 =0.535)
IR = 0.001 (F1 =0.820)

More difficult
To train compared to GANs

Stable training process
(Std) 0.039

GAN [30] Tabular
(discrete)

Adult Dataset F1 Score (Mean) 0.820 IR = 0.33 (F1 =0.734)
IR = 0.001 (F1 =0.820)

Risk of mode collapse Generate sharp samples
(Std) 0.069

medGAN [30] Tabular
(discrete)

Adult Dataset F1 Score (Mean) 0.822 IR = 0.28 (F1 =0.534)
IR = 0.001 (F1 =0.822)

Insufficient training data Privacy
Preservation, faster model prototyping(Std) 0.042

BAGAN [86] Image MNIST
CIFAR10
Flowers
GTSRB

SSMI couples
(min-max)

Accuracy 0.2–0.4
0.1–0.6
0.1–0.7
0.1

0.99
0.70
0.75
0.97

IR= 1.67 (Accuracy =

99 %)
IR= 40 (Accuracy =

96.5 %)

Requires further validation Robustness against data imbalance, prevents
mode collapse

ARAE [88] Binary
images

Text MNIST Yelp Reverse PPL
Forward
PPL

Transfer Accuracy 82.2
44.3

81.8 % Performance at
different IR ratios not
reported.

Sensitive to hyperparameters,
Challenging for complex
structures

Smoother latent space, Manipulation ability,
Semi-supervised performanceSNLI Accuracy 70.9 %

G-GAN [29] Numerical 11 standard datasets
from KEEL database

G-mean 0.9152 IR = 1.84 (G-
mean=0.6115)
IR = 66.67
(F1 =0.9997)

Not suitable for highly
imbalanced numerical data

Better performance compared to 11 other
common balancing algorithms

MoGAN [95] Time series IMS
Dataset

WTFF
Dataset

G-mean Precision
F-measure
Recall
Balanced Accuracy

0.9789 0.9427
0.9064
0.8902
99.23

IR = 1:3 (F1 = 0.95)
IR= 1:1000 (F1 = 0.71)

High computational complexity Better performance compared to existing
methods

IPF
Dataset

0.8946
0.8730
0.8902
97.28

3D-
HyperGamo
[33]

Hyperspectral
image

Indian Pines (IP)
Keneedy Space
Center (KSC)
University of Pavia
(UP)
Botswana (BW)

Overall
Accuracy

Average
Accuracy

Kappa
(x100)

86.96
95.31
93.9
97.43

78.72
92.26
93.29
97.4

85.17
94.78
91.86
97.22

IR = 10 (OA=95.19 %)
IR = 123
(OA=85.95 %)

High computational complexity
due to the use of deep neural
networks

Significantly improves classification
performance for minority classes by
oversampling them during training

Improved
VAEGAN [32]

Numerical Credit card fraud
detection dataset
(Number Ng=33700
of generated
examples is varied)

AUC
Precision
Recall
F1 score

0.98476
0.8630
0.8302
0.8463

IR= 0.25 (F1 = 0.8775)
IR = 100 (F1 = 0.8793)

More complex architecture
compared to original VAEGAN

Generates more diverse data for minority
class significantly improves precision, f1
score, combines strengths of VAE and GAN

GANSO [17] Time series,
Images

EEG (Barcelona
Test), fMRI
(OpenNeuro), ECG
(UCD Sleep Apnea
Database)

Probability of error 0.5–0.2–0.4
0.47–0.28
0.5 - < 0.3

IR ratios not reported. Requires structural assumptions
(vMRF model)

Effective for very small datasets (3–5
samples), outperforms SMOTE

M
.H
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data.
GANSO, being a GAN-based approach, also faces scalability chal-

lenges as the dimensionality of the data increases. The computational
complexity of training the generative and discriminative blocks in
GANSO grows with the size of the extended graph representation, which
can impact its efficiency when dealing with high-dimensional data such
as fMRI. However, for lower-dimensional signals like EEG and ECG,
GANSO may be less affected by scalability issues compared to models
handling image data. The incorporation of the vMRF model in GANSO
introduces additional parameters and complexity, further impacting its
scalability as the number of nodes and edges grows with the data
dimensionality.

On the other hand, improved VAEGAN suffers from similar scal-
ability issues as VAE and GAN with increasing data dimensions. While
the dual encoders compensate for this constraint to some extent, the
training complexity grows rapidly making large scale training infeasible.

