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Abstract—Security and privacy are significant concerns in
software-defined networking (SDN)-applied Internet of Things
(IoT) environments, due to the proliferation of connected devices
and the potential for cyberattacks. Hence, robust security mecha-
nisms need to be developed, including authentication, encryption,
and distributed denial of service (DDoS) attack detection, tailored
to the constraints of low-power IoT devices. Selecting a suitable
tiny machine learning (TinyML) algorithm for low-power IoT
devices for DDoS attack detection involves considering various
factors such as computational complexity, robustness in dealing
with heterogeneous data, accuracy, and the specific constraints
of the target IoT device. In this paper, we present a two-fold
approach for the optimal TinyML algorithm selection leveraging
the hybrid analytical network process (HANP). First, we make
a comparative analysis (qualitative) of the machine learning
algorithm in the context of suitability for TinyML in the domain
of SD-IoT devices and generate the weights of suitability for
TinyML applications in SD-IoT. Then we evaluate the perfor-
mance of the machine learning algorithms and validate the results
of the model to demonstrate the effectiveness of the proposed
method. Finally, we see the effect of dimensionality reduction
with respect to features and how it affects the precision, recall,
accuracy, and F1 score. The results demonstrate the effectiveness
of the scheme.

Index Terms—Low power IoT, SDN, DDoS attacks, Machine
learning, Decision making

I. INTRODUCTION

The Internet of Things (IoT) makes a network consisting
of sensors and devices including software programs utilizing
the Internet for transmission of data. The inclusion of IoT
into consumer electronics (CE) made a revolution in next-
generation CE [1], [2]. The extensive proliferation of Internet
IoT applications renders technology increasingly susceptible to
attacks. As the service domains of IoT continue to expand con-
tinuously, security concerns remain prevalent. This is mainly
due to the diverse and heterogeneous nature of networks
employed in IoT, which incorporate both large as well as small
devices [3], [4]. The small sensor devices in IoT, characterized

Jehad Ali is with the Department of AI Convergence Network, Ajou
University, Suwon, South Korea (Email address:jehadali@ajou.ac.kr)

Prof Song is with the Department of Information Systems University of
Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD
21250 USA (Email address:songh@umbc.edu)

vandana Sharma Christ University, Delhi NCR Campus, India (Email
address:vandana.juyal@gmail.com)

Mahmoud Ahmad Al-Khasawneh School of Computing, Skyline Uni-
versity College, University City Sharjah, 1797, Sharjah, UAE and Applied
Science Research Center. Applied Science Private University, Amman, Jordan
and Jadara University Research Center, Jadara University, Jordan (Email
address:mahmoud@outlook.my)

Corresponding author: jehadali@ajou.ac.kr

by constrained computational power, computing resources, and
storage capacity, pose challenges in implementing efficient
protection methods and cryptographic algorithms for security.
Moreover, the lack of privacy-preserving algorithms in small
IoT devices leaves them vulnerable to exploitation by mali-
cious actors, who leverage these vulnerabilities to enlist them
as bots for launching attacks [5], [6].

Software-defined IoT (SD-IoT) is susceptible to distributed
denial of service (DDoS) attacks due to vulnerabilities in
underlying IoT devices such as its widespread connectivity [7].
Hence, legitimate users are not able to access the resources due
to the high utilization of the server with attackers’ illegitimate
or attack requests. Hence various studies are proposed to detect
and mitigate these attacks as illustrated in [8]–[22]. These
approaches can be broadly categorized into two types. i.e.
the one using traditional mechanisms to detect DDoS attacks
[8]–[14] such as entropy-based methods, and the second type
utilizes machine learning-based algorithms to detect DDoS
attacks [15]–[22].

