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Abstract

We present a new metaheuristic optimization technique, the Dynamic Leader Sibha Algorithm (DLSA), based
on the structured dynamics of the ‘Sibha’ (an Islamic tool). Using a hierarchical leader-follower framework,
DLSA dynamically balances exploration and exploitation to resolve the difficulties of high dimensional and
multimodal optimization. DLSA is applied to three well-known engineering problems, namely the Speed Re-
ducer, Welded Beam, and Pressure Vesseldo, to tackle the objectives of minimizing the weight of these struc-
tures and achieving the desired results with regularity. Key results indicate that DLSA is faster in convergence,
gives better quality solutions and is more robust among diverse problem domains. DLSA is an effective and
reliable optimization tool that can readily be applied to solve real-world and complex engineering problems.

Keywords: Dynamic Leader Sibha Algorithm; Metaheuristic Optimization; Engineering Design Problems;
Exploration and Exploitation; High-Dimensional Search Spaces

1 Introduction

They abound in operations research, economics, finance, and artificial intelligence. Many problems con-
tain high dimensionality, local optimum dominance, discontinuities and nonlinearity in the solution space.
Linear programming, gradient-based techniques, dynamic programming, and many other traditional optimiza-
tion techniques are often sufficient if the task is simple. Still, they severely underperform on complex tasks
with multimodal, non-differentiable, or nonlinear optimal functions. Metaheuristic optimization methods have
been developed and successfully applied as robust adaptive means for global optimization based on complex,
possibly noise-corrupted and/or ill-defined problem domains as alternatives to the classical gradient-based
approaches [1, 2].
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The stochastic and heuristic principles of metaheuristic algorithms seem to aid in achieving a balance between
exploration and exploitation, which are essential elements in any or most optimizations. Exploration prevents
areas from being explored just once, allowing us to probe diverse regions of the solution space. At the same
time, exploitation forces us to refine promising areas to converge to global optima. Achieving this optimal
balance between these two goals is still a challenge. Over-exploration results in slow convergence, while ex-
cessive exploitation causes entrapment in local optima [3,4]. However, the proposed metaheuristic algorithms
suffer from scalability problems, premature convergence, and lack of consistent performance across various
problem domains.

In the Dynamic Leader Sibha Algorithm (DLSA), we propose a new approach based on the structured counting
mechanism of the ”Sibha”, an instrument used in Islamic religious activities. A hierarchical leader-follower
framework is incorporated into the algorithm, characterized by solution agents moving dynamically based
on fitness evaluation and adaptive movements. Existing algorithms are shown to have limitations that can be
mitigated by structuring agent interactions and diversifying search patterns systematically. Unlike conventional
swarm-based algorithms, which are highly reliant upon interpolation between neighboring individuals using
randomness, DLSA uses a deterministic yet flexible leader-driven algorithm to achieve convergence reliability
and robustness even in high-dimensional search spaces [5, 6].

DLSA’s dynamic leadership mechanism is structured to approach the solution space. The leader agent explores
high-potential regions, and follower agents dynamically update their trajectories according to the leader’s loca-
tion (relative position) and fitness. This hierarchical coordination minimizes redundant searches and efficiently
explores complex multi-dimensional landscapes. Moreover, DLSA includes adaptive components that enable
the search process to back away from low-quality regions to escape the detrimental traps of local optima and
prevent the stagnation problem that occurs in many metaheuristics [7, 8].

In DLSA’s structured leader-follower model, concerning the class of algorithms that employ stochastic ran-
domization, global exploration and local exploitation are better balanced. Although these are randomized
during initialization and introduce variability, the addition of Sibha-inspired dynamic adjustment offers agents
a deterministic path, providing real-time evaluations of solution quality. This lowers our chance of prema-
ture convergence before reaching the optimal solution and increases the algorithm’s capacity to solve highly
dimensioned constraint problems [9, 10].

In this paper, DLSA is applied to solve three well-known engineering design optimization problems: the design
problems of the Speed Reducer, Welded Beam, and Pressure Vessel. These problems form a rich testbed for
evaluating the performance of DLSA as a diverse set of complex optimization problems with multimodal and
high-dimensional constraints. As we address these problems, we hope to prove the versatility, efficiency, and,
ultimately, the algorithm’s effectiveness in obtaining high-quality solutions.

