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Estimating parameters in solar cell models is crucial for simulating and designing photovoltaic
systems. The single-diode, double-diode, and three-diode models represent these systems. Parameter
estimation can be viewed as an optimization problem to minimize the difference between measured
and estimated data. This study presents PV parameter estimation using the enhanced Sinh Cosh
Optimizer (I_SCHO), incorporating trigonometric operators from the Sine Cosine Algorithm (SCA). This
integration improves the algorithm’s ability to navigate complex search spaces, avoid local optima,
and expedite convergence. Assessment criteria include runtime, convergence behaviour, minimum
RMSE, and system reliability measured by SD. Results show that I_SCHO consistently delivers superior
accuracy and reliability compared to other methods. Experiments were conducted on five solar cells:
RTC France, Photowatt-PWP201, Kyocera KC200GT, Ultra 85-P, and STM6-40/36 module. The study
also includes a comparative analysis using state-of-the-art algorithms, demonstrating I_SCHO's
efficiency through RMSE, Power Voltage (P-V) and Current Voltage (I-V) curves.
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GWO Grey Wolf Optimizer

1Departmemt of Information Systems, College of Computer and Information Science, Princess Nourah Bint
Abdulrahman University, Riyadh 11671, Saudi Arabia. %Information Systems Department, Faculty of Computers
and Artificial Intelligence, Benha University, Benha 13518, Egypt. 3Faculty of Computer Science, Misr International
University, Cairo, Egypt. “Computer Systems Program-Electrical Engineering Department, Faculty of Engineering-
Shoubra, Benha University, Cairo 12311, Egypt. *Faculty of Computers and Information, Luxor University, Luxor
85951, Egypt. SFaculty of Information Technology, Applied Science Private University, Amman 11931, Jordan.
’Computer Science Department, Faculty of Computers & Informatics, Suez Canal University, Ismailia 41522, Egypt.
Hemail: diaa.salama@fci.bu.edu.eg

Scientific Reports | (2025) 15:4481 | https://doi.org/10.1038/s41598-025-85841-2 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-85841-2&domain=pdf&date_stamp=2025-1-30

www.nature.com/scientificreports/

Clean energy is an indispensable component in the worldwide effort to develop sustainable and renewable energy
sources. Primarily aimed at reducing environmental harm and promoting long-term sustainability, it constitutes
the seventh goal within the overarching framework of renewable energy objectives. Clean energy sources include
but are not limited to solar, wind, hydropower, and geothermal power. Each source significantly reduces finite
fossil fuel resources and mitigates climate change. Clean energy is an indispensable component in the worldwide
effort to develop sustainable and renewable energy sources. Primarily aimed at reducing environmental harm
and promoting long-term sustainability, it constitutes the seventh goal within the overarching framework of
renewable energy objectives. Clean energy sources include but are not limited to solar, wind, hydropower, and
geothermal power. Each source contributes significantly to reducing finite fossil fuel resources and mitigating
climate change!.

Particularly for developing nations, the attainment of renewable energy represents an objective of the utmost
importance. Traditional energy production methods, which frequently contribute to deforestation, greenhouse
gas emissions, air and water pollution, and environmental harm, can be mitigated by adopting renewable energy
sources, given the context of global energy demands. Developing countries have a distinct opportunity to bypass
the environmentally detrimental phases of industrialization and promote sustainable development by embracing
renewable energy technologies.

Additionally, renewable energy initiatives have the potential to bolster energy security by diversifying the
energy portfolio and reducing reliance on volatile fossil fuel markets. Subsequently, this assists nations that may
encounter difficulties stemming from volatile energy prices in bolstering their economic stability and resilience.

Advancing sustainable energy is consistent with worldwide initiatives to fulfill the Sustainable Development
Goals (SDGs) established by the United Nations and its environmental and economic advantages. Access
to affordable, pure energy is vital to combat poverty, improve health, and advance education in developing
countries. Nations can foster economic expansion, furnish their populace with dependable and environmentally
sustainable energy, and generate employment prospects through investments in renewable energy infrastructure.

Acquiring sustainable energy is an all-encompassing strategy that profoundly impacts worldwide progress
rather than solely an environmental objective. Particularly significant for the socioeconomic advancement of
developing countries, it signifies a dedication to a more resilient, sustainable, and equitable future. The global
transformative influence of renewable energy becomes progressively apparent as the international community
collaborates to achieve these goals.

Ongoing increases in electricity consumption have resulted from the tremendous growth of the global
economy. The substantial consumption of coal and oil has resulted in immediate blackouts of electricity
and increased atmospheric emissions. The electricity problem coincides with the nation’s economy’s most
challenging development phase. Solar photovoltaic (PV) systems have recently garnered considerable interest
as a solution to these crises. The process by which photovoltaic cells transform solar energy into electrical
energy is currently undergoing significant advancements®™*. An equivalent circuit of these PV cells is required
to evaluate the properties of the cells under different operating conditions. For parameter estimation problems,
the single-diode model (SDM) and the double-diode model (DDM) have been extensively documented and
proposed in the literature. These models are widely used and preferred>®. Solar PV cells being exposed to the
external environment diminishes the cells’ and the system’s overall efficacy. As the overall performance of the
PV system is highly dependent on uncertain parameters, it is crucial to estimate the ideality factor (a), series
resistance (Rse), photocurrent (Ip), reverse saturation current of the diode (Isd), and shunt resistance (Rsh)
for SDM; and photocurrent (Ip), reverse saturation current of the two diodes (Isd1 and Isd2), shunt resistance
(Rsh), and series resistance (Rse) for DDM. However, the existing equations utilized in both SDM and DDM
photovoltaic models are transcendental, which presents challenges in estimating cell variables and analyzing the
performance of the cell or module, as previously stated. Therefore, it is imperative to develop a methodology that
can efficiently and effectively calculate the cell/module parameters’? Conversely, estimation of their unknown
parameters utilizing I-V measured data is required when employing SD and DD models. The configurations of
these parameters directly impact the efficiency of solar PV cells’. The utilization of optimization techniques to
ascertain the unknown parameters of PV models has been demonstrated to be both practical and efficient!®!!.
Developing an appropriate fitness evaluation function can conceptualize the estimation of PV model parameters
as an optimization problem involving multidimensional functions'2. Nevertheless, the I-V characteristics of PV
models determine the fitness function.