5.2. Training complexity

GAN training is challenging in itself. Phenomena such as mode
collapse, non-convergence or high variational training, and sensitivity to
hyperparameters are common issues. The simple GAN training mecha-
nism of the interaction between the two networks of generator and
discriminator also induces and exacerbates these training problems.
Training CGAN is similar to GAN and involves the interaction between
the two networks, hence facing similar issues including mode collapse,
training instability and sensitivity to hyperparameter selection. The
extra conditional input can provide some guided training.

VAEs face more complexity during inference and loss computation
compared to GANs. So, the optimization requires techniques like KL
annealing to prevent problems like instability and divergence. CVAE
also needs specialized techniques like KL annealing for stable optimi-
zation similar to regular VAE. BAGAN training provides more stability
owing to the autoencoder component used along with GAN. But it re-
quires a two-step training process for the separate VAE and GAN sections
adding to computational overhead and training time. Moreover,
considerable exploration of the large parameter space is needed to attain
harmonious tuning between the two sections.

ARAE training is more stable than regular GAN training since it uses
an autoencoder for density estimation but very sensitive tuning of the
equilibrium weighting factor λ is needed to prevent overfitting and
properly capture useful features from the data, increasing model and
hyperparameter tuning complexity.

The usage of the bagging technique and prior distribution informa-
tion allows G-GAN training to be more stable and guided minimizing
mode collapse. medGAN aims to mitigate common GAN training chal-
lenges using techniques like importance estimation, group normaliza-
tion and generating data from a mixture of distributions leading to more
stable and faster training, but issues like mode collapse still persist.

3D-HyperGAMO employs techniques like input noise injection and
multi-scale prediction objectives for more robust training. It also uses a
separate classifier for the generated data putting less pressure on the
model itself. The usage of dual encoders increases computational
complexity in improved VAEGAN and attaining harmonious tuning be-
tween them necessitates exploration of a vast parameter space. But the
enhanced representation power somewhat compensates for this
limitation.

GANSO, being a GAN-based approach, shares similar training chal-
lenges such as mode collapse, non-convergence, and sensitivity to
hyperparameters. The iterative competition between the generative and
discriminative blocks in GANSO can be computationally demanding,
especially when dealing with large extended graph representations. The
incorporation of the vMRF model adds an additional layer of
complexity, requiring careful tuning of hyperparameters to ensure
convergence and stability. The use of the Graph Fourier Transform
(GFT) for generating synthetic samples also contributes to the training

complexity, as it involves eigendecomposition of the extended graph
Laplacian matrix. However, the structured nature of the vMRF model
can provide some regularization and guidance during the training pro-
cess, potentially mitigating issues like mode collapse to some extent.
Nevertheless, finding the right balance between the competing objec-
tives of the generative and discriminative blocks remains a challenge in
GANSO, similar to other GAN-based methods.

5.3. Potential biases

Since the primary goal of the generator in GAN is to fool the
discriminator, it may be more prone to just imitating particular samples
of the training data that it finds easiest to fool the discriminator with,
failing to be representative of the actual data diversity especially for
complex datasets with multiple modes.

CGAN has a similar goal of fooling the discriminator, hence likely to
overfit to such biased patterns from the data like GAN [98,99]. VAEs
also face the risk of overfitting to the observed training samples because
of the reconstruction performed using the latent space, potentially
leading to poor generalization ability. CVAE may also overfit to the data
as it performs reconstruction of the dependent variable y, requiring
proper hyperparameter tuning to prevent such bias.

BAGAN combines GAN and VAE that compensate for each other’s
limitations - VAE reconstructs data images and estimates the latent space
increasing output sample diversity, while GAN’s interactive adversarial
training guarantees generated samples to appear realistic. So, this
combination reduces chances of overfitting and bias.

ARAE uses an autoencoder, so like other generative content models
based on autoencoders, it also faces considerable risks of overfitting to
observed training samples and losing generalization power. Appropriate
mechanisms like tuning the weighting of the equilibrium loss are needed
to reduce bias. The usage of prior distribution information about mi-
norities and bagging allows G-GAN’s generator to be trained for pro-
ducing samples more related to minorities. NOISE allows increasing
diversity of produced samples and stretching coverage.

medGAN relies on strategies like estimating importance, generating
data from a mixture of distributions instead of direct minorities distri-
bution to enhance diversity and reduce bias of produced patterns. 3D-
HyperGAMO employs a separate classifier to classify the generated
samples, input noise injection, and multi-scale prediction as techniques
to reduce pattern bias and improve their diversity. Using dual encoders
and tuning their fusion by the VAE and GAN parts can potentially reduce
bias in improved VAEGAN But risks of overfitting still exist necessitating
proper tuning.