The entropy-based schemes mentioned in [8]–[14] for
DDoS attack detection in SDN environments exhibit some
limitations. First, the entropy-based schemes often rely on
static threshold values to detect anomalies in network traf-
fic entropy. However, these thresholds may not adapt well
to dynamic changes in network behavior or varying traffic
patterns. As a result, they may lead to high false positives
or false negatives, diminishing the effectiveness of DDoS
attack detection. In addition, the entropy-based strategies
analyze traffic entropy at the packet or flow level without
considering the broader context of network activities. This
lack of context awareness may fail to distinguish between
legitimate fluctuations in entropy and actual DDoS attacks.
Moreover, without contextual information about the network
topology, application behavior, or user activities, the accuracy
of detection may be compromised. Furthermore, these entropy
approaches may be sensitive to specific network characteris-
tics, such as traffic volume, traffic type, or network topology.
Variations in these characteristics across different network
environments can impact the efficacy of entropy-based DDoS
attack detection methods. Additionally, attackers may exploit
these variations to evade detection by manipulating traffic
patterns or exploiting vulnerabilities in the entropy calculation
process.

The forecast of the microcontroller units (MCUs) at an
exponential rate and its forecast (with more than 40 billion
MCUs adopted until 2022) is shown in [23]. As the availabil-
ity and capabilities of microcontrollers (MCUs) continue to
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increase and evolve, so does the development of tiny machine
learning (TinyML) algorithms. With advancements in MCU
technology, including higher processing speeds, lower power
consumption, and increased memory capacities, developers
can implement more complex machine-learning models di-
rectly on embedded devices [24]. TinyML offers significant
advantages over typical machine learning algorithms for low-
power IoT devices due to its lightweight and energy-efficient
nature. Unlike traditional algorithms as illustrated in [15]–[21],
which often require substantial computational resources and
memory, TinyML models are designed to operate efficiently on
resource-constrained devices with minimal energy consump-
tion, which enables local processing of sensor data on the
IoT device, reducing the need for frequent data transmission
to centralized servers and minimizing latency. Additionally,
TinyML’s compact model sizes make them suitable for de-
ployment on devices with limited storage capacity, allowing
for on-device training and inference without compromising
performance. Moreover, TinyML’s ability to leverage hardware
accelerators, such as microcontrollers and specialized proces-
sors, further optimizes energy efficiency and computational
speed, making it an ideal choice for a wide range of IoT ap-
plications where power consumption and resource constraints
are critical considerations [25]–[30].

Hence, in this paper, we propose a novel method to quali-
tatively analyze the suitability of the machine learning algo-
rithms for TinyML implementation and then validate it through
evaluations in Software-Defined Internet-of-Things (SD-IoT)
DDoS attack detection. To the best of our knowledge, our
paper proposes a novel hybrid algorithm with qualitative and
quantitative decision-making mechanisms for the implemen-
tation of TinyML in SD-IoT. The main contributions of our
proposed method are as follows.

• First we formulate the problem of TinyML algorithm
suitability for DDoS attack detection within the low-
power IoT and identify the criteria for machine learning
algorithms applicability in TinyML.

• We formulate the problem for TinyML alternative al-
gorithm selection and ranking with a hybrid analytical
network process (HANP). Moreover, we demonstrate it
with an algorithm (HANP).

• To validate the HANP results’ effectiveness, we evaluate
the machine learning algorithms in terms of various
performance metrics.

• We also see the effect of feature reduction and propose
an algorithm for optimal principal component selection
from the given features

The rest of our paper is organized as follows. In Section 2
we present the problem formulation of our proposed strategy.
In section 3, we describe our proposed hybrid analytical
network process technique to get the weights for an efficient
machine learning algorithm. Section 4 evaluates the results and
discusses them. In section 5 the paper concludes with future
research directions.

II. PROBLEM FORMULATION

Several machine learning algorithms can be applied for tiny
machine learning in DDoS attack detection for low-power IoT

devices such as support vector machines (SVM), Random
forests (RF), Decision trees, and Naive Bayes. However,
each algorithm has its strengths and weaknesses regarding
the criteria shown in Table 1, and the selection should be
based on the specific requirements and constraints of the IoT
deployment regarding TinyML. Hence, in this paper a two fold
approach is utilized for implementing the TinyML algorithms
for DDoS attacks detection in SD-IoT network. We formulate
the problem with HANP. First, the SD-IoT is denoted as
graph G = (V,E). The IoT sensor devices are denoted as
SD1, SD2, SD3, SD4, ..., SDn. The sensor devices in SD-
IoT are part of the data plane as shown in Figure 1. Moreover,
the criteria are denoted with Eq. (1), and the machine learning
algorithms are shown with Eq. (2). The ML1 up to MLK
shows the list of machine learning algorithms. Leveraging
the HANP we will first identify and illustrate the suitability
of criteria features in TinyML for SD-IoT. Then, we rank
them through the HANP i.e. hybrid of analytical hierarchy
process (AHP) and ANP. First, our goal is to find the weights
and ranking of the suitability of the algorithms for TinyML
SD-IoT environment and then validate the efficacy through
simulations.