In this paper, we provide a complete description of the Dynamic Leader Sibha Algorithm and place it within
the framework of all known metaheuristic optimization methods. We benchmark DLSA against well-known
algorithms, including GA, PSO, and ACO, to measure its convergence speed, solution quality, and robustness
in altering constraints. We highlight the advantages of DLSA and its potential to advance the adaptation of the
next generation of adaptive, high-precision optimization algorithms [11–13], compared with other approaches.

This study finds that DLSA tackles the shortcomings of previously introduced algorithms and produces far
better solutions than previously available algorithms, with superior operational reliability. The construction
of DLSA provides a base for future works focusing on leader-driven structured methods for optimization to
balance exploration and exploitation in complex solution spaces dynamically.

The main contributions of this study are as follows:

• Novel Algorithm Development: In this paper, we introduce the Dynamic Leader Sibha Algorithm
(DLSA), based on Sibha’s structured dynamics, which uses a similar hierarchical leader-follower mech-
anism to balance the exploration and exploitation aspects dynamically.

• Engineering Applications: DLSA is presented as the fully developed learning algorithm for solving
three complex engineering design problems (Speed Reducer, Welded Beam, and Pressure Vessel) to
illustrate its robustness and versatility.
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• Comparative Analysis: We also conduct a detailed benchmarking of DLSA against state-of-the-art
algorithms — GA, PSO, GWO, and WOA — proving its superiority in solution quality, convergence
speed, and reliability.

• Generalized Optimization Framework: DLSA contains adaptable and dynamic mechanisms that con-
stitute a scalable framework to solve many high-dimensional and non-linear optimization problems.

• Future Potential: The results enable the extension of DLSA to multi-objective optimization and hy-
bridization with other methods, thus enabling the use of DLSA for various problems, including energy
systems, supply chain optimization, and machine learning.

The structure of this paper is as follows. In Section 2, existing metaheuristic optimization algorithms are
thoroughly reviewed regarding their strengths, limitations, and recent developments. Section 3 introduces the
Dynamic Leader Sibha Algorithm (DLSA) with motivations, mathematical foundations, and a new hierarchi-
cal leader-follower mechanism. Additionally, this section details the application of DLSA to three benchmark
engineering problems: Welded Beam, Pressure Vessel, and Speed Reducer. Finally, in Section 4, experimental
results show that DLSA performs better than other optimization algorithms and that DLSA is adaptive, effi-
cient, and converges in considerable cases. Section 5 concludes the study by summing up key contributions,
exploring potential future applications, and suggesting future research directions.

2 Literature Review

Optimization is central to almost all disciplines with complex and high-dimensional challenges in engineer-
ing, data science, machine learning, and beyond. However, the familiar collapse of traditional methods in
high-dimensional and multimodal cases has led to the rise of metaheuristic methods as adaptive and robust
alternatives. Part II reviews recent advances in optimization via metaheuristic techniques, describing their
motivation, results, and contributions towards addressing these challenges.

Multimodal Optimization (MO) techniques were investigated to face high-dimensional problems [14]. Inspired
by the required methods to find multiple solutions within a single run, benchmark problems were adapted for
Evolutionary Algorithm (EA)-based MO methods, including Dynamic Fitness Sharing (DFS) and local Best
PSO. Results show that MO was able to find multiple high-quality solutions. The main contribution lies in
setting MO as a general optimization landscape framework. Potential applications of the method involve the
simultaneous optimization of conflicting objectives.

Motivated by the need to address discrete optimization challenges efficiently, the Binary Arithmetic Optimiza-
tion Algorithm (BAOA) was introduced in [15]. The problem was mapped using a sigmoid transfer function to
a ”binary space,” using the sigmoid to transform continuous solutions to the binary optimization problem. The
results show better performance on 18 benchmark datasets compared with various algorithms (such as BDF
and BPSO) regarding convergence speed and accuracy. It shows how BAOA’s contribution lies in furnishing
arithmetic operators for binary optimization in a novel manner, and it also demonstrates how this will help
make such problems scalable in real-world applications.

