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1. Introduction

Let A stand for the collection of functions G of the type

(o9

GO =¢+) ai (1.1)

Jj=2

that are holomorphic in the open unit disk A := {£ € C:|£] < 1} of the complex plane, and let &
indicate the subclass of functions of A which are univalent in A. For functions G € A given by (1.1)

and H € A givenby H({) = ¢ + § b;{’, we define the convolution product (or Hadamard ) of G and
j=2
‘H by

G+ HN) = (H+ Q@) =+ Y abid, (€A (12)

J=2

Let G and ¥ be two holomorphic functions in A. The function G is said to be subordinated to 7 if
there are Schwarz function w(€), that is, holomorphic in A with w(0) = 0 and |[w(€)| < 1, £ € A, such
as G(&) = F (w(¢)) for all £ € A. This subordination notion is indicated by

G<F or G&<F©.

If the function ¥ is univalent in A, then we have the inclusion equivalence
GE&) <F ) e G0)=F(0) and GA) CF(N).

The subfamilies of & which are the starlike and the convex function in A defined by

‘ 146G)
S = A A 1.
{Qe Re 0 >0, &€ } (1.3)
and )
G::{QEA2R€%>O,§GA}, (1.4)
respectively. Equivalently, we have
‘ £6'(€) (G &)Y
6 = A [ 5 0: = A : 7 s
(¢) {Q € Geo - 90(5)} (p) {Q CATZE S 90(6)}
where I1é
+
@(§) = 1—_5 (1.5)

Janowski defined in [4] the extended function family &* [(A, B] of starlike functions called the
Janwoski class of functions as follows: A function G € A is in the family &* [A, B] if

&G (&) L+ A
Gge& 1+8B¢

-1<8B<AL]).
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The above subordination could be written as

¢ _1+Ap©
GE T+Bp®

where an analytical function with a real positive part in A is denoted by p(&).

-1<B<AL], (1.6)

The Janowski convex and Janowski starlike functions are obtained by reducing the above-described
classes to the requirement —1 < 8 < A < 1. For the special cases A := 1 — 2a and B := —1, where
0 < a < 1, we obtain the families, namely the family of starlike and convex functions of order «
(0 < @ < 1) previously defined by Robertson in [6], and considered respectively by

S (@) : = {Q €A : Refg(g) >a, £€ A} ,
Cla) : :{QEA:Re%((S),>a,§eA}.
Babalola defined the operator 7%, : A — A as
1760 = (pr %Pyl + G) (D), (1.7)
where ;
Pow({) = e oc-v+1>0, pr=pso,
and p;! is

(e *P7L) @) = 1—54 (,ueN={1,2,3,..]).

For G € A, then (1.7) is equivalent to

- _ Lo+)) | _ (c-v)! 7
G =¢+ )[Rl eia, o

j=2
Making use the binomial series

(1—5)’:2( j )(—D" 5 (e,

i=0

for G € A, El-Deeb [3] introduced the linear differential operator as follows:

Dre.GWD=6Q),

DGO =1-8) TG0 +[1-1-8)1LI56)

{+ ) [1+G= DO [REd - 7o ¢

=2

DTG Q)
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DG = D, (D5,'6Q)
= (1= DGO +[1-0-81¢(D]'G©)
=+ [1+G- DO [FEh - 725 ]a
j=2
= {+ Z v [;g:{; : ((J'-(I—O]—':llj)—!l)!:l aj Z, (1.8)
j=2
0>0; t,ooveN; neNy=NU{0}),
where
Wi =[1+(G-D@], (1.9)
and

t

¢'(6) = Z( i )(—1)"+1 5§ (teN).

i=1
From (1.8), we obtain that

’

)¢ (D77,60) =DG (W) - [1- @] DG Q). (1.10)

In this article using the El-Deeb operator defined in (1.8), we define a new sub-family of A:

(1.11)

1,0,u

DG’,m
RIS (A, B) = {g ca: IO 1+ ﬂf}

DGO T+ B¢

where -1 < A< B <1;6>0; t,o,v € Nand n,m € Ny, that will lead us to the study of Fekete-
Szegd problem. Further, coeflicient estimates, characteristic properties and partial sums results will be
established.

Specializing the values of ‘A and B one can obtain the particular cases

DG

() RS (1 —2a,~1) =2 W (@) = {g €A: Re(ﬂm—g@

1,0,V t.0.u

)>a, (OSa<1)};

and
i) R (1,—1) =2 F = {g € A Re (”ﬁf’*vg@) > 0}.