CT = {CT1, CT2, CT3, ..., CTn} (1)

ML = {ML1,ML2,ML3, ..., MLK} (2)

TABLE I: Criteria for TinyML schemes (machine learning
algorithm evaluation)

Name of criteria Abbreviation Notation
Resource efficiency RE CT1
Model complexity MC CT2
Training inference speed TIS CT3
Accuracy and detection performance ADP CT4
Robustness to data distribution shifts RDDS CT5
Dimensionality reduction for big data DRBD CT6

III. PROPOSED APPROACH AND FRAMEWORK

The overall architecture of our proposed method is shown
in Figure 1. Figure 1 shows an SD-IoT architecture employing
different modules upon the control plane. The HANP modules
rank the machine learning algorithms under consideration
for low-power IoT networks in TinyML for DDoS attacks
detection. Herein, the HANP module considers the low-power
IoT network and suitability of the machine learning algorithms
with criteria described in the next subsection. Moreover, we
get the data analytics utilizing a centralized SDN model in IoT
from the underlying SD-IoT network having data plane and
control plane. The data plane consists of low-power IoT sen-
sors/devices and the control plane consists of SDN controller
for obtaining data analytics and applications running. The data
plane communicates with the controller through a southbound
application programming interface. While the control plane
interacts with the modules on the control plane via the north-
bound application programming interface. The data analytics
are obtained from the SD-IoT network. Furthermore, feature
engineering is done on the dataset with principal component
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analysis (PCA) to get the smaller dimension dataset with
reduced features. However, the variance should be kept high
to consider the DDoS attacks detection features, even with a
smaller number of features. Our proposed algorithm for feature
selection in the next subsections ensures that the variance is
kept high. Then the algorithms are evaluated for accuracy,
precision, recall and F1 score to check if they are producing
the results according to the ranking generated with HANP.

A. Criteria for ranking the algorithms

In this subsection, we describe the criteria regarding the
applicability of machine learning algorithms in TinyML low-
power IoT devices. When selecting a machine learning algo-
rithm for tiny machine learning in DDoS attack detection for
low-power IoT devices, several criteria are significant to be
considered. These criteria contribute int the low-power IoT
devices while implementing it for TinyML considering their
low computational and battery power. Here are some key
factors during the selection of an algorithm.

1) Resource Efficiency (RE): Given the constrained com-
putational resources and low power capabilities of IoT
devices, the chosen algorithm should be lightweight and
computationally efficient. It should be able to perform
adequately on devices with limited memory, processing
power, and energy resources.

2) Model Complexity (MC): The algorithm should be able
to create models with low complexity to fit within the
constraints of IoT devices. Complex models may require
more memory and processing power, which can be
prohibitive for low-power IoT devices.

3) Training and Inference Speed (TIS): The algorithm
should have fast training and inference times to operate
efficiently on IoT devices. Rapid training enables quick
model updates, while fast inference ensures timely de-
tection of DDoS attacks without significant latency.

4) Accuracy and Detection Performance (ADP): The ef-
ficiency is critical, however, the algorithm should still
provide adequate detection performance and accuracy
in identifying DDoS attacks. It is essential to strike
a balance between resource efficiency and detection
effectiveness.

Fig. 1: Proposed SD-IoT architecture for TinyML algorithm
selection in DDoS attacks detection

5) Robustness to Data Distribution Shifts (RDDS): IoT
environments may exhibit dynamic and heterogeneous
data distributions due to changes in network conditions
or IoT device deployments. The algorithm should be
robust to such shifts and maintain its performance across
different scenarios.

6) Dimensionality reduction of big data (DRBD): This
feature concerns the algorithm’s performance in dealing
with data in low dimensions as compared to the original
features in the dataset. This is significant in dealing
with huge amounts of data hence the algorithm should
generate accurate results with a smaller number of
features from the dataset. Hence, in our performance
evaluation results, we propose a method to select the
features (reduced features) from the original number of
features. Moreover, we evaluate the performance with
fewer features also for the machine learning algorithms.