Modified Multi-Swarm Particle Swarm Optimization (MSPSO) is introduced by [16] to increase swarm di-
versity and performance in high-dimensional space. The motivation was the limitations of standard PSO
algorithms in terms of convergence and maintaining diversity. It was found that optimization of the SVM
kernel parameters using MSPSO outperformed traditional PSO and GA. It presents an efficient multi-swarm
framework for performing parameter tuning for machine learning tasks with competitive survival strategies.

Motivated by the fact that the existing binary optimizers are limited in classification tasks, the Whale Opti-
mization Algorithm (WOA), as presented in [17], was adapted to binary spaces. Binary versions of WOA
using Tournament and Roulette Wheel selection mechanisms improved the performance of benchmark prob-
lems. Classification accuracy and solution quality were superior to PSO, GA, and ALO. The study’s main
contribution is to extend the applicability of WOA to binary domains and optimization in data-driven settings.
This was the motivation for Binary Brain Storm Optimization (BSO) as examined in [18]. Transfer functions
were applied to transform real-valued solutions to binary, and then BSO was tested on complex optimization
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problems. BSO results showed competitive performance against state-of-the-art algorithms and reliable perfor-
mance when several assumptions cannot be guaranteed. It is primarily robustly adaptable in binary domains,
including for addressing discrete optimization problems.

Particle Swarm Optimization (PSO) was enhanced using a bare-bones framework and unique local search
operators to overcome premature convergence [19]. The algorithm augmented exploitation with additional
and delete operators to foster convergence in higher-dimensional spaces. Their results validated its superior
performance compared to eleven state-of-the-art algorithms. Specifically, its contribution is the refinement of
PSO for precision applications, which has implications for complex engineering problems that demand high
accuracy.

In [20], Unsupervised Optimization based on Ant Colony Optimization (UACO) was proposed for unsuper-
vised optimization. Given the limitations of supervised methods in feature selection, we (via UACO) used
feature similarity without given labels. Results showed its efficiency and low computational complexity, and
it was found to be more efficient than other methods when working on high-dimensional tasks. The study’s
contribution is to provide an innovative, unsupervised framework that can be applied in data mining or any
machine learning application.

In [21], dynamic optimization was explored with Moth-Flame Optimization (MFO) based on moth motion
patterns. This was motivated by the necessity for accurate and reliable optimization techniques. Results
showed that MFO performs far better than the standard algorithms such as PSO and GA. In particular, it
contributes a wrapper-based approach to solving high-dimensional optimization problems and discusses the
implications for computationally intensive problems.

Diverse optimization challenges inspired the Mountain Gazelle Optimizer (MGO) introduced in [22], based
on gazelle social structures. For the sake of scalability of the algorithms, MGO outperformed 9 other tested
algorithms on 52 benchmark functions. Its contribution lies in harnessing natural hierarchies for optimization,
which holds promise for engineering and data-driven applications demanding flexibility and precision.

A comprehensive review of the Multi-Verse Optimizer (MVO) [23] was provided since it is versatile in the
different optimization domains. Variations like binary, chaotic, and multi-objective MVO were analyzed,
and their flexibility and effectiveness were exposed. Results demonstrate MVO’s applicability to problems
of interest beyond network optimization and parameter tuning. Its primary contribution is its adaptability to
complex optimization tasks, drawing implications for advancing metaheuristic research.

This review focuses on various metaheuristic optimization advancements featuring algorithms that explore and
exploit to overcome the classical challenges. The review exhibits how these techniques address the problems
of high dimensions and multimodality within the MRCI framework, thereby serving as a prerequisite to the
continued evolution of this field.

3 Proposed Dynamic Leader Sibha Algorithm (DLSA)

3.1 Inspiration

The inspiration behind the Dynamic Leader Sibha Algorithm (DLSA) comes from the structured counting
mechanism of the ”Sibha,” traditionally used in Islamic practices for counting. Embracing this notion, a
hierarchical leader-follower framework is translated, which emulates structured organization and systematic
movement within the search space.

In this way, the dynamic leadership mechanism inspired by the Sibha ensures that search agents work under the
control of a dynamically chosen leader, which enhances collaboration and efficiency in tackling complex opti-
mization landscapes. DLSA structures the interaction between agents to prevent random wandering, steering
the search toward fruitful regions while sustaining diversity.