I-V data does contain some degree of noise interference because it is acquired through measurement.
Therefore, the optimization problem’s search space is exceedingly complex, multimodal, multivariable, and
nonlinear!. Two optimization techniques are utilized in estimating parameters for photovoltaic (PV) systems:
conventional optimization approaches and contemporary metaheuristic algorithms. Lambert W-function
approaches’*® Newton methods!*?, the tabular method?!, the iterative curve fitting method??, and so
forth are examples of conventional optimization techniques. Nevertheless, traditional optimization methods
frequently possess certain constraints. For instance, the performance of the problem is contingent upon its initial
values, the fitness function must be convex, continuous, and derivable, and it is simple to enter a local optimum.
Modern meta-heuristic approaches are optimization techniques based on population iteration. These methods
can efficiently resolve complex optimization problems because of their straightforward implementation and
underlying principle. In recent decades, researchers have devised numerous enhanced iterations of meta-
heuristic algorithms to estimate the unknown parameters of PV models accurately. For example, back-tracking
search algorithm (BSA)!>%3, butterfly optimization algorithm (BOA) [10], slime mold optimizer (SMO)'>%,
marine predators algorithm (MPA)!>?>%, JAYA algorithm?’-%, Jellyfish search optimizer (JSO)*°, differential
evolution (DE)3"32, coyote optimization algorithm (COA)*, wind-driven optimization (WDO)*!, radial
movement optimization (RMO)?>, teaching-learning-based optimization (TLBO)3¢, grasshopper optimization
algorithm (GOA)¥, Harris hawks optimizer (HHO)*%3?, equilibrium optimizer (EO)*, bat algorithm (BA)%.,
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cuckoo search optimization (CSO)*, transient search optimization (TSO)*}, moth flame optimization (MFO)*,
particle swarm optimizer (PSO)**S, electromagnetic-like algorithm (ELA)Y, tree growth algorithm (TGA)*,
sunflower optimization (SFO)*, whale optimization algorithm (WOA)*->2, bacterial foraging optimization
(BFO)%, ant lion optimizer (ALO)%, simplified swarm optimization (SSO)*, artificial bee colony (ABC)*,
genetic algorithm (GA)*’, biogeography-based optimization (BBO)?®, sine cosine algorithm (SCA)*’, salp swarm
algorithm (SSA)®, water cycle algorithm (WCA)®!, bird mating optimizer (BMO)®2, imperialist competitive
algorithm (ICA)®, multi-verse optimizer (MVO)®, and so on. These enhanced meta-heuristic algorithms yield
satisfactory outcomes when estimating parameters for PV models. Nevertheless, an algorithm can never be
flawless. Consequently, it is imperative to devise an enhanced meta-heuristic optimization methodology to
approximate the unidentified parameters of solar PV models.

Most researchers have been engaged in estimating the parameters of three PV models (single diode, double
diode, and three diode models) utilizing optimization algorithms. Ongoing development efforts are devoted to
optimizing algorithms to attain optimal accuracy for the objective function. Prior research has endeavored to
develop a PV model capable of producing current data comparable to experimental data.

The following items summarized the contributions of this paper:

o Introducing the Sinh Cosh optimizer (SCHO) designed to identify unspecified DDM, TDM, and SDM pa-
rameters.

« Enhancing the SCHO algorithm by integrating trigonometric op-operators inspired by the Sine Cosine Algo-
rithm (SCA) into the exploitation phase to improve convergence speed and avoid local optima, resulting in a
more precise estimation of unknown parameters.

» Conducting a comparative analysis of I_SCHO against various competitors to gauge its effectiveness.

+ Experimental results indicate that I_SCHO surpasses all compared techniques, producing significantly dif-
ferent and superior outcomes.The rest of the sections are organized as follows: “Problem formulation” section
discusses the modeling of PV models. “A Sinh Cosh optimizer” section explains the problem formulation.
“Enhanced Sinh Cosh optimizer with trigonometricoperators ( I_ SCHO)” section analyses the Sinh Cosh
optimizer (SCHO) algorithm. In “Results and simulation” section, the simulation and results are discussed.
The conclusions of this paper are presented in “Conclusion” section.

Definition of PV models

This section discusses the mathematical analysis of the three PV models (TPVM) and the modified three
(MTPVM) models. The TPVM includes a single diode model (SDM), a double diode model (DDM), and a three
diode model (TDM). Meanwhile, the MTPVM contains a modified single-diode model (MSDM), a modified
double-diode model (MDDM), and a modified three-diode model (MTDM).

Single diode model
Figure 1 illustrates the equivalent circuit of SDM. The current output in this model is determined through the
application of the subsequent equation:

I =1, —Ip1— I (1)

a(VAIRs) IR,
I=1I,, —In [e niKTe — 1| — M (2)
Ry

The SDM produces a current denoted as I, where Ipv represents the generated light current, Ish signifies the
leakage current, and ID1 stands for the dark saturation current. Rp and Rs represent the shunt and series
resistances, respectively. Additionally, n1 is the diode ideality factor, K is Boltzmann’s constant, q represents the
charge of an electron, and Tt denotes the cell temperature. According to the provided mathematical formula, the
parameters to be estimated in SDM include Ipv, Iol, n1, Rs, and Rp.

Fig. 1. Equivalent circuit for single diode model.
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Fig. 2. Equivalent circuit for double diode model.
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Fig. 3. Equivalent circuit for three diode model.

Double diode model
Figure 2 depicts the electrical diagram for the DDM, employing two diodes to enhance output quality. The
following equations determine the current output in this model:

I:IPU_IDI_]DQ—ISh (3)
(V+IRs) (V4+IRs)
P

where ID2 denotes the dark saturation current of the second diode, and #n2 represents the ideality factor of the
second diode. The model involves seven parameters to be estimated: Ipv, Iol, nl, Rs, Rp, 02, and n2.

Three diode model
The three-diode model (TDM) illustrated in Fig.3 offers an alternative approach for designing PV modules,
incorporating three diodes. The computation of the current output in this model is carried out through Eq. (5):

I =1Iyy—Ip1—1Ip2—1Ip3—ILsn (5)
a(V4IRg) a(V+IRs) a(V+IRs) V + 1R,
I = Ip’U — 1ol |:6 niKTe  — 1?| 02 [6 n2KTe  — ]-j| o3 [6 n3KTe -1 - +T (6)
p

Where ID3 denotes the dark saturation current of the third diode, and n3 represents the ideality factor of the
third diode. The TDM involves estimating nine parameters: Ipv, Iol, nl, Rs, Rp, I02, n2, Io3, and n3.

Problem formulation

The TPVM’s performance is evaluated based on objective functions, specifically the root mean square error
(RMSE) objective functions, which quantify the disparity between the current computed using estimated
parameters and the current from the dataset. Equations 7 and 8 articulate the definition of RMSE:

JWV, I, X) =1~ ILeap (7)
N
RMSE = NZ J(V, I, X))? (8)
Scientific Reports | (2025) 15:4481 | https://doi.org/10.1038/s41598-025-85841-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Here, I..;, represents the experimental current, N denotes the number of data readings, and X encompasses the
decision variables.

The vector of decision variable for SDM is X = {(Ipv, Io1, n1, Rs and Ry )}.

The vector of decision variable for DDM is X = {(Ipv, lo1, n1, Rs, Rp, Io2 and n2 )}.

The vector of decision variable for TDM is X = {(Ipv, lo1, n1, Rs, Rp, lo2, n2, Loz and n3)}.

The TPVM parameters can be estimated through optimization algorithms. This study utilizes data from
the R.T.C France solar cell for TPVM information. The Enhanced Sinh Cosh Optimizer (I_SCHO) algorithm,
recently introduced, is employed. The outcomes are compared with various algorithms, including the Grey Wolf
Optimizer (GWO)®, Ant Lion Optimizer (ALO)**, Sine Cosine Algorithm (SCA)®, Sooty Tern Optimization
Algorithm (STOA)®, Tunicate Swarm Algorithm (TSA)®, Hunger Games Search (HGS)®, Rat Swarm Optimizer
(RSO)7°, and Sinh Cosh Optimizer (SCHO)"". The search space boundaries for parameter estimation using the
R.T.C France solar cell are detailed in Table 1'2,

A Sinh Cosh Optimizer

The Sinh Cosh Optimizer (SCHO) is a novel meta-heuristic optimization algorithm inspired by the characteristics
of the hyperbolic functions Sinh and Cosh”?. It is designed to balance exploration and exploitation in optimization
problems by utilizing a mathematical model with phases of exploration and exploitation, a bounded search
strategy, and a switching mechanism. SCHO has shown strong performance in solving benchmark functions
and engineering design problems compared to other well-known meta-heuristic algorithms. The following
subsection illustrates the basic steps of the SCHO.