In the next subsection, we explain the HANP to rank the
alternative algorithms regarding the criteria metrics. Moreover,
we also evaluate it through simulations.

B. Hybrid Analytical Network Process

To select a machine learning algorithm using Hybrid Ana-
lytic Network Process (HANP), incorporating both ANP and
AHP, for the given alternatives (Random Forest, Decision
Trees, SVM) and criteria (RE, MC, TIS, ADP, RDDS, DRBD),
we follow these steps:

1) Define the goal and criteria hierarchy: First, we identify
the overarching goal, which is to select the significant
machine learning algorithm. Then, establish a hierarchy
with the goal at the top, followed by criteria (RE,
MC, TIS, ADP, RDDS, and DRBD then the alternatives
(Random Forest, Decision Trees, SVM, and KNN) at
the bottom. Figure 2 describes the hierarchical clusters
of ANP with criteria and alternatives.

2) Pairwise Comparison in AHP: Within the AHP frame-
work, we conduct pairwise comparisons between criteria
to determine their relative importance. The pairwise
comparisons are made between each criterion to estab-
lish their relative priority. For example, compare RE
against MC, TIS, ADP, RDDS, and DRBD. Moreover,
we use the AHP scale (e.g., 1 to 9) to assign relative
importance values to each pair of criteria based on their
perceived significance (the precedence of one feature
over another regarding applicability in TinML for SD-
IoT. During this process, we assign a priority to the ma-
chine learning algorithm working well with the reduced
feature set. Initially, we suppose that DT works well
with reduced features while applying the dimensionality
reduction. Then, we create alternatives ranking through
ANP.

3) Compute Criteria Weights in AHP: Calculate the nor-
malized weights for each criterion based on the pairwise
comparison judgments using AHP’s eigenvalue method
or other suitable methods.

4) Pairwise Comparison in ANP: In addition, with the
ANP framework [31], we conduct pairwise comparisons
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between alternatives for each criterion to determine
their performance relative to one another. Compare each
pair of alternatives (Random Forest vs. Decision Trees,
Random Forest vs. SVM, Decision Trees vs. SVM) for
each criterion (RE, MC, TIS, ADP, RDDS, DRBD).
Herein, we also use the scale (e.g., 1 to 9) to assign
relative performance values to each pair of alternatives
for each criterion. The process is done through creating
a matrix and assigning the values from 1 to 9 based upon
the alternative (machine learning algorithm) significance
regarding the criteria for selection.

5) Compute Performance Scores in ANP: Similarly, we
calculate the normalized performance scores for each
alternative for each criterion based on the pairwise com-
parison judgments using ANP’s supermatrix approach.
These scores represent the relative performance of each
alternative for each criterion.

6) Aggregation of criteria and alternatives: Then, we ag-
gregate the criteria weights from AHP and performance
scores from ANP to obtain an overall score for each
alternative. Moreover, we multiply the criteria weights
by the corresponding performance scores for each al-
ternative to obtain weighted performance scores. The
weighted performance scores across all criteria to com-
pute the overall score for each alternative.

7) Ranking of Alternatives: The final step is ranking the
alternatives based on their overall scores, with higher
scores indicating better suitability in TinyML applica-
tions. The alternative with the highest overall score is
considered the most suitable machine learning algorithm
for the given decision scenario (SD-IoT network DDoS
attacks detection with TinyML for low-power IoT sen-
sors). The step-by-step process is shown in algorithm 1.
Algorithm 1 considers the AHP to rank the criteria and
ANP for creating weights for alternatives.

Herein, we describe the comparison matrices and the incorpo-
ration of values in these matrices. Moreover, the normalization,
eigenvectors and computation of the consistency index and
ratio index using mathematical equations.

