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Estimating parameters in solar cell models is crucial for simulating and designing photovoltaic 
systems. The single-diode, double-diode, and three-diode models represent these systems. Parameter 
estimation can be viewed as an optimization problem to minimize the difference between measured 
and estimated data. This study presents PV parameter estimation using the enhanced Sinh Cosh 
Optimizer (I_SCHO), incorporating trigonometric operators from the Sine Cosine Algorithm (SCA). This 
integration improves the algorithm’s ability to navigate complex search spaces, avoid local optima, 
and expedite convergence. Assessment criteria include runtime, convergence behaviour, minimum 
RMSE, and system reliability measured by SD. Results show that I_SCHO consistently delivers superior 
accuracy and reliability compared to other methods. Experiments were conducted on five solar cells: 
RTC France, Photowatt-PWP201, Kyocera KC200GT, Ultra 85-P, and STM6-40/36 module. The study 
also includes a comparative analysis using state-of-the-art algorithms, demonstrating I_SCHO’s 
efficiency through RMSE, Power Voltage (P-V) and Current Voltage (I-V) curves.
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Clean energy is an indispensable component in the worldwide effort to develop sustainable and renewable energy 
sources. Primarily aimed at reducing environmental harm and promoting long-term sustainability, it constitutes 
the seventh goal within the overarching framework of renewable energy objectives. Clean energy sources include 
but are not limited to solar, wind, hydropower, and geothermal power. Each source significantly reduces finite 
fossil fuel resources and mitigates climate change. Clean energy is an indispensable component in the worldwide 
effort to develop sustainable and renewable energy sources. Primarily aimed at reducing environmental harm 
and promoting long-term sustainability, it constitutes the seventh goal within the overarching framework of 
renewable energy objectives. Clean energy sources include but are not limited to solar, wind, hydropower, and 
geothermal power. Each source contributes significantly to reducing finite fossil fuel resources and mitigating 
climate change1.

Particularly for developing nations, the attainment of renewable energy represents an objective of the utmost 
importance. Traditional energy production methods, which frequently contribute to deforestation, greenhouse 
gas emissions, air and water pollution, and environmental harm, can be mitigated by adopting renewable energy 
sources, given the context of global energy demands. Developing countries have a distinct opportunity to bypass 
the environmentally detrimental phases of industrialization and promote sustainable development by embracing 
renewable energy technologies.

Additionally, renewable energy initiatives have the potential to bolster energy security by diversifying the 
energy portfolio and reducing reliance on volatile fossil fuel markets. Subsequently, this assists nations that may 
encounter difficulties stemming from volatile energy prices in bolstering their economic stability and resilience.

Advancing sustainable energy is consistent with worldwide initiatives to fulfill the Sustainable Development 
Goals (SDGs) established by the United Nations and its environmental and economic advantages. Access 
to affordable, pure energy is vital to combat poverty, improve health, and advance education in developing 
countries. Nations can foster economic expansion, furnish their populace with dependable and environmentally 
sustainable energy, and generate employment prospects through investments in renewable energy infrastructure.

Acquiring sustainable energy is an all-encompassing strategy that profoundly impacts worldwide progress 
rather than solely an environmental objective. Particularly significant for the socioeconomic advancement of 
developing countries, it signifies a dedication to a more resilient, sustainable, and equitable future. The global 
transformative influence of renewable energy becomes progressively apparent as the international community 
collaborates to achieve these goals.

Ongoing increases in electricity consumption have resulted from the tremendous growth of the global 
economy. The substantial consumption of coal and oil has resulted in immediate blackouts of electricity 
and increased atmospheric emissions. The electricity problem coincides with the nation’s economy’s most 
challenging development phase. Solar photovoltaic (PV) systems have recently garnered considerable interest 
as a solution to these crises. The process by which photovoltaic cells transform solar energy into electrical 
energy is currently undergoing significant advancements2–4. An equivalent circuit of these PV cells is required 
to evaluate the properties of the cells under different operating conditions. For parameter estimation problems, 
the single-diode model (SDM) and the double-diode model (DDM) have been extensively documented and 
proposed in the literature. These models are widely used and preferred5,6. Solar PV cells being exposed to the 
external environment diminishes the cells’ and the system’s overall efficacy. As the overall performance of the 
PV system is highly dependent on uncertain parameters, it is crucial to estimate the ideality factor (a), series 
resistance (Rse), photocurrent (Ip), reverse saturation current of the diode (Isd), and shunt resistance (Rsh) 
for SDM; and photocurrent (Ip), reverse saturation current of the two diodes (Isd1 and Isd2), shunt resistance 
(Rsh), and series resistance (Rse) for DDM. However, the existing equations utilized in both SDM and DDM 
photovoltaic models are transcendental, which presents challenges in estimating cell variables and analyzing the 
performance of the cell or module, as previously stated. Therefore, it is imperative to develop a methodology that 
can efficiently and effectively calculate the cell/module parameters7,8 Conversely, estimation of their unknown 
parameters utilizing I-V measured data is required when employing SD and DD models. The configurations of 
these parameters directly impact the efficiency of solar PV cells9. The utilization of optimization techniques to 
ascertain the unknown parameters of PV models has been demonstrated to be both practical and efficient10,11. 
Developing an appropriate fitness evaluation function can conceptualize the estimation of PV model parameters 
as an optimization problem involving multidimensional functions12. Nevertheless, the I-V characteristics of PV 
models determine the fitness function.

I-V data does contain some degree of noise interference because it is acquired through measurement. 
Therefore, the optimization problem’s search space is exceedingly complex, multimodal, multivariable, and 
nonlinear13. Two optimization techniques are utilized in estimating parameters for photovoltaic (PV) systems: 
conventional optimization approaches and contemporary metaheuristic algorithms. Lambert W-function 
approaches14–18 ,Newton methods19,20, the tabular method21, the iterative curve fitting method22, and so 
forth are examples of conventional optimization techniques. Nevertheless, traditional optimization methods 
frequently possess certain constraints. For instance, the performance of the problem is contingent upon its initial 
values, the fitness function must be convex, continuous, and derivable, and it is simple to enter a local optimum. 
Modern meta-heuristic approaches are optimization techniques based on population iteration. These methods 
can efficiently resolve complex optimization problems because of their straightforward implementation and 
underlying principle. In recent decades, researchers have devised numerous enhanced iterations of meta-
heuristic algorithms to estimate the unknown parameters of PV models accurately. For example, back-tracking 
search algorithm (BSA)12,23, butterfly optimization algorithm (BOA) [10], slime mold optimizer (SMO)15,24, 
marine predators algorithm (MPA)15,25,26, JAYA algorithm27–29, Jellyfish search optimizer (JSO)30, differential 
evolution (DE)31,32, coyote optimization algorithm (COA)33, wind-driven optimization (WDO)34, radial 
movement optimization (RMO)35, teaching-learning-based optimization (TLBO)36, grasshopper optimization 
algorithm (GOA)37, Harris hawks optimizer (HHO)38,39, equilibrium optimizer (EO)40, bat algorithm (BA)41, 
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cuckoo search optimization (CSO)42, transient search optimization (TSO)43, moth flame optimization (MFO)44, 
particle swarm optimizer (PSO)45,46, electromagnetic-like algorithm (ELA)47, tree growth algorithm (TGA)48, 
sunflower optimization (SFO)49, whale optimization algorithm (WOA)50–52, bacterial foraging optimization 
(BFO)53, ant lion optimizer (ALO)54, simplified swarm optimization (SSO)55, artificial bee colony (ABC)56, 
genetic algorithm (GA)57, biogeography-based optimization (BBO)58, sine cosine algorithm (SCA)59, salp swarm 
algorithm (SSA)60, water cycle algorithm (WCA)61, bird mating optimizer (BMO)62, imperialist competitive 
algorithm (ICA)63, multi-verse optimizer (MVO)64, and so on. These enhanced meta-heuristic algorithms yield 
satisfactory outcomes when estimating parameters for PV models. Nevertheless, an algorithm can never be 
flawless. Consequently, it is imperative to devise an enhanced meta-heuristic optimization methodology to 
approximate the unidentified parameters of solar PV models.

