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A B S T R A C T

This study presents an innovative approach to mitigate vibrations induced by external shock on composite
structures through the application of an intelligent controller. Leveraging the first-order shear deformation panel
theory, a sophisticated controller scheme is developed, integrating methodologies such as the differential
quadrature approach and Laplace transform. Furthermore, deep neural network (DNN) and support vector
regression (SVR) techniques are employed to enhance prediction accuracy and control efficiency. Additionally,
two optimized hybrid models are proposed, incorporating Particle Swarm Optimization (PSO) and Grey Wolf
Optimizer (GWO) algorithms, to further refine the controller’s performance. The proposed methodology aims to
address the challenges associated with vibrations in composite structures by providing a comprehensive and
adaptive control solution. By utilizing advanced optimization algorithms and machine learning techniques, the
controller can effectively adapt to dynamic changes in external shock conditions, thereby minimizing vibrations
and ensuring structural integrity. The integration of ANN and SVR enhances the controller’s predictive capa-
bilities, enabling it to anticipate and respond to varying shock scenarios with precision. Through theoretical
analysis and numerical simulations, the effectiveness of the proposed intelligent controller is demonstrated in
reducing vibrations and enhancing the structural stability of composite systems. The optimized hybrid models,
employing PSO and GWO algorithms, further improve the controller’s performance by fine-tuning its parameters
for optimal control efficiency. Overall, this research contributes to the development of robust control strategies
for mitigating vibrations in composite structures subjected to external shock, with potential applications in
aerospace, automotive, and civil engineering industries.

1. Introduction

Intelligent controllers are essential in engineering for optimizing
system performance and enhancing adaptability across various appli-
cations. They improve system accuracy, precision, and response times
by adjusting control actions based on real-time data and feedback [1].
This capability is crucial in maintaining desired performance levels in
complex systems. Intelligent controllers can dynamically modify control
strategies, making them ideal for environments where conditions
change frequently. This adaptability is particularly important in in-
dustries such as aerospace, automotive, and robotics. By optimizing
control actions, these controllers can significantly reduce energy

consumption and operational costs, such as in controller systems where
they adjust operations based on environmental conditions. They also
improve system reliability by detecting and compensating for faults,
reducing downtime in critical applications like power grids and medical
devices [2].

Intelligent controllers enhance safety in applications by responding
quickly to hazardous situations and preventing accidents. They can
predict potential failures and take corrective actions, which is vital in
safety-critical industries like aviation and nuclear power. Furthermore,
they handle complex processes using advanced algorithms, optimizing
nonlinear and multivariable systems that traditional controllers cannot
manage effectively [3]. They easily integrate with advanced
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technologies such as the Internet of Things (IoT) and machine learning,
enabling smart systems to learn from data and make informed decisions.
Many intelligent controllers offer user-friendly interfaces, simplifying
system management and allowing easier automation [4]. This reduces
operational complexity and enables non-expert users to manage
advanced systems efficiently. Additionally, by improving efficiency and
performance, they contribute to sustainability by reducing waste,
minimizing emissions, and conserving resources. In summary, intelli-
gent controllers are crucial for advancing engineering practices by
providing enhanced performance, adaptability, efficiency, and safety
[5].