• Eq. (3) shows a sample comparison matrix in ANP.
The Eq. (4) identify the comparison matrix with some
example values, which reveals the relative significance
of one machine learning algorithm (ML) over another
concerning the criteria CT defined in Eq. (1). The a
shows the values which will be incorporated from Table
II. The quantitative value of the relative significance of
one ML over another ML is derived from a 9-level scale,
which is shown in Table II, where 1 shows an equal
importance level and 9 shows the extreme significance
of one ML algorithm compared to other algorithms.
Similarly, 3 shows that an ML is moderately more
significant than the other ML regarding criteria. These
values are given in Table II, and are incorporated in Eq.
(4) for all ML concerning each criteria CT . In addition,
as described these comparison matrices will be used by
AHP for criteria and by ANP for alternatives.

TABLE II: Scale of importance

Scale Explanation

1 The ML have an equal value of importance
2 One ML is equally leading to moderately good than other ML
3 An ML is moderately slight dominant from the other ML
4 The ML is significantly more crucial than other ML
5 It indicates that an ML is significantly dominant (more)
6 It reveals that a ML is remarkably important with another
7 Remarkably dominant (slightly greater) of a ML from other ML
8 One of a ML is remarkable to more significant with respect to other
9 An algorithm is excessively more dominant concerning other ML

M =



ML1 ML2 ML3 → MLn

ML1 1 a12 a13 → a1n
ML2

1
a12

1 a23 → a2n
ML3

1
a13

1
a23

1 → a3n
↓ ↓ ↓ ↓ 1 ↓

MLn
1

a1n

1
a2n

1
a3n

→ 1

 (3)

M =


ML1 ML2 ML3 ML4

ML1 1 1
3

1
3 3

ML2 3 1 1 6
ML3 9 1 1 3
ML4

1
9

1
6

1
3 1

 (4)

• The normalization process of the comparison matrix
given in (4) is performed according to Eq. (5) to obtain
local weights of (ML) and the criteria parameters (CT )
in the shape of eigenvectors as denoted in Eq. (6).
Equation. (6) for the eigenvectors shows the priorities
(weights) of one ML over other ML. Moreover, to prove
if the judgments are precise and accurate according to
the values provided in the comparison matrix, another
parameter i.e. consistency index (CI) is calculated. The
final value for CI ≤ 0.1 indicates the preciseness
of the pairwise values used in the judgments for one
ML compared to another ML. The prerequisite Yj is
computed for CI i.e. the consistency measure denoted
with Yj as well as λmax as denoted in Eq. (7) and Eq.
(8). The Eq. (8) identify the calculation process for λmax

as well as consistency measure procedure. In addition, the
(RI) value is inserted according to the criteria number in
Eq. (9). Further it is inserted in Eq. (10). The final value
for CR is shown in Eq. (10).

Mα =


a11∑n
i=1 ai1

· · · a1n∑n
i=1 ain

...
. . .

...
an1∑n
i=1 ai1

· · · ann∑n
i=1 ain

 (5)

Xi =
1

n

n∑
j=1

aij (6)

Yj =
Mj ∗X

xi
(7)

λmax =
1

n

n∑
j=1

Yj (8)
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Fig. 2: Analytical network process for ranking the alternative
machine learning algorithms

CI =
(λmax − n)

(n− 1)
(9)

CR =
RI

CI
(10)

• Next, the eigenvectors as denoted with (6) for each ML
are arranged in unweighted super-matrix form that gives
a local priority of one ML over another ML such as
SVM and KNN or SVM and random forest, etc.

• Finally, a limit super-matrix of converged values having
stable weights is calculated via taking the power of the
weighted super-matrix until the convergence of its values.
The convergent matrix shows the priority order of the
ML algorithms for application in TinyML.

The ranking produces weights applying HANP algorithm 1,
i.e., high weight for DT, then RF, SVM and KNN.

IV. RESULTS AND DISCUSSION

In this section, we discuss the comparison of the machine-
learning models evaluated through algorithm 1. We discuss
various evaluation metrics such as precision, accuracy, F1
score, and recall. Experiments were conducted with SDN Ryu
controller [32]. Moreover, we discuss the dataset used for
the evaluation of the performance metrics and the feature
reduction procedure through the statistical PCA method. In
addition, we also propose an algorithm for the reduction of
features while maintaining a high variance in the original
features from the dataset. Overall, we validate the efficacy
of the suggested method.