Phase of initialization

Random initialization To commence, the algorithm initializes a set of candidate solutions randomly according
to Eq. (9).

X =rand(N,dim) x (ub — Ib) +1b 9)

where dim denotes the dimension of problem variables, N is the number of solutions, ul, and Ib are the upper and
lower bounds of variables, respectively, and rand is a generated random number in the range 0 and 1.

The aforementioned preliminary solutions function as the foundation for the process of optimization. Candidate
solutions are pivotal in instigating the exploration and exploitation phases as they symbolize prospective
resolutions to the optimization problem.

Exploration stage
Extensive search In the exploration phase, the algorithm searches the solution space to identify novel regions

that might harbor optimal solutions. This process involves two subphases, and switching between them is given
by Eq. (10).

(10)

T = floor (Maz_zteratwn)

ct

where ct is a coefficient for establishing the switching point in two phases, fixed at 3.6. Max _iteration is the
maximum iteration rounds. floor denotes a function used for rounding down.

« Exploration (phase 1): Early iterations will focus on exploring the outside edges of the search space close to
the search agents positions, while later iterations will bring the agents closer to the optimal answer. The up-
dated position at this stage is done according to Eq. (11)

J t :
v _ [ X A x W XG ) ifre > 0.5 a1
(4.9 Xéiit —r1 X Wi x Xfi,j) if 12 < 0.5
Where:
Parameters Lower bound | Upper bound
Iy 0 1
Io1, Io2 and Ios (pA) |0 1
R,, Rs1 0 0.5
Ry 0 100
ni, ne and ng 1 2

Table 1. The limits of estimated parameters'2.

Scientific Reports |

(2025) 15:4481 | https://doi.org/10.1038/s41598-025-85841-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

e X fz 5 and X (ti':l) represent the current and updated position of the jth dimension of the ith solution.

e X éi Z , denotes the best position achieved so far in the optimization process in the jth dimension.

« 71 and r2 are random numbers in the interval [0, 1]. These random values introduce stochasticity into the
position update process.

o W1 is the weight coefficient for controlling candidate solutions’ search space exploration. It can be calcu-
lated based on Egs. (12) and (13) where a1 is a monotonically decreasing function and r3 and r4 € [0, 1].
u and m are sensitive coeflicients that regulate the accuracy of the exploration process.

Wi =r3 X a1 X (COSh rqy +u X sinhry — 1) (12)

a1 =3 X (—1.3 X (13)

- im
Ma:u_iteration+ )

o Exploration (phase 2): Search agents exhibit minimal sensitivity to the optimal solution and, as a result, navi-
gate in a non-directional manner toward the subsequent position using their current location as a guide. This
can be done through Eq. (14)

Xl +lex Wax X2 — X¢ o lif rs > 0.5

t+1 best
Xiig) = ¢ ) i | (14)
X — |8 x Wa x Xylo, — X 5y |ifrs < 0.5
Where:
e X 5;1) and X fz ;) represent the updated and current position of the jth dimension of the ith solution.
o X éii , denotes the best position achieved.

« ¢ isa tiny positive number set to 0.003 based on the experiments.

o W is the weight coefficient calculated using Egs. (15) and (16) where a2 is a monotonically decreasing
function and 75 and r¢ € [0, 1]. 1 is a sensitive coefficient that regulates the accuracy of the exploration
process.

Wa =r¢ X as (15)

4 =2x (-t 4p (16)
2 Max _iteration

The exploitation stage
Enhanced search To improve solution quality, candidate solutions are modified to take advantage of identified
regions and refine the search for the optimal solution. This process includes two phases, as described below.

« Exploitation (phase one): X’s closest neighbor is targeted in the initial exploitation stage. Therefore, update the
position according to Eq. (17).

@) ;
£l { Xy 4 e x W x X(; 5y ifrg > 0.5 a7

G X2, — e x W x XG5y ifrs <05
Where: _
- X fz X Et;j), and X éil . represent the current and updated position and the best solution, respectively,
which are defined before.
- 77 and 7g are two random numbers generated in the interval [0, 1].
- W3 is the weight coefficient that controls the search space around the potential solutions, ranging from
close to far. It can be calculated based on Eq. (18). a1 computed according to Eq. (13) and r9 and 719
€ [0, 1]. u as defined before in the exploration phase.

W3 =79 X a1 X (COShT10 =+ u X Sintho) (18)
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« Exploitation (phase two): candidate solutions will deeply exploit the best solution produced so far, intensify-
ing exploitation as iterations increase. As a result, the update position is done according to Eq. (19)

sinh 712

t+1 ot (7) t
Xig) = Xt Hrux 2= [ We X Kooy = Xi) (19)
where r11 and r12 € [0, 1], W2 computed before according to Eq. (15) while 7232?]22 is employed to retain

potential solutions’ diversity.

The bounded search strategy

To fully use the possible search space, an approach similar to animal hunting in the latter stage is applied in
SCHO, known as the bounded search strategy. To thoroughly explore and utilize the potential space, all candidate
solutions are randomly started in this potential space by utilizing Eq. (9). Then, the space will be extensively
investigated and utilized. Further, the initialization of the bounded search strategy can be computed by applying
Eq. (20) where the value of BSk is computed according to Eq. (21) startingat k = 1.

BSy+1 =BSy + floor (Max_zterc;fzon — Bsk) (20)
BS: =floor (W) 1)

The value of a, set to 4.6, indicates a sensitive coefficient that governs the accuracy of thorough exploration and
exploitation in the potential space. While the value that initiates the bounded search strategy is controlled by
B and is set to 1.55. When SCHO employs the bounded search technique every time, the upper ub and lower
bounds [b of decision variables will be determined using Eqs. (22) and (23) based on the jth best and suboptimal
solutions.

. t ) .

Iy =X, — (1 - 7) x ‘X(” - x\ 2
k best Maxiteration best second ( )
by =X @ (1 _ ) » ’Xu) _xW )

UOK best Maa:iteTation best second ( 3)

Switching among exploration and exploitation

To achieve exploration and exploitation of the whole search space and escape from the local optimum in the
later iteration, the switching mechanism should largely focus on exploration but conduct a modest amount of
exploitation in the early iterations. In contrast, in the latter iterations, the switching mechanism should mostly
focus on the exploitation but do a minor exploration. This can be achieved by using Eqgs. (24) and (25)

: sc
A= —gX | X T13. 24
p—a ( Mazx _iteration ) s @4

t
cosh ( Max _iteration )

SC =
3 t
sinh ( Mazx _iteration )

(25)

where p and g are the balancing coefficients for managing the exploration and exploitation throughout iterations,
and r13 is a random value in the interval zero and one.

