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A B S T R A C T   

In the field of cognitive healthcare Internet of Things (CH-IoT), there is a strong demand for reliable and 
minimally intrusive smart gadgets that consistently acquire, analyse, and obtain the confidential health details of 
the individual. In fact, CH-IoT is empowered with artificial intelligence (AI) to transmute a fewer operational 
inputs into actionable, intelligent actions through the digitization of medical healthcare data. However, these 
systems consume more network complexity, interaction, and overhead costs, while inducing a blend of sus-
ceptibility and confidentiality issues. In support of this complexity, these cognitive systems need centralised data 
collection and to be gathered and analysed, which affects scalability issues and adds fuel to privacy and security 
breaches. Even though it possesses greater intricacy in its potential application, a substantial factor is main-
taining the private preservation of healthcare data against the growing attacks. Thus, this paper presents a 
distributed privacy-preserving, chaotic encryption-based framework that can be deployed for CH-IoT systems to 
safeguard sensitive data against message modification, denial of service (DoS), and man-in-the-middle attacks 
(MIM), guaranteeing privacy and data integrity. The proposed framework integrated the federated learning 
layered hybrid chaotic encryption strategies by investigating through examination the learning infrastructure of 
convolutional neural networks (CNN). In the examination, the complete framework was carried out in the 
Tensorflow Federated Learning Libraries (FLL), and numerous performance metrics such as accuracy, precision, 
recall, f1-score, transmission efficiency, and overhead ratio were measured and contrasted with the various 
existing frameworks. For the intensive analysis, formal and informal security experiments were also conducted 
by NIST (National Institute of Science and Technology). The analytical results illustrate the importance of the 
proposed framework by achieving better security performance and outperforming the other existing models. 
Lastly, the proposed framework has more potential than the other existing frameworks and finds its place in real- 
time healthcare systems, but it needs to be improvised for real-time datasets.   
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1. Section-1 

1.1. Introduction 

However, these CH-IoT devices demand more complexities due to 
their resource-constrained and power consumption problems [1,2], and 
attract security and privacy problems [3,4] that even result in a fatal end 
in terms of the patient’s side. As devices collect data from the cognitive 
healthcare environment, which consists of user behaviour and physical 
signals, These devices accumulate data that is dependent on network, 
communication, and dynamic environmental factors. These data are 
used to analyse and monitor the vital signs of the users and aid clinicians 
in the diagnosis and treatment process [5]. Moreover, the integration of 
artificial intelligence (AI) and deep learning algorithms in these devices 
makes it more intelligent to understand human cognition and environ-
mental perceptions to identify the different risk levels of diseases in a 
real-time scenario [6,7,8]. 

In fact, these devices are now in everyone’s life and put people in 
their comfort zone in terms of monitoring and the clinical treatment 
process. Fig. 1 illustrates the framework of the CH-‘IoT framework of 
devices. 

Fig. 1 illustrates how CH-IoT systems use artificial intelligence and 
IoT technologies to network hospitals and diagnostic centres. In this CH- 
IoT framework, IoT is used to collect any data format (video, images) 
from the diagnosis centre that contains the patient’s sensitive informa-
tion. These data formats are sent to hospital servers or the cloud, where 
AI algorithms are used to diagnose and treat patients more effectively, 
providing doctors with relevant information. 

As a result, private-preserving machine learning models (PPML) [9] 
are formed to safeguard the confidentiality of the users whose infor-
mation is meant for training the network. Private-preserving models are 
constructed based on Federated Learning techniques that offer an 
adaptive collaborative AI training approach and high degrees of 
user-level privacy without sharing information among individuals. 

These models are important as they protect the sensitive and personal 
information of the users [10,11]. 

1.1.1. Problem formulation 
As discussed, the core problem is that the deployment of PPML in CH- 

IoT systems renders them susceptible and exposed to many growing 
cyber-attacks [12,13]. Moreover, applications of connected healthcare 
Internet of Things (CH-IoT) are intricately linked with sensitive services 
as they manage medical data concerning users. The primary obstacle 
in this field pertains to safeguarding patient confidentiality and 
securing patients’ data against attacks without degrading the 
performance or security level. This System needs less memory to 
generate the same number of scroll as it takes the less component for 
generation [14]. Cognitive Healthcare-IoT belongs to the applications of 
the Internet of Things in health care applications [15]. Hence, novel and 
innovative security measures need to be implemented to ensure privacy 
and appropriate security for PPML in CH-IoT systems with less compu-
tational overhead, especially on CH-IoT devices [16,17]. The 
multi-scroll attractors are preferred over the other existing chaotic 
maps, such as sine, circle, tent, and logistic maps [18], due to their high 
randomness function and their ability to control their chaotic trajec-
tories using the initial conditions. A significant benefit of Chaos-based 
encryption methods lies in their algorithmic effectiveness [19]. 

