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Abstract: Supply Chain Management (SCM) applications represent real-world optimization tasks that require 

handling using appropriate optimization techniques. Metaheuristic algorithms are powerful optimization tools that are 

effective for solving complex optimization problems such as SCM. In this article, a new metaheuristic algorithm named 

Potter Optimization Algorithm (POA) is introduced to deal with optimization problems, especially in SCM 

applications. POA is mathematically modelled by the inspiration of the human process of pottery in two phases of 

exploration and exploitation. The exploration phase is designed based on mathematical modeling of making extensive 

changes to the clay (or other pottery materials) according to the given pattern. The exploitation phase is designed based 

on mathematical modelling of making precise and limited changes on the made pottery with the aim of creating more 

similarity to the given pattern. The effectiveness of the proposed POA approach to address real-world applications in 

SCM has been evaluated on sustainable lot size optimization. The optimization results show that POA has been able 

to provide effective solutions for sustainable lot size optimization case studies by managing exploration, exploitation, 

and balancing them during the search process at both global and local levels. In addition, the results obtained from the 

implementation of POA have been compared with the performance of twelve well-known metaheuristic algorithms. 

The analysis of the optimization results shows that POA has 100% superior performance compared to competing 

algorithms by providing better results in all ten case studies. 

Keywords: Optimization algorithm, Supply chain management, Human-inspired, Potter, Exploration, Exploitation. 

 

 

1. Introduction 

Supply Chain Management (SCM) is crucial for 

the seamless functioning of modern businesses, 

ensuring the smooth flow of products, services, and 

information from suppliers to end consumers. It 

encompasses a vast array of activities such as 

procurement, production, inventory management, 

logistics, and distribution, all designed to enhance the 

efficiency and effectiveness of the entire supply chain 

network [1]. In the current competitive and global 

market, proficient SCM is vital for companies aiming 

to secure a competitive advantage, boost customer 

satisfaction, and drive sustainable growth [2]. At its 

core, SCM involves the coordination and cooperation 
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of multiple entities including suppliers, 

manufacturers, distributors, retailers, and customers, 

ensuring timely product delivery while minimizing 

costs and maximizing value [3]. This 

interconnectedness brings to light the intricate nature 

of SCM, which must navigate challenges like 

fluctuating demand, supply chain interruptions, 

inventory management, and shifting consumer 

preferences [4]. 

With the advent of digital technology and 

globalization, SCM has become even more complex, 

necessitating innovative approaches and tools to 

optimize processes and mitigate risks [5]. 

Technologies like big data analytics, artificial 

intelligence, blockchain, and the Internet of Things 

(IoT) are increasingly utilized to enhance visibility, 

transparency, and agility across supply chains. 

Consequently, SCM has evolved from traditional 

methods to a more comprehensive and strategic 

approach, emphasizing not only operational 

efficiency but also sustainability, resilience, and 

customer-centricity [6]. This evolution highlights the 

importance of SCM as a critical component for 

business success and competitive advantage in 

today's interconnected global economy [7]. Effective 

SCM practices enable organizations to optimize 

resource use, reduce waste, and create value for all 

participants in the supply chain [8]. 

In this dynamic SCM environment, the 

application of metaheuristic algorithms has emerged 

as a transformative method for addressing complex 

optimization challenges [9]. Metaheuristic 

algorithms, inspired by natural processes or human 

behaviors, are iterative techniques designed to search 

for optimal solutions within vast solution spaces 

efficiently. These algorithms have become prominent 

in SCM for their ability to solve intricate problems 

related to route planning, inventory optimization, and 

demand forecasting amid uncertainty and variability. 

By utilizing these algorithms, businesses can 

successfully balance competing objectives such as 

cost reduction, lead time minimization, and service 

level improvement, thus enhancing overall supply 

chain performance. The problems and challenges in 

SCM are often formulated as optimization tasks that 

require sophisticated techniques for effective 

solutions [10]. 

In general, optimization techniques fall into two 

groups: deterministic and random approaches [11]. 

Although the deterministic approaches are successful 

in dealing with convex and linear optimization 

problems , they lose their efficiency when faced with 

practical optimization problems that are complex, 

non-convex, and non-linear [12, 13]. Disadvantages 

and weaknesses of deterministic approaches led 

researchers to design stochastic algorithms, 

especially metaheuristic algorithms, to be able to 

achieve suitable solutions for practical and real-world 

optimization problems [14]. 

Metaheuristic algorithms, which are inspired by 

natural and evolutionary processes, are able to find 

appropriate solutions for optimization problems 

based on random search in the problem solving space 

without the need for gradient information [15]. 