Most researchers have been engaged in estimating the parameters of three PV models (single diode, double 
diode, and three diode models) utilizing optimization algorithms. Ongoing development efforts are devoted to 
optimizing algorithms to attain optimal accuracy for the objective function. Prior research has endeavored to 
develop a PV model capable of producing current data comparable to experimental data.

The following items summarized the contributions of this paper:

• Introducing the Sinh Cosh optimizer (SCHO) designed to identify unspecified DDM, TDM, and SDM pa-
rameters.

• Enhancing the SCHO algorithm by integrating trigonometric op-operators inspired by the Sine Cosine Algo-
rithm (SCA) into the exploitation phase to improve convergence speed and avoid local optima, resulting in a 
more precise estimation of unknown parameters.

• Conducting a comparative analysis of I_SCHO against various competitors to gauge its effectiveness.
• Experimental results indicate that I_SCHO surpasses all compared techniques, producing significantly dif-

ferent and superior outcomes.The rest of the sections are organized as follows: “Problem formulation” section 
discusses the modeling of PV models. “A Sinh Cosh optimizer” section explains the problem formulation. 
“Enhanced Sinh Cosh optimizer with trigonometricoperators ( I_ SCHO)” section analyses the Sinh Cosh 
optimizer (SCHO) algorithm. In “Results and simulation” section, the simulation and results are discussed. 
The conclusions of this paper are presented in “Conclusion” section.

Definition of PV models
This section discusses the mathematical analysis of the three PV models (TPVM) and the modified three 
(MTPVM) models. The TPVM includes a single diode model (SDM), a double diode model (DDM), and a three 
diode model (TDM). Meanwhile, the MTPVM contains a modified single-diode model (MSDM), a modified 
double-diode model (MDDM), and a modified three-diode model (MTDM).

Single diode model
Figure 1 illustrates the equivalent circuit of SDM. The current output in this model is determined through the 
application of the subsequent equation:

 I = Ipv − ID1 − Ish  (1)

 
I = Ipv − Io1

[
e

q(V +IRs)
n1KTc − 1

]
− V + IRs

Rp
 (2)

The SDM produces a current denoted as I, where Ipv represents the generated light current, Ish signifies the 
leakage current, and ID1 stands for the dark saturation current. Rp and Rs represent the shunt and series 
resistances, respectively. Additionally, n1 is the diode ideality factor, K is Boltzmann’s constant, q represents the 
charge of an electron, and Tc denotes the cell temperature. According to the provided mathematical formula, the 
parameters to be estimated in SDM include Ipv, Io1, n1, Rs, and Rp.

Fig. 1. Equivalent circuit for single diode model.
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Double diode model
Figure 2 depicts the electrical diagram for the DDM, employing two diodes to enhance output quality. The 
following equations determine the current output in this model:

 I = Ipv − ID1 − ID2 − Ish  (3)

 
I = Ipv − Io1

[
e

q(V +IRs)
n1KTc − 1

]
− Io2

[
e

q(V +IRs)
n2KTc − 1

]
− V + IRs

Rp
 (4)

where ID2 denotes the dark saturation current of the second diode, and n2 represents the ideality factor of the 
second diode. The model involves seven parameters to be estimated: Ipv, Io1, n1, Rs, Rp, Io2, and n2.

Three diode model
The three-diode model (TDM) illustrated in Fig.3 offers an alternative approach for designing PV modules, 
incorporating three diodes. The computation of the current output in this model is carried out through Eq. (5):

 I = Ipv − ID1 − ID2 − ID3 − Ish  (5)

 
I = Ipv − Io1

[
e

q(V +IRs)
n1KTc − 1

]
− Io2

[
e

q(V +IRs)
n2KTc − 1

]
− Io3

[
e

q(V +IRs)
n3KTc − 1

]
− V + IRs

Rp
 (6)

Where ID3 denotes the dark saturation current of the third diode, and n3 represents the ideality factor of the 
third diode. The TDM involves estimating nine parameters: Ipv, Io1, n1, Rs, Rp, Io2, n2, Io3, and n3.

Problem formulation
The TPVM’s performance is evaluated based on objective functions, specifically the root mean square error 
(RMSE) objective functions, which quantify the disparity between the current computed using estimated 
parameters and the current from the dataset. Equations 7 and 8 articulate the definition of RMSE:

 J (V, I, X) = I − Iexp  (7)

 

RMSE =

√√√√ 1
N

N∑
i=1

(J (V, I, X))2  (8)

Fig. 3. Equivalent circuit for three diode model.

 

Fig. 2. Equivalent circuit for double diode model.
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Here, Iexp represents the experimental current, N denotes the number of data readings, and X encompasses the 
decision variables.

The vector of decision variable for SDM is X = {(Ipv, Io1, n1, Rs and Rp )}.
The vector of decision variable for DDM is X = {(Ipv, Io1, n1, Rs, Rp, Io2 and n2 )}.
The vector of decision variable for TDM is X = {(Ipv, Io1, n1, Rs, Rp, Io2, n2, Io3 and n3)}.
The TPVM parameters can be estimated through optimization algorithms. This study utilizes data from 

the R.T.C France solar cell for TPVM information. The Enhanced Sinh Cosh Optimizer (I_SCHO) algorithm, 
recently introduced, is employed. The outcomes are compared with various algorithms, including the Grey Wolf 
Optimizer (GWO)65, Ant Lion Optimizer (ALO)54, Sine Cosine Algorithm (SCA)66, Sooty Tern Optimization 
Algorithm (STOA)67, Tunicate Swarm Algorithm (TSA)68, Hunger Games Search (HGS)69, Rat Swarm Optimizer 
(RSO)70, and Sinh Cosh Optimizer (SCHO)71. The search space boundaries for parameter estimation using the 
R.T.C France solar cell are detailed in Table 112.

A Sinh Cosh Optimizer
The Sinh Cosh Optimizer (SCHO) is a novel meta-heuristic optimization algorithm inspired by the characteristics 
of the hyperbolic functions Sinh and Cosh72. It is designed to balance exploration and exploitation in optimization 
problems by utilizing a mathematical model with phases of exploration and exploitation, a bounded search 
strategy, and a switching mechanism. SCHO has shown strong performance in solving benchmark functions 
and engineering design problems compared to other well-known meta-heuristic algorithms. The following 
subsection illustrates the basic steps of the SCHO.

Phase of initialization
Random initialization To commence, the algorithm initializes a set of candidate solutions randomly according 
to Eq. (9).

 X = rand(N, dim) × (ub − lb) + lb (9)

where dim denotes the dimension of problem variables, N is the number of solutions, ul, and lb are the upper and 
lower bounds of variables, respectively, and rand is a generated random number in the range 0 and 1.