1.1.2. Contribution of the research 
To meet the security and privacy requirements of CH-IoT systems, 

this paper designs the distributed PPML with hybrid chaotic encryption 
layers to protect the system features. In each experiment, this research 
proves the role of federated learning (FL) in PPML and chaotic encryp-
tion schemes in improving the ordinary performance metrics of learning 
networks for the participants and confirms the security levels against 
multiple attacks. As the first step, the framework incorporates the 
nature-inspired convolutional neural network (NI–CNN) suitable for the 
IoT devices that are used for the effective diagnosis of health care data. 

Fig. 1. General Description of CH-IoT systems.  
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This research study showed that the existing FL frameworks using CH- 
IoT need more improvisation strategies to protect system information 
using their own intelligence algorithms. The essential contribution of 
the suggested framework are as follows.  

1. Proposed the nature-inspired convolutional neural network 
(NI–CNN) for an effective classification suitable for CH-IoT systems. 

2. Deployment of distributed privacy-preserving learning tech-
niques to mitigate potential attacks such as privileged-insider at-
tacks and denial of service that often threaten the CH-IoT systems.  

3. Incorporate the principles of federated learning in DPPML and 
the hybrid chaotic encryption layer (HCEL), which proactively 
manages the shared data in the CH-IoT networks, which guarantees 
to resist malicious behaviour with better credibility and robustness. 
Chaotic maps exhibit inherent intricacy and unpredictability, 
rendering them resilient against traditional cryptographic attacks. 
Moreover, their nonlinear behaviour augments their security. 
Furthermore, the deterministic attributes of chaotic maps render 
them an effective encryption technique.  

4. Extensive experimentation is conducted on real-time datasets 
and various performance metrics are calculated, thereby comparing 
the results comprehensively with the existing state-of-the-art models. 

1.1.3. Organization of the paper 
The remainder of the document is formatted in the following 

manner.: 1) Section 2 briefly illustrates the existing FL frameworks for 
IoT and CH-IoT against the different threats. 2) Section 3 presents the 
phases of the proposed framework deployed in CH-IoT systems. 3)The 
experimental evaluation, analytical results and comprehensive com-
parisons are demonstrated in Section 4. 4) Ultimately, the research work 
is determined with the future advancements in Section 5. 

2. Section-2 

2.1. Related works 

Chen et al. [20] proposed a lightweight security framework that is 
considered to be lightweight and uses low-power wearable sensors to 
analyse the key strengths of medical systems. Additionally, biometric 
authentication systems have been used to verify the fresh messages at 
every iteration via dedicated IoT gateways and systems. 

Nair et al. [21] applied a federated learning architecture for con-
structing the privacy-preserving learning networks deployed for 
authentication and adopted the strategy of big-data analytics to analyse 
the functionalities of IoT systems with load reduction. 

Lu et al. [22] developed a lightweight, privacy-preserving scheme for 
resource-constrained learning in an IoT-fog environment. In this 
scheme, three basic techniques, such as one-way hashing, Paillier 
cryptography, and the Chinese reminder problem, were applied to pre-
vent data-related attacks at the edge of the networks. Examination re-
sults demonstrated that this system can mitigate computation and 
reduce communication costs. 

Ma et al. [23] presented a multi-key holomorphic encryption pro-
tocol to design a novel privacy-preserving federated learning scheme to 
protect sensitive information by preventing data leakage while 
increasing bandwidth and communication costs. The experimental 
evaluation demonstrated that the model’s accuracy still needs impro-
visation against conventional federated learning, while energy con-
sumption and computation costs were reduced. 

Zhang et al. [24] demonstrated the Privacy-Enhanced Momentum 
Federated Learning Framework to safeguard the privacy information of 
industrial agents. The above model combines differential privacy and 
momentum FL with chaos-based encryption to preserve privacy infor-
mation and encrypt the weight of local models. The experimental results 
have demonstrated the excellence of model performance in terms of 
accuracy and privacy security. 

Dharminder et al. [25] developed an efficient private-preserving 
framework based on Chebyshev chaotic maps to safeguard the man-
agement system against the vulnerabilities in the IoT systems. Results 
demonstrated that Chebyshev chaotic maps have produced considerable 
security requirements in the networks against privileged insider attacks. 

Park et al. [26] demonstrated the privacy-preserving Federated 
Learning (PPFL) framework that uses a homomorphic encryption 
scheme at the centralised server to conduct arithmetic operations on 
encrypted texts. In this technique, the privacy-preserving technique uses 
the encrypted local model parameters but doesn’t deploy the decryption 
for aggregation. This technique allows only encryption, which may be 
vulnerable to many attacks. 