Due to their advantages, metaheuristic algorithms 

have attracted the attention of researchers to deal with 

optimization tasks. These advantages include: simple 

and understandable concepts, easy implementation, 

efficiency in nonlinear, discrete, and unknown search 

spaces, and efficiency in solving non-convex, NP-

hard, nonlinear, and non-derivative optimization 

problems [16]. 

Despite these advantages, the important issue is 

that due to the nature of stochastic search, there is no 

guarantee of achieving the global optimum using 

metaheuristic algorithms. This fact and the desire to 

achieve more effective solutions for optimization 

problems are the main motivation for the 

development of countless metaheuristic algorithms 

[16]. 

As the main research question, is there a need to 

introduce newer metaheuristic algorithms despite the 

algorithms introduced so far and available in the 

literature? Referring to the No Free Lunch (NFL) 

theorem [17], this question is answered that in no way 

can it be claimed that a particular algorithm is the best 

optimizer for all optimization applications. In fact, 

the NFL theorem says that there is no set hypothesis 

for the success or failure of an algorithm. Therefore, 

there is always the possibility of designing a newer 

algorithm that performs better. By keeping this field 

of study active, the NFL theorem motivates 

researchers to be able to achieve better solutions for 

optimization problems by designing newer 

metaheuristic algorithms. 

The novelty and novelty aspects of this study are 

in the design of a new metaheuristic algorithm called 

Potter Optimization Algorithm (POA) to deal with 

optimization tasks in different sciences. The main 

contributions of this study are listed below: 

• Inspired by human activities during the pottery 

process, POA is designed.  

• The theory of POA is expressed and 

mathematically modeled in two phases (i) 

exploration: based on the modeling of extensive 

changes made on clay and (ii) exploitation: based 

on the modeling of small and precise changes on 

the manufactured clays.  
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• The efficiency of POA has been evaluated to 

address the applications of Supply Chain 

Management (SCM) for sustainable lot size 

optimization.  

• The results obtained from POA are compared 

with the performance of twelve competing 

metaheuristic algorithms. 

In the following, the organization of the article is 

as follows, which is presented first in section 2 of the 

literature review. Then, in section 3, the proposed 

approach of Potter Optimization Algorithm (POA) is 

introduced and mathematically modeled. In section 4, 

the performance evaluation of POA has been 

discussed in order to deal with sustainable lot size 

optimization. Finally, conclusions and several 

research suggestions are provided in Section 5. 

2. Literature review 

In recent years, metaheuristic algorithms have 

garnered significant interest across a wide range of 

disciplines, including computer science, engineering, 

mathematics, and various other scientific fields. By 

leveraging concepts such as natural evolution, 

collective behaviour, random searches, and similar 

principles, these algorithms strive to optimize 

complex problems through diverse methodologies. 

Metaheuristic algorithms can be categorized into four 

primary groups based on their foundational design 

concepts: swarm intelligence, evolutionary processes, 

physical phenomena, and human-inspired methods. 

Each group draws inspiration from different natural 

or conceptual processes to address and solve 

optimization challenges effectively. 

Swarm-based metaheuristic algorithms are 

crafted to tackle optimization problems by 

mimicking the collective behaviours observed in 

nature among various living organisms. These 

algorithms draw inspiration from the group dynamics 

of creatures like ants, bees, birds, and even anteaters, 

and they are employed to optimize a range of issues 

including routing, scheduling, and production 

planning. For instance, Particle Swarm Optimization 

(PSO) is a widely recognized metaheuristic inspired 

by the flocking behaviour of birds searching for food. 

In PSO, the optimization task is akin to identifying 

the optimal position within a multidimensional space 

[18]. Similarly, Ant Colony Optimization (ACO) is 

inspired by the foraging behaviour of ants and relies 

on pheromone trails to guide the search for optimal 

solutions, proving particularly effective for complex 

optimization problems [19]. Other notable swarm-

based algorithms include the Migration-Crossover 

Algorithm (MCA) [20], Adax Optimization 

Algorithm (AOA) [21], Walrus Optimization 

Algorithm (WaOA) [22], and Swarm Space Hopping 

Algorithm (SSHA) [23]. 

Evolutionary-based algorithms, on the other hand, 

draw from biological sciences and principles of 

evolution, such as natural selection, genetic diversity, 

and heredity. The Genetic Algorithm (GA) [24] is a 

prime example, inspired by the genetic processes 

found in nature. In GA, a population of potential 

solutions (chromosomes) is iteratively evolved 

through processes mimicking natural selection, 

crossover, and mutation to generate new, improved 

generations. 