The aforementioned preliminary solutions function as the foundation for the process of optimization. Candidate 
solutions are pivotal in instigating the exploration and exploitation phases as they symbolize prospective 
resolutions to the optimization problem.

Exploration stage
Extensive search In the exploration phase, the algorithm searches the solution space to identify novel regions 
that might harbor optimal solutions. This process involves two subphases, and switching between them is given 
by Eq. (10).

 
T = floor

(
Max_iteration

ct

)
 (10)

where ct is a coefficient for establishing the switching point in two phases, fixed at 3.6. Max_iteration is the 
maximum iteration rounds. floor denotes a function used for rounding down.

• Exploration (phase 1): Early iterations will focus on exploring the outside edges of the search space close to 
the search agents’ positions, while later iterations will bring the agents closer to the optimal answer. The up-
dated position at this stage is done according to Eq. (11)

 
Xt+1

(i,j) =
{

X
(j)
best + r1 × W1 × Xt

(i,j) if r2 > 0.5
X

(j)
best − r1 × W1 × Xt

(i,j) if r2 < 0.5
 (11)

 Where:

Parameters Lower bound Upper bound

Ipv 0 1

Io1, Io2 and Io3 (µA) 0 1

Rs, Rs1 0 0.5

Rp 0 100

n1, n2 and n3 1 2

Table 1. The limits of estimated parameters12.
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• Xt
(i,j) and Xt+1

(i,j) represent the current and updated position of the jth dimension of the ith solution.
• X

(j)
best denotes the best position achieved so far in the optimization process in the jth dimension.

• r1 and r2 are random numbers in the interval [0, 1]. These random values introduce stochasticity into the 
position update process.

• W1 is the weight coefficient for controlling candidate solutions’ search space exploration. It can be calcu-
lated based on Eqs. (12) and (13) where a1 is a monotonically decreasing function and r3 and r4 ∈ [0, 1]. 
u and m are sensitive coefficients that regulate the accuracy of the exploration process. 

 W1 =r3 × a1 × (cosh r4 + u × sinh r4 − 1)  (12)

 
a1 =3 ×

(
−1.3 × t

Max_iteration
+ m

)
 (13)

• Exploration (phase 2): Search agents exhibit minimal sensitivity to the optimal solution and, as a result, navi-
gate in a non-directional manner toward the subsequent position using their current location as a guide. This 
can be done through Eq. (14)

 

Xt+1
(i,j) =





Xt
(i,j) +

∣∣∣ε × W2 × X
(j)
best − Xt

(i,j)

∣∣∣ if r5 > 0.5

Xt
(i,j) −

∣∣∣ε × W2 × X
(j)
best − Xt

(i,j)

∣∣∣ if r5 < 0.5
 (14)

 Where:
• Xt+1

(i,j) and Xt
(i,j) represent the updated and current position of the jth dimension of the ith solution.

• X
(j)
best denotes the best position achieved.

• ε is a tiny positive number set to 0.003 based on the experiments.
• W2 is the weight coefficient calculated using Eqs. (15) and (16) where a2 is a monotonically decreasing 

function and r5 and r6 ∈ [0, 1]. n is a sensitive coefficient that regulates the accuracy of the exploration 
process. 

 W2 =r6 × a2  (15)

 
a2 =2 ×

(
− t

Max_iteration
+ n

)
 (16)

The exploitation stage
Enhanced search To improve solution quality, candidate solutions are modified to take advantage of identified 
regions and refine the search for the optimal solution. This process includes two phases, as described below.

• Exploitation (phase one): X’s closest neighbor is targeted in the initial exploitation stage. Therefore, update the 
position according to Eq. (17). 

 
Xt+1

(i,j) =
{

X
(j)
best + r7 × W3 × Xt

(i,j) if r8 > 0.5
X

(j)
best − r7 × W3 × Xt

(i,j) if r8 < 0.5
 (17)

 Where:
 – Xt

(i,j), Xt+1
(i,j), and X(j)

best represent the current and updated position and the best solution, respectively, 
which are defined before.

 – r7 and r8 are two random numbers generated in the interval [0, 1].
 – W3 is the weight coefficient that controls the search space around the potential solutions, ranging from 

close to far. It can be calculated based on Eq. (18). a1 computed according to Eq. (13) and r9 and r10 
∈ [0, 1]. u as defined before in the exploration phase. 

 W3 = r9 × a1 × (cosh r10 + u × sinh r10) (18)

Scientific Reports |         (2025) 15:4481 6| https://doi.org/10.1038/s41598-025-85841-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


• Exploitation (phase two): candidate solutions will deeply exploit the best solution produced so far, intensify-
ing exploitation as iterations increase. As a result, the update position is done according to Eq. (19)

 
Xt+1

(i,j) = Xt
(i,j) + r11 × sinh r12

cosh r12

∣∣∣W2 × X
(j)
best − Xt

(i,j)

∣∣∣ (19)

 where r11 and r12 ∈ [0, 1], W2 computed before according to Eq. (15) while sinh r12
cosh r12

 is employed to retain 
potential solutions’ diversity.

The bounded search strategy
To fully use the possible search space, an approach similar to animal hunting in the latter stage is applied in 
SCHO, known as the bounded search strategy. To thoroughly explore and utilize the potential space, all candidate 
solutions are randomly started in this potential space by utilizing Eq. (9). Then, the space will be extensively 
investigated and utilized. Further, the initialization of the bounded search strategy can be computed by applying 
Eq. (20) where the value of BSk  is computed according to Eq. (21) starting at k = 1.

 
BSk+1 =BSk + floor

(
Max_iteration − BSk

α

)
 (20)

 
BS1 =floor

(
Max_iteration

β

)
 (21)

The value of α, set to 4.6, indicates a sensitive coefficient that governs the accuracy of thorough exploration and 
exploitation in the potential space. While the value that initiates the bounded search strategy is controlled by 
β and is set to 1.55. When SCHO employs the bounded search technique every time, the upper ub and lower 
bounds lb of decision variables will be determined using Eqs. (22) and (23) based on the jth best and suboptimal 
solutions.

 
lbk =X

(j)
best −

(
1 − t

Maxiteration

)
×

∣∣∣X(j)
best − X

(j)
second

∣∣∣  (22)

 
ubk =X

(j)
best +

(
1 − t

Maxiteration

)
×

∣∣∣X(j)
best − X

(j)
second

∣∣∣  (23)

Switching among exploration and exploitation
To achieve exploration and exploitation of the whole search space and escape from the local optimum in the 
later iteration, the switching mechanism should largely focus on exploration but conduct a modest amount of 
exploitation in the early iterations. In contrast, in the latter iterations, the switching mechanism should mostly 
focus on the exploitation but do a minor exploration. This can be achieved by using Eqs. (24) and (25)

 
A =

(
p − q ×

(
t

Max_iteration

)SC
)

× r13.  (24)

 

SC =
cosh

(
t

Max_iteration

)

sinh
(

t
Max_iteration

)  (25)

where p and q are the balancing coefficients for managing the exploration and exploitation throughout iterations, 
and r13 is a random value in the interval zero and one.

The overall steps of the SCHO are illustrated in algorithm 1
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Algorithm 1. The algorithmic steps of SCHO algorithm.

Enhanced Sinh Cosh Optimizer with trigonometric pperators ( I_ SCHO)
This section outlines the methodology for enhancing the exploitation stage of the SCHO using trigonometric 
operators inspired by the Sine Cosine Algorithm (SCA).