Zhao et al. [27] trained CNNs on MNIST, CIFAR-10, and speech 
commands datasets. They found that federated averaging reduced test 
accuracy for non-structured data. 

Wang et al. [28] optimised Federated Learning on non-structured 
data using Reinforcement Learning. 

Chen et al. [29] developed an asynchronous online FL system in 
which edge devices continuously transmit local non-IID data while a 
central server accumulates model parameters from clients. 

3. Section-3 

Fig. 2(a) and (b) illustrates the proposed framework which consists 
of four working phases: 1) Data Collection Systems(DCS). 2) Nature 
Inspired Deep learning framework(NIDLF). 3) Federated learning based 
private preserving NLDF models. 4) Effective Chaotic Encrypted 
Communication mechanism. 5) Effective Diagnosis and classification. 
The detailed description of each module is presented in preceding 
section. 

3.1. Data Collection Systems 

Since the CH-IoT systems transmit real-time images or videos, 
this research article employs CT lung cancer images collected from 
the TCIA databases [27]. Fig. 3 shows the sample lung datasets. The 
dataset comprises 1018 lung CT scans sourced from the National Cancer 
Institute, which are linked to proteomic and genomic clinical informa-
tion in this study. All the training images are categorised as either ma-
lignant or benign nodules. A benign nodule is identified when scoring 
below 3, while a malignant nodule is identified when scoring above 3. 
The conversion of tcia format data to DICOM image data for subsequent 
processing is facilitated by a distinct software tool called the NBIA 
retriever. A encompassing overview of the testing datasets utilised is 
outlined in Ref. [28]. 

3.2. Nature Inspired Deep learning framework 

To construct the Nature Inspired deep learning framework, conven-
tional convolutional neural networks(CNN) are used in this research 
article. Then conventional CNN is converted into the nature inspired 
network by tuning the network hyper-parameters using the artificial 
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Fig. 2. (a)Comprehensive Framework for the Proposed Architecture (b) Step-by-Step technique for the Proposed Framework.  
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Fig. 3. Sample Lung Datasets used for Evaluating the Proposed Framework.  

Fig. 4. Network architecture of convolutional neural networks.  
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water drop algorithm. 

3.2.1. Convolutional neural networks 
The Convolutional Neural Network (CNN) is an advanced iteration of 

the Multi-Layer Perceptron (MLP) that draws inspiration from biological 
systems. CNNs are extensively utilised in tasks such as image processing 
and video analysis. Fig. 4 illustrates the various layers utilised by CNNs 
for both feature extraction and classification. As pictured in Fig. 4, CNNs 
are supervised, feedforward networks consisting of multiple layers, 
including convolutional layers (CL), pooling layers (PL), and fully con-
nected layers (FC). These layers are interconnected, facilitating a natural 
flow of information between them, wherein the output feature map of 
one layer serves as the input to the subsequent layer [29]. 

3.2.2. Artificial water drop algorithm 
The Artificial Raindrop Algorithm (ARA) serves as a heuristic algo-

rithm grounded in population dynamics. Emulating the natural rainfall 
process, it unfolds through five distinct stages: generation, descent, 
collision, raindrop flow, and vapour replacement. During the optimi-
sation process, the positional data of water vapour or raindrops is 
evaluated based on altitude. The raindrop pool meticulously records 

locations at lower altitudes. A key advantage of employing ARA in the 
proposed network lies in its ability to reduce computational overhead, 
offer swift processing, and achieve faster convergence. Fig. 5 outlines 
the sequence of raindrop generation, where grey circles represent va-
pours and blue circles represent raindrops. In ARA, each vapour corre-
sponds to a viable solution, and altitude serves as the fitness function, 
determining the fitness metric for both vapour and raindrop. The pop-
ulation consists of vapours and undergoes evolution through five oper-
ators, encompassing the primary raindrop operations. Table 2 presents 
the operators used in this optimisation algorithm. Algorithm-1 presents 
the pseudocode of the ARA optimisation methodology. 

Algorithm-1. Input parameters include N, the population size; D, the 
dimensions of the optimisation problem; τ (tau), the step parameter for 
flowing; RP, the pool of raindrops; Max_Flow_Number, the maximum 
number of flows; and Max_FES, the maximum number of function 
evaluations. Ensure to cite any relevant references if available and 
correct as needed.   