A. Dataset

We perform the experiments on the IOTID20 dataset [33]
because of the features from the IoT environment. Moreover, it
contains novel attack features for IoT networks. The IoTID20
dataset encompasses various types of IoT attacks, such as
DDoS, DoS, Mirai, and ARP Spoofing, alongside normal (be-
nign) traffic. It is gathered from smart home IoT ecosystems,
which commonly integrate diverse interconnected components,
including artificial intelligence speakers (e.g., SKTNGU), Wi-
Fi cameras (e.g., EZVIZ), laptops, smartphones, tablets, and
wireless access points (Wi-Fi). Moreover, in this dataset,

Algorithm 1 Hybrid Analytic Network Process (HANP) for
Machine Learning Algorithm Selection

Require: Define criteria, alternatives (in Eq.(1), (2)
Require: Criteria: RE, MC, TIS, ADP, RDDS, DRBD
Require: Alternatives: SVM, RF, DT, KNN
Ensure: Ranked list of machine learning algorithms
Ensure: Ranked list is generated for alternatives

1: Define the Goal and Criteria Hierarchy:
2: Create a hierarchical structure with the goal at the top,

followed by criteria, and then alternatives as shown in
Fig. 2.

3: Pairwise comparison in AHP:
4: Conduct pairwise comparisons between criteria to deter-

mine their relative importance using the Analytic Hierar-
chy Process (AHP).

5: Compute criteria weights in AHP:
6: - Calculate the normalized weights for each criterion

based on the pairwise comparison judgments obtained
from AHP.

7: Pairwise comparison in ANP:
8: - For each criterion, conduct pairwise comparisons be-

tween alternatives to determine their relative performance
using the Analytic Network Process (ANP) as shown in
(4).

9: Compute performance scores in ANP:
10: Calculate the normalized performance scores for each

alternative for each criterion based on the pairwise com-
parison judgments obtained from ANP.

11: Aggregation of criteria and alternatives:
12: Aggregate the criteria weights from AHP and performance

scores from ANP to obtain an overall score for each
alternative.

13: Multiply the criteria weights by the corresponding per-
formance scores for each alternative to obtain weighted
performance scores.

14: Sum the weighted performance scores across all criteria
to compute the overall score for each alternative.

15: Ranking of alternatives:
16: Generate ranking, the alternative with the highest overall

score is considered the most suitable.
17: return Ranked list (converged weights) of machine

learning algorithms based on their suitability for the given
criteria.

the cameras and artificial intelligence speakers serve as the
IoT victim equipment, while the other devices function as
the attacking equipment. We consider this dataset because it
contains attacks with respect to diverse IoT networks.

B. Features/Dimensional reduction

IoT environments generate large volumes of data from
various sources, leading to high-dimensional feature spaces.
With low-power IoT devices employing TinyML working on
high dimensional data is not feasible. Hence, we employ PCA
to reduce the dimensionality of the data by transforming it
into a lower-dimensional space while preserving the most
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important information. Moreover, in IoT environments, some
features may be highly correlated with each other, leading
to multicollinearity. PCA addresses multicollinearity by trans-
forming the original features into a set of orthogonal principal
components. The orthogonal transformation helps in removing
redundant information and improving the robustness of DDoS
attacks detection models against correlated features.

The authors illustrated in [34] the dimensionality reduction
from the dataset of the intrusion detection. To reduce the
features from the original dataset the formula is denoted in
Eq. (11). Herein, O shows the features present in an original
set from data, whereas Fm denote the features computed after
the application of dimensionality reduction leveraging PCA.
Herein, it is significant to mention that the PCA computes the
correlation among input dataset and denotes it using minimal
features possessing a high variance. The R shows the ratio
of Fm with O. The smaller value for R results in getting a
maximum feature reduction.

R =
Fm

O
(11)

However, via lowering (reducing) the value for O the variance
of the original dataset also reduces. Consequently, we must
choose such a value with respect to Fm which indicates and
identifies the maximum variance in the DDoS attacks dataset.

C. Finding an optimal value for Fm

Leveraging PCA for the reduction of features in conjunction
with the machine learning models for performance analysis,
we reduce the original large features from O to Fm. i.e.
Fm<O. Here O(i) shows the original number from features
and the O(i) approx indicates the projected number for fea-
tures. Hence, the squared projection error is shown in Equation
(12).