1.6v 16 D/5,60)

2. The Fekete-Szego functional bounds for the class R"."7 (A, B)

1,0,u

To solve the Fekete-Szegd type inequality for G € R} (A, B) we will use the next results (the
first part is due to Carathéodory [1]):

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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Lemma 1. [1,5]If P(€) = 1 + p1& + p2£* + -+ € P where P the class of holomorphic functions with
positive real part in A, with P(0) = 1, then

lpnl <2, n>1, (2.1)
and for the complex number u € C we have
|p2 = upi| < 2max {151 - 2ul}. (2.2)
If w is a real parameter, then
—4u+2, if p<0,
|p2 —upi| <4 2 if O<p<l, 2.3)
4u-2 if u=>1

1+
When u > 1 or u < 0, equality (2.3) holds true if and only if P(¢) = T—¢

or one of its rotations. When

or one of its rotations.

, , , 1+&
When 0 < u < 1, the equality (2.3) holds if and only if P,(¢) = 1—'52
u =0, equality (2.3) holds if and only if

Il+c\ 1+¢ N Il-c\-&é+1

2 J-¢£+1 2 1+&
or one of its rotations. When u = 1, the equality (2.3) holds true if P(€) is a reciprocal of one of the
Sfunctions such that the equality holds true in the case when pu = 0.

Theorem 1. If G € A defined as (1.1), belongs to R (A, B), then

1,0,Uu
(c-v+1)(A-B)
, 2.4
S e D — .
(c-v+D)o-v+2)(A-9B)

(o + (o + D)l — ¢

0<c<]

P3(é) = (

las| <

(ﬂ _ B) l//n+m _2n
max{l; ~B+ G . ?) : 2.5)
(vs -v3)
and for a complex number T, we have
_ Do — 2 —
lay — | < T DOV DAD) 0 (0, AL B)), (2.6)

(0 + D)o +2)|pr -yt
where
Qr,ov, A,B)=1-20(t,0,v, A B),

(A-B) (wy - u3")
(v - )
(A= B)(o +2)(o —v+1)(v7 - yl)
(0 + Do —v+2) (2 - ya)

1
G)(T,O-’U’*?LB) ==

1+ 8-
2

+

, (2.7)
and ', is given by (1.9).
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Proof. We will show that the relations (2.4)—(2.6) and (2.16) hold true for G € R (A, B). If G €

R (A, B), then w
DG () PR
D560  1+8B¢
which yields
D5,GQ@) 1+ AwE)
DIGE " Tewe “CWE) (1=8<A<D, 2.8)
Since we can write w (£) as
W= LThO _ pEEpE st
L+h(§) 2+ pi+pf+pséd+..0
where /1 (¢) € P and have the form 1 (€) = 1 + p\& + pr&? + p3é> + ..., 50
1 A-8B
G(W(f))=1+§(ﬂ—3)l?1§+( )[sz—(1+B)Pﬂ§2+..., 2.9)
and therefore
D56 @) (c+l) ,
T T L L
(c+1)oc+2) " 0
+((0’—v+ Do —vr2) W3 vaa
1 2
_(a(—i Z +)1)2 (v - w3") ag) IS (2.10)

If we compare the first coeflicients of (2.9) and (2.10), we get

_(c-v+DHA-8B)

P1
20+ 1) (wy - vi)
o = (0'—v+1)(0'—v+2)(?{—f3)><

2o + 1)(o +2) (v - y2)

[ P (A - B) (yr - w%")]U
P2 — 7

m n 2
(w3 - w3)
and by using (2.1) in (2.11) and (2.2) in (2.12), we get

(2.11)

1+8 _
A-B

(2.12)

(c—-v+1)(A-B)

(o + D]yy - vs
(0'—U+1)(0'—v+2)(\?l—8)><

(0 + (o +2)|pr -yt

(2.13)

la,| <

las| <

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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max{l; + (ﬂ_B)( ’2”’”2— %”) } (2.14)
(v —ws)
For a complex nubmer 7, and from (2.11) together with (2.12), we have
(oc-v+D)o-v+2)(A-B)
2o+ 1)(o +2) (v - y2)

where O (7, o, v, A, B) is denoted by (2.7). Now, we apply Lemma 1 to (2.15) and obtain the required
results. O

-8B

P2 = O© (10,0, A, B) pi

, (2.15)

|a3 - Ta§| =

Theorem 2. If the function G € A defined as (1.1) belongs to R;"” (A, B), then for any real parameter
T we obtain