Despite the potential increase in structural stiffness and reduction in
vibration amplitudes due to graphene reinforcement, structures incor-
porating graphene may still experience irregular chaotic vibrations and
nonlinear amplitude variations. Nonlinear vibrations are a primary
cause of structural failure, underscoring the importance of studying
nonlinear vibration control strategies. Shi et al. [6] investigated
nonlinear vibration parameters and vibration mitigation in the shafting
system of a hydropower unit. They found that a state information vi-
bration controller with higher damping and stiffness factors resulted in
more significant vibration reduction. Abbaspour et al. [7] demonstrated
that despite system uncertainties induced by temperature fluctuations, a
sliding mode controller could restore the fluctuating behavior of
graphene-reinforced piezoelectric sandwiched microplates to the
desired level. Saeed et al. [8] explored the nonlinear behavior and
motion bifurcations of an 8-pole rotor active magnetic bearing system
using a novel control technique. Their findings revealed that when the
proportional gain of the new controller is low, the rotor system un-
dergoes unstable cyclic oscillation. Mondal et al. [9] investigated the
self-excited vibration control of a nonlinear beam using nonlinear
resonant time-delay velocity feedback. They observed that the suggested
controllers eliminate bifurcations and suppress vibration amplitudes. In
a study by Lu et al. [10], PVDF actuators were employed to control
high-amplitude vibrations of membranes. They found that the effec-
tiveness of the vibration controller decreased with increasing mode
order, pretension, and membrane size. Bauomay et al. [11] explored the
efficacy of employing a linear controller to mitigate nonlinear vibration
amplitudes in composite plates. Their investigation demonstrated that
the controller effectively managed the three-order vibration mode of the
plate in terms of its nonlinear vibration amplitude. Introducing an in-
termediate lumped mass, a novel nonlinear modified positive position
feedback method was developed to reduce vibration amplitudes in
cantilever beam systems [12]. He et al. [13] employed a
smooth-switching linear parameter-varying dynamically
output-feedback controller to investigate active vibration suppression in
a Blended-Wing-Body flexible aviation wing. Their study revealed that
the suggested control strategy significantly reduced the system’s abrupt
jumps. Zhao et al. [14] studied the control of vibration amplitudes in
nonlinear Duffing oscillation systems, finding that linear vibration
controllers were less effective compared to those resembling vibration
systems. Lu et al. [15] devised a robust control approach to suppress
vibration in piezoelectric laminated composite cantilever rectangle
plates subjected to aerodynamic forces. Zhu et al. [16] proposed a
non-uniform electric field model to intelligently control the vibration of
porous piezoelectric conical sandwich structures. Investigating
nonlinear vibration reduction in cantilevered rectangular plates using
the PPF control approach, Jiang et al. [17] observed optimal vibration
control when the frequencies of the PPF controller matched those of the
structure naturally. Hu et al. [18] proposed a novel semi-active joint
variable stiffness controller to regulate low-frequency vibrations in
flexible joint appendages, employing semi-active control methods. Tian
et al. [19] addressed nonlinear flutter reduction by periodically inserting
nonlinear vibration absorbers into functionally graded plates, observing
enhanced flutter stability performance with distributed nonlinear vi-
bration absorbers. Mahesh [20] employed an active restricted layer
damping treatment approach to mitigate nonlinear transient vibration

amplitudes in sandwich plates with agglomerated FG-CNTs core. Zhao
et al. [21] developed a semi-active control mechanism using theory and
experimentation to suppress nonlinear vibration in innovative
square-celled sandwich plates with a multi-zone magnetorheological
elastomers filler core. Additionally, Sahoo et al. [22] utilized
high-frequency stimulation to decrease galloping amplitude and elimi-
nate vibration amplitude in elastic components under unstable wind
flow conditions.

Stability analysis is crucial in engineering design, ensuring safety by
identifying potential failure modes and optimizing performance through
efficient material use [23,24]. It guarantees compliance with legal
standards and predicts system failure, allowing for preventive mainte-
nance and safe design [25]. In innovative fields like aerospace and civil
engineering, stability analysis supports the creation of complex, reliable
structures [26]. It balances cost and performance, ensuring economic
efficiency and extending the lifespan of systems by withstanding various
stresses [27]. Understanding dynamic responses in mechanical systems
is essential for smooth operation, while environmental resistance re-
duces the ecological footprint [28]. Applicable across disciplines, sta-
bility analysis is a fundamental aspect of engineering, driving
sustainable, durable, and high-performing designs [29]. Analyzing sta-
bility ensures that structures and systems have a longer lifespan by
withstanding wear and tear, dynamic loads, and environmental stresses,
reducing the need for frequent repairs or replacements [30]. In me-
chanical systems, stability analysis is crucial for understanding the dy-
namic response to forces and vibrations, which is essential for the
smooth and efficient operation of machinery [31]. So, stability analysis
is indispensable for creating safe, efficient, and innovative engineering
designs that meet regulatory standards, optimize performance, and
ensure long-term durability and sustainability [32].