1

n

n∑
i=1

||O(i) − O(i)
approx||

2
(12)

In addition, the total variance of the data is indicated in (13)

1

n

n∑
i=1

||O(i)||
2

(13)

choose Fm by keeping the higher percentage for variance in
the given dataset. Algorithm 2 shows the process of reducing
the features while maintaining the higher ratio for variance in
the dataset.

D. Discussion of Results

The precision metric is used to evaluate the quality of the
machine learning models i.e. how many DDoS intrusions the
model is predicting have a small false positive rate. Table
III shows the precision for the machine learning algorithms
i.e. DT, RF, SVM, and KNN. Table III indicates the lower
false positives in DT model having 99.98%. Figure 3 shows
the precision results for the machine learning algorithms. The
dimensionality reduction results show a precision value of
99.50%. For the reduced features we have used algorithm
2 to keep the variance as high as possible in the original

Algorithm 2 PCA to calculate the value for reduced features
Fm

1: F shows features (having reduce dimension)
2: m denotes total number for features having a reduced

dimension
3: Fm is the ideal value for the principal (reduced feature

number) to compute.
4: for Fm = 1 : 1 : n;
5: If
6:

1
n

∑n
i=1 ||O(i) − O(i)

approx||
2

1
n

∑n
i=1 ||O(i)||2

≤ 0.01

7: Compute Ureduce, F(1), F(2), F(3),...,F (m) and
O(1)approx, O(2)approx, O(3)approx,. . . . . . . . . . . . . . . . . . . . . ..
O(n)approx.

8: Print Fm

9: End
10: End

features representation with reduced principal components.
The percentage results for precision with reduced features
are slightly lower than the original features. The SVM model
generated the lowest results for precision showing the SVM
incompatibility with large datasets. The PCA computed the 10
most dominant features using the PCA algorithm we proposed
for maintaining a high variance from the dataset. Hence,
instead of the original 80 features from the dataset, the reduced
features results are based upon the 10 most dominant features.
Although there is a negligible reduction in the results with
feature reduction as shown in Figure 3, however, for the low-
power IoT devices with TinyML algorithms this contributes to
and enhances the performance of the sensor devices with low
computing and power capabilities.

The results for recall comparing DT, SVM, RF, and KNN
are shown in Table IV. Table IV shows the DT performs
well generating 99.99% recall. Figure 4 indicates that the
algorithms i.e. DT exhibit the highest recall rate of 99.99%. It
also shows that DT has the highest ability to correctly identify
true positives (instances of DDoS attacks in SD-IoT) among all
positive instances in the given dataset. Similarly, DT offers the
advantage of interpretability, allowing for easy understanding
of the decision-making process. However, it is essential to
consider the trade-offs between recall and false positives,
especially in DDoS attacks where minimizing false positives
is crucial. RF, which has a slightly lower recall rate but offers
better generalization and robustness. Hence, RF ranked second
by HANP can also be an alternate suitable choice for DDoS
detection, considering its ability to handle diverse datasets and
mitigate overfitting. Moreover, the use of RF allows for the
aggregation of multiple decision trees, reducing the risk of
overfitting and improving overall performance, making it a
promising option for DDoS detection with low false positives
and diverse data.

TABLE III: Precision

Dimensional Reduction DT RF SVM KNN
Orignal features 99.98 99.94 99.6 99.8
Reduced features 99.5 99.4 99.2 99
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TABLE IV: Recall

Dimensional Reduction DT RF SVM KNN
Orignal features 99.99 99.96 99.7 99.8
Reduced features 99.6 99.5 99.3 99.2

TABLE V: Accuracy

Dimensional Reduction RF DT SVM KNN
Orignal features 99.88 99.82 99.44 99.68
Reduced features 99.48 99.77 99.2 99.6

TABLE VI: F1 score

Dimensional Reduction DT RF SVM KNN
Orignal features 99.97 99.5 99.5 99.6
Reduced features 99.5 99.3 99.2 98.49