1—2®(T,O-,U,ﬂ,8), l.f T<$01’

~ - , if ¢ <7<, (2.16)
20+ (o +2) |y — ¢ 20(r,0, v, A,B) -1, if 7>,

(c—-v+1D)(oc—-v+2)(A-B)

|a3 - Ta§| <

where O (1,0, v, A, B) is given by (2.7),

(oD (o—v+2) (g1 ) y (_1 _ 84 (71—8)(%*"’—%”))

P1 = AoByorDe—or (P —h) ()’
and 1 (vr-v2)’ A-B)(pm—y
$2= (ﬂ(—;(;{j;)?:—i(flz)(_jélﬁg) X (1 - B+ _(é’g;);% ))
Proof. The proof can be produced directly by making use of Lemma 1 in (2.15), so we choose to
omit it. O

3. The coefficient inequalities for G' € R™™7 (D, E)

1,0,U

The “Koebe one quarter theorem” [2] ensures that the image of A under each univalent function

G € A consists a disk of radius 7 Thus each univalent function G has an inverse G! satisfying

1
G (GEN=¢ €N and G(GW)=w, (|w| <10(Q), 10(G) 2 Z)'

A function G € A is called bi-univalent in A if both G and G~! are univalent in A. We mention that the
collection of bi-univalent functions defined in the unit disk A is not empty. For example, the functions
& 1 1+
, ——, —log(l - d=1
& g —logl—Hand S log 1
function is not a member.

are members of bi-univalent function family, however the Koebe

Theorem 3. If G € R (A, B) and the inverse function of G is G '(w) = w + Y, d;w/, then
. =

(c-v+1)(A-B)
(o + 1)y -y

|| (3.1

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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(c-v+D)o-v+2)(A-9B)
(o + (o +2) |y -yt

|d5| max {1; |20 (2,0, v, A, B) - 11},

and for any u € C, we have
(c—v+ 1)(0'—11+2)(;71—B)><
(0 + (o +2) |y -yt

A-B)o+2)(o-v+ 1) (W -y
20 (2,0, v, A, B) + pSEDCDEEI) 1'}
(o+1)(o—v+2) (v —yt)

|d3 —/ld§| <

max{l;

where © (2, o, v, A, B) given by (2.7).
Proof. Since
G'w) =w+ Z d,w"
n=2
is the inverse of the function G, it can be seen that
£=6"GE) =6(67"®), el < ro(@).
From (1.1) and (3.4), we obtain that

£=G"' [f £y anf"), 61 < (@).

n=2
Therefore from (3.4) and (3.5) we get
E+ (ay + dy)E + (a3 + 2aydy + d3)E + -~ = £, €] < 10(@).
Equating the corresponding coeflicients of the relation (3.6), we conclude that

d) = —a,
d3 = 261% — das.
First, from the relations (2.11) and (3.7) we have
(c-v+1)(A-B)
- pPi.
20+ 1) (wy - y3)

dy =

To find |d5], from (3.8) we have
\ds| = las — 243).

Hence, by using (2.15) for real T = 2 we deduce that
\ds] = |as — 243
_(c-—v+Do-v+2)(A-8B)
20 + D(o +2) [y -yt

P2 - ©2,0,0, A, B) pi|

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
(3.8)

(3.9)
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_(c-—v+ Do -v+2)(A-B)
(o + (o +2) |y -y
where O (2, o, v, A, B) given by (2.7). For any complex number u, a simple computation gives us that

(c-v+D)(oc-v+2)(A-B)

max {1;]20 2,0, v, A, B)| — 1}, (3.10)

dy — ud? = (p2-©Q.00v. A.B) p})
20 + 1)(o +2) (v — )
[(c-v+DA-B ,
_ ~ D}
200+ 1) (w3 - v3)|
_(oc-v+ 1)(0'—11+2)(3I—B)><
2o + 1)(o +2) (v - y2)
P (A= B)o +2)(0 —v+1) (v —yi)
P25 202,0,vu, A, B) + u 5 : (3.11)
(o + 1o —v+2) (s - y3)
By taking modulus on both sides of (3.11) and applying Lemma 1 and (2.1), we find that
|d3 —,ud§| < (oc—-v+ 1)(0'—v+2)(5"l—f3)><
(0 + Do +2) |y -y
{ (A= B)o +2)(0 - v+ 1) (w7 - ) I}
max+ 1520 (2,0, v, A, B) + u > - 1|7,
(o + (o —v+2)(wy - i)
and this completes our proof. m|

4. Characterization properties

By applying the techniques introduced by Silverman in [7], we will introduce some characteristic
properties of the functions G € R};"7 (A, B) such as partial sums results, necessary and sufficient
conditions, radii of close-to-convexity, distortion bounds, radii of starlikeness and convexity.