In the case of GANSO, the generator’s objective of fooling the
discriminator may lead to a bias towards generating samples that are
easily confused with the real data, rather than capturing the full di-
versity of the minority class. The vMRF model used in GANSO aims to
incorporate structural information and dependencies among the data
points, which can help in generating more representative samples.
However, if the assumed vMRF structure does not accurately reflect the
true underlying relationships in the data, it may introduce its own bia-
ses. The iterative adversarial training process in GANSO can potentially
mitigate some of these biases by continuously updating the generator
based on the discriminator’s feedback. Nevertheless, careful tuning of
hyperparameters and regularization techniques may be necessary to
strike a balance between generating realistic samples and maintaining
diversity. The limited number of training samples in the minority class
can also make GANSO vulnerable to overfitting, as the generator may
focus on replicating specific patterns present in the observed data.
Techniques such as data augmentation, cross-validation, and early
stopping can be employed to reduce overfitting and improve general-
ization. Additionally, monitoring the diversity of the generated samples
and using evaluation metrics that capture both the quality and vari-
ability of the synthetic data can help in identifying and mitigating po-
tential biases in GANSO.
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6. Shortcomings and potential risks

6.1. Generalization

GANs cannot cover full data diversity due to problems like mode
collapse that reduce variation. They likely miss infrequent but critical
minority cases. CGANs share the same deficiencies as GANs. The con-
ditional input provides some guided training but does not ensure
generalization or minority coverage. VAEs face latent space overfitting,
hampering generalization to new test data. Posterior collapse reduces
their output diversity. CVAEs risk overfitting on reconstruction, limiting
generalization. High KL costs can make them disregard the latent code,
affecting diversity. BAGAN combines GAN & VAE strengths to improve
generalization but requires extensive tuning. Like autoencoders, ARAE
can overfit to training data, requiring preventative tuning. G-GAN has
scalability issues that constrain its generalization. Strategies in medGAN
help generalization, but problems like mode collapse persist. Input in-
jection for 3D-HyperGAMO does not guarantee accurate conformity to
actual distribution. MoGAN leverages techniques like group normali-
zation for stability and convolutional architectures for scalability.
However, it shares GAN risks like mode collapse that limit full gener-
alization, especially on minority classes. The dual encoder approach of
improved VAEGAN aims for compensation but high complexity affects
reliable large-scale generalization. GANSO’s generalization ability de-
pends on the effectiveness of the vMRF model in capturing the under-
lying structure of the minority class. If the assumed vMRF does not
accurately represent the true data dependencies, GANSOmay struggle to
generate diverse and representative samples that generalize well to
unseen data. The limited number of minority class instances can also
hinder GANSO’s generalization capability, as it may overfit to specific
patterns in the training data.

6.2. Overfitting

GAN tends to overfit to particular training samples that easily fool
the discriminator, losing diversity and generalization capability. CGAN
shares the overfitting tendencies of regular GANs. VAE risks overfitting
in its latent space, hampering generalization. Posterior collapse exac-
erbates this. CVAE can overfit on reconstruction of the dependent var-
iable. High KL costs increase risks of posterior collapse and overfitting.
BAGAN combines GAN and VAE strengths, compensating limitations to
reduce overfitting. But extensive tuning for optimal fusion of the com-
ponents is computationally demanding. Like autoencoders, ARAE can
easily overfit to training data. Sensitive tuning of equilibrium loss
weighting is required. G-GAN employs bagging and prior distribution
information for more guided training with less overfitting. medGAN uses
techniques like importance estimation from mixture densities to mini-
mize overfitting risks. MoGAN exploits group normalization and con-
volutional architectures that provide regularization but does not
eliminate underlying GAN overfitting risks [100]. Using a separate
classifier in 3D-HyperGAMO reduces reliance on the model alone,
mitigating overfitting pressures. Tuning dual encoders in improved
VAEGAN targets reducing overfitting but significant tuning is essential.
GANSO, like other GAN-based models, is susceptible to overfitting,
especially when trained on a limited number of minority class samples.
The generator may memorize specific patterns in the training data
instead of learning the overall distribution, leading to poor generaliza-
tion. The vMRF model in GANSO can provide some regularization, but it
may not completely eliminate the overfitting risk if the assumed struc-
ture is too simplistic or fails to capture the true data dependencies.