The overall steps of the SCHO are illustrated in algorithm 1
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Data: Control parameters CP, population size N, dimension of problem vari-
able dim, boundary search value BSi, and maximum number of iterations
Max _iteration
Result: The fittest solution so far Xpeqs
1 Procedure SCHO (CP,N,dim,BS;,Max _iteration)
2 Set the iteration number ¢ = 1 and £k = 1 Generate random initial population
Evaluate each candidate solution X and assign the fittest one to Xpes:
3 while t <=t do

4 fori=1:N do
5 for j =1:dim do
6 Update the switching parameter A using Eq. 24 if (t = BS)) then
7 Obtain the position of second candidate solution Update the value of
BSj;, according to Eq. 20 Update the entire search space with Eqgs. 22
and 23 Distribute the solution space according to Eq. 9
if (A>1) then
Update the value of W7 using Eq. 12 Update the value of W5 using Eq.
15 if (t <=T) then
10 Exploration (phase one): Update the position of the candidate
solution using Eq. 11
11 else
12 Exploration (phase two): Update the position of the candidate
solution using Eq. 14
13 end
14 else
15 Update W3 according to Eq. 18 if (t <=T) then
16 Exploitation (phase one): Update the position of the candidate
solution using Eq. 17
17 else
18 Exploitation (phase two): Update the position of the candidate
solution using Eq. 19
19 end
20 end
21 end
22 end
23 Compute the fitness value of each solution Update the best solution Set ¢t =¢+1

24 end

25 return The fittest solution so far Xpest

Algorithm 1. The algorithmic steps of SCHO algorithm.

Enhanced Sinh Cosh Optimizer with trigonometric pperators (1I_SCHO)

This section outlines the methodology for enhancing the exploitation stage of the SCHO using trigonometric

operators inspired by the Sine Cosine Algorithm (SCA).

o Trigonometric operators: The addition of sin and cos functions to dynamically update agent positions near the

current best solution, enhancing local search capabilities and aiding in avoiding local optima.

o Adaptive coefficients: a(iter) and ~y(iter) are designed to adjust the influence of trigonometric updates over

iterations, promoting a balance between exploration and exploitation phases.

Step 1: Initialization

Initialize a population of solutions X, for ¢ = 1,2, ..., N, within the search space. Randomly assign values to

the parameters of the triple-diode photovoltaic model within the permissible bounds.

Step 2: Evaluation

Evaluate the fitness of each solution using an objective function, typically the root mean square error (RMSE)

between the model output and actual data.

Scientific Reports |

(2025) 15:4481

| https://doi.org/10.1038/s41598-025-85841-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Step 3: Enhanced Exploitation Using Trigonometric Operators
For each solution in the population, calculate new positions using trigonometric updates:

Xinew = Xpest + a(iter) - sin(f) - |8 - Xpest — Xi| + y(iter) - cos(@) - [0 - Xpest — Xi]

Step 4: Update and Selection
Update the position of each solution in the population to its new position if the new position has a better fitness
value than the current one. Update the best solution Xp.s: if any new solution has a better fitness value.

Step 5: Adaptive adjustments
Adaptively adjust a(iter) and ~y(iter) based on the optimization progress to smoothly transition from
exploration to exploitation.

Step 6: Termination
Repeat steps 3 to 5 until a termination criterion is met, such as reaching a maximum number of iterations or
achieving a predefined level of accuracy.

Input: N: Number of agents, D: Problem dimension, MaxIter: Maximum iterations,
Xmins Xmax: Bounds, ObjFunc: Objective function

Output: Xp.s: Best solution

Initialize agents X; randomly within [X i, Xinax] Evaluate ObjFunc for all agents
to determine Xpeqt

for t =1 to MaxIter do

foreach agent X; do

Generate random angles 6, ¢ € [0,27] Calculate adaptive coefficients a(t) and
Y(t) Xinew = Xbest T (t)-sin(6) [+ Xpest — Xi| +7(t) - cos(¢) - |0+ Xpest — Xil
if ObjFunc(X; pew) < ObjFunc(X;) then

Xi = Xipew if ObjFunc(X;) < ObjFunc(Xpes:) then

| Xbest = Xz
end
end
end
Adaptively adjust a(t) and ~(t) for exploitation focus

end
return X,

Algorithm 2. Enhanced Exploitation Stage of SCHO with Trigonometric Operators (I_SCHO)
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Input: N: Number of agents, D: Problem dimension, MazIter: Maximum number of
iterations, Xin, Xmax: Search space bounds

Output: X, Best solution found

Initialize N agents X; randomly within [X i, Xinax] Evaluate ObjFunc for all agents

and determine Xj,q
for t =1 to MaxIter do
fori=1to N do

| Xbest - Xz
end
end

end
end
return X,

Generate random angles  and ¢ in [0, 27] Calculate adaptive coefficients a(t)
and Y(t) Xnew = Xpest+a(t)-sin(6)-
Apply boundary check for X,e,, if ObjFunc(Xpew) < ObjFunc(X;) then

X; = Xpew if ObjFunc(X;) < ObjFunc(Xpes;) then

B'Xbest —XZ|-|-’Y(t)COS(¢) ’ |5'Xbest _Xz|

Algorithm 3. Enhanced Sinh Cosh Optimizer with trigonometric operators (I_SCHO) for triple-diode PV

models

Results and simulation

This section presents comprehensive experiments that state the effectiveness of the enhanced Sinh Cosh
Optimizer with trigonometric Operators( I_ SCHO). The enhanced proposed approach is utilized for the
parameter identification of the three PV models for different solar cells. These cells are RTC France cell,
Photowatt-PWP201 cell, Kyocera KC200GT - 204.6 W cell, Ultra 85-P cell, and STM6-40/36 module cell. For

Common parameters for all algorithms

Parameter Setting/value
Population size (N) 30 (for all algorithms) except for I_SCHO (50)
Maximum iterations (MaxlIter) 500

Algorithm-specific parameters

Algorithm

Parameter settings

Sinh Cosh Optimizer (I_SCHO)

Exploration weight (W1): 0.5 (initially)

Exploitation weights (W2, W3): dynamically adjusted based on iteration number
Trigonometric operators coefficients (v, 7y): 1 (initially), adjusted with iterations

Bounded search strategy parameters (BS1, «): BS1 = 1.55, « = 4.6

Switching mechanism coefficients (p, q): adjusted to shift focus from exploration to exploitation

Grey Wolf Optimizer (GWO)

Wolves hierarchy: alpha, beta, delta, omega
Convergence parameters (a, A, C): a = 2 — 0, A, Cin [-2a, 2a]

Ant Lion Optimizer (ALO)

Random walk parameters: fixed or random step size for ant’s walk
Exploitation mechanism: Ant lion traps and random walks
Selection mechanism: Roulette wheel selection

Sine Cosine Algorithm (SCA)

Trigonometric operators coefficients (v, 7v): fixed, adjusted with iterations
Exploitation mechanism: cosine and sine functions for local search
Selection mechanism: determined by sine and cosine functions

Sooty Tern Optimization Algorithm (STOA)

Exploitation mechanism: guided by the best sooty tern and nearest predator
Selection mechanism: determined by distance to the best sooty tern

Tunicate Swarm Algorithm (TSA)

Leadership-based exploration and exploitation

Hunger Games Search (HGS)

Hunger and exploration balance
Selection mechanism: leadership and power dynamics

Rat Swarm Optimizer (RSO)

Interaction among rats for exploitation
Selection mechanism: determined by fitness and proximity

Table 2. Parameter settings for various optimization algorithms.
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each cell, experiment were performed on the three PV models, Single-Diode model (SDM), Double-Diode
model (DDM), and Triple-Diode model (TDM).