Fig. 5. Artificial Water Drop Optimisation Algorithm – its procedure.  
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3.2.3. Nature inspired CNN model 
Hyper Parameter Optimisation is the process of determining the best 

combination to tune the hyperparameters for obtaining the best per-
formance in an adequate amount of time. This technique will also 
overcome the problem of overfitting, which maintains the stability of 
the model while training large datasets. This research article employs 
the artificial raindrop algorithm for model tuning to obtain the 
maximum performance from the network. The epochs, batch size, bias 
weights, momentum, hidden layers, and learning rate are called the 
hyperparameters, these are utilised for training the network. The initial 
selection of hyperparameters is randomly determined following the 
AWDO guidelines and subsequently utilised in training the NI–CNN 
network. The fitness function, as defined in equation (1), guides the 
optimisation process in AWDO. At each iteration, hyperparameters are 
computed using Algorithm 1. Iterations continue until the fitness func-
tion aligns with equation (1). 

Fitness Function > Max((1 − A)+ (1 − P)+ (1 − R) (1) 

For each cycle, the numerical values of hyperparameters are 
computed using the mathematical formulas outlined in Algorithm 1. 
These parameters are subsequently input into the network, where the 
fitness function is evaluated. If the fitness function matches the pre-
defined threshold, the cycle halts; otherwise, it continues iterating. This 
approach results in AWDO exhibiting slower convergence compared to 
alternative meta-heuristic algorithms, which demonstrate faster opti-
misation and enhanced detection speed. Algorithm-2 provides the 
detailed pseudocode for this process for the proposed hyperparameter 
optimisation algorithm. 

Algorithm-2. Pseudo-Code for the Hyper-parameter Optimisation 
using AWDO  

3.2.4. Distributed NI–CNN model (federated NI–CNN) 
As investigated in the existing research, federated learning is 

considered a decentralized machine learning approach with numerous 
clients, training a common global model by utilizing local data under the 
supervision of the central server or cloud. Unlike traditional centralised 
learning approaches, each node collaborates to educate a model using 
their confidential information and sends the update of the parameters to 
the central infrastructure (client or server). Next, the collected models 
are federated to create a universal model trained using the private data 
of participants. Federated Learning (FL) offers significant advantages, 
including enhanced accuracy, reduced latency, heightened privacy, and 
lower power consumption, by training a model on the private data of 
multiple participants, thus circumventing data-sharing issues. In this 
research, the proposed NI–CNN model is trained as a federated model in 
which the parameters are sent to the CH-IoT nodes. Algorithm-3 

presents the procedure for the federated training for the proposed 
model.  

Steps Algorithm-3//Federated Learning for the Proposed Model 

1 The Central infrastructure of CH-IoT sends a model to each user nodes of 
network. 

2 Every Ch-IoT node conducts training on the model it receives using its 
individual private healthcare data. 

3 Each CH-IoT transmit the model’s parameters in a encrypted way (See the 
Encryption framework in Section-3.3) 

4 The server in Ch-IoT systems combine the partial models by their parameters 
and construct the federated model. 

5 The primary server evaluates a halting criterion condition by examining the 
fitness function defined by Equation (1). If the condition is met, the FL 
process concludes; otherwise, it recommences iteration from step 1.  

3.3. Chaos based privacy preserving technique in proposed FL based 
NI–CNN model 

As discussed in the previous section, the federated learning proced-
ure ensures that sharing confidential information is not obligatory for 
training the federated model. But still, hazards are linked to the 
conveyance of such data is high and has adverse effects on the infor-
mation. Therefore, chaotic preservation methods are used in Florida. In 
this research, chaotic algorithms are used to maintain privacy and 
encrypt the information from the CH-IoT nodes to the server. To 
construct the chaotic principles, hybrid Henon maps are used for the 
proposed framework. For the creation of high randomness and non- 
periodic sequences, this research article employs scroll maps, which 
work on the principle of multi-scroll attractors. The characteristics of the 
scroll maps used for the key generation are discussed in the preceding 
section. 

3.4. Multi-scroll attractors 

Dynamical systems with multiscroll attractors can state space equa-
tion for an automatic chaotic system that exhibits intricate dynamics 
surpassing those of general chaotic systems with mono-scroll attractors. 
Reformulating the equation using alternative language 

: ẋ1 = − ax1 + bx2x3 (2)  

ẋ2 = − cx3
2 + dx1x3 (3)  

ẋ3 = ex3 − fx1x2 (4) 

Top of equations (1)–(3) can be altered by integrating the hyperbolic 
equation p1 tan h(x2 +g) which is given in eqn 

ẋ1 = − ax1 + bx2x3 (5)  

ẋ2 = − cx3
2 + dx1x3 (6)  
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ẋ3 = ex3 − fx1x2 + p1 tan h(x2 + g) (7) 

Chaotic attractor is acquired when a = 2, b = 6, c = 6, d = 3, e =

3, f = 1, p1 = 1, g = 2 and the predefined starting points are [x1(0),
x2(0),x3(0)] = [0.1,0.1,0.6]. 