Physics-based algorithms are grounded in 

physical principles and laws, utilizing concepts like 

fluid dynamics, gravity, and diffusion to optimize 

problems. Simulated Annealing (SA) is a prominent 

optimization method inspired by the annealing 

process in metallurgy. This algorithm employs 

probabilistic techniques to accept or reject changes in 

the solution space, gradually reducing the probability 

of accepting inferior solutions as it "cools" over time, 

thereby converging towards an optimal solution [25]. 

Other physics-based algorithms include Kepler 

Optimization Algorithm (KOA) [26], Charged 

System Search (CSS) [27], Electromagnetic Field 

Optimization (EFO) [28], and Prism Refraction 

Search (PRS) [29]. 

Human-based algorithms leverage insights from 

human cognitive processes, behaviours, and 

decision-making patterns. These algorithms often 

model human activities like learning, memory, and 

personal development. For instance, Teaching-

Learning Based Optimization (TLBO) is inspired by 

educational processes, where solutions are viewed as 

learners, and the optimization is driven by 

interactions between teachers and students [30]. The 

Mother Optimization Algorithm (MOA) is another 

example, inspired by maternal principles of education 

and nurturing by mother Eshrat [14]. Algorithms 

such as Human Mental Search (HMS) [31], 

Dollmaker Optimization Algorithm (DOA) [32], and 

Ali Baba and the Forty Thieves (AFT) [33]  draw 

from various aspects of human interaction and 

cognition to guide the search for optimal solutions. 

These diverse metaheuristic approaches 

demonstrate the versatility and effectiveness of 

nature-inspired and concept-driven optimization 

techniques in solving a broad array of complex 

problems across different domains. 

Based on the best knowledge obtained from the 

literature review, no meta-heuristic algorithm 

inspired by human activities during the pottery 

process has been designed so far. This is while 

making pottery from clay and beautifying it are 

intelligent activities that can be the basis for 



Received:  June 8, 2024.     Revised: August 8, 2024.                                                                                                         91 

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024           DOI: 10.22266/ijies2024.1031.09 

 

designing a new metaheuristic algorithm. In order to 

address this research gap, a new metaheuristic 

algorithm based on the mathematical modeling of the 

pottery process has been introduced and designed, 

which is discussed in the next section. 

3. Potter optimization algorithm 

In this section, the theory of the proposed new 

Potter Optimization Algorithm (POA) approach has 

been explained first, then it has been mathematically 

modeled for implementation on optimization 

problems. 

3.1 Inspiration of POA 

The art of pottery and pottery is one of the oldest 

and most widespread decorative arts that has been 

popular among societies throughout the world for 

many years. In this art, objects, artistic and decorative 

pieces are made from clay. The basic material of 

pottery art is clay. This composition has a flexible and 

moldable structure and it can be molded to give it a 

specific shape during the construction of the parts. 

In general, in the pottery process, the steps of 

making a piece of pottery such as a pot or container 

are as follows: 

1- First, you have to prepare the mixture of the 

raw material, which is clay and water. 

2- Next, a suitable dough should be prepared by 

kneading the clay mixture completely and removing 

all the bubbles inside it. 

3- After the clay dough is ready, you can start 

shaping the dough and use special pottery tools and 

devices to make the desired piece. 

4- Now the piece of clay should be allowed to be 

exposed to the air and dry. 

5- After it is completely dry, it is time to firing it 

in the kiln. 

6- After placing the dishes in the kiln and 

finishing their firing, they should be removed and 

allowed to cool. 

7- The final stage of pottery involves decorating 

and adding a glaze or coating to the surface of the 

pottery. These steps are among the stages of 

beautification and decoration, and depending on the 

taste, different designs and paintings can be executed 

on raw clay dishes. 

In the pottery process, two stages are generally 

more significant: (i) shaping the pottery paste based 

on the existing pattern and (ii) the stage of decorating 

and beautifying the made pottery. These two 

prominent human activities in pottery are the main 

source of inspiration in the design of the proposed 

POA approach. 

3.2 Algorithm initialization 

T The proposed POA approach is a population-

based meta-heuristic algorithm that, by benefiting 

from the power of searching its members, is able to 

scan the problem solving space and converge to 

suitable solutions for optimization problems. Each 

POA member specifies values for the decision 

variables based on its position in the problem solving 

space. Therefore, each POA member corresponds to 

a candidate solution for the given problem, which is 

mathematically modeled using a vector. POA 

members together create these vectors, which are 

mathematically modeled using a matrix according to 

Eq. (1). The initial position of each POA member is 

initialized completely randomly using Eq. (2). 
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 (1) 

 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Here, 𝑋 is the POA’s population matrix, 𝑋𝑖 is the 

ith member (i.e., candidate solution), 𝑥𝑖,𝑑  is its dth 

dimension in the search space (i.e., decision variable), 

N is the number of population members (i.e., 

population size), m is the number of decision 

variables, r is a random number within the interval 
[0,1] , while 𝑙𝑏𝑑  and 𝑢𝑏𝑑  stand for the lower and 

upper bounds of the dth decision variable, 

respectively.  
Corresponding to each POA member 

representing a candidate solution to the problem, the 

objective function can be evaluated. Therefore, the 

evaluated values for the objective function are 

modeled using a vector according to Eq. (3). 
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Where, F is the vector of objective function 

values and 𝐹𝑖 is the obtained objective function value 

based on the ith POA member. 
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3.3 Mathematical modelling of POA 

In this subsection, inspired by human activities in 

the pottery process, POA is mathematically modeled. 