In general, adequate regularization and tuning controls are vital in
all models to account for overfitting risks. Complex models like BAGAN
and GANSO require extensive tuning focus. Techniques like ARAE’s
equilibrium tuning, G-GAN’s guided training, GANSO’s vMRF regula-
rization, and MoGAN’s normalizer regularization help but no model is
inherently immune to overfitting risks.

6.3. Evaluation metrics

GANs need customized metrics testing class-specific performance,
biases, feature space coverage, and real-world impact compared to
benchmarks. Accuracy metrics masking poor minority class handling
and purely sample similarity judgments overlooking problems are
inadequate. CGANs share concerns, needing minority-class focused
analysis. Aggregate performance metrics are insufficient.

VAEs require careful class-level metrics analyzing minority handling
to prevent inflated perceived metrics from overfitting issues like poste-
rior collapse. Aggregate similarity metrics overlook generalization dif-
ficulties and must be supplemented with classification performance
impact analysis. CVAEs conceal overfitting problems if reconstruction
similarity alone is used without class-specific impact studies. Imbal-
anced classification metrics are mandatory.

BAGAN’s high compute requirements affect properly tuning and
cross-validating it for reliability. Customized hybrid evaluators
analyzing GAN and VAE components separately on metrics like sample
diversity before integrated model assessments are imperative. Proper
analysis of fusion tuning impact is critical. ARAE needs customized
frameworks ensuring analysis of training data memorization issues,
equilibrium tuning impact, biases, and feature space coverage through
both automated metrics and qualitative human assessment. Over-
reliance on aggregate similarity metrics must be avoided.

G-GAN has narrow specific applicability limiting evaluations on real
complex data. Tailored analysis for distribution characteristics of under-
represented minorities is key. medGAN’s group normalizers need
balanced class-specific multi-scale evaluations. Mixture density training
necessitates metrics ensuring minority coverage. 3D-HyperGAMO’s
separate classifier keeps models isolated necessitating customized
evaluators revealing true enhancements in generative model capability.
MoGAN’s deep 3D-CNNs require procedures testing model handling
when real-world variability is introduced in new unseen imbalanced
cases. Extensive dual encoder tuning means improved VAEGAN needs
customized non-aggregated metrics analyzing fusion model impact, not
just similarity metrics.

For GANSO, evaluation metrics should focus on assessing the quality
and diversity of the generated minority class samples and their impact
on improving classification performance. Class-specific metrics, such as
precision, recall, and F1-score, should be used to evaluate the classifier’s
performance on the minority class after oversampling. Additionally,
metrics that capture the diversity and representativeness of the gener-
ated samples, such as MMD or FID, can provide insights into how well
GANSO captures the underlying distribution. Visual inspection and
domain expert feedback can also help assess the realism and plausibility
of the generated samples in the specific application context.

7. Comparative analysis

Traditional oversampling methods such as SMOTE, ADASYN and
random oversampling take a simple approach of rebalancing class dis-
tributions in imbalanced datasets by increasing minority class samples
through replication or generation from existing samples. While
computationally cheap and intuitive, they tend to overfit limited mi-
nority data and lack diversity. Their scope is also mostly restricted to
low-dimensional data. In contrast, deep generative models like GANs,
VAEs, CGANs, CVAEs, BAGAN, medGAN, ARAE, G-GAN, MoGAN, 3D-
HyperGAMO, Improved VAEGAN, and GANSO leverage complex neu-
ral networks to implicitly model intricate data distributions and sample
new, realistic and diverse points from it. By capturing the authentic
underlying statistics, they significantly reduce overfitting and provide
better generalization over traditional techniques. These powerful black-
box models can scale to high-dimensional visual data, but require
extensive expertise and computing resources for effective training and
tuning due to architectural complexity.