When the hyperbolic function is initially incorporated with a 
parameter value of g = − 3 in the first scenario, and given the 
commencement criterion [0.1,-0.1,-0.6], it exhibits a double scroll 
attractor as depicted in Fig. 1. Upon introducing it in the second sce-
nario, with parameters p_1 = − 1 and g = 3, and the same commence-
ment criterion [0.1,-0.1,-0.6], it manifests a quadruple scroll, illustrated 
in Fig. 6. Transitioning to the third scenario with parameters p_1 = 1 and 
g = 3, alongside commencement criterion [0.1,0.1,0.6], it reveals a 
singular scroll as depicted in Fig. 6. Thus, we can ascertain the system’s 
property of multiscroll behaviour (see Fig. 7). 

To generate Multi-scroll 3D chaotic systems, equation (7) are 
adjusted using derivative properties outlined in Ref. [30]. The resulting 
chaotic system capable of showcasing multi-scroll characteristics is 
formulated as follows.(See.Fig. 8) 

dqx1

dtq = − ax1 + bx2x3 (8)  

dqx2

dtq = − cx3
2 + dx1x3 (9)  

dqx3

dtq = ex3 − fx1x2 + p1 tan h(x2 + g) (10) 

The bifurcation diagram for the proposed multi scroll integer order 
chaotic systems are shown in following Fig. 9. 

3.4.1. Multi-scroll attractor – its advantages 

The following are some benefits of the proposed scroll attractors used 
for encryption.  

1. This System needs less memory to generate the same number of scroll 
as it takes the less component for generation [14]. 

2. To address overfitting and enhance generalisation, the paper em-
ploys the early stopping technique, as described in Ref. [31].  

3. The random scroll can be generated by modifying any component of 
its any directions. This characteristic is much more different than the 
other chaotic systems.  

4. Scroll maps are termed as the flexible maps in which the randomness 
doesn’t depends in the scroll numbers, while that of other methods 
are closely related to the number of initial values. 

3.5. Scroll based privacy preserving technique 

Encryption with scroll maps is addition of security and privacy levels 
in the input parameter (Algorithm-4). In case of the encryption with 
scroll maps, diffusion operation is operated among every constituent of 
the input information and chaotic value generated by scroll maps. 
Diffusing the ith element of the plain data with the random value of 
scroll maps to form the strong encrypted data. Before encryption, all the 
scroll maps and data are scaled to common factor as 16(for reducing the 
complexity in the process). In the similar fashion, algorithm 5 involves a 
reversible operation, whereby the diffusion operation between the 
encrypted data and the identical encryption key (or parameter) results in 
the restoration of the input plain text data. The unique traits displayed 
by chaotic systems, such as determinism, ergodicity, and sensitivity to 
initial conditions, render them a compelling choice for building intelli-
gent secured systems.    

Algorithm-5. Scroll based privacy Decryption Schemes   

As mentioned in Algorithms 4 and 5, the encryption and decryption 
process involves the following phases: 1) Key generation process: The 
keys are generated by iterating over the different initial conditions of 
scroll maps. 2) A diffusion process is involved between the data and 
scroll keys to form the encrypted data. The main objective of the oper-
ation is to clear the non-linear connection between the initial and 
encoded information. Also in the encryption process, multiple iterations 
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are employed to update the scroll maps and keys, respectively. In every 
cycle, the key could be modified to introduce additional variability, 
thereby boosting the security of the encryption.4) The concluding 
encrypted result exhibits greater randomness and statistical autonomy 
from the initial data. 5) The process of decrypting involves applying the 
same chaotic map repeatedly to the encrypted data, utilizing identical 
starting criterion, parameters, and keys as in the encryption stage, in 
order to recover the initial plain text data. 

3.6. Implementation methodology 

As discussed, proposed encryption and decryption is applied to CH- 
IoT data which is considered as the encryption layers.  

Steps Algorithm-6//Chaotic Federated Learning for the Proposed Model 

1 The Central infrastructure of CH-IoT sends a model to each user nodes of 
network. 

2 Each Ch-IoT nodes trains the received model using their own private health 
care data. 

3 Each CH-IoT sends the encrypted parameters of the model using the 
Algorithm-4 

4 The server in Ch-IoT systems decrypts the data and aggregates the partial 
models through their parameters and builds the federated model. 

5 The central server checks a halting criterion by checking the fitness function 
which is then given by Equation (.). If it is proficient, the FL process ends, 
otherwise it starts iterate from step 1.  

4. Section-4 

This section details the experimental approaches, results, and 

discussion, and finally concludes with a comprehensive assessment with 
the other state-of-the-art frameworks. 