• Trigonometric operators: The addition of sin and cos functions to dynamically update agent positions near the 
current best solution, enhancing local search capabilities and aiding in avoiding local optima.

• Adaptive coefficients: α(iter) and γ(iter) are designed to adjust the influence of trigonometric updates over 
iterations, promoting a balance between exploration and exploitation phases.

Step 1: Initialization
Initialize a population of solutions Xi, for i = 1, 2, . . . , N , within the search space. Randomly assign values to 
the parameters of the triple-diode photovoltaic model within the permissible bounds.

Step 2: Evaluation
Evaluate the fitness of each solution using an objective function, typically the root mean square error (RMSE) 
between the model output and actual data.
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Step 3: Enhanced Exploitation Using Trigonometric Operators
For each solution in the population, calculate new positions using trigonometric updates:

 Xi,new = Xbest + α(iter) · sin(θ) · |β · Xbest − Xi| + γ(iter) · cos(ϕ) · |δ · Xbest − Xi|

Step 4: Update and Selection
Update the position of each solution in the population to its new position if the new position has a better fitness 
value than the current one. Update the best solution Xbest if any new solution has a better fitness value.

Step 5: Adaptive adjustments
Adaptively adjust α(iter) and γ(iter) based on the optimization progress to smoothly transition from 
exploration to exploitation.

Step 6: Termination
Repeat steps 3 to 5 until a termination criterion is met, such as reaching a maximum number of iterations or 
achieving a predefined level of accuracy.

Algorithm 2. Enhanced Exploitation Stage of SCHO with Trigonometric Operators (I_SCHO)
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Algorithm 3. Enhanced Sinh Cosh Optimizer with trigonometric operators (I_SCHO) for triple-diode PV 
models

Results and simulation
This section presents comprehensive experiments that state the effectiveness of the enhanced Sinh Cosh 
Optimizer with trigonometric Operators( I_ SCHO). The enhanced proposed approach is utilized for the 
parameter identification of the three PV models for different solar cells. These cells are RTC France cell, 
Photowatt-PWP201 cell, Kyocera KC200GT - 204.6 W cell, Ultra 85-P cell, and STM6-40/36 module cell. For 

Common parameters for all algorithms

Parameter Setting/value

Population size (N) 30 (for all algorithms) except for I_SCHO (50)

Maximum iterations (MaxIter) 500

Algorithm-specific parameters

Algorithm Parameter settings

Sinh Cosh Optimizer (I_SCHO)

 Exploration weight (W1): 0.5 (initially)
 Exploitation weights (W2, W3): dynamically adjusted based on iteration number
 Trigonometric operators coefficients (α, γ): 1 (initially), adjusted with iterations
 Bounded search strategy parameters (BS1, α): BS1 = 1.55, α = 4.6
 Switching mechanism coefficients (p, q): adjusted to shift focus from exploration to exploitation

Grey Wolf Optimizer (GWO)  Wolves hierarchy: alpha, beta, delta, omega
 Convergence parameters (a, A, C): a = 2 → 0, A, C in [−2a, 2a]

Ant Lion Optimizer (ALO)
 Random walk parameters: fixed or random step size for ant’s walk
 Exploitation mechanism: Ant lion traps and random walks
 Selection mechanism: Roulette wheel selection

Sine Cosine Algorithm (SCA)
 Trigonometric operators coefficients (α, γ): fixed, adjusted with iterations
 Exploitation mechanism: cosine and sine functions for local search
 Selection mechanism: determined by sine and cosine functions

Sooty Tern Optimization Algorithm (STOA)  Exploitation mechanism: guided by the best sooty tern and nearest predator
 Selection mechanism: determined by distance to the best sooty tern

Tunicate Swarm Algorithm (TSA)  Leadership-based exploration and exploitation

Hunger Games Search (HGS)  Hunger and exploration balance
 Selection mechanism: leadership and power dynamics

Rat Swarm Optimizer (RSO)  Interaction among rats for exploitation
 Selection mechanism: determined by fitness and proximity

Table 2. Parameter settings for various optimization algorithms.

 

Scientific Reports |         (2025) 15:4481 10| https://doi.org/10.1038/s41598-025-85841-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


each cell, experiment were performed on the three PV models, Single-Diode model (SDM), Double-Diode 
model (DDM), and Triple-Diode model (TDM).

This section proposes comparative experiments and justifies our recommendation of the proposed 
optimization algorithm. Results of the I_SCHO are compared with Grey wolf optimizer (GWO)65, ant lion 
optimizer (ALO)54, Sine cosine algorithm (SCA)66, Sooty Tern Optimization Algorithm (STOA)67, Tunicate 
Swarm Algorithm (TSA)68, Hunger Games Search (HGS)69, Rat Swarm Optimizer (RSO)70, and Sinh Cosh 
Optimizer (SCHO).The parameter settenting for each algorithm can be found in Table 2

Experiments are illustrated in an comprehensive way as follows:

• Experiments on RTC France cell and SDM are shown in Table 3
• Experiments on RTC France cell and DDM are shown in Table 4
• Experiments on RTC France cell and TDM are shown in Table 5
• Experiments on Photowatt-PWP201 cell and SDM are shown in Table 6
• Experiments on Photowatt-PWP201 cell and DDM are shown in Table 7
• Experiments on Photowatt-PWP201 cell and TDM are shown in Table 8
• Experiments on Kyocera KC200GT - 204.6 W cell and SDM are shown in Table 9
• Experiments on Kyocera KC200GT - 204.6 W cell and DDM are shown in Table 10
• Experiments on Kyocera KC200GT - 204.6 W cell and TDM are shown in Table 11
• Experiments on Ultra 85-P cell and SDM are shown in Table 12
• Experiments on Ultra 85-P cell and DDM are shown in Table 13
• Experiments on Ultra 85-P cell and TDM are shown in Table 14
• Experiments on STM6-40/36 module cell and SDM shown in Table 15
• Experiments on STM6-40/36 module cell and DDM shown in Table 16
• Experiments on STM6-40/36 module cell and TDM shown in Table 17The accuracy of P-V and I-V esti-

mation and similarity with the actual measurements are recorded for proving effeciency of estimation. The 
measured RMSE over 30 trials were measured to the suggested (I_SCHO) in comparision to the state-of-art 
algorithms. Also the time complexity to reach saturation and minimal RMSE will be represented in the fol-
lowing subsections.

The I_SCHO method and the competing algorithms have been tested using the different datasets in 30 different 
experiments with 500 iterations in each run to provide a fair benchmarking comparison. We conduct experiments 
on a machine with the following specifications: 64-bit Windows 10 Professional, 2.40GHz Intel(R) Core(TM) 
i7-4700MQ processor, and 16GB of RAM. MATLAB R2019a is used for the implementation of each algorithm.

RTC France cell
Experiments on single-diode mode based RTC France cell
In this section, our first experiments were conducted on the SDM-based RTC France cell. Table 3 reports the 
best-obtained parameters’ measurements and the Root Mean Square Error (RMSE). The experimental outcomes 
were recorded after each optimizer’s execution 30 times. The findings reveal that I_SCHO emerges as the 
optimum algorithm, as inferred from its Best RMSE performance, either comparable to the other algorithms or 
surpassing them across all performance metrics, as shown in the table.