The accuracy results are shown in Table V. Figure 5 show
that RF has the highest accuracy of 99.88%, followed by
DT algorithm with an accuracy of 99.82%. Moreover, SVM
showed an accuracy of 99.44%, and KNN with an accuracy
of 99.68%. The RF and DT performed well in DDoS attack
detection for SD-IoT, as indicated by their high accuracy
rates. The performance of RF and DT can be linked with
their ability to handle complex datasets and capture nonlinear
relationships between features effectively. The RF leverages
ensemble learning to build multiple decision trees, which
helps in mitigate the overfitting problem and improves gen-
eralization. In addition, the SVM shows a lower accuracy
compared to RF and DT. SVM can find optimal hyperplanes
for separating different classes in high-dimensional spaces.
Similarly, the KNN achieved a relatively high accuracy as
well. However, it is important to note that KNN’s performance
heavily depends on the choice of distance metric and the value
of clusters (number). Therefore, our results (from Figure 5)
suggest that ensemble methods like RF and DT are well-suited
for DDoS attack detection in SD-IoT environments due to their
robustness, scalability, and ability to handle diverse datasets of
the SD-IoT network.

Table VI shows the results for F1 score. Figure 6 shows
that DT achieved the highest F1 score of 99.97%, RF, and
KNN also demonstrated strong performance with F1 scores
of 99.50% and 99.60% respectively. SVM achieved a slightly
lower F1 score of 99.50%. The high F1 score of DT indicates
its ability to achieve both high precision and high recall
simultaneously. This suggests that DT is effective in accurately
identifying DDoS attacks while minimizing false positives and
false negatives. The RF and KNN also demonstrated strong
F1 scores, indicating their ability to balance precision and
recall effectively. Moreover, SVM achieved a slightly lower
F1 score compared to DT, RF, and KNN. Hence, the SVM
is known for its effectiveness in separating classes in high-
dimensional spaces, its performance in this scenario may have
been affected by the complexity of the dataset or the choice of
kernel function. Figure 6 shows that the DT is more suitable
for DDoS attack detection in SD-IoT environments, offering
high accuracy, precision, recall, and F1 score.

Fig. 3: Precision evaluation of the machine learning (ML)
algorithms

Fig. 4: Recall comparative analysis for the machine learning
schemes

Finally, Figure 7 shows the effect of reducing the features
i.e. the principal components (PCs), the average accuracy even
with the reduced features is shown as 99.52%. However, there
is a significant reduction in the number of features. Herein,
we show it just for a small number of features to show the
effect that accuracy is not much affected although the features
were reduced. This is due to the PCA algorithm we proposed
which maintains a high variance and chooses the PCs that are
significant in DDoS attack detection.

V. CONCLUSION

Detection of DDoS attacks is challenging with low power
IoT network. Hence TinyML helps to improve the compu-
tational capability of the resource-constrained IoT network.
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Fig. 5: Accuracy analysis and comparison

Fig. 6: F1 score evaluation of machine learning algorithms

However, with several machine learning schemes the imple-
mentation of the algorithms for TinyML in IoT network is
challenging. In this paper, we proposed a hybrid method
for ranking the machine learning algorithms regarding their
applicability in SD-IoT for TinyML. To achieve this first,
we have identified the criteria for TinyML algorithms in SD-
IoT network. Then, we performed a qualitative analysis using
HANP model to rank and weight the machine learning algo-
rithms regarding their implementation suitability in TinyML
for SD-IoT. Next, we have evaluated the machine learning
algorithms regarding the precision, recall, accuracy, and F1
score in SD-IoT. The evaluation of the machine learning
algorithms is performed with two kinds of features i.e. the
first one selected for DDoS attack detection in SD-IoT and the
second one with reduced features leveraging PCA. The results

Fig. 7: Accuracy percentage with reduced features (PCs)

show that the algorithm ranked and weighted high with HANP
generates improved results as compared to other algorithms,
which validates the efficacy and effectiveness of the suggested
methodology for DDoS attack detection leveraging tinyML
in SD-IoT. Finally, we show that the accuracy with reduced
PCs is also high due to the suggested PCA algorithm, which
maintains significant variance in the dataset while selecting
the PCs for DDoS attack detection.

The limitations of the work include testing it with more
parameters for SD-IoT. Our future works focus on other statis-
tical feature reduction methods enhancement for DDoS attack
detection in low-power SD-IoT in the production environment.
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