This hierarchical leader-follower framework addresses two critical challenges in optimization: stagnation and
premature convergence. By adopting the dynamic leadership strategy, the algorithm can react to the problem
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landscape, pivoting from low-quality regions while refining high-potential regions. The structured interaction
between agents accommodates a systematic solution space exploration, eliminating redundancy and increasing
convergence reliability.

With this new approach, DLSA balances exploration and exploitation and provides a robust, adaptive way to
handle high-dimensional, multimodal optimization problems.

3.2 Mathematical Foundation of DLSA

3.2.1 Exploration

The exploration phase in the Dynamic Leader Sibha Algorithm (DLSA) focuses on global search, ensuring
that diverse regions of the solution space are investigated. The position of the current search agent, W⃗ (t+ 1),
is updated using the following equation:

W⃗ (t+ 1) = W⃗ (t) +K
(
L⃗(t)− W⃗ (t)

)
Here, L⃗(t) represents the leader (best search agent) at iteration t, and K is a parameter controlling the step size
based on the difference between the leader and the current agent. This facilitates guided exploration toward
promising regions of the solution space.

The leader’s position, L⃗(s+ 1), is further refined as:

L⃗(s+ 1) = L⃗(s) + Z
(
W⃗ (t+ 1)− P⃗D

)
+ g

(
L⃗(s) + W⃗ (t+ 1)

K

)

Where P⃗D represents the previous search agent. The parameter Z exponentially increases from 1 to 2, dynam-
ically controlling the influence of the difference between the current position and P⃗D. The term g adapts the
search direction, calculated as:

g =

(
k × 2 sin(θ)

Z
+

k + Z

K

)
× iteration

The summation-based calculation of K ensures adaptive control over the search dynamics:

K =

n=8∑
n=0

(
sinΘ

Z

)
, Θ ∈ (0, 4π)

These equations enable a controlled and systematic search space exploration, minimizing the risk of stagnation
and enhancing convergence reliability.

3.2.2 Exploitation

The exploitation phase refines the search around promising areas, focusing on local optimization. The leader’s
position, L(s+ 1), is updated using:

L(s+ 1) =
1

K

Z∑
n=0

(
W⃗ (t+ 1) + L⃗(s)

g

)n

×
(
L⃗(s)− P⃗p

)
Here, P⃗p represents the position of a peer agent, and the summation ensures that the search prioritizes regions
with high potential while retaining diversity. This phase narrows the focus to regions with promising fitness
values, improving the precision of the solution.
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3.2.3 Elimination (Elas)

The elimination phase dynamically adjusts agents’ positions to refine the solution space further. The leader’s
position is updated as follows:

L(s+ 1) = K

(
L⃗(s) + W⃗ (t)

Z × g ×K

)
+ g

(
L⃗(s) + P⃗D

Z × g ×K

)
+ Z

(
W⃗ (t) + P⃗D

Z × g ×K

)

In this phase, we utilize hierarchical leader-follower dynamics to prune suboptimal solutions, guiding further
exploration in proximity to promising regions.

3.2.4 Additional Notations

• L⃗(s+ 1): New leader position at the s+ 1-th iteration.

• W⃗ (t+ 1): New position of the current search agent.

• g: The method for adjusting parameters with ensuing iteration and exploration factors.

• K: Control parameter for search dynamics defined in terms of summation.

• Z: Growth parameter in the search direction.

These components allow DLSA to achieve a good exploration-exploitation tradeoff, robustly optimizing vari-
ous problems.

3.3 Engineering Problems and Their Equations

To evaluate the performance of the Dynamic Leader Sibha Algorithm (DLSA), three complex engineering
design problems are considered: the Speed Reducer, Welded Beam, and Pressure Vessel problems. Due to their
nonlinear constraints, multidimensional search spaces, and conflicting objectives, these problems constitute
benchmarks in optimization research. The problems are distinct and challenge the algorithm to solve them
optimally, subject to tight constraints. The details of each problem are provided below in terms of the objective
function, constraints, and variable bounds.