Theorem 4. If G € A and be defined as (1.1) belongs to Rs"" (A, B), then

D=8y +A- 1) (G2 o) < (A-8B), @.1)
j=2
where Y’ given by (1.9).

Proof. Letting G € R""7 (A, B), by (1.11) we deduce that

1,0,U
D5,GQ) 1+ Aw(©)
DGR 1+Bw (@)’

where w (¢) is a Schwarz function, or equivalently

Db O - D56 @ |
ADT! G () - BDG ()

£eA, (4.2)

I, £ e A

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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Thus, the above relation leads us to

D756 - D75,G ()
AD;S G () - BTG ()

ng (w7 - ) (i) as’

(A-B)é+ g (A - By (25 ) a8/

i (v - ) (%) las| 7!

Jj=2

(A-B)- ]Z (ﬂwn B‘p’}l)(((rgln)laf'lﬂ_l

IA

<1,

and taking || = r — 1~ simple computation yields (4.1).

Example 1. For

_ (ﬂ_B) o-vutl\p ¢&j
G© —§+; T B s @D o e E€A.

such that ), ; = 1, we get
=2

> (1= B + (A= 10u) 5t a

s 1M

> (=B + (A - D)) GZp)

.
|
[N}

(A-B)
(=B + A= Dy

(ZEDE
= (A-B) ) ;=(A-B).
=2

Then G € R;7 (A, B), and we note that the inequality (4.1) is sharp.

Corollary 1. Let G € R."7 (A, B) given by (1.1). Then

1,0,U

. (ﬂ_B) 0' v+l
< G G E A

where Y is defined by (1.9). The approximation is sharp for the function

— & (‘ﬂ_B) o-v+l\¢&j 2
GO =~ g =D £ T2

4.3)

4.4)

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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Theorem 5. If G € R (A, B), then

1,0,U
r= (1—3);?;3—1)%((7;3?)’”2 <Gl <r+ (1—8);?;(3;(—1)%(0;31)”2' (4.5)
For the function defined by
~ (A-9B) —u+ly £2
=& - = , 1€l = 1, 4.6
GO =t~ g g T =< (4.6)

the approximation is sharp.

Proof. For €] = r < 1 we have

[

(o)
<l+ ) all =r+ > .
=2

J=2

G (&) =

§+iajgf

Jj=2

Moreover, since for [£| = r < 1 we get ri < r? for all J = 2, the above relation implies that

(o)

G@N<r+r ) laj. 4.7)
=
Similarly, we get
G@N=r-r) laj. 4.8)
=2

From the relation (4.1) we have

D=8y + A= 1W) GED o] < (A-8B),

=

but

(1= B4 + (A- D) G2 Y Ja < ) (A =B + (A- D)) G2 [a)| < (A-B).
j=2 j=2

Therefore,
0 o-v+l
ST A-B)
Dlaj< ( ‘”‘m) -, (4.9)
=2 (1 - B)% + (~ﬂ - 1)%
and by using (4.9) in (4.7) and (4.8) we get the desired result. O

The next distortion theorem for the family R/';""” (A, B) could be similarly obtained:

Theorem 6. If G € RZ’(;’”I;‘T (A, B), then

_ 2(o—v+1)(A-B) < / < 2(c—v+1)(A-B)
(U+1)((1—B)ng’+(ﬂ—l)¢’;)r <G @l<1+ (T+D(1-Byr+A-1w2) "

The equality holds if the function is § given by (4.6).

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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Proof. Since the proof is quite analogous with those of Theorem 35, so it will be omitted.

O

The next result deals with the fact that a convex combination of functions of the class R/ (A, B)

belongs to the same class, as follows:

Theorem 7. Let G; € R"."7 (A, B) given by

1,0,

[

GO =6+ aye i=1,23 . .m

J=2
Then H € RS (A, B), where

m

HE©= Y e6:®). and Y= 1.
i=1

i=1

Proof. By Theorem 4 we have

D=8+ (A- 1) GED o)) < (A-B),
j=2

and,

Therefore

> (=B + (A - 1)) )

E Cid,j

i=1

IA

[Z (=B + (A1) G2 |as |
j=2 -

Ms

A-Ba=A-5 e - (A-8).

i=1

1l
—_

thus H (£) € R (A, B).