In order to update the candidate solutions in each 

iteration, potter's strategies have been used. Two 

strategies of the potter are more significant in this 

process: (i) the extensive changes that she/he makes 

on the clay in order to make a clay structure according 

to the pattern and (ii) the small and precise changes 

that she/he makes on the clay made for the purpose of 

decoration and beautification. 

In POA design, based on the modeling of these 

two strategies, the position of population members in 

the problem solving space is updated in two phases 

of exploration and exploitation. Each of these update 

phases is described and modeled in detail below. 

3.3.1 Phase 1: Making extensive changes to the 

clay (exploration phase)  

The potter tries to make a clay vessel according 

to a pattern by using the paste obtained from the 

mixture of clay and water. These changes on the clay 

are very extensive and its modeling leads to extensive 

changes in the position of the population members. 

These sudden changes in the position of the 

population members lead to the algorithms being able 

to properly scan different parts of the problem solving 

space. Therefore, this phase of implementation in 

POA leads to the ability of the algorithm in discovery 

in order to manage the global search. In the design of 

POA, it is assumed that the potter follows a pattern in 

order to make a pottery vessel. For each member of 

the POA, a pattern is considered, which is specified 

using Eq. (4). 

 

𝑃𝑖: 𝑝𝑖,𝑗 = 𝑥𝑗
𝑏𝑒𝑠𝑡 + 𝑟 ∙ (𝑥𝑖,𝑗 − 𝑥𝑗

𝑏𝑒𝑠𝑡)  (4) 

 

Here, 𝑃𝑖 is the given pattern for ith POA member, 

𝑝𝑖,𝑗  is its jth dimension, 𝑋𝑏𝑒𝑠𝑡  is best population 

member, 𝑥𝑗
𝑏𝑒𝑠𝑡  is its jth dimension,  and 𝑟  is a 

random number within the interval [0,1]. 
After choosing the appropriate pattern, the potter 

tries to shape the pottery material in such a way that 

it becomes similar to the pattern. Based on the 

modeling of this potter's behavior, a new random 

position is calculated for each POA member using Eq. 

(5). Then, if the new objective function is improved, 

this new position replaces the previous position of the 

corresponding member using Eq. (6). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟 ∙ (𝑝𝑖,𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),   (5) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖 ,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
 (6) 

 

Where, 𝑋𝑖
𝑃1  is the new position for the ith 

member based on exploration phase of POA, 𝑥𝑖,𝑗
𝑃1 is 

its jth dimension, 𝐹𝑖
𝑃1 is its objective function value, 

𝑟 is a random number drawn from the interval [0, 1], 
and 𝐼 is randomly selected number, taking values of 

1 or 2. 

3.3.2 Phase 2: Making precise small changes and 

beautification on the made pottery (exploitation 

phase)  

After making raw pottery, the potter tries to 

beautify and decorate it by paying attention to small 

and precise details. This potter's strategy leads to the 

creation of small changes on pottery, which modeling 

of this process corresponds to the creation of precise 

and targeted small changes in the position of POA 

population members. These small displacements lead 

the algorithm to converge to more effective and even 

global optimal solutions near the solutions 

discovered in the promising regions. Therefore, the 

modeling of this potter's strategy leads to the ability 

of POA in exploitation in order to manage local 

search.  

In POA design, Eq. (7) is used to make these 

small changes in the position of population members. 

Using this equation, a random position near each 

POA population member is generated. Then, if the 

value of the objective function is improved, this new 

position replaces the previous position of the 

corresponding member using equation Eq. (8). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + 𝑟 ∙ (

𝑥𝑗
𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑗

𝑡 + 1
)  (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (8) 

 

Here, 𝑋𝑖
𝑃2 is the new calculated position for the 

ith POA member based on exploitation phase of POA, 

𝑥𝑖,𝑗
𝑃2  is the its 𝑗 th dimension, 𝐹𝑖

𝑃2  is its objective 

function value, and 𝑡 is the iteration counter. 