4.1. Experimental approaches 

To generate and evaluate the results, experimental tests are con-
ducted using TensorFlow 2.3.3, Keras 2.4.5, Python 3.10, Pandas 1.22, 
Numpy 1.20, Google Co-Lab with 16 GB RAM, and the NVIDIA Tesla T4. 
For implementing the federated learning model, the TensorFlow feder-
ated library Flower is utilised [31]. Nearly 1014 images are utilised for 
evaluation, in which 70 % of the total data was utilised for training, 20 
% of the data was utilised for testing, and finally 10 % of the data was 
utilised for validation, respectively. 

The experiments are conducted in the four-fold mechanism to 
demonstrate the efficiency of each module of the proposed framework. 
The elaborative analysis of the proposed model is depicted below. 

4.2. Experiment-1 

4.2.1. Model evaluation 
Table 3 outlines the experimental configurations employed for 

training the novel network. Moreover, various performance metrics, 
including accuracy, precision, recall, specificity, and F1-score, are 
computed across different datasets. Additionally, AUC (area under ROC) 
is utilised to demonstrate the superiority of the proposed model. The 
mathematical formulations for measuring these performance metrics are 
provided in Table 3. Enhanced metrics in these metrics signify superior 
performances. 

In the first experiment, different optimisation algorithms such as Ant 
Colony Optimisation (ACO), Spotted Hyena Optimisation (SHO), Ge-
netic Algorithms (GA), Genetic Bee Colony Optimisation (GBO), Particle 
Swarm Optimisation (PSO), BAT Algorithm (BAT), Monkey Optimisa-
tion (MO), and Spider Optimisation Algorithm (SO) are integrated with 
the CNN to tune the hyper-parameters as similar to the proposed model. 
The execution of the proposed model is in contrast with the above- 
mentioned integrated models. Table 1 illustrates how the efficacy of 
various learning frameworks varies in their performance. 

Table 4 illustrates the performance of the different nature-inspired 
CNN models in detecting lung cancer. From the table, it is very 
apparent that the proposed model has achieved the highest performance 
(accuracy of 0.9739, precision of 0.969, recall of 0.9589, and F1-score of 
0.9695) and outperformed the other models. Table 5 depicts the 
execution of the federated learning models in the classification of lung 
cancers. It is found that the proposed federated model has attained 
similar performances, and error is very low between the federated and 
normal learning models. Hence, it is very apparent that the suggested 

Table 1 
Summary of the different Works Suggested by the authors and its Pros and Cons.  

Authors Year of 
Publishing 

Suggested Methodology Pros Cons 

Chen et al. [20] 2023 Light weight Encryption Scheme for the IoT devices Light weight suitable for IoT devices High probability of in-secured 
data breaches 

Nair.et al. [21] 2023 Ensures the privacy preserving models for the IoT devices High end secured algorithms suitable for 
IoT devices 

High Computational Overhead 

Lu.et al. [22] 2023 Lightweight, privacy-preserving scheme with one-way 
hashing and other cryptographic mechanism 

Strong encryption schemes Computational overhead with less 
performance 

Zhang.et al. [24] 2023 Privacy –Enhanced Momentum Federated learning 
framework 

Decentralized training networks with the 
high end encryption scheme 

Still needs for the improvisation 
in terms of security 

Dharminder.et al. 
[25] 

2022 Effective Privacy preserving Chebyshev chaotic 
encryption scheme 

Proposed 
Chebyshev chaotic encryption technique 
for the IoT devices 

Can be affected by more attacks 

Ma.et al. [23] 2022 Multi-key Homomorhic encryption techniques for IoT 
devices 

Light weight with the different layers of 
encryption 

Less performance 

Zhao.et al. [27] 2022 Federated learning Framework Federated learning model for the 
unstructured data 

Strong encryption algorithm is 
missing 

Park et al. [26] 2021 Federated Learning model with the Homomorhic 
encryption technique 

Decentralized training network Suffers from the computational 
complexity  

Table 2 
Specific definition of the main raindrop operators.  

Name Detailed definition 

Raindrop generation 
operator φGR (Pop (t)) =

(
∑

Ni = 1
Vapori1(t)

N
,
∑

Ni = 1
Vapori2(t)

N
,

…,
∑

Ni = 1
Vapori(t)

N
,

Raindrop descent 
operator 

φDR (Raindrop (t) = Raindropr2 (t) + Φ ∗ (Raindropr3 (t) −
Raindropr4 (t)),kϵ{1,2,…,N};Φϵ( − 1,1)

Raindrop collision 
operator 

φCR
(
NewRaindrop(t) ∪Pop (t)

)

Raindrop flowing 
operator 

φFR
(
SmallRaindrop(t)

)
= SmallRaindrop i(t) + d(t, λ)

Vapour replacement 
operator 

φRV
(
Pop

(
t∪SamllRaindrop(t)

)
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federated model has achieved the best performance in identifying can-
cers. To validate the execution of the suggested federated learning 
model, ROC curves were plotted and analysed, as shown in Fig. 10. 