1,0,u

Ci

(4.10)

4.11)

Regarding the arithmetic means of the functions of the family R7';"” (A, B) the next result holds:

Theorem 8. If G, € R""7 (A, B) are given by (4.10), then

1,0,U

1 - k m,n,o
GE) =+ ;{Z a,-,jg] e R (A, B).

Where G is the arithmetic mean of G;, i = 1,2,3,... k.

(4.12)

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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Proof. From the definition relation (4.12) we get

k k 00 00 k
GO =1 S = %Z[&Zai,ﬁf] :§+Z[ Za,-,j)gf
i=1 i=1 =

i=1

x| =

and to prove that G (£) € R (A, B), according to the Theorem 4 it is sufficient to prove that

1,0,u

0 1 k
Z (1-BW" + (A- 1)1,//") ol (E Z |ai,j|) <(A-1B).
j=2 i=1

A simple computation shows that

o0 k
Do (=B + A=) (;’U+1)[1 > |ai,j|]

j=2 i=1
L& (&
= [Z (1= By} + (A= 1) GZop) |a,-,,|]
i=1 \j=2
(I J
< 2 A-B=(A-8)
i=1
Therefore G € R/ (A, B). O

Theorem 9. If G € R (A, B), then G is a starlike functions of order ¥ (0 < ¢ < 1), |€] < 1],

1,0,

ri = inf
J22

(1= (A =B+ (A-y") (o + D)
(= (o —v+1)(A-B) '

The equality holds for G given in (4.4).

Proof. Let G € R""7 (A, B). We see that G is a starlike functions of order 9, if

1,0,U
£G (f)_1‘<1_ﬁ.
G
By simple calculation, we deduce
00 . ’ﬂ '_
Z({_—ﬁ)|a,-| e < 1. 4.13)
=2

Since G € R};,7 (A, B), from (4.1) we get

= (1= B + (A=) (o + 1)
Z (c—v+1)(A-B)

J=2

|aj| < 1. (4.14)

AIMS Mathematics Volume 9, Issue 10, 29370-29385.
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The relation (4.13) will holds true if

(&) s 19 )
(1=l

J=2
© ((1=BW" + (A= DY) (o + 1)
) JZ; covrna-g

which implies that

(A= (=B + (A=) (e + 1)
et <
(G-NHoc-v+1)(A-B)

or, equivalently

€1 <

G-NHNo-v+1)(A-1B)
which yields the starlikeness of the family.

1
—1

(1= (A =B +(A- ") (o + 1)]’

O

Theorem 10. If G € R?’gﬁf (A, B), then G is a close-to-convex function of order # (0 < 9 < 1), |¢| < 13,

ry = inf
J22

(1= ) (o + D)((1 =B} + (A~ 1y)
jlo-v+1)(A-B)

Proof. LetG € RZ’(;?;" (A, B). If G is close-to-convex function of order ¢, then we find that

6" ) -1 <1-7,

that is N
J -1
Z el < 1.
j=2
Since G € R}}” (A, B), by (4.1) we have

= (o + 1) ((1 =By + (A= 1y")
2, (c-v+1)(A-B)

Jj=2

|Clj|< 1.

The relation (4.13) will holds true if

> -
a| &V

j; 1 _ﬁ| J|

= (o + (=B + (A - D)

S 4T G-urhA-B) o

which implies that
(1=9) (@ + D((1 =By + (A~ 1y}

i1
g1 < o-v+r)(A-B)

(4.15)

(4.16)
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or, equivalently

1
J-1

(=9 + 1)((1 =By + (A~ 1)
jo-v+ 1) (A-9B) ’

€1 <
which yields the desired result. O

5. Conclusions

In this paper, we introduced a new class R;’;ﬁ)’" (A, B) of holomorphic functions defined in the open
unit disk, which is connected to the combination of the Binomial series and the Babalola operator. We
employed differential subordination involving Janowski-type functions to investigate these properties.
Utilizing well-established results, such as Carathéodory’s inequality for functions with real positive
parts, as well as the Keogh-Merkes and Ma-Minda inequalities, we established upper bounds for the
first two initial coefficients of the Taylor-Maclaurin power series expansion. Additionally, we derived
an upper bound for the Fekete-Szegd functional for functions within this family.

We also extended our findings to include similar results for the first two coefficients and for the
Fekete-Szeg6 inequality for functions G when G € R%"7 (A, B). Furthermore, we determined
coefficient estimates, distortion bounds, radius problems, and the radius of starlikeness and close-
to-convexity for these newly defined functions.
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