The convergence curve is employed during our experimental investigations, and the standard deviation is 
recorded as an auxiliary metric for performance evaluation. I_SCHO algorithm attained stability and minimized 
Root Mean Square Error (RMSE), as shown in Fig. 4a. I_SCHO consistently outperforms or performs on par 
with alternative algorithms but never exhibits inferior performance. Furthermore, utilizing the fill factor and 
Iphoto parameters underscores disparities between the findings yielded by I_SCHO and those produced by the 
other state-of-the-art algorithms.

Contrary to being the fastest algorithm in achieving convergence, our findings indicate that I_SCHO 
exhibited a comparable and satisfactory pace relative to the other algorithms. However, it was distinguished 
that the I_SCHO reached the smallest RMSE value. Notably, this optimal saturation was attained after almost 
120 iterations, underscoring the efficacy of I_SCHO in achieving heightened precision within a modest 
computational timeframe.

The I_SCHO method, compared to the other algorithms, as shown in Fig. 4c, achieved the lowest RMSE among 
the thirty trials, demonstrating sustainability and great enhancement relative the original SCHO algorithm. 
Moreover, Fig. 4b and d illustrate the P-V and I-V curves derived from the optimal parameters acquired using 
the I_SCHO algorithm. These graphical representations demonstrate the congruity between the estimated and 
the actual measurements. It is observed from these figures that the parameters inferred by I_SCHO facilitate the 
attainment of current and power levels that exhibit a high degree of consistency with the empirical data.

Experiments on double-diode model-based RTC France cell
This section summarizes the experiments after the thirty trials of the excuted algorithms but now on the DDM-
based RTC France. The best and the worst RSME values are again computed, as presented in Table 4. This 
tabulated data reveals that I_SCHO attains the foremost position concerning the best RMSE which is 0.0016458 
among the algorithms surveyed. The worst RMSE and the SD values in Table 4 indicate a notable outperformance 
of I_SCHO outcomes among 90% of the other algorithms.

Figure 5a measures the convergence curve of the applied algorithms based on DDM. I_SCHO performs 
better in achieving the lowest Root Mean Square Error (RMSE) than the other algorithms. Despite not being 
the most rapid, I_SCHO exhibits a satisfactory convergence rate, reaching saturation after approximately 130 
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Fig. 4. Comparison between algorithms based on SDM and RTC France cell.
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iterations. This convergence behavior is notably compensated by its ability to achieve the lowest RMSE values 
consistently.

Although the I_SCHO approach produced the lowest RMSE out of thirty trials, indicating sustainability due 
to the lack of oscillations in the recorded RMSE values, it is very comparable to GWO and STOA algorithms, 
as shown in Fig. 5c. This minimum fitness function value is reflected on the P-V and I-V curves that show high 
identity between the estimated and the Real measured values as indicated in Fig. 5b and d.

Experiments on triple-diode model-based RTC France cell
In this section, we apply the I_SCHO algorithm to identify the optimal parameters based on TDM and RTC 
France cell, thus facilitating a comprehensive evaluation of its performance. Table 5 presents the outcomes yielded 
by various algorithms in this context, clearly indicating that I_SCHO acts as the best-performing algorithm. 
Additionally, the table includes the RMSE values contrasting I_SCHO’s results with those of its competitors, 
illustrating notable distinctions between I_SCHO and all other algorithms examined. The best RMSE achieved 
was 0.0012518, the minimum achieved RMSE for all the algorithms. The worst RMSE recorded in the 30 trials of 
I_SCHO was 0.019984, which is also the most optimum relative to the other algorithms. Although the measured 
SD wasn’t the minimum, it was 0.0050127, which is very comparable to the different competitive algorithms.

Furthermore, Fig. 6a depicts the convergence curves of each algorithm, underscoring the superiority of I_
SCHO in achieving the optimum RMSE. Analysis of this figure reveals that I_SCHO achieves the lowest RMSE 
after approximately 120 iterations. As Fig. 6c illustrates, I_SCHO represents an enhanced version of SCHO, 
demonstrating superior performance by achieving lower RMSE (Root Mean Square Error) values. However, it is 
essential to note that these improved results were attained with increased computation time, indicating a higher 
complexity for I_SCHO. Despite this, compared with other algorithms that attained similar RMSE values, like 
SCA, HGS, and TSA, I_SCHO is faster and achieves the best optimum RMSE among the considered methods. 
I_SCHO emerges as the most accurate among the algorithms compared to estimate the unknown parameters 
of the TDM-based RTC France solar cell, as evidenced by Fig. 6b and d. These figures demonstrate a high level 
of consistency between the I-V and P-V curves estimated by I_SCHO and the corresponding measured data, as 
stated before in experiments of SDM and DDM- based RTC cell.

Photowatt-PWP201
Experiments on single-diode model (SDM)-based Photowatt-PWP201
To emphasize the conclusions from Table 3, other experiments were recorded in Table 6, presenting the 
measurements, but now on the SDM-based Photowatt-PWP201 cell.

After executing the optimizer 30 times, the experiments state that I_SCHO is the best algorithm based on 
the computed best and worst RMSE values which were 0.0020526 and 0.0085558 respectively, in addition to 
achieving the minimum SD to be 0.0010026 .The experiments yielded the lowest RMSE and standard deviation 
(SD) while maintaining the Fill Factor and Iphoto values, outperforming other state-of-the-art algorithms. This 
demonstrates the efficiency of the applied algorithm.

Figure 7a shows the convergence curve where the smallest RMSE value is achieved after around 60 iterations 
by I_SCHO. These experiments again emphasize the efficiency of I_SCHO in achieving high precision within 
a very small duration achieving very satisfactory number of trials compared to other algorithms, especially the 
original SCHO algorithm.

Figure 7b and d illustrate the P-V and I-V curves derived from the optimal parameters obtained using the I_
SCHO algorithm on the SDM-based Photowatt-PWP201 cell. These graphs serve as a testament to the I_SCHO 
algorithm’s reliability, demonstrating the high alignment between the estimated and actual measurements. 
The parameters inferred by I_SCHO enable the attainment of current and power levels that closely match the 
empirical data, providing reassurance about the algorithm’s reliability.

The I_SCHO approach produced the lowest RMSE out of thirty trials, indicating that no oscillations were 
made to achieve the minimum RMSE, Fig. 7c shows that that I_SCHO is the most sustainable and outperforms 
all the other algorithms .

Experiments on double-diode model (DDM)-based Photowatt-PWP201
This section presents the results of experiments conducted by executing our proposed modified algorithm thirty 
times on the DDM-based Photowatt-PWP201 cell. Table 7 shows the best-measured parameters, which yield the 
lowest RMSE values and represent optimal fitness. It is indicated that the best and worst RMSE, 0.0020441 and 
0.0033266, respectively, are very close. This approach between the measured RMSE values states the stability of 
the I_SCHO algorithm regarding the measuring fitness function. This table indicates that I_SCHO significantly 
outperforms nearly all other algorithms, which is clear evidence of its effectiveness.

Figure 8a depicts the convergence curves of the evaluated competitive algorithms, demonstrating that 
I_SCHO consistently achieves the lowest Root Mean Square Error (RMSE) within a satisfactory time frame. 
I_SCHO reaches saturation after approximately 110 iterations, closely approximating the performance of the 
SCHO algorithm, which saturates in 100 iterations but with a higher RMSE value. Figure 8b and d illustrate 
that the readings between the measured and estimated values are nearly identical between the P-V and I-V 
characteristics. Additionally, Fig. 8c again demonstrates that the RMSE remains consistently stable and minimal 
across the 30 different trials.