This section proposes comparative experiments and justifies our recommendation of the proposed
optimization algorithm. Results of the [_SCHO are compared with Grey wolf optimizer (GWO)®, ant lion
optimizer (ALO)*, Sine cosine algorithm (SCA)®, Sooty Tern Optimization Algorithm (STOA)®, Tunicate
Swarm Algorithm (TSA)%, Hunger Games Search (HGS)®’, Rat Swarm Optimizer (RSO)’’, and Sinh Cosh
Optimizer (SCHO).The parameter settenting for each algorithm can be found in Table 2

Experiments are illustrated in an comprehensive way as follows:

« Experiments on RTC France cell and SDM are shown in Table 3

« Experiments on RTC France cell and DDM are shown in Table 4

« Experiments on RTC France cell and TDM are shown in Table 5

« Experiments on Photowatt-PWP201 cell and SDM are shown in Table 6

« Experiments on Photowatt-PWP201 cell and DDM are shown in Table 7

« Experiments on Photowatt-PWP201 cell and TDM are shown in Table 8

« Experiments on Kyocera KC200GT - 204.6 W cell and SDM are shown in Table 9

+ Experiments on Kyocera KC200GT - 204.6 W cell and DDM are shown in Table 10

« Experiments on Kyocera KC200GT - 204.6 W cell and TDM are shown in Table 11

« Experiments on Ultra 85-P cell and SDM are shown in Table 12

« Experiments on Ultra 85-P cell and DDM are shown in Table 13

« Experiments on Ultra 85-P cell and TDM are shown in Table 14

« Experiments on STM6-40/36 module cell and SDM shown in Table 15

« Experiments on STM6-40/36 module cell and DDM shown in Table 16

o Experiments on STM6-40/36 module cell and TDM shown in Table 17The accuracy of P-V and I-V esti-
mation and similarity with the actual measurements are recorded for proving effeciency of estimation. The
measured RMSE over 30 trials were measured to the suggested (I_SCHO) in comparision to the state-of-art
algorithms. Also the time complexity to reach saturation and minimal RMSE will be represented in the fol-
lowing subsections.

The I_SCHO method and the competing algorithms have been tested using the different datasets in 30 different
experiments with 500 iterations in each run to provide a fair benchmarking comparison. We conduct experiments
on a machine with the following specifications: 64-bit Windows 10 Professional, 2.40GHz Intel(R) Core(TM)
i7-4700MQ processor, and 16GB of RAM. MATLAB R2019a is used for the implementation of each algorithm.

RTC France cell

Experiments on single-diode mode based RTC France cell

In this section, our first experiments were conducted on the SDM-based RTC France cell. Table 3 reports the
best-obtained parameters’ measurements and the Root Mean Square Error (RMSE). The experimental outcomes
were recorded after each optimizer’s execution 30 times. The findings reveal that I_SCHO emerges as the
optimum algorithm, as inferred from its Best RMSE performance, either comparable to the other algorithms or
surpassing them across all performance metrics, as shown in the table.

The convergence curve is employed during our experimental investigations, and the standard deviation is
recorded as an auxiliary metric for performance evaluation. I_SCHO algorithm attained stability and minimized
Root Mean Square Error (RMSE), as shown in Fig. 4a. I_SCHO consistently outperforms or performs on par
with alternative algorithms but never exhibits inferior performance. Furthermore, utilizing the fill factor and
Iphoto parameters underscores disparities between the findings yielded by I_SCHO and those produced by the
other state-of-the-art algorithms.

Contrary to being the fastest algorithm in achieving convergence, our findings indicate that I_SCHO
exhibited a comparable and satisfactory pace relative to the other algorithms. However, it was distinguished
that the I_SCHO reached the smallest RMSE value. Notably, this optimal saturation was attained after almost
120 iterations, underscoring the efficacy of I_SCHO in achieving heightened precision within a modest
computational timeframe.

TheI SCHO method, compared to the other algorithms, as shown in Fig. 4c, achieved the lowest RMSE among
the thirty trials, demonstrating sustainability and great enhancement relative the original SCHO algorithm.
Moreover, Fig. 4b and d illustrate the P-V and I-V curves derived from the optimal parameters acquired using
the I_SCHO algorithm. These graphical representations demonstrate the congruity between the estimated and
the actual measurements. It is observed from these figures that the parameters inferred by I_SCHO facilitate the
attainment of current and power levels that exhibit a high degree of consistency with the empirical data.

Experiments on double-diode model-based RTC France cell
This section summarizes the experiments after the thirty trials of the excuted algorithms but now on the DDM-
based RTC France. The best and the worst RSME values are again computed, as presented in Table 4. This
tabulated data reveals that I_SCHO attains the foremost position concerning the best RMSE which is 0.0016458
among the algorithms surveyed. The worst RMSE and the SD values in Table 4 indicate a notable outperformance
of I_SCHO outcomes among 90% of the other algorithms.

Figure 5a measures the convergence curve of the applied algorithms based on DDM. I_SCHO performs
better in achieving the lowest Root Mean Square Error (RMSE) than the other algorithms. Despite not being
the most rapid, I_SCHO exhibits a satisfactory convergence rate, reaching saturation after approximately 130
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iterations. This convergence behavior is notably compensated by its ability to achieve the lowest RMSE values
consistently.

Although the I_SCHO approach produced the lowest RMSE out of thirty trials, indicating sustainability due
to the lack of oscillations in the recorded RMSE values, it is very comparable to GWO and STOA algorithms,
as shown in Fig. 5c. This minimum fitness function value is reflected on the P-V and I-V curves that show high
identity between the estimated and the Real measured values as indicated in Fig. 5b and d.

Experiments on triple-diode model-based RTC France cell
In this section, we apply the I_SCHO algorithm to identify the optimal parameters based on TDM and RTC
France cell, thus facilitating a comprehensive evaluation of its performance. Table 5 presents the outcomes yielded
by various algorithms in this context, clearly indicating that I_SCHO acts as the best-performing algorithm.
Additionally, the table includes the RMSE values contrasting I SCHO’s results with those of its competitors,
illustrating notable distinctions between I_SCHO and all other algorithms examined. The best RMSE achieved
was 0.0012518, the minimum achieved RMSE for all the algorithms. The worst RMSE recorded in the 30 trials of
I_SCHO was 0.019984, which is also the most optimum relative to the other algorithms. Although the measured
SD wasn’t the minimum, it was 0.0050127, which is very comparable to the different competitive algorithms.
Furthermore, Fig. 6a depicts the convergence curves of each algorithm, underscoring the superiority of I_
SCHO in achieving the optimum RMSE. Analysis of this figure reveals that I_SCHO achieves the lowest RMSE
after approximately 120 iterations. As Fig. 6¢ illustrates, I_SCHO represents an enhanced version of SCHO,
demonstrating superior performance by achieving lower RMSE (Root Mean Square Error) values. However, it is
essential to note that these improved results were attained with increased computation time, indicating a higher
complexity for I_SCHO. Despite this, compared with other algorithms that attained similar RMSE values, like
SCA, HGS, and TSA, I_SCHO is faster and achieves the best optimum RMSE among the considered methods.
I_SCHO emerges as the most accurate among the algorithms compared to estimate the unknown parameters
of the TDM-based RTC France solar cell, as evidenced by Fig. 6b and d. These figures demonstrate a high level
of consistency between the I-V and P-V curves estimated by I_SCHO and the corresponding measured data, as
stated before in experiments of SDM and DDM- based RTC cell.

Photowatt-PWP201

Experiments on single-diode model (SDM)-based Photowatt-PWP201

To emphasize the conclusions from Table 3, other experiments were recorded in Table 6, presenting the
measurements, but now on the SDM-based Photowatt-PWP201 cell.

After executing the optimizer 30 times, the experiments state that I_SCHO is the best algorithm based on
the computed best and worst RMSE values which were 0.0020526 and 0.0085558 respectively, in addition to
achieving the minimum SD to be 0.0010026 .The experiments yielded the lowest RMSE and standard deviation
(SD) while maintaining the Fill Factor and Iphoto values, outperforming other state-of-the-art algorithms. This
demonstrates the efficiency of the applied algorithm.