An important observation from Table 1 is the varying performance of
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different methods across imbalance ratios (IR). Traditional methods like
SMOTE and Random oversampling show high sensitivity to imbalance
ratios, with SMOTE’s F1-scores dropping significantly from 0.905 at
IR= 80–0.392 at IR= 320. Deep generative approaches demonstrate
varying levels of resilience to high imbalance ratios. Some models show
remarkable stability, such as Improved VAEGAN maintaining consistent
performance (F1 ≈0.87) from IR= 0.25 to IR= 100, and BAGAN
showing minimal degradation (Accuracy dropping only 2.5 % from
IR=1.67 to IR=40). However, others like CGAN exhibit high sensitivity
with F1-score declining substantially from 0.816 at IR= 80–0.147 at
IR= 320. Models like MoGAN and 3D-HyperGAMO show moderate
sensitivity, with MoGAN’s F1-score decreasing from 0.95 to 0.71 at
extreme ratios (IR=1:1000) and 3D-HyperGAMO’s accuracy declining
from 95.19 % to 85.95 % as IR increases from 10 to 123. Notably, some
models like medGAN and G-GAN demonstrate low sensitivity, even
showing improved performance at higher imbalance ratios. This varying
response to imbalance ratios suggests that while some deep generative
models can effectively handle class imbalances, their effectiveness varies
significantly across different architectures and domains. These findings
align with the sensitivity ratings provided in Table 2, where deep
learning-based methods show a spectrum from low to high sensitivity to
imbalance ratios, with newer architectures generally showing better
resilience to high imbalance scenarios.

To facilitate a multi-dimensional comparison of these oversampling
strategies, we present Table 2 which evaluates both traditional and deep
generative approaches across several key criteria. These criteria were
selected to provide a comprehensive view of each method’s strengths
and limitations in addressing the challenges of imbalanced data
classification.

The criteria in Table 2 offer insights into various aspects of each
method’s performance and applicability. The number of parameters
indicates model complexity and computational demands, ranging from
non-parametric approaches to architectures with large-scale parame-
ters. This parameter count directly impacts both training time and
memory requirements, with larger models typically requiring extended
training periods on specialized hardware, while smaller models can be
trained more quickly on standard computing resources. Data scarcity
robustness indicates performance with limited samples. The data type
handled shows the versatility of each approach. Sensitivity to high
imbalance ratio is crucial for severely skewed datasets. Generated data
diversity is essential for creating representative synthetic samples.
Scalability assesses the method’s applicability to large-scale problems.

Specifically, GANs can produce high quality, realistic image samples

with intricate visual details and diversity through their moderate-sized
generator-discriminator networks, but adversarial training often cau-
ses mode collapse and diminished diversity. VAEs enable interpretable
latent manipulation and reasoning with their compact encoder-decoder
structure, but reconstruct complex images poorly. CGANs and CVAEs,
with their larger architectures through additional class embedding
layers, improve conditional sample specificity yet still inherit GAN
training instability issues like mode collapse. BAGAN effectively cap-
tures the heterogeneous and sparse spatial-spectral distributions of sat-
ellite imagery with few minority samples, utilizing substantial
parameters shared between autoencoder and GAN components, but re-
quires data preprocessing and feature extraction and cannot operate on
raw data. medGAN employs a medium-sized architecture and is robust
to severe imbalance in medical records but has binary classification
constraints and requires structured data. ARAE can generate diverse
texts conditioned on labels through its LSTM-based framework but de-
mands complex architectures. G-GAN, with its lightweight structure,
generates new minority samples from imbalanced numerical data,
though it struggles with extreme imbalance ratios. MoGAN enables
simultaneous machine fault detection and classification through
specialized convolutional architectures but is domain limited. 3D-
HyperGAMO improves spectral-spatial satellite image classification
performance but needs more complex neural architectures and higher
computational costs. Improved VAEGAN combines two generators for
better fraud sample generation at the cost of increased complexity over
vanilla VAEs and GANs. GANSO maintains a highly efficient structure
through its vMRF-based approach while combining the strengths of
GANs and vector Markov Random Fields to synthesize realistic minority
class samples even with extremely small training sets. It demonstrates
improved classifier performance over traditional methods when dealing
with very limited data through iterative adversarial training, though it
requires careful vMRF structure design. GANSO shows particular
promise for biomedical applications involving EEG, fMRI, and ECG data,
where obtaining large labeled datasets is often difficult and expensive,
despite potential scalability challenges with high-dimensional data.