3.3.1 Speed Reducer Problem

In the Speed Reducer problem, we study a mechanical speed reducer whose cost is to be minimized, subject
to bending stress, contact stress, and geometric dimension constraints. The objective function is given as:

f(x⃗) = 0.7854x1x
2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)
−1.508x1(x

2
6+x2

7)+7.4777(x3
6+x3

7)+0.7854(x4x
2
6+x5x

2
7)

Subject to the following constraints:
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g1(x⃗) =
27

x1x2
2x3

− 1 ≤ 0, g2(x⃗) =
397.5

x1x2
2x

2
3

− 1 ≤ 0,

g3(x⃗) =
1.93x3

4

x2x3x4
6

− 1 ≤ 0, g4(x⃗) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0,

g5(x⃗) =
1

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9× 106 − 1 ≤ 0,

g6(x⃗) =
1

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5× 106 − 1 ≤ 0,

g7(x⃗) =
x2x3

40
− 1 ≤ 0, g8(x⃗) =

5x2

x1
− 1 ≤ 0,

g9(x⃗) =
x1

12x2
− 1 ≤ 0, g10(x⃗) =

1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x⃗) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

Variable bounds are defined as follows:

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

The Speed Reducer Design Problem is concerned with optimizing the design of a mechanical speed reducer,
given constraints on stress, deflection, and geometric parameters, to minimize the manufacturing cost. Figure 1
shows a schematic of the speed reducer with essential features like the gear tooth model (X2), the number of
teeth (X3), and the shaft and bearing dimensions (X1, X4, X5, X6, X7). It illustrates the trade-off between
cost minimization and mechanical performance, providing practical engineering solutions.

Figure 1: Schematic of the Speed Reducer Design Problem.
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3.3.2 Welded Beam Problem

The objective is to minimize the fabrication cost of a beam subject to constraints on shear stress, bending
stress, deflection, and weld size. The objective function is defined as:

f(w,L, d, h) = 1.10471w2L+ 0.04811dh(14.0 + L)

Subject to the following constraints:

g1 = w − h ≤ 0, g2 = δ − 0.25 ≤ 0, g3 = τ − 13, 600 ≤ 0,

g4 = σ − 30, 000 ≤ 0, g5 = 0.125− w ≤ 0, g6 = 6000− P ≤ 0,

g7 = 0.10471w2 + 0.04811hd(14 + L)− 0.5 ≤ 0.

Where:

σ =
504, 000

hd2
, Q = 6000

(
14 +

L

2

)
, D =

1

2

√
L2 + (w + d)2,

J =
√
2wL

(
L2

6
+

(w + d)2

2

)
, δ =

65856

30000hD3
, τ =

√
α2 +

(
αβL

D

)2

+ β2,

α =
6000√
2wL

, β =
QD

J
, P = 0.61432× 106

dh3

6

(
1−

d
√

30/48

28

)
.

Variable bounds are defined as:

0.1 ≤ w, h ≤ 2.0, 0.1 ≤ L, d ≤ 10.

The Welded Beam Design Problem consists of optimizing the design of a welded beam structure to minimize
the cost of fabrication, subject to constraints on shear stress, bending stress, and deflection of the structure.
Figure 2 shows the key design parameters, such as the weld thickness (w), length of the beam (L), depth of the
beam (d), and height of the beam (h). The external load (P ) applied to the beam is also shown in the figure.
The practical importance lies in balancing structural integrity with cost efficiency.
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Figure 2: Schematic of the Welded Beam Design Problem.

3.3.3 Pressure Vessel Problem

The Pressure Vessel problem is to minimize the cost of designing a cylindrical pressure vessel, subject to
constraints on stress, thickness, and volume. The objective function is:

f(Ts, Th, R, L) = 0.6224TsRL+ 1.7781ThR
2 + 3.1661T 2

s L+ 19.84T 2
hL.

Subject to the constraints:

g1 = −Ts + 0.0193R ≤ 0, g2 = −Th + 0.0095R ≤ 0,

g3 = −πR2L− 4

3
πR3 + 1, 296, 000 ≤ 0, g4 = L− 240 ≤ 0.

Variable bounds are defined as:

0 ≤ Ts, Th ≤ 99, 10 ≤ R,L ≤ 200.

Evaluation Criteria:

For each problem, the evaluation focuses on:

• Satisfying all nonlinear constraints.