Figure 7a shows the convergence curve where the smallest RMSE value is achieved after around 60 iterations
by I_SCHO. These experiments again emphasize the efficiency of I_SCHO in achieving high precision within
a very small duration achieving very satisfactory number of trials compared to other algorithms, especially the
original SCHO algorithm.

Figure 7b and d illustrate the P-V and I-V curves derived from the optimal parameters obtained using the I_
SCHO algorithm on the SDM-based Photowatt-PWP201 cell. These graphs serve as a testament to the _SCHO
algorithm’s reliability, demonstrating the high alignment between the estimated and actual measurements.
The parameters inferred by I_SCHO enable the attainment of current and power levels that closely match the
empirical data, providing reassurance about the algorithm’s reliability.

The I_SCHO approach produced the lowest RMSE out of thirty trials, indicating that no oscillations were
made to achieve the minimum RMSE, Fig. 7c shows that that I_SCHO is the most sustainable and outperforms
all the other algorithms .

Experiments on double-diode model (DDM)-based Photowatt-PWP201

This section presents the results of experiments conducted by executing our proposed modified algorithm thirty
times on the DDM-based Photowatt-PWP201 cell. Table 7 shows the best-measured parameters, which yield the
lowest RMSE values and represent optimal fitness. It is indicated that the best and worst RMSE, 0.0020441 and
0.0033266, respectively, are very close. This approach between the measured RMSE values states the stability of
the I_SCHO algorithm regarding the measuring fitness function. This table indicates that I_SCHO significantly
outperforms nearly all other algorithms, which is clear evidence of its effectiveness.

Figure 8a depicts the convergence curves of the evaluated competitive algorithms, demonstrating that
I_SCHO consistently achieves the lowest Root Mean Square Error (RMSE) within a satisfactory time frame.
I_SCHO reaches saturation after approximately 110 iterations, closely approximating the performance of the
SCHO algorithm, which saturates in 100 iterations but with a higher RMSE value. Figure 8b and d illustrate
that the readings between the measured and estimated values are nearly identical between the P-V and I-V
characteristics. Additionally, Fig. 8c again demonstrates that the RMSE remains consistently stable and minimal
across the 30 different trials.

Experiments on triple-diode model (TDM)-based Photowatt-PWP201

Experiments were also conducted to find the ideal measured parameters for the TDM and Photowatt-PWP201
cell. The results recorded by the different algorithms are shown in Table 8, which unequivocally shows that
I_SCHO is the best-performing method based on the RMSE and SD measurements. Along with comparing
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I_SCHO’s outcomes to its rivals, the table emphasises the critical distinctions between I_SCHO and the other
algorithms examined. The best RMSE value is 0.0020514, and the worst RMSE value is 0.0036206. On the other
side, regarding the SD, the most optimum value is 0.00036658 and is achieved by our suggested enhanced _SCHO
algorithm. Figure 9a shows the convergence curves for each algorithm, highlighting I_SCHO’s outperformance.
Analysis of this figure shows that after about 170 iterations, _SCHO achieves the lowest RMSE, proving the most
accuracy for estimating unknown parameters. The I_SCHO algorithm reaches saturation after approximately
170 iterations, closely matching the time performance of the TSA and, on the other side, achieving an RMSE
value comparable to the GWO algorithm, which saturates after 500 iterations but with a higher RMSE value.
Figure 9b and d illustrate that the readings between the observed and estimated values for the P-V and I-V
characteristics are nearly identical. Additionally, Fig. 9c indicates that the RMSE remains consistently low and
stable across 30 trials, and very comparable to HGS, SCHO, STOA, and TSA.

Kyocera KC200GT - 204.6 W

Experiments on single-diode model (SDM)-based Kyocera KC200GT - 204.6 W

Table 9 presents the root mean square error (RMSE) and the optimal parameter values from experiments
conducted with 30 iterations of each optimizer on the Kyocera KC200GT - 204.6 W cell and SDM. Table 9
displays the outcomes, revealing that the I_SCHO algorithm exhibits superior performance based on its best
RMSE, worst RMSE and SD. The implemented algorithm performs noticeably better than the other competitive
algorithms by obtaining the minimum Root Mean Square Error (RMSE) as the fitness function which is 0.028211.
The worst RMSE is 0.12365 and this is the minimum among all the other algorithms.

In our experimental analysis, we utilized convergence curves as shown in Fig. 10a. The I_SCHO algorithm
demonstrated stability and effectively minimized the RMSE although with high time complexity after 360
iterations. On the other side, Fig. 10b and d prove high consistency between the measured actual values and
the estimated values. This robust performance instil confidence in the algorithm’s capabilities that indicates
high convergence between the estimated and the measured P-V and I-V characteristics. Figure 10c states the
robustness of I_SCHO algorithm by achieving the least RMSE during the different 30 trials with small deviation
from the mean computed RMSE.

Experiments on double-diode model (DDM)-based Kyocera KC200GT - 204.6 W
This section presents the results of our proposed modified algorithm thirty times on the DDM-based Kyocera
KC200GT - 204.6 W. Table 10 outlines the best-measured parameters of I_SCHO algorithms, demonstrating
optimal fitness by achieving the lowest RMSE values. The data in the Table states that the effectiveness of I_
SCHO achieves the minimal best and worst RMSE and the minimal SD, showcasing a substantial improvement
over nearly all other algorithms.

Figure 11a states that number of trials required for saturation of the DDM-based Kyocera KC200GT-204.6
W experiments was much less than that of the SDM. Comparing the estimated and measured P-V and I-V
characteristics, high alignment was recorded, as shown in Fig. 11b and d. The measured RMSE showed
persistence towards minimal, as shown in Fig. 11c.

Experiments on triple-diode model (TDM)-based Kyocera KC200GT - 204.6 W

To comprehensively evaluate the performance of the I_SCHO algorithm, tests were conducted to determine
the optimal measured parameters for the TDM and Photowatt-PWP201 cell. Table 11, based on RMSE
measurements, clearly demonstrates that I_SCHO is the best-performing method among all the algorithms
tested. The table highlights the key differences between I_SCHO and the other algorithms by comparing their
RMSE values. The I_SCHO algorithm achieved 0.0285 best RMSE and 0.072 worst RMSE. Additionally, Fig. 12a
illustrates the convergence curves for each method, emphasizing the outperformance of I_SCHO in achieving
the lowest RMSE after 370 iterations.

According to Fig. 12a, the experiments conducted using the TDM-based Kyocera KC200GT-204.6 W
exhibited significantly lower temporal complexity compared to STOA, ALO, GWO, and TSA. A high degree of
alignment was observed when contrasting the estimated and measured P-V and I-V characteristics, as illustrated
in Fig. 12b and d. Furthermore, Fig. 12c shows that the measured RMSE consistently approached a minimum
value, indicating a stable and reliable performance during the 30 trials, which was comparable to HGS and STOA
algorithms.

Ultra 85-P

Experiments on single-diode model (SDM)-based ultra 85-P cell

This section summarizes the measured optimal parameter values and root mean square error (RMSE), as
presented in Table 12. These results were derived from experiments conducted using the Ultra 85-P cell and SDM,
after running the optimizer 30 iterations. The recorded results reveals that the I_SCHO method outperforms
others based on best RMSE which is 0.0064055, worst RMSE which is 0.12358, and standard deviation (SD)
which is 0.042705. The proposed applied method satisfies the optimum fitness function.