There is no research on the intelligent controller for reducing vi-
brations caused by external shock on the sandwich doubly curved panel,
according to published articles in the literature. So, this study presents
an intelligent controller intended to reduce vibrations on composite
constructions caused by shock from the outside. A complex controller
system is developed by using the first-order shear deformation panel
theory and combining the Laplace transform and differential quadrature
approaches. In order to improve control efficiency and prediction ac-
curacy, ANN and SVR algorithms are also included. Furthermore, two
enhanced hybrid models are suggested, using PSO and GWO algorithms
to enhance the controller’s functionality even further. The controller can
dynamically react to different shock events by using advanced control
techniques and optimization algorithms, which reduce vibrations and
guarantee structural integrity. Additionally, the controller’s predictive
skills are improved by the combination of ANN and SVR approaches,
allowing it to precisely foresee and react to dynamic changes in external
shock circumstances. The hybrid models that have been improved via
the integration of PSO and GWO algorithms enhance the controller’s
performance and guarantee maximum control efficiency. All things
considered, the suggested method is a noteworthy development in the
subject of structural control and may find use in the civil, automotive,
and aerospace engineering sectors. Through efficient exterior shock vi-
bration mitigation, this study enhances the performance, safety, and
dependability of composite structures across a range of engineering
applications. The novelties of this work can be separated into four fields.
1- Presenting vibration-control equations of the sandwich doubly curved
panel under external transient loading. 2- Presenting advanced intelli-
gent controller for mitigating vibrations induced by external shock on
the sandwich doubly curved panel. 3- Presenting coupled controller
scheme, DQM, and Laplace transform for solving the displacement-time
dependent equations. 4- Present innovative outcomes for mitigating
vibrations induced by external shock on the sandwich doubly curved
panel for future electrical industries.

Q. Zhang et al.
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2. Mathematical modeling

Fig. 1 shows a schematic view of the presented structure, an intel-
ligent controller with geometry conditions. The sensor is embedded in
the fuselage structure and continuously monitors the structural response
to external shocks (such as pressure pp depicted in the figure). It detects
vibrations and measures parameters like displacement, velocity, or ac-
celeration of the fuselage. The sensor outputs the measured data to the
controller. This data provides real-time feedback on the structural state
of the fuselage. The controller processes the sensor data and determines
the necessary corrective actions. It generates a control signal based on
the feedback voltage to mitigate the vibrations. The control algorithm
can use various control strategies, such as PID control, adaptive control,
or more advanced algorithms as presented in neural networks, to
compute the appropriate actuator input. The actuator receives the
control signal from the controller. It applies forces or moments to the
fuselage structure to counteract the detected vibrations. The actuator
might use mechanisms like piezoelectric elements, or other smart

materials that can dynamically adjust their properties in response to
electrical inputs. The input to the actuator is adjusted in real-time to
dynamically dampen vibrations. The actuator works to reduce the
amplitude of the vibrations by applying forces that oppose the motion
induced by the external shocks. The system forms a closed-loop feedback
control system, where the sensor continuously provides updated struc-
tural response data to the controller. The controller continuously adjusts
the actuator inputs based on the real-time data to ensure effective vi-
bration damping. The controller system integrates with the structural
dynamics of the fuselage by providing a real-time response to vibrations.
This rapid response is crucial for effectively damping vibrations before
they can amplify and potentially cause structural damage or discomfort.
By constantly monitoring and adjusting the actuator inputs, the system
can adapt to varying external shock conditions. This adaptability en-
sures that the fuselage remains stable under different operational sce-
narios. The intelligent controller enhances the overall structural
integrity of the airplane by reducing the stress and strain induced by
vibrations. This prolongs the lifespan of the fuselage and reduces

Fig. 1. Showing an intelligence controller for controlling the mitigating vibrations induced by external shock on the fuselage of the airplane.
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maintenance requirements. In addition to structural benefits, effective
vibration damping improves passenger comfort by minimizing the
transmission of vibrations to the cabin. By integrating sensors, control-
lers, and actuators into the fuselage structure, the intelligent controller
system forms a comprehensive solution for active vibration control. This
integration allows for continuous monitoring and dynamic response,
ensuring that vibrations are effectively dampened, enhancing both
structural integrity and passenger comfort.

2.1. The homogenization process of MHLN

The two primary components of the homogenization process are the
micromechanical theory [33] and the Halpin-Tsai model [34]. The first
step involves calculating the composite reinforced with CFs’ effective
characteristics in the manner described below [35].