3.4 Repetition process, pseudocode, and flowchart 

of POA 

The first iteration of the POA ends after updating 

all its population members based on the exploration 

and exploitation phases. After that, with the new 
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values calculated for the position of the members and 

the objective function, the algorithm enters the next 

iteration. The process of updating population 

members based on exploration and exploitation 

phases according to Eqs. (4) to (8) continues until the 

last iteration of the algorithm. In each iteration, the 

best candidate solution so far is identified and stored. 

After the full implementation of the algorithm, POA 

outputs the best solution identified during the 

iterations of the algorithm as a solution to the 

problem. The steps of POA implementation are 

shown as a flowchart in Figure 1. 

4. POA for sustainable lot size optimization 

In this section, we explore the application of the 

Potter Optimization Algorithm (POA) for tackling 

optimization challenges in supply chain management 

(SCM). Our focus is on demonstrating the capability 

of POA in sustainable lot size optimization, where the 

goal is to balance environmental responsibility with 

economic efficiency within supply chain operations. 

Sustainable lot size optimization aims to 

determine production batch sizes that not only 

minimize costs but also address environmental and 

social impacts. Traditional lot sizing models 

prioritize reducing costs such as setup, inventory 

holding, and ordering costs. However, sustainable lot 

size optimization expands this scope to include 

critical factors like energy consumption, resource 

utilization, waste reduction, emissions, and broader 

social considerations. This holistic approach is 

essential in today's context, where sustainability is 

increasingly recognized as a strategic imperative in 

supply chain management. 

The sustainable lot size optimization process 

incorporates a variety of factors. These include 

energy usage, raw material consumption, waste 

generation, emissions, and social impacts, in addition 

to economic costs. The objective is to identify batch 

sizes that reduce costs while also minimizing 

negative environmental impacts and promoting social 

responsibility across the supply chain. 

A comprehensive mathematical model for 

sustainable lot size optimization integrates both 

economic and environmental costs. The aim is to find 

the optimal lot size for each stage of the supply chain 

to minimize CO2 emissions and overall costs. This 

model includes constraints such as production 

capabilities, inventory storage limits, and demand 

satisfaction requirements. Furthermore, specific 

sustainability criteria are integrated to limit the CO2 

emissions related to manufacturing, transportation, 

and storage activities. 

 

 
Figure. 1 flowchart of POA 

 
To achieve this, the company seeks to minimize 

inventory shortages, optimize surplus inventory, and 

determine the ideal lot sizes. Upon receiving 

customer demand, any inventory shortages prompt 

decisions on whether to initiate production or place 

Input information of the optimization problem. 
Variables interval, constraints, objective function. 

Set the population size (N) and maximum 
number of iterations (T). 

Create and evaluate the initial population. 

Phase1: Determine the pottery pattern 
using Eq. (4). 

Phase 1: Calculate the new position of the 𝑖th 

POA member (𝑋𝑖
𝑃1) using Equation (5). 

 

Phase1: Evaluate 𝐹𝑖
𝑃1 based on 𝑋𝑖

𝑃1.  

Start POA 

No 

Yes 

𝑖 = 𝑖 + 1 

Print the best candidate solution. 

i==N? 

𝑖 = 1 
𝑡 = 𝑡 + 1 

Phase 2: Update 𝑋𝑖 using Equation (8). 

 

t==T? 
No 

Yes 

End POA 

Phase 2: Calculate the new position of the 𝑖th 

POA member (𝑋𝑖
𝑃2) using Equation (7). 

 

Phase 2: Evaluate 𝐹𝑖
𝑃2 based on 𝑋𝑖

𝑃2. 

 

Phase 1: Update 𝑋𝑖 using Equation (6). 
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orders. Excess inventory is managed as backlog, 

requiring strategies to prevent surplus and reduce 

waste effectively. The mathematical formulation of 

sustainable lot size optimization is outlined as 

follows: [34]: 

 

𝑇𝐶 = 𝐶𝑐 ∙
𝐷

𝑄
+ 𝐶𝑝 ∙ 𝑃 ∙

𝑄 + 𝑆𝑆

2
+ 𝑝 ∙ 𝐴 ∙

𝐷

𝑄
+ 𝐶𝑒 ∙

𝐷

𝑄
 

 

Objective Function: Minimize 𝑇𝐶 (Total Cost), 

which comprises: 

Where: 

𝑇𝐶: total cost (objective function); 

𝐶𝑐: Order cost/unit; 

𝐶𝑝: Holding cost/unit; 

𝑃: Price; 

𝑝: Shortage cost/unit; 

𝐴: Expected shortage/cycle; 

𝐷: Annual demand; 

𝐶𝑒: Footprint emission cost; 

𝑄: Quantity; 

𝑆𝑆: Shortage. 

 

Constraints: 

1.Production Constraints: These 

include limits on the number of units that can 

be produced within a specific period, 

factoring in machinery capacity and 

workforce availability. 