• The performance metrics of optimal cost, convergence speed, and computational efficiency are compared
across different optimization algorithms.
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The optimization problem of the cost of a cylindrical pressure vessel, subject to constraints on material
strength, thickness, and volume, is the Pressure Vessel Design Problem. Figure 3 shows the geometry of
the pressure vessel with the shell thickness (Ts), head thickness (Th), radius (R), and length of the cylindri-
cal section (L). Ensuring safety and functionality at minimum manufacturing cost is critical to structural and
industrial design and is well emphasized by this problem.

Figure 3: Schematic of the Pressure Vessel Design Problem.

Including these problems highlights DLSA’s generality in solving nontrivial, real-world optimization tasks.

4 Results and Discussion

4.1 Parameters of the Algorithm

The DLSA is based on three key parameters that dynamically control the search process by balancing explo-
ration and exploitation. These parameters are detailed in Table 1.

Table 1: Key Parameters of the Dynamic Leader Sibha Algorithm (DLSA)

Parameter Description
K Calculated as K =

∑n=8
n=0

(
sinΘ
Z

)
, controlling the step size and adapt-

ability in the exploration phase.
Θ A dynamic angle ranging between 0 and 4π, used in the computation of

K.
Z A parameter that increases exponentially from 1 to 2, governing the

adaptability and influencing the search direction.

These settings were consistent across all test problems, ensuring fair comparisons with other algorithms.
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4.2 Performance on Engineering Problems

To evaluate the effectiveness of DLSA, three engineering design problems were considered: the Speed Re-
ducer, Welded Beam, and Pressure Vessel problems. These benchmarks have widely been used in optimiza-
tion research because they feature nonlinear constraints, conflicting objectives, and high-dimensional search
spaces. A new series of benchmark problems for numerical optimization is described.

1. Speed Reducer Problem:

The Speed Reducer problem seeks to reduce the cost of a mechanical speed reducer, subject to constraints on
stress, deflection, and geometry. The multimodal objective function and strict feasibility requirements make
this a critical challenge in the engineering design problem. Table 2 presents the optimal solutions obtained
by DLSA and other algorithms. DLSA attained the lowest optimal cost, outperforming other approaches in
clearing ambiguous and complex solution spaces.

Table 2: Speed Reducer Engineering Problem Results

Algorithm X1 X2 X3 X4 X5 X6 X7 Optimal Cost
DLSA 3.5019 0.7 17 7.3392 7.8829 3.3523 5.2868 2999.8243
GA 3.5046 0.7 17 7.3 7.8 3.3568 5.2878 3000.5645
GWO 3.5028 0.7 17.0081 7.3435 7.8076 3.3643 5.2879 3003.7862
WOA 3.5000 0.7 17 7.3 7.8 3.4260 5.2940 3020.7574
PSO 3.6 0.7 17 7.3 7.8 3.3502 5.2867 3035.6256

Table 3 presents the statistical results for the Speed Reducer problem, including the average fitness, standard
deviation, and best solution obtained across multiple runs. DLSA achieved the best solution and exhibited
high consistency with the lowest standard deviation, highlighting its robustness and reliability.

Table 3: Statistical Results of the Speed Reducer Engineering Problem

Algorithm Average Fitness Standard Deviation Best Solution
DLSA 3004.4238 3.5744 2999.0703
GA 97064826240.6252 520531224338.84 2998.1889
GWO 3014.0967 5.3480 3003.9460
PSO 3110.3109 83.9934 3035.6256
WOA 3654.3691 719.3737 3048.5743

2. Welded Beam Problem:

The Welded Beam problem involves minimizing the fabrication cost of a beam while adhering to constraints
on shear stress, bending stress, and deflection. This problem is particularly challenging due to its intricate
constraint handling and large feasible region. Table 4 illustrates the results, where DLSA outperformed other
algorithms in achieving the lowest optimal cost.