Experiments on triple-diode model (TDM)-based Photowatt-PWP201
Experiments were also conducted to find the ideal measured parameters for the TDM and Photowatt-PWP201 
cell. The results recorded by the different algorithms are shown in Table 8, which unequivocally shows that 
I_SCHO is the best-performing method based on the RMSE and SD measurements. Along with comparing 
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Fig. 5. Comparison between algorithms based on DDM and RTC France cell.

 

Scientific Reports |         (2025) 15:4481 29| https://doi.org/10.1038/s41598-025-85841-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 6. Comparison between algorithms based on TDM and RTC France cell.
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Fig. 7. Comparison between algorithms based on SDM and Photowatt-PWP201 cell.
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Fig. 8. Comparison between algorithms based on DDM and Photowatt-PWP201 cell.
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I_SCHO’s outcomes to its rivals, the table emphasises the critical distinctions between I_SCHO and the other 
algorithms examined. The best RMSE value is 0.0020514, and the worst RMSE value is 0.0036206. On the other 
side, regarding the SD, the most optimum value is 0.00036658 and is achieved by our suggested enhanced I_SCHO 
algorithm. Figure 9a shows the convergence curves for each algorithm, highlighting I_SCHO’s outperformance. 
Analysis of this figure shows that after about 170 iterations, I_SCHO achieves the lowest RMSE, proving the most 
accuracy for estimating unknown parameters. The I_SCHO algorithm reaches saturation after approximately 
170 iterations, closely matching the time performance of the TSA and, on the other side, achieving an RMSE 
value comparable to the GWO algorithm, which saturates after 500 iterations but with a higher RMSE value. 
Figure 9b and d illustrate that the readings between the observed and estimated values for the P-V and I-V 
characteristics are nearly identical. Additionally, Fig. 9c indicates that the RMSE remains consistently low and 
stable across 30 trials, and very comparable to HGS, SCHO, STOA, and TSA.

Kyocera KC200GT - 204.6 W
Experiments on single-diode model (SDM)-based Kyocera KC200GT - 204.6 W
Table 9 presents the root mean square error (RMSE) and the optimal parameter values from experiments 
conducted with 30 iterations of each optimizer on the Kyocera KC200GT - 204.6 W cell and SDM. Table 9 
displays the outcomes, revealing that the I_SCHO algorithm exhibits superior performance based on its best 
RMSE, worst RMSE and SD. The implemented algorithm performs noticeably better than the other competitive 
algorithms by obtaining the minimum Root Mean Square Error (RMSE) as the fitness function which is 0.028211. 
The worst RMSE is 0.12365 and this is the minimum among all the other algorithms.

In our experimental analysis, we utilized convergence curves as shown in Fig. 10a. The I_SCHO algorithm 
demonstrated stability and effectively minimized the RMSE although with high time complexity after 360 
iterations. On the other side, Fig. 10b and d prove high consistency between the measured actual values and 
the estimated values. This robust performance instil confidence in the algorithm’s capabilities that indicates 
high convergence between the estimated and the measured P-V and I-V characteristics. Figure 10c states the 
robustness of I_SCHO algorithm by achieving the least RMSE during the different 30 trials with small deviation 
from the mean computed RMSE.

Experiments on double-diode model (DDM)-based Kyocera KC200GT - 204.6 W
This section presents the results of our proposed modified algorithm thirty times on the DDM-based Kyocera 
KC200GT - 204.6 W. Table 10 outlines the best-measured parameters of I_SCHO algorithms, demonstrating 
optimal fitness by achieving the lowest RMSE values. The data in the Table states that the effectiveness of I_
SCHO achieves the minimal best and worst RMSE and the minimal SD, showcasing a substantial improvement 
over nearly all other algorithms.

Figure 11a states that number of trials required for saturation of the DDM-based Kyocera KC200GT-204.6 
W experiments was much less than that of the SDM. Comparing the estimated and measured P-V and I-V 
characteristics, high alignment was recorded, as shown in Fig. 11b and d. The measured RMSE showed 
persistence towards minimal, as shown in Fig. 11c.

Experiments on triple-diode model (TDM)-based Kyocera KC200GT - 204.6 W
To comprehensively evaluate the performance of the I_SCHO algorithm, tests were conducted to determine 
the optimal measured parameters for the TDM and Photowatt-PWP201 cell. Table 11, based on RMSE 
measurements, clearly demonstrates that I_SCHO is the best-performing method among all the algorithms 
tested. The table highlights the key differences between I_SCHO and the other algorithms by comparing their 
RMSE values. The I_SCHO algorithm achieved 0.0285 best RMSE and 0.072 worst RMSE. Additionally, Fig. 12a 
illustrates the convergence curves for each method, emphasizing the outperformance of I_SCHO in achieving 
the lowest RMSE after 370 iterations.

According to Fig. 12a, the experiments conducted using the TDM-based Kyocera KC200GT-204.6 W 
exhibited significantly lower temporal complexity compared to STOA, ALO, GWO, and TSA. A high degree of 
alignment was observed when contrasting the estimated and measured P-V and I-V characteristics, as illustrated 
in Fig. 12b and d. Furthermore, Fig. 12c shows that the measured RMSE consistently approached a minimum 
value, indicating a stable and reliable performance during the 30 trials, which was comparable to HGS and STOA 
algorithms.

Ultra 85-P
Experiments on single-diode model (SDM)-based ultra 85-P cell
This section summarizes the measured optimal parameter values and root mean square error (RMSE), as 
presented in Table 12. These results were derived from experiments conducted using the Ultra 85-P cell and SDM, 
after running the optimizer 30 iterations. The recorded results reveals that the I_SCHO method outperforms 
others based on best RMSE which is 0.0064055, worst RMSE which is 0.12358, and standard deviation (SD) 
which is 0.042705. The proposed applied method satisfies the optimum fitness function.

The enhanced I_SCHO applied algorithm significantly surpass the other competitive algorithms and as 
depicted in Fig. 13a, convergence curves show very comparable time complexity, where saturation occurs after 
180 iteration, in addition to demonstrating stability and the minimized RMSE relative to SCHO, RSO, GWO, 
and TSA, as it was observed that these competitive algorithms achieved comparable performance to I_SHCO, 
although I_SHCO was still better and outperforming. Fig. 13c highlights the comparability of the I_SCHO 
algorithm with the other algorithms but achieving the lowest RMSE across the thirty trials.
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Fig. 9. Comparison between algorithms based on TDM and Photowatt-PWP201 cell.
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Fig. 10. Comparison between algorithms based on SDM and Kyocera KC200GT - 204.6 W cell.
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Fig. 11. Comparison between algorithms based on DDM and Kyocera KC200GT - 204.6 W cell.
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Fig. 12. Comparison between algorithms based on TDM and Kyocera KC200GT - 204.6 W cell.
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Fig. 13. Comparison between algorithms based on SDM and ultra 85-P W cell.
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Figure 13b and d further illustrate a high degree of consistency between the estimated and measured values. 
The accurate performance, as evidenced by Fig. 13b and d, which display strong convergence between the 
estimated and measured P-V and I-V characteristics, should instill confidence in the algorithm’s capabilities.