With the picturization, it is apparent from the proposed federated 
model that the root mean square error (RMSE) between the training and 
validation sets is significantly low, measuring even less than 0.001. This 
experimentation underscores the superior performance of the distrib-
uted training model, which closely rivals that of the centralized training 
network. 

4.3. Experiment-2 

4.3.1. Statistical evaluation 
This section covers the statistical performance of the different opti-

misation models and the proposed federated models, with their own 
advantages and disadvantages. The evaluation of classification results 
across various models is based on achieving the fitness function, delin-
eated in terms of best, worst, mean, standard deviations and variance. 
Furthermore, the performance indicators from 50 trials are scrutinized 

Fig. 6. Phase portraits of cubic nonlinear system with p1 tan h(x2 +g) function in 1st state.  

Fig. 7. Phase portraits of cubic nonlinear system with p1 tan h(x2 +g) function in 2nd state.  
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for their consistency parameters. The classification results of diverse 
models alongside these specified metrics and their robustness indicators 
are presented in Tables 6 and 7, respectively. 

Table 7 displays the results of various combinations of CNN net-
works. The data clearly indicates that the federated model proposed in 
this study outperformed other optimisation techniques. Fig. 11 illus-
trates the stability of this algorithm, showing that our proposed model 
achieved superior outcomes compared to existing models. If you have 
specific references or sources, please provide them for accurate 
citations. 

4.4. Experiment − 3 

4.4.1. Model building time analysis 
In this experiment, computational time is calculated in terms of 

model-building time (MBT). Model training times across various data-
sets are depicted in Fig. 12 concerning validation. Evaluating MBT is 
crucial due to the significant impact of computational time on model 
classification accuracy. This consideration directly affects resource uti-
lization and model performance, highlighting the importance of MBT in 
achieving an optimal balance between computational load and classifier 
effectiveness. According to the data, the federated model requires only 
20 % of the training time compared to traditional algorithms. This un-
derscores the efficiency of the proposed decentralized model, which is 
particularly advantageous for resource-constrained CH-IoT devices. 

4.5. Experiment − 4 

4.5.1. Security analysis 
In this experiment, the security strength of encrypted bits is tested 

and evaluated. National Institute of Standards and Technology (NIST) 
tests are conducted to prove the randomness of the encrypted bits that 

can be used for the transmission of private models to the central servers. 
The 12 mandatory tests of NIST were conducted, and experimental 
outcomes are demonstrated in tabular form. 

In Table 8, it is evident that the encrypted bits exhibit high 
randomness, which can make it harder for an intruder to modify the 
medical data during transmission. 

5. Section-5 

5.1. Conclusion and future scope 

In this research article, a proposed protocol has been presented for 
smart health care systems using CH-IoT devices. The nature-inspired 
CNN, which works on the principle of the artificial water drop algo-
rithm, was proposed for an effective diagnosis of the medical image 
datasets. Later, optimised models are converted from traditional 
training into federated distributed networks for effective computation 
consumption and higher performance. Finally, the scroll chaotic maps 
are used for encrypting and decrypting the local models, thereby con-
verting the distributed model into a privacy-preserving framework that 
can mitigate multiple attacks. The thorough testing has been computed 
using TCIA lung datasets, and various performance metrics were 
measured and analysed. In the first experiment, metrics such as accu-
racy, precision, recall, and f1-score were calculated for the proposed 
federated models and other existing state-of-the-art optimised CNN 
models. The performance of the proposed model has outperformed the 
other models in producing the highest accuracy of 0.97, 0.96 precision, 
0.96 recall, and 0.965 F1-score, respectively. In the second phase, 
various statistical tests were conducted for the different models, and the 
federated model exhibited more stability than the other algorithms. The 
computation time was analysed, and the distributed model exhibited 
less time than the other models, thereby making it suitable for CH-IoT 

Fig. 8. Phase portraits of cubic nonlinear system with p1 tan h(x2 +g) function in 3rd state.  
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Fig. 9. Fractional bifurcation diagrams for the proposed multi scroll chaotic systems.  
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devices. Finally, the privacy of the model is proven by conducting NIST 
standard tests. In all experiments, the proposed distributed learning 
models have shown superior performances to the other frameworks and 
find a strong place in CH-IoT systems. 

In the future, light-weight operations will need to be incorporated for 
different Edge/Fog gateway devices to optimise system effectiveness, 
encompassing computational, communicative, and securely stored data. 
Furthermore, complete models need to be improvised for handling real- 
time datasets. 

Table 3 
Mathematical expressions for the performance metrics’ calculation.  