Among traditional methods, SMOTE is a simple and easy to imple-
ment method for increasing the number of minority samples but overfits
limited minority data and lacks diversity of generated samples as well as
ineffectiveness in higher dimensions and continuous data like images.
While ADASYN performs targeted sampling based on difficulty of
learning and prevents overfitting, scarce diversity of generated samples
is observed. Both amplify existing samples. Random oversampling es-
tablishes implementation simplicity and class balance but likely causes

Table 2
Multi-dimensional Comparison of Oversampling Strategies.

Model Number of
Parameters

Data Scarcity
Robustness

Data Type Handled Sensitivity to High Imbalance
Ratio

Generated Data
Diversity

Scalability

SMOTE N/A (Non-
parametric)

Low Numerical, Low-
dimensional

High Low High

ADASYN N/A (Non-
parametric)

Low Numerical, Low-
dimensional

Medium Low High

RANDOM N/A (Non-
parametric)

Low Image, Text High Low High

GAN ~1.1 M Medium Image, Text Medium High Medium
CGAN ~13.18 M Medium Image, Text, Conditional High High Medium
VAE ~0.85 M Medium Image, Text Medium Medium Medium
CVAE ~13.34 M Medium Image, Text, Conditional Medium Medium Medium
BAGAN ~13.15 M High Image Low High Low
medGAN ~5 M High Discrete Medical Data Low High Medium
ARAE ~1.65 M Medium Text, Discrete Data Medium High Medium
G-GAN ~3.2 K High Numerical, Low-

dimensional
Low Medium Low

MoGAN ~1.5 M High Time Series Medium High Medium
3D-HyperGAMO ~8.5 M High Hyperspectral Images Medium High Low
Improved
VAEGAN

~131 K High Numerical Low High Medium

GANSO ~494 High Time Series, Image Medium High Medium
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overfitting due to replication without adding new information to
training data.

Comparing these methods presents several challenges due to the
diversity of data types, imbalance ratios, and application domains. This
diversity makes it impractical to provide a single set of experimental
results that would be universally applicable or meaningful across all
scenarios. Performance can vary significantly based on these factors,
making direct comparisons complex. For instance, while deep genera-
tive models excel in high-dimensional spaces, traditional methods may
be more effective for simpler, low-dimensional data. The choice of
method often depends on the specific requirements of the task, available
computational resources, and the nature of the dataset. Given these
challenges, a more effective approach to comparing these methods in-
volves analyzing their theoretical foundations, computational re-
quirements, and reported performance across various case studies in the
literature, rather than attempting to provide a single set of experimental
results. Consequently, we have focused on comparing the general
characteristics and applicability of these methods across various
scenarios.

In summary, while traditional techniques provide an accessible
starting point, they falter on complex high-dimensional data. Deep
generative models can accurately model intricate data distributions for
intelligent sampling but require greater expertise and computing re-
sources to harness their power. These complementary paradigms can be
innovatively combined into robust and sample-efficient solutions that
augment minority classes effectively across the data complexity
spectrum.

8. Future directions and recommendations

For BAGAN future efforts could focus on applying the methodology
to additional classification tasks and datasets with imbalanced training
data to further validate its usefulness. Researchers could also explore
modifications or extensions to the BAGAN framework itself to generate
higher quality synthetic images and improve classifier performance.

For medGAN priority areas are developing a sequential version that
can model patient data over time and expanding the types of data that
medGAN can synthesize, including lab results, demographics, and free-
text notes. This will enhance the realism and usefulness of the generated
outputs.

Researchers could evaluate ARAE’s scalability on more complex
long-form discrete sequences like documents to test robustness.
Reducing gaps between practical training objectives and theoretical
optimal transport objectives could enhance performance. Additional
latent space regularization and structuring may enable more controlled
manipulations with improved interpretability. Comparing ARAE against
a wider range of recent discrete latent variable models would better
highlight ARAE’s strengths and limitations to guide progress.

In terms of recommendations, researchers could release ARAE code
implementations to accelerate research. Testing model resilience on
real-world discrete datasets would also evaluate scalability. Clearly
reporting differences between theoretical and practical training objec-
tives would support reproducibility.

Further suggestions include adapting ARAE for more discrete
sequence modeling tasks beyond initial experiments to demonstrate
versatility. Enhancing discretization schemes for modalities like video or
audio could widen applications. Developing specialized ARAE model
architectures and training procedures for different data types could also
improve results. Comprehensive benchmarks gauging reconstruction
quality, manipulation precision, and computational efficiency would
identify areas needing work.