2.Inventory Capacities: These cover 

storage limitations for both raw materials and 

finished products. 

3.Demand Fulfillment: Ensuring that 

production meets customer demand within 

designated timeframes to avoid shortages 

and backlogs. 

4.Sustainability Criteria: These include 

specific restrictions on CO2 emissions at 

different supply chain stages, including 

production, transportation, and storage. 

 

In sustainable lot size optimization, the balance 

between economic viability and environmental 

responsibility is crucial. The audit process is 

deterministic, aiming to ensure that both economic 

and environmental objectives are met efficiently. 

The POA method evaluates and identifies optimal 

lot sizes that minimize both costs and environmental 

impact. This dual focus is increasingly important as 

businesses strive to meet sustainability goals while 

maintaining economic competitiveness. By 

leveraging the capabilities of POA, supply chain 

managers can make informed decisions that balance 

cost savings with environmental and social 

responsibility, driving long-term value and resilience 

in their operations. 

This approach represents an evolution in supply 

chain management practices. Traditional strategies 

that focused solely on cost reduction are now being 

enhanced with sustainability considerations, 

reflecting a broader understanding of value creation. 

Effective SCM today requires integrating advanced 

optimization techniques like POA with a 

commitment to sustainable practices, ensuring that 

supply chains are not only efficient but also 

responsible and resilient. 

In this comprehensive study, we evaluate the 

performance of the POA in the context of sustainable 

lot size optimization within supply chain 

management. To provide a robust benchmark, the 

POA is rigorously compared against twelve 

prominent metaheuristic algorithms. These 

algorithms include: Genetic Algorithm (GA) [24], 

Particle Swarm Optimization (PSO) [18], 

Gravitational Search Algorithm (GSA) [35], 

Teaching-Learning Based Optimization (TLBO) [30], 

Multi-Verse Optimizer (MVO) [36], Grey Wolf 

Optimizer (GWO) [37], Whale Optimization 

Algorithm (WOA) [38], Marine Predator Algorithm 

(MPA) [39], Tunicate Search Algorithm (TSA) [40], 

Reptile Search Algorithm (RSA) [41], African 

Vultures Optimization Algorithm (AVOA) [42], and 

White Shark Optimizer (WSO) [43]. 

The primary objective of this comparative study 

is to assess the efficacy of POA in optimizing 

sustainable lot size within supply chains. Sustainable 

lot size optimization seeks to balance economic 

efficiency with environmental and social 

responsibility. This involves minimizing costs such 

as setup, holding, and ordering, while also reducing 

negative environmental impacts and enhancing social 

welfare. 

In our experiments, the POA and the twelve 

competing algorithms were applied to solve 

sustainable lot size optimization problems. The 

performance metrics focused on the total cost (TC), 

which includes both economic and environmental 

costs. The results, as summarized in Table 1, 

demonstrate that POA consistently outperformed the 

other algorithms in optimizing the objective function, 

delivering superior values for TC. In addition, the 

convergence curves showing the performance of 

PROPOSEDNA and competing algorithms are 

presented in Figure 2. 
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Table 1. Comparison of metaheuristic algorithms in sustainable lot size optimization 
 POA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

Part 1 

mean 129912.7 130022.2 130022.2 130022.2 129938.1 129938.1 129938.1 129938.1 129938.1 129938.1 140839.9 129938.1 131214.9 

best 129905.7 129937.1 129937.1 129937.1 129906.9 129906.9 129906.9 129906.9 129906.9 129906.9 130805.4 129906.9 130260.3 

worst 129929.5 130151.6 130151.6 130151.6 130012.9 130012.9 130012.9 130012.9 130012.9 130012.9 158891.7 130012.9 132665.5 

std 7.255931 65.26202 65.26202 65.26202 32.35775 32.35775 32.35775 32.35775 32.35775 32.35775 9083.005 32.35775 731.7206 

median 129909.9 130011.6 130011.6 130011.6 129925.4 129925.4 129925.4 129925.4 129925.4 129925.4 138409.3 129925.4 131095.6 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Part 2 

mean 14451.41 14459.9 14459.9 14459.9 14453.97 14453.97 14453.97 14453.97 14453.97 14453.97 15232.6 14453.97 14554.13 

best 14450.68 14451.94 14451.94 14451.94 14450.7 14450.7 14450.7 14450.7 14450.7 14450.7 14464.14 14450.7 14464.85 

worst 14453.4 14491.34 14491.34 14491.34 14462.85 14462.85 14462.85 14462.85 14462.85 14462.85 18168.08 14462.85 14906.61 