Experiments on double-diode model (DDM)-based ultra 85-P cell
This section presents the results of applying our proposed modified method on the DDM-based Ultra 85-P. Table 
13 displays the optimal parameters, as indicated by the data in Table 13 that the I_SCHO algorithm achieves the 
lowest best RMSE 0.0082285, the least worst RMSE value 0.095215, and a comparable standard deviation (SD), 
indicating a significant improvement over nearly all other methods.

Figure 14a shows that the DDM-based Ultra 85-P trials exhibited significantly higher time complexity 
than the SDM-based Ultra 85-P experiments, where saturation time is doubled and the least RMSE is reached 
after around 400 trials. The time analysis of the other best performing algorithms, like TSA, ALO, and STOA, 
also saturate after large number of trials. Figure 14b and d illustrate high alignment between the measured 
and estimated P-V and I-V characteristics. Additionally, the observed RMSE values, as depicted in Fig. 14c, 
consistently approached the minimum, demonstrating the method’s robustness during all the 30 trials.

Experiments on triple-diode model (TDM)-based ultra 85-P
To fully assess the I_SCHO algorithm’s performance on Ultra 85-P cell, tests were carried out to identify the ideal 
measured parameters using the TDM model. Table 14 presents the results of different algorithms and shows that, 
according to RMSE measurements, I_SCHO is the best-performing approach. The table illustrates the improved 
performance of I_SCHO over the other algorithms by comparing the RMSE values, which were comparable in 
terms of worst RMSE and standard deviation (SD) and highly near to those of the HGS algorithm in terms of 
the best RMSE.

The convergence curves for each method are shown in Fig 15a, which emphasises the outperformance of 
I_SCHO in achieving the least RMSE values. This figure’s analysis indicates that I_SCHO attains the lowest 
RMSE after about 300 iterations, roughly matching the HGS algorithm’s performance which converges after 160 
iterations.

The I_SCHO algorithm exhibits higher temporal complexity than HGS but demonstrated stability and 
effectively achieves very comparable RMSE values, which outperforms all the other algorithms. Notably, as 
shown in Fig. 15c, it consistently achieved the lowest RMSE across all the 30 trials, underscoring the durability of 
the I_SCHO algorithm. This robustness is further highlighted by the strong convergence between the estimated 
and measured P-V and I-V characteristics, as depicted in Fig. 15b and d, emphasizing the algorithm’s reliability.

STM6-40/36 module
Experiments on single-diode model (SDM)-based STM6-40/36 module
Table 15 presents the root mean square error (RMSE) and the optimal parameter values derived from experiments 
conducted with 30 iterations of each optimizer on the STM6-40/36 module cell and SDM. The experiments’ 
outcomes reveal that the I_SCHO algorithm exhibits superior performance based on its best RMSE 0.002506, 
worst RMSE 0.011506, and the very comparable SD value 0.72828. The implemented algorithm performs 
noticeably better than the other competitive algorithms by obtaining the minimum Root Mean Square Error 
(RMSE) as the fitness function.

In our experimental analysis, we utilized convergence curves as shown in Fig. 16a. The I_SCHO algorithm 
demonstrated minimized the RMSE, although saturation accurs after 400 trials, which is still better that HGS, 
in term of RMSE and time complexity. On the other hand, Fig. 16b and d prove high consistency between the 
measured actual values and the estimated values. Figure 16c states the robustness of the I_SCHO algorithm by 
achieving the least RMSE during the different 30 trials without any variations and oscillations as observed with 
other algorithms.

Experiments on double-diode model (DDM)-based USTM6-40/36 cell
This section shows the results of thirty trials on the DDM-based USTM6-40/36 utilising our suggested modified 
technique I_SCHO. The ideal parameters are shown in Table 16. The Table shows that the I_SCHO algorithm 
performs significantly better than all other approaches, achieving the lowest best and worst RMSE values and the 
lowest standard deviation (SD), which are 0.0016782 ,0.0030151, and 0.0002595, respectively.

Figure 17a demonstrates that the DDM-based trials saturated after number of trials same to SDM-based 
experiments, which approaches the original SCHO algorithm and ALO algorithm. Figure 17b and d show that 
the estimated and measured P-V and I-V characteristics are highly aligned. Furthermore, the measured RMSE 
values, shown in Fig. 17c, continuously approached the minimum, demonstrating the maintainabilty of the 
enhanced algorithm.

Experiments on triple-diode model (TDM)-based USTM6-40/36 cell
Finally, experiments were carried out to identify the ideal measured parameters for the TDM and USTM6-40/36 
cell. Table 17 presents the results of the different algorithms and shows that, according to RMSE measurements, 
I_SCHO is the best-performing approach, which achieves 0.0017386, 0.0033737, and 0.00048366 for the best 
RMSE, worst RMSE, and SD, respectively. The table illustrates the improved performance of I_SCHO over 
the other algorithms by comparing the RMSE values, which were outperforming in terms of worst RMSE and 
standard deviation (SD) and highly near to those of the GWO algorithm in terms of best RMSE.

The convergence curves for each method are shown in Fig. 18a, which emphasizes the efficiency and 
outperformance of I_SCHO. This figure’s analysis indicates that I_SCHO attains the lowest RMSE after about 250 
iterations, which is faster than GWO. Although I_SCHO and GWO achieve almost the same best RMSE values, 
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Fig. 14. Comparison between algorithms based on DDM and ultra 85-P W cell.
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Fig. 15. Comparison between algorithms based on TDM and ultra 85-P W cell.
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Fig. 16. Comparison between algorithms based on SDM and USTM6-40/36 cell.
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Fig. 17. Comparison between algorithms based on DDM and USTM6-40/36 cell.
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Fig. 18. Comparison between algorithms based on TDM and USTM6-40/36 cell.
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I_SCHO reaches the optimum measurements faster, reducing the GWO saturation time. Again, high alignment 
is indicated in Fig. 18b and d between the measured and the estimated P-V and I-V characteristics, while Fig. 
18c shows stability and robustness in continuously achieving the minimum RMSE over the 30 different trials.

Figure 19 compares the run times of the different algorithms participating in this comparative study. The 
graph is recorded on the RTC France cell using the SDM, DDM, and TDM models.

The average computational cost of I_SCHO using the SDM model is reported in Fig. 19a to be around 3 
s. The Figure indicates that the average computation cost is comparable between I_SCHO, RSO, STOA, SCA, 
and GWO, but I_SCHO is the best. In “Experiments on single-diode mode based RTC France cell” section, it is 
noticed that I_SCHO achieved the best RMSE when compared to these competitive algorithms.

The computational time for the DDM model and RTC France cell is reported in Fig. 19b and is shown to be 
around 7 s, higher than the time recorded in the SDM and the TDM models. Concerning the DDM model, the 
time performance of I_SCHO is very comparable to SCHO, STOA, and SCA. In “RTC France cell” section, the 
I_SCHO achieved the best RMSE compared to these competitive algorithms.

Finally, Fig. 19c shows the average computational cost on the TDM around 3 s. The performance of the TDM 
model is very close to RSO, TSA, STOA, and SCA algorithms. On the other side, when referring to “RTC France 
cell” section, it is indicated that the RMSE values of RSO were the worst. While the RMSE values of the other 
algorithms were comparable to I_SCHO but not better, and the saturation of their curves was achieved later than 
the suggested algorithm I_SCHO.