Researchers can stretch the idea of G-GAN by extracting more in-
formation to inject into the GAN, adapting it for multi-class imbalance
problems, and improving stability for small numerical datasets.
Comparing against newer GAN-based solutions will also help advance
this approach.

For MoGAN reducing dimensionality could improve fault diagnosis
under different conditions. Creating a new loss function to handle
mixture data distributions would enrich generator performance and
improve the discriminator’s detection abilities.

With 3D-HyperGAMO testing how the model generalizes to new
hyperspectral datasets and comparing against recent deep learning
techniques like attention-based networks could further guide architec-
ture optimization. Researchers could also explore semi-supervised ex-
tensions and adapt the 3D oversampling idea to other modalities.

For the improved VAEGAN boosting recall and AUC via model ar-
chitecture changes and advanced sampling strategies should be prior-
ities. Testing on more real-world problems will demonstrate broad
usefulness across classification tasks involving imbalance.

For GANSO, future research could focus on optimizing the vMRF
structure design for different data types and domains. Investigating
adaptive or learnable vMRF structures could enhance the method’s
flexibility and generalization ability. Extending GANSO to handle multi-
class imbalance problems and exploring its applicability to other data
modalities beyond EEG, fMRI, and ECG would broaden its impact. Re-
searchers could also work on improving GANSO’s scalability to higher-
dimensional data and larger datasets. Comparative studies against state-
of-the-art few-shot learning methods would help position GANSOwithin
the broader context of learning from limited data. Additionally, devel-
oping theoretical guarantees for GANSO’s performance under different
data distributions and imbalance ratios could provide valuable insights.
Exploring the integration of GANSO with other deep learning architec-
tures, such as attention mechanisms or graph neural networks, might
lead to improved performance in specific domains.

9. Conclusion

This survey has analyzed various oversampling techniques using
deep generative models for handling class imbalance in machine
learning. Compared to traditional methods like SMOTE and ADASYN
that simply replicate or interpolate minority samples, advanced deep
models such as GANs, VAEs, and their variants (CGANs, CVAEs, BAGAN,
medGAN, ARAE, G-GAN, MoGAN, 3D-HyperGAMO, Improved VAE-
GAN, and GANSO) have demonstrated significant potential in capturing
intricate minority data distributions for intelligent, diverse sample
generation.

These deep generative approaches have shown promising results
across various domains, including image classification, medical di-
agnostics, and fraud detection. Their ability to generate high-quality,
realistic samples that maintain the underlying statistical properties of
minority classes represents a substantial advancement in addressing
class imbalance. For instance, models like BAGAN and 3D-HyperGAMO
have shown particular promise in handling imbalanced image datasets,
while medGAN and GANSO have demonstrated effectiveness in gener-
ating synthetic medical data and time series, respectively.

However, it is important to acknowledge that these advanced
methods also present new challenges. Scalability issues due to archi-
tectural complexity can constrain real-world applicability, especially for
very large datasets. The delicate training procedures of some models,
prone to instability and overfitting, necessitate extensive tuning and
expertise. Additionally, the use of aggregate evaluation metrics may
sometimes mask model deficiencies, calling for more nuanced, class-
specific assessments.

Despite these challenges, the field has made substantial progress.
Innovative solutions combining complementary paradigms, such as the
integration of GANs with vector Markov Random Fields in GANSO, or
the dual encoder approach in improved VAEGAN, showcase the poten-
tial for oversampling techniques that can scale across data complexity
levels. These advancements are particularly crucial as datasets grow
more imbalanced and complex, necessitating robust, efficient, and
transparent oversampling methods for unbiased model development.

Looking forward, addressing these critical shortcomings is
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imperative before large-scale deployment. Innovative solutions
combining complementary paradigms could lead to oversampling
techniques that scale across data complexity. As datasets grow more
imbalanced, developing robust, efficient and transparent oversampling
is vital for unbiased model development. Techniques accurately repre-
senting minority groups in training data will be integral to ensuring fair
and ethical AI systems.

In conclusion, while challenges remain, the progress in deep gener-
ative oversampling techniques represents a significant step forward in
addressing class imbalance. As these methods continue to evolve, they
hold great promise for enabling more accurate and fair machine learning
models across a wide range of applications. The path forward involves
interdisciplinary efforts uniting deep generative modeling expertise
with domain knowledge and ethical considerations. By continuing to
innovate and refine these techniques, we can work towards AI systems
that are not only powerful but also equitable and representative of all
data classes.
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