std 0.803303 9.010596 9.010596 9.010596 3.582321 3.582321 3.582321 3.582321 3.582321 3.582321 929.8919 3.582321 101.0272 

median 14451.14 14457.71 14457.71 14457.71 14452.76 14452.76 14452.76 14452.76 14452.76 14452.76 14883.72 14452.76 14529.53 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Part 3 

mean 111778.3 111780 111799.9 111819.8 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111987.4 111778.3 111797 

best 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 

worst 111778.3 111786 111924.4 112067.7 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 112743.6 111778.3 111864.4 

std 3.75E-05 2.484254 40.16624 79.42862 0.000167 0.000168 0.000167 0.000226 0.000167 0.000167 312.2935 0.000167 27.85357 

median 111778.3 111778.6 111784.7 111790.9 111778.3 111778.3 111778.3 111778.3 111778.3 111778.3 111810.6 111778.3 111781.2 

rank 1 8 10 11 2 5 3 7 4 6 12 2 9 

Part 4 

mean 124855 124876.7 124876.7 124876.7 124858.7 124858.7 124858.7 124858.7 124858.7 124858.7 127181.1 124858.7 125109.8 

best 124854 124854.7 124854.7 124854.7 124854.4 124854.4 124854.4 124854.4 124854.4 124854.4 124880.3 124854.4 124862.3 

worst 124857.4 124922.2 124922.2 124922.2 124869.2 124869.2 124869.2 124869.2 124869.2 124869.2 132573 124869.2 125619.5 

std 1.111261 17.56583 17.56583 17.56583 4.955656 4.955656 4.955656 4.955656 4.955656 4.955656 2224.656 4.955656 196.9488 

median 124854.5 124873.1 124873.1 124873.1 124856.4 124856.4 124856.4 124856.4 124856.4 124856.4 126567.8 124856.4 125069.1 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Part 5 

mean 120579.1 120706.1 120706.1 120706.1 120604.2 120604.2 120604.2 120604.2 120604.2 120604.2 133738.8 120604.2 122077.1 

best 120571.9 120604.9 120604.9 120604.9 120572.3 120572.3 120572.3 120572.3 120572.3 120572.3 122224.5 120572.3 120942.9 

worst 120605.9 120999.4 120999.4 120999.4 120723.9 120723.9 120723.9 120723.9 120723.9 120723.9 173922.8 120723.9 125365.3 

std 8.971042 102.5695 102.5695 102.5695 40.00627 40.00627 40.00627 40.00627 40.00627 40.00627 13544.13 40.00627 1150.014 

median 120575.5 120670 120670 120670 120588.3 120588.3 120588.3 120588.3 120588.3 120588.3 126892.1 120588.3 121672.3 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Part 6 

mean 287571.1 287662.3 287662.3 287662.3 287623 287623 287623 287623 287623 287623 293237.2 287623 288746.2 

best 287556.6 287567.3 287567.3 287567.3 287558.3 287558.3 287558.3 287558.3 287558.3 287558.3 287588.8 287558.3 287681.2 

worst 287605 287855.4 287855.4 287855.4 287774.3 287774.3 287774.3 287774.3 287774.3 287774.3 312455.6 287774.3 290912 

std 12.41739 70.39266 70.39266 70.39266 55.37523 55.37523 55.37523 55.37523 55.37523 55.37523 5913.924 55.37523 789.2456 

median 287569.8 287648.2 287648.2 287648.2 287617.1 287617.1 287617.1 287617.1 287617.1 287617.1 290888 287617.1 288588.7 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Part 7 

mean 128804.9 128808.6 128837.5 128866.4 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 129274.4 128804.9 128846.8 

best 128804.9 128804.9 128805 128805 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 

worst 128804.9 128821.8 128884.2 128950.9 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 130929.4 128804.9 128994.4 

std 0.000738 5.50195 29.26837 57.08067 0.003293 0.003293 0.003293 0.003327 0.003295 0.003294 691.5816 0.003293 61.68811 

median 128804.9 128805.7 128834.1 128854.9 128804.9 128804.9 128804.9 128804.9 128804.9 128804.9 128910.3 128804.9 128814.3 

rank 1 7 8 10 2 4 2 6 3 5 11 2 9 

Part 8 

mean 20369.67 20380.64 20380.64 20380.64 20372.67 20372.67 20372.67 20372.67 20372.67 20372.67 21413.96 20372.67 20501.46 

best 20368.87 20371.72 20371.72 20371.72 20369.09 20369.09 20369.09 20369.09 20369.09 20369.09 20383.83 20369.09 20401.48 

worst 20371.4 20399.29 20399.29 20399.29 20380.37 20380.37 20380.37 20380.37 20380.37 20380.37 23372.98 20380.37 20710.61 