The enhanced I_SCHO applied algorithm significantly surpass the other competitive algorithms and as
depicted in Fig. 13a, convergence curves show very comparable time complexity, where saturation occurs after
180 iteration, in addition to demonstrating stability and the minimized RMSE relative to SCHO, RSO, GWO,
and TSA, as it was observed that these competitive algorithms achieved comparable performance to I_SHCO,
although I_SHCO was still better and outperforming. Fig. 13c highlights the comparability of the I_SCHO
algorithm with the other algorithms but achieving the lowest RMSE across the thirty trials.
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Figure 13b and d further illustrate a high degree of consistency between the estimated and measured values.
The accurate performance, as evidenced by Fig. 13b and d, which display strong convergence between the
estimated and measured P-V and I-V characteristics, should instill confidence in the algorithm’s capabilities.

Experiments on double-diode model (DDM)-based ultra 85-P cell

This section presents the results of applying our proposed modified method on the DDM-based Ultra 85-P. Table
13 displays the optimal parameters, as indicated by the data in Table 13 that the I_SCHO algorithm achieves the
lowest best RMSE 0.0082285, the least worst RMSE value 0.095215, and a comparable standard deviation (SD),
indicating a significant improvement over nearly all other methods.

Figure 14a shows that the DDM-based Ultra 85-P trials exhibited significantly higher time complexity
than the SDM-based Ultra 85-P experiments, where saturation time is doubled and the least RMSE is reached
after around 400 trials. The time analysis of the other best performing algorithms, like TSA, ALO, and STOA,
also saturate after large number of trials. Figure 14b and d illustrate high alignment between the measured
and estimated P-V and I-V characteristics. Additionally, the observed RMSE values, as depicted in Fig. 14c,
consistently approached the minimum, demonstrating the method’s robustness during all the 30 trials.

Experiments on triple-diode model (TDM)-based ultra 85-P

To fully assess the I_SCHO algorithm’s performance on Ultra 85-P cell, tests were carried out to identify the ideal
measured parameters using the TDM model. Table 14 presents the results of different algorithms and shows that,
according to RMSE measurements, I_SCHO is the best-performing approach. The table illustrates the improved
performance of I_SCHO over the other algorithms by comparing the RMSE values, which were comparable in
terms of worst RMSE and standard deviation (SD) and highly near to those of the HGS algorithm in terms of
the best RMSE.

The convergence curves for each method are shown in Fig 15a, which emphasises the outperformance of
I_SCHO in achieving the least RMSE values. This figure’s analysis indicates that I_SCHO attains the lowest
RMSE after about 300 iterations, roughly matching the HGS algorithm’s performance which converges after 160
iterations.

The I_SCHO algorithm exhibits higher temporal complexity than HGS but demonstrated stability and
effectively achieves very comparable RMSE values, which outperforms all the other algorithms. Notably, as
shown in Fig. 15¢, it consistently achieved the lowest RMSE across all the 30 trials, underscoring the durability of
the I_SCHO algorithm. This robustness is further highlighted by the strong convergence between the estimated
and measured P-V and I-V characteristics, as depicted in Fig. 15b and d, emphasizing the algorithm’s reliability.

STM6-40/36 module

Experiments on single-diode model (SDM)-based STM6-40/36 module

Table 15 presents the root mean square error (RMSE) and the optimal parameter values derived from experiments
conducted with 30 iterations of each optimizer on the STM6-40/36 module cell and SDM. The experiments’
outcomes reveal that the I_SCHO algorithm exhibits superior performance based on its best RMSE 0.002506,
worst RMSE 0.011506, and the very comparable SD value 0.72828. The implemented algorithm performs
noticeably better than the other competitive algorithms by obtaining the minimum Root Mean Square Error
(RMSE) as the fitness function.

In our experimental analysis, we utilized convergence curves as shown in Fig. 16a. The I_SCHO algorithm
demonstrated minimized the RMSE, although saturation accurs after 400 trials, which is still better that HGS,
in term of RMSE and time complexity. On the other hand, Fig. 16b and d prove high consistency between the
measured actual values and the estimated values. Figure 16c¢ states the robustness of the I_SCHO algorithm by
achieving the least RMSE during the different 30 trials without any variations and oscillations as observed with
other algorithms.

Experiments on double-diode model (DDM)-based USTM6-40/36 cell

This section shows the results of thirty trials on the DDM-based USTM6-40/36 utilising our suggested modified
technique I_SCHO. The ideal parameters are shown in Table 16. The Table shows that the I_SCHO algorithm
performs significantly better than all other approaches, achieving the lowest best and worst RMSE values and the
lowest standard deviation (SD), which are 0.0016782,0.0030151, and 0.0002595, respectively.

Figure 17a demonstrates that the DDM-based trials saturated after number of trials same to SDM-based
experiments, which approaches the original SCHO algorithm and ALO algorithm. Figure 17b and d show that
the estimated and measured P-V and I-V characteristics are highly aligned. Furthermore, the measured RMSE
values, shown in Fig. 17¢, continuously approached the minimum, demonstrating the maintainabilty of the
enhanced algorithm.

Experiments on triple-diode model (TDM)-based USTM6-40/36 cell
Finally, experiments were carried out to identify the ideal measured parameters for the TDM and USTM6-40/36
cell. Table 17 presents the results of the different algorithms and shows that, according to RMSE measurements,
I_SCHO is the best-performing approach, which achieves 0.0017386, 0.0033737, and 0.00048366 for the best
RMSE, worst RMSE, and SD, respectively. The table illustrates the improved performance of I_SCHO over
the other algorithms by comparing the RMSE values, which were outperforming in terms of worst RMSE and
standard deviation (SD) and highly near to those of the GWO algorithm in terms of best RMSE.

The convergence curves for each method are shown in Fig. 18a, which emphasizes the efficiency and
outperformance of I_SCHO. This figure’s analysis indicates that _SCHO attains the lowest RMSE after about 250
iterations, which is faster than GWO. Although I_SCHO and GWO achieve almost the same best RMSE values,
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I_SCHO reaches the optimum measurements faster, reducing the GWO saturation time. Again, high alignment
is indicated in Fig. 18b and d between the measured and the estimated P-V and I-V characteristics, while Fig.
18c shows stability and robustness in continuously achieving the minimum RMSE over the 30 different trials.

Figure 19 compares the run times of the different algorithms participating in this comparative study. The
graph is recorded on the RTC France cell using the SDM, DDM, and TDM models.

The average computational cost of I_SCHO using the SDM model is reported in Fig. 19a to be around 3
s. The Figure indicates that the average computation cost is comparable between I_SCHO, RSO, STOA, SCA,
and GWO, but I_SCHO is the best. In “Experiments on single-diode mode based RTC France cell” section, it is
noticed that I_SCHO achieved the best RMSE when compared to these competitive algorithms.

The computational time for the DDM model and RTC France cell is reported in Fig. 19b and is shown to be
around 7 s, higher than the time recorded in the SDM and the TDM models. Concerning the DDM model, the
time performance of I_SCHO is very comparable to SCHO, STOA, and SCA. In “RTC France cell” section, the
I_SCHO achieved the best RMSE compared to these competitive algorithms.

Finally, Fig. 19¢ shows the average computational cost on the TDM around 3 s. The performance of the TDM
model is very close to RSO, TSA, STOA, and SCA algorithms. On the other side, when referring to “RTC France
cell” section, it is indicated that the RMSE values of RSO were the worst. While the RMSE values of the other
algorithms were comparable to I_SCHO but not better, and the saturation of their curves was achieved later than
the suggested algorithm I_SCHO.