Comparative analysis of robustness performance and statistical evaluation
The experiments were conducted on five different solar cells. These are the RTC France cell, Photowatt-PWP201 
cell, Kyocera KC200GT - 204.6 W cell, Ultra 85-P cell, and STM6-40/36 module cell. On each cell, experiments 
were performed in three different modes. These modes are Single-Diode mode, Double-Diode mode, and Triple-
Diode mode. Each experiment was applied to identify the optimal parameters of each cell. The optimization 
process is evaluated by measuring the best RMSE, worst RMSE, and the standard deviation. The performance of 
each optimizer is measured over 30 trials to measure each algorithm’s stability and robustness. The differences 
between the estimated and calculated values were visualized in P-V and I-V graphs.

The I_SCHO algorithm, identified as the optimum algorithm, consistently outperformed or surpassed other 
algorithms across all performance metrics. During the 30 trials, the computed minimized Root Mean Square 
Error (RMSE) demonstrated its stability, sustainability, and potential to enhance the original SCHO algorithm 
significantly, demonstrating superior performance by achieving lower RMSE values. However, these improved 
results were attained after applying more trials, but on the other side, the runtime of I_SCHO was less than 
the runtime of SCHO. The figures representing the RMSE over the 30 trials indicate that the I_SCHO method 
achieved the lowest RMSE among the thirty trials. This demonstrates sustainability due to the lack of oscillations 
in the recorded RMSE values.

When experiments were conducted on the RTC France Cell, the achieved RMSE values of I_SCHO were 
comparable to those of the GWO and STOA algorithms when using the SDM and the TDM model. However, 
the best RMSE achieved was 0.0012518, the minimum achieved RMSE for all the algorithms. The worst RMSE 
recorded in the 30 trials of I_SCHO was 0.019984, which was also the most optimum relative to the other 
algorithms. While using the TDM model, results were comparable with algorithms that attained similar RMSE 
values, like SCA, HGS, and TSA. However, I_SCHO was faster in saturating to the best optimum RMSE among 
these considered algorithms. The I_SCHO outcomes are superior in terms of accuracy and reliability. According 
to our analysis of the results, the I_SCHO has the highest accuracy for the SDM, followed by the SCHO, TSA, 
GWO, HGS, ALO, SCA, RSO, and STOA in that order.

Experiments conducted on Photowatt-PWP201 cells showed that after 30 iterations, the I_SCHO algorithm 
achieved the best and worst RMSE and standard deviation (SD) values. The algorithm achieved the lowest RMSE 
and standard deviation (SD) while maintaining Fill Factor and Iphoto values, outperforming other state-of-the-
art algorithms. The I_SCHO algorithm consistently achieved the lowest Root Mean Square Error (RMSE) within 
a satisfactory time frame, closely approximating the performance of the SCHO algorithm. The readings between 
the measured and estimated values for the P-V and I-V characteristics were identical. The I_SCHO algorithm’s 
performance was on par with the TSA in terms of the number of trials required to reach saturation. In terms 
of the achieved RMSE values, the I_SCHO algorithm’s performance was comparable to the GWO algorithm, 
demonstrating its effectiveness.

The saturation of the convergence curve during the DDM-based Kyocera KC200GT-204.6 W experiments 
was much faster than that of the SDM. The I_SCHO algorithm was the best-performing method among all 
tested, achieving the lowest RMSE after 370 iterations. Using the TDM model, the I_SCHO algorithm exhibits 
higher temporal complexity than HGS but demonstrates stability and achieves comparable RMSE values, 
outperforming all other algorithms. Experiments on the Ultra 85-P cell show that the I_SCHO algorithm 
exhibits saturates after more trials than HGS but demonstrates stability and achieves comparable RMSE values, 
outperforming all other algorithms. The strong convergence between the estimated and measured P-V and I-V 
characteristics emphasizes the algorithm’s reliability. When optimizing the STM6-40/36 module cell with the 
I_SCHO algorithm, the convergence curves for each method highlight the efficiency and outperformance of I_
SCHO. It achieves the lowest RMSE after 250 iterations, faster than GWO. The algorithm shows high alignment 
between measured and estimated P-V and I-V characteristics and its stability and robustness in achieving the 
minimum RMSE over 30 trials, providing reliable performance.

The experiments always show high alignment between the estimated P-V and the I-V characteristics 
and consistent RMSE, indicating stable and reliable performance. The convergence curve shows satisfactory 
iterations to reach the least RMSE. Convergence time is very comparable relative to the fastest algorithms. On 
the other hand, the best accuracy is achieved. Figure 19 states that the suggested algorithm, I_SCHO, reaches the 

Scientific Reports |         (2025) 15:4481 45| https://doi.org/10.1038/s41598-025-85841-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 19. Run time comparison between algorithms.
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best-saturated RMSE in average computational time cost in seconds. The average computational time cost of the 
algorithm on SDM is reported in Fig. 19a to be around 3 s, while the DDM is reported in Fig. 19b to be around 
7 s. Finally, Fig. 19c shows the average computational time cost on the TDM around 3 s.

Conclusion
The paper introduces an enhanced optimization algorithm, the Improved Sinh Cosh Optimizer (I_SCHO), for 
accurately modelling three solar PV model parameters. By integrating trigonometric operators from the Sine 
Cosine Algorithm into the exploitation phase of SCHO, the I_SCHO aims to avoid local optima and accelerate 
convergence towards the global optimum. This study demonstrates the algorithm’s superior performance in 
parameter estimation, achieving the lowest root mean square error (RMSE) and standard deviation compared 
to established methods.

The I_SCHO was applied to three PV models (Single-Diode, Double-Diode, and Triple-Diode) across five 
solar cells, including RTC France, Photowatt-PWP201, Ultra 85-P, Kyocera KC200GT-204.6 W, and STM6-
40/36. Results were compared with several algorithms. High alignment between estimated and actual P-V 
and I-V characteristics, along with consistent best RMSE values, demonstrates the robustness and reliability 
of the I_SCHO. While the convergence time is comparable to the fastest algorithms, the I_SCHO consistently 
achieves superior accuracy. The findings suggest that I_SCHO has significant potential to address optimization 
challenges in solar cell systems, offering a promising solution. Future research could explore its application in 
diverse domains, further enhancing its potential impact.

While this study demonstrates the effectiveness of the enhanced Sinh Cosh Optimizer (I_SCHO) in 
estimating parameters for single, double, and triple-diode photovoltaic (PV) models, several areas warrant 
further exploration. Future research could focus on extending the application of the I_SCHO algorithm to other 
PV models and technologies, such as thin-film and multi-junction cells, to assess its versatility and adaptability. 
Another interesting avenue would be to optimize the algorithm’s parameters under varying environmental 
conditions, such as temperature fluctuations and partial shading, to enhance its real-world applicability.

Moreover, the integration of the I_SCHO algorithm with hardware-in-the-loop (HIL) simulations 
could provide more insights into its performance in real-time scenarios. Finally, conducting comprehensive 
experimental validations across a broader range of solar cells and PV modules would solidify the algorithm’s 
robustness and ensure that it meets the practical demands of diverse PV systems. These future studies would not 
only refine the current algorithm but also contribute significantly to the field of PV parameter estimation and 
optimization.

The practical implementation of the enhanced Sinh Cosh Optimizer (I_SCHO) faces several limitations. 
The algorithm, while effective in improving accuracy and avoiding local optima, introduces added complexity 
that may increase computational costs, making it less suitable for real-time applications with limited resources. 
Further research and broader experimental testing are necessary to fully validate the algorithm’s practicality and 
robustness in diverse scenarios.
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