std 0.604322 8.239371 8.239371 8.239371 2.694968 2.694968 2.694968 2.694968 2.694968 2.694968 930.8639 2.694968 92.38019 

median 20369.63 20378.79 20378.79 20378.79 20372.46 20372.46 20372.46 20372.46 20372.46 20372.46 21282.76 20372.46 20480.69 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Part 9 

mean 4366.721 4366.721 4366.742 4366.764 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 

best 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 

worst 4366.721 4366.721 4366.935 4367.149 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 

std 2.9E-12 7.61E-12 0.049642 0.099285 8.47E-12 2.35E-08 8.44E-12 8.31E-07 5.63E-08 1.71E-07 8.35E-12 8.32E-12 8.64E-11 

median 4366.721 4366.721 4366.723 4366.725 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 4366.721 

rank 1 2 9 10 2 5 3 8 6 7 2 2 4 

Part 10 

mean 15557.64 15567.53 15567.53 15567.53 15560.15 15560.15 15560.15 15560.15 15560.15 15560.15 16520.57 15560.15 15675.94 

best 15556.97 15557.52 15557.52 15557.52 15557.16 15557.16 15557.16 15557.16 15557.16 15557.16 15572.27 15557.16 15563.7 

worst 15558.9 15585.05 15585.05 15585.05 15565.78 15565.78 15565.78 15565.78 15565.78 15565.78 18621.95 15565.78 15872.33 

std 0.526081 7.780655 7.780655 7.780655 2.346052 2.346052 2.346052 2.346052 2.346052 2.346052 890.239 2.346052 87.23705 

median 15557.82 15566.18 15566.18 15566.18 15560.97 15560.97 15560.97 15560.97 15560.97 15560.97 16317.73 15560.97 15660.85 

rank 1 3 3 3 2 2 2 2 2 2 5 2 4 

Sum rank 10 38 48 52 20 28 22 35 27 32 60 20 50 

Mean rank 1 3.8 4.8 5.2 2 2.8 2.2 3.5 2.7 3.2 6 2 5 

Total rank 1 8 9 11 2 5 3 7 4 6 12 2 10 
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Figure. 2 convergence curves of performance of metaheuristic algorithms in sustainable lot size optimization 

 
 

The effectiveness of POA in comparison to the 

other algorithms can be attributed to its unique 

mechanism of exploration and exploitation, which 

balances the search for optimal solutions across a 

complex and dynamic solution space. The hybrid 

nature of POA, which integrates multiple 

optimization strategies, allows it to adaptively 

navigate through local and global optima, enhancing 

its capability to find more efficient solutions. 

The implementation of POA and the comparative 

algorithms involved rigorous testing on a series of 

benchmark problems representative of real-world 

supply chain scenarios. The test problems included 

varying levels of complexity, demand fluctuations, 

and constraints related to sustainability criteria such 

as carbon emissions and resource utilization.  

The superior performance of POA is evident in its 

ability to minimize the total cost more effectively 

than the other algorithms. This success is likely due 

to POA's robust search capabilities and its dynamic 

adjustment mechanisms, which ensure that both cost 

efficiency and sustainability are simultaneously 

optimized. This dual focus aligns with modern supply 

chain management's evolving priorities, where 

sustainability and economic performance are both 

critical. 

 

5. Conclusions and future works 

In this paper, a new metaheuristic algorithm 

named Potter Optimization Algorithm (POA) 

inspired by the pottery process was introduced to deal 

with Supply Chain Management (SCM) applications. 

The main source of inspiration in the design of POA 

is derived from two basic activities in the pottery 

process: (i) making extensive changes to the pottery 

materials and (ii) making small precise changes to the 

produced pottery. POA theory was stated and then 

mathematically modeled in two phases of exploration 

and exploitation. The effectiveness of POA on SCM 

applications was challenged to deal with sustainable 

lot size optimization including 10 case studies. The 

optimization results showed that POA has achieved 

suitable solutions with the ability to manage global 

and local search as well as balance between 

exploration and exploitation. In order to measure the 

quality of POA, the obtained results were compared 

with twelve competing metaheuristic algorithms. 

Analysis of the simulation results showed that POA 

has a superior performance compared to ten 

competing algorithms by providing better results and 

getting the rank of the first best optimizer for all ten 

study cases. The findings of this study are that POA, 

by providing better results in 100% of case studies, 
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has an effective performance to achieve optimization 

tasks and especially sustainable lot size optimization.  

By introducing POA in this study, several 

research proposals are proposed for further work in 

the future. Among the most prominent of these 

proposals are the development of binary and 

multipurpose versions of POA. In addition, 

employing POA to handle optimization tasks in 

various sciences and other real-world applications is 

one of the other research proposals of this study for 

further work in the future. 
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