Comparative analysis of robustness performance and statistical evaluation

The experiments were conducted on five different solar cells. These are the RTC France cell, Photowatt-PWP201
cell, Kyocera KC200GT - 204.6 W cell, Ultra 85-P cell, and STM6-40/36 module cell. On each cell, experiments
were performed in three different modes. These modes are Single-Diode mode, Double-Diode mode, and Triple-
Diode mode. Each experiment was applied to identify the optimal parameters of each cell. The optimization
process is evaluated by measuring the best RMSE, worst RMSE, and the standard deviation. The performance of
each optimizer is measured over 30 trials to measure each algorithm’s stability and robustness. The differences
between the estimated and calculated values were visualized in P-V and I-V graphs.

The I_SCHO algorithm, identified as the optimum algorithm, consistently outperformed or surpassed other
algorithms across all performance metrics. During the 30 trials, the computed minimized Root Mean Square
Error (RMSE) demonstrated its stability, sustainability, and potential to enhance the original SCHO algorithm
significantly, demonstrating superior performance by achieving lower RMSE values. However, these improved
results were attained after applying more trials, but on the other side, the runtime of I_SCHO was less than
the runtime of SCHO. The figures representing the RMSE over the 30 trials indicate that the I_SCHO method
achieved the lowest RMSE among the thirty trials. This demonstrates sustainability due to the lack of oscillations
in the recorded RMSE values.

When experiments were conducted on the RTC France Cell, the achieved RMSE values of I_SCHO were
comparable to those of the GWO and STOA algorithms when using the SDM and the TDM model. However,
the best RMSE achieved was 0.0012518, the minimum achieved RMSE for all the algorithms. The worst RMSE
recorded in the 30 trials of I_SCHO was 0.019984, which was also the most optimum relative to the other
algorithms. While using the TDM model, results were comparable with algorithms that attained similar RMSE
values, like SCA, HGS, and TSA. However, I_SCHO was faster in saturating to the best optimum RMSE among
these considered algorithms. The I_SCHO outcomes are superior in terms of accuracy and reliability. According
to our analysis of the results, the I_SCHO has the highest accuracy for the SDM, followed by the SCHO, TSA,
GWO, HGS, ALO, SCA, RSO, and STOA in that order.

Experiments conducted on Photowatt-PWP201 cells showed that after 30 iterations, the I_SCHO algorithm
achieved the best and worst RMSE and standard deviation (SD) values. The algorithm achieved the lowest RMSE
and standard deviation (SD) while maintaining Fill Factor and Iphoto values, outperforming other state-of-the-
art algorithms. The I_SCHO algorithm consistently achieved the lowest Root Mean Square Error (RMSE) within
a satisfactory time frame, closely approximating the performance of the SCHO algorithm. The readings between
the measured and estimated values for the P-V and I-V characteristics were identical. The I_SCHO algorithm’s
performance was on par with the TSA in terms of the number of trials required to reach saturation. In terms
of the achieved RMSE values, the I_SCHO algorithm’s performance was comparable to the GWO algorithm,
demonstrating its effectiveness.

The saturation of the convergence curve during the DDM-based Kyocera KC200GT-204.6 W experiments
was much faster than that of the SDM. The I_SCHO algorithm was the best-performing method among all
tested, achieving the lowest RMSE after 370 iterations. Using the TDM model, the I_SCHO algorithm exhibits
higher temporal complexity than HGS but demonstrates stability and achieves comparable RMSE values,
outperforming all other algorithms. Experiments on the Ultra 85-P cell show that the I_SCHO algorithm
exhibits saturates after more trials than HGS but demonstrates stability and achieves comparable RMSE values,
outperforming all other algorithms. The strong convergence between the estimated and measured P-V and I-V
characteristics emphasizes the algorithm’s reliability. When optimizing the STM6-40/36 module cell with the
I_SCHO algorithm, the convergence curves for each method highlight the efficiency and outperformance of I_
SCHO. It achieves the lowest RMSE after 250 iterations, faster than GWO. The algorithm shows high alignment
between measured and estimated P-V and I-V characteristics and its stability and robustness in achieving the
minimum RMSE over 30 trials, providing reliable performance.

The experiments always show high alignment between the estimated P-V and the I-V characteristics
and consistent RMSE, indicating stable and reliable performance. The convergence curve shows satisfactory
iterations to reach the least RMSE. Convergence time is very comparable relative to the fastest algorithms. On
the other hand, the best accuracy is achieved. Figure 19 states that the suggested algorithm, I_SCHO, reaches the
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best-saturated RMSE in average computational time cost in seconds. The average computational time cost of the
algorithm on SDM is reported in Fig. 19a to be around 3 s, while the DDM is reported in Fig. 19b to be around
7 s. Finally, Fig. 19¢ shows the average computational time cost on the TDM around 3 s.

Conclusion

The paper introduces an enhanced optimization algorithm, the Improved Sinh Cosh Optimizer (I_SCHO), for
accurately modelling three solar PV model parameters. By integrating trigonometric operators from the Sine
Cosine Algorithm into the exploitation phase of SCHO, the I_SCHO aims to avoid local optima and accelerate
convergence towards the global optimum. This study demonstrates the algorithm’s superior performance in
parameter estimation, achieving the lowest root mean square error (RMSE) and standard deviation compared
to established methods.

The I_SCHO was applied to three PV models (Single-Diode, Double-Diode, and Triple-Diode) across five
solar cells, including RTC France, Photowatt-PWP201, Ultra 85-P, Kyocera KC200GT-204.6 W, and STM6-
40/36. Results were compared with several algorithms. High alignment between estimated and actual P-V
and I-V characteristics, along with consistent best RMSE values, demonstrates the robustness and reliability
of the I_SCHO. While the convergence time is comparable to the fastest algorithms, the I_SCHO consistently
achieves superior accuracy. The findings suggest that I_SCHO has significant potential to address optimization
challenges in solar cell systems, offering a promising solution. Future research could explore its application in
diverse domains, further enhancing its potential impact.

While this study demonstrates the effectiveness of the enhanced Sinh Cosh Optimizer (I_SCHO) in
estimating parameters for single, double, and triple-diode photovoltaic (PV) models, several areas warrant
further exploration. Future research could focus on extending the application of the I_SCHO algorithm to other
PV models and technologies, such as thin-film and multi-junction cells, to assess its versatility and adaptability.
Another interesting avenue would be to optimize the algorithm’s parameters under varying environmental
conditions, such as temperature fluctuations and partial shading, to enhance its real-world applicability.

Moreover, the integration of the I_SCHO algorithm with hardware-in-the-loop (HIL) simulations
could provide more insights into its performance in real-time scenarios. Finally, conducting comprehensive
experimental validations across a broader range of solar cells and PV modules would solidify the algorithm’s
robustness and ensure that it meets the practical demands of diverse PV systems. These future studies would not
only refine the current algorithm but also contribute significantly to the field of PV parameter estimation and
optimization.

The practical implementation of the enhanced Sinh Cosh Optimizer (I_SCHO) faces several limitations.
The algorithm, while effective in improving accuracy and avoiding local optima, introduces added complexity
that may increase computational costs, making it less suitable for real-time applications with limited resources.
Further research and broader experimental testing are necessary to fully validate the algorithm’s practicality and
robustness in diverse scenarios.
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