SL.NO Performance Metrics Mathematical Expression 

01 Accuracy TP + TN
TP + TN + FP + FN 

02 Recall TP
T P + FN 

x100 

03 Specificity TN
TN + FP 

04 Precision TN
TP + FP 

05 F1-Score 2.
Precison ∗ Recall
Precision + Recall   

Table 4 
Performance Analysis of the Nature-Inspired CNN model in detecting the lung cancers.  

Algorithm Performance metrics 

Accuracy Precision Recall Specificity F1-Score 

CNN 0.73 0.71 0.703 0.698 0.702 
CNN + PSO 0.76 0.72 0.712 0.690 0.713 
CNN + ACO 0.765 0.753 0.743 0.722 0.754 
CNN + GA 0.774 0.763 0.755 0.732 0.758 
CNN + SHO 0.802 0.80 0.792 0.782 0.797 
CNN + GBO 0.812 0.80 0.783 0.782 0.80 
CNN + BAT 0.85 0.84 0.821 0.802 0.832 
CNN + MO 0.873 0.862 0.832 0.820 0.843 
CNN + SO 0.890 0.882 0.863 0.854 0.875 
Proposed Model 0.974 0.968 0.960 0.972 0.969  

Table 5 
Performance Analysis of the Nature-Inspired CNN model (federated learning) in detecting the lung cancers.  

Algorithm Performance metrics 

Accuracy Precision Recall Specificity F1-Score 

CNN 0.729 0.702 0.700 0.6984 0.701 
CNN + PSO 0.753 0.733 0.710 0.689 0.720 
CNN + ACO 0.743 0.721 0.739 0.720 0.710 
CNN + GA 0.78 0.754 0.750 0.727 0.750 
CNN + SHO 0.80 0.793 0.782 0.771 0.790 
CNN + GBO 0.81 0.799 0.781 0.775 0.784 
CNN + BAT 0.843 0.832 0.820 0.79 0.812 
CNN + MO 0.863 0.845 0.8292 0.81 0.834 
CNN + SO 0.885 0.883 0.855 0.843 0.873 
Proposed Model 0.9739 0.969 0.9589 0.971 0.9695  

Fig. 10. ROC assessment of the Proposed Model (with Federated & Without Federated learning model).  
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Table 6 
Fitness Function based Outcomes for the different combinations of CNN.  

Algorithm Best Worst Mean Median SD Variance 

CNN 0.73 0.6453 0.722 0.02892 0.06734 6.3 x10− 6 

CNN + PSO 0.76 0.6202 0.68 0.01903 0.07032 8.2 x10− 6 

CNN + ACO 0.765 0.6102 0.673 0.02390 0.06932 4.0 x10− 5 

CNN + GA 0.774 0.6044 0.6425 0.023450 0.052029 3.20 x10− 4 

CNN + SHO 0.802 0.743 0.7542 0.039403 0.054389 2.89 x10− 4 

CNN + GBO 0.812 0.733 0.7522 0.043930 0.046373 2.043 x10− 4 

CNN + BAT 0.85 0.8023 0.825 0.0567839 0.067340 2.002 x10− 4 

CNN + MO 0.873 0.834 0.73 0.07203 0.067350 1.9045 x10¡4 

CNN + SO 0.890 0.874 0.7363 0.078455 0.045360 1.890 x10¡4 

Proposed federated Model(With Nature Inspired Optimzation) 0.975 0.864 0.902 0.08932 0.07563 1.2892 x10¡4  

Table 7 
Indicator Outcome Analysis for the different combinations of CNN.  

Algorithm Best Worst Mean Median SD Variance 

CNN 0.73 0.6453 0.722 0.02892 0.06734 6.3 x10− 6 

CNN + PSO 0.76 0.6202 0.68 0.01903 0.07032 8.2 x10− 6 

CNN + ACO 0.765 0.6102 0.673 0.02390 0.06932 4.0 x10− 5 

CNN + GA 0.774 0.6044 0.6425 0.023450 0.052029 3.20 x10− 4 

CNN + SHO 0.802 0.743 0.7542 0.039403 0.054389 2.89 x10− 4 

CNN + GBO 0.812 0.733 0.7522 0.043930 0.046373 2.043 x10− 4 

CNN + BAT 0.85 0.8023 0.825 0.0567839 0.067340 2.002 x10− 4 

CNN + MO 0.873 0.834 0.73 0.07203 0.067350 1.9045 x10¡4 

CNN + SO 0.890 0.874 0.7363 0.078455 0.045360 1.890 x10¡4 

Proposed federated Model(With Nature Inspired Optimzation) 0.975 0.864 0.902 0.08932 0.07563 1.2892 x10¡4  

Fig. 11. Stability Analysis for the Different Models for used for Evaluation Process.  

Fig. 12. Mbt analysis for the different algorithms and federated learning models.  
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