Table 4: Welded Beam Engineering Problem Results

Algorithm X1 X2 X3 X4 Optimal Cost
DLSA 0.2057 3.4705 9.0366 0.2057 1.7249
GWO 0.2049 3.4926 9.0349 0.2060 1.7280
PSO 0.2005 3.5792 9.0790 0.2056 1.7373
GA 0.2115 3.4548 8.8988 0.2122 1.7568
WOA 0.2093 3.4146 8.9863 0.2154 1.7866

The statistical results for the Welded Beam problem are presented in Table 5. DLSA demonstrated superior
consistency with the lowest standard deviation and high reliability in finding the best solution.
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Table 5: Statistical Results of the Welded Beam Engineering Problem

Algorithm Average Fitness Standard Deviation Best Solution
DLSA 1.7896 0.0593 1.7264
GA 2.4362 0.5731 1.7411
GWO 1.7303 0.0020 1.7266
PSO 1.8837 0.8074 1.7249
WOA 2.7330 0.6605 1.8550

3. Pressure Vessel Problem:

The Pressure Vessel problem seeks to minimize the cost of designing a cylindrical pressure vessel while satis-
fying constraints on stress and volume. This problem is a standard benchmark in structural optimization. Table
6 summarizes the results, where DLSA outperformed other algorithms by achieving the lowest cost.

Table 6: Pressure Vessel Engineering Problem Results

Algorithm Ts Th R L Optimal Cost
DLSA 0.7782 0.3847 40.3197 200 5885.4664
DE 0.7791 0.3850 40.3333 199.8787 5892.7035
PSO 0.8002 0.3955 41.4606 184.7042 5924.0488
GWO 0.7812 0.3940 40.3991 200 5947.1459
GA 0.8469 0.4204 43.6351 159.7470 6081.0415
WOA 1.0608 0.5298 51.8960 83.9799 6872.2534

Table 7 presents the statistical results for the Pressure Vessel problem. DLSA exhibited high robustness with
the best average fitness and the smallest standard deviation.

Table 7: Statistical Results of the Pressure Vessel Engineering Problem

Algorithm Best Average Standard Deviation
DLSA 5889.1852 6029.3344 237.3213
GA 5959.1476 6857.1012 530.4589
GWO 5963.1878 6170.1240 290.0529
DE 5885.6793 6010.1931 355.6939
PSO 5957.6601 6155.2294 154.1526
WOA 6648.0565 13705.2869 12906.0826

The results confirm that the Dynamic Leader Sibha Algorithm (DLSA) demonstrates significant advantages
over other algorithms across the three benchmark engineering problems: The three parts listed are Speed Re-
ducer, Welded Beam, and Pressure Vessel. For all three problems, DLSA consistently found the best solution
solution. In addition, the algorithm was highly consistent and robust across several runs with low standard
deviation for statistical results. Its versatility as a robust optimization framework capable of solving diverse
engineering design problems is due to its adaptability and efficiency in handling constraints and nonlinear
objectives.

Results from this study validate the DLSA optimization algorithm as state-of-the-art. DLSA has demonstrated
superior performance in optimality of the achieved solution, convergence behavior, and robustness over a
wide range of challenging engineering problems, thus making itself a reliable and versatile tool for real-
world applications. It performs exploration and exploitation using its hierarchical leader-follower mechanism
and dynamic adaptability, contributing to metaheuristic optimization. Further, future research can extend its
applicability to multi-objective and hybrid optimization scenarios.
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5 Conclusion

This paper introduced a novel metaheuristic optimization algorithm inspired by the structured dynamics of
Sibha, known as the dynamic leader Sibha Algorithm (DLSA). This paper shows that using a hierarchical
leader-follower framework, DLSA balances exploration and exploitation that tackles key problems in high
dimensional, nonlinear optimization problems. It affords robust and convergent search through complex search
landscapes, which it does at a price of dynamic adaptability so that progress is never stalled.

The algorithm’s performance was validated on three benchmark engineering problems: Speed Reducer, Welded
Beam, and Pressure Vessel. DLSA outperformed, and consistently outperformed, all state-of-the-art algo-
rithms, providing the best set of solutions with high reliability and low variability across multiple runs. The
results demonstrate that it is a robust and efficient optimization tool for real-world applications.

The research can continue extending DLSA to handle multi-objective cases and hybridizing it with other
algorithms to increase scalability. Also, its adaptability makes it a promising candidate for applications in
energy systems, supply chain management, and machine learning. DLSA makes a solid contribution to the
field of metaheuristic optimization and paves the way for subsequent advances in metaheuristic optimization.
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