E11 = VFEF11 + VNCMENCM (1a)

1
E22

=
VF

EF22
+
VNCM

ENCM
− VFVNCM ×

(νF)
2
ENCM

EF22
+
(νNCM)

2
EF22

EM − 2νFνNCM

VFEF22 + VNCMENCM
(1b)

1
G12

=
VF

GF
12

+
VNCM

GNCM,G23 = G12,G13 = G12 (1c)

ρ = VFρF + VNCMρNCM (1d)

ν12 = VFνF + VNCMνNCM (1e)

v21 =
E22
E11

v12, v13 = v12, v31 = v21, v32 = v21, v23 = v32 (1f)

The relation between VF and VNCM is as follows:

VF + VNCM = 1 (2)

Using the expanded Halpin-Tsai micromechanics, the second phase is
structured to determine the effective properties of the CNT-reinforced
nanocomposite matrix as follows:

ENCM = EM
(
5
8

(
1+ 2βddVCNT

1 − βddVCNT

)

+
3
8

(
1+ 2

(
lCNT

/
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)
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))

(3)

Here, βdd and βdl would be computed as the following expression.

βdl =

(
ECNT11

/
EM
)
−
(
dCNT

/
4tCNT

)

(
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/
EM
)
+
(
lCNT

/
2tCNT
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/
EM
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−
(
dCNT

/
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)
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(
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/
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) (4)

Base on the WCNT , the CNTs’ volume fraction can be given below:

V∗
CNT =

WCNT

WCNT +

(
ρCNT
ρM

)

(1 − WCNT)

(5)

Additionally, the thickness direction and MHLN distribution may be
obtained by:

VCNT = V∗
CNT (6)

In addition, the relationship between VM and VCNT is as follows:

VCNT + VM = 1 (7)

Finally, the mechanical properties of the nanocomposite structure
may be ascertained using the following methods:

ρNCM = VCNTρCNT + VMρM (8a)

νNCM = νM (8b)

GNCM =
ENCM

2(1+ νNCM) (8c)

Building on Sander’s shell theory, Ref. [36] created an FSDT for
panel-type structure analysis. This theory is consistent with the
moderately thick class of shells and describes displacements on an
arbitrary point of the panel (U ,V ,W ) as a function of mid-surface
displacements (U , V , W ) and mid-surface rotations (f

y
, f

x
).

⎧
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Z
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)
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⎫
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+ Z

⎧
⎨

⎩

f
X
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f
Y
(X,Y, t)
0

⎫
⎬

⎭
(9)

The modified Sanders shell theory provides several advancements
over traditional theories like Reissner and Donnell-Mushtari-Vlasov
(DMV) when analyzing panel-type structures, especially under me-
chanical and electrical loads. Here’s how it differs and the advantages it
offers:

A. Inclusion of Shear Deformation
Unlike the DMV theory, which neglects transverse shear deforma-

tion, the modified Sanders shell theory incorporates it. This allows for a
more accurate representation of thick shells or structures where shear
effects are significant.

B. Higher-Order Effects:
The modified Sanders theory includes higher-order strain-displace-

ment relations, making it more suitable for analyzing complex stress
states and deformations in panels. This contrasts with Reissner’s theory,
which also considers shear but might not capture higher-order effects as
effectively.

C. Electromechanical Coupling:
The theory can integrate electromechanical coupling, making it ad-

vantageous for analyzing structures subjected to both mechanical and
electrical loads, such as piezoelectric panels. Traditional theories pri-
marily focus on mechanical loads.

D. General Applicability:
The modified Sanders theory is versatile and can be applied to a wide

range of boundary conditions and load cases, providing more accurate
results for diverse applications compared to DMV, which is more suited
to thin shell approximations.

E. Enhanced Accuracy:
By considering both shear deformation and higher-order terms, the

modified Sanders theory offers improved accuracy for predicting de-
flections, stresses, and strains in complex geometries and loading sce-
narios, leading to better structural analysis and design optimization.
Overall, these enhancements make the modified Sanders shell theory a
powerful tool for analyzing modern engineering structures, providing
better insight into their behavior under multifaceted loading conditions.

Generally speaking, the modified Sanders shell theory used in this
study is a particular example of the Reissner, Don-
nell–Mushtari–Valasov, and Sanders theories. To get a concise summary
of the Reissner, Sanders, DMV, and modified Sanders shell theories, one
may consult Chaudhuri and Kabir’s publications [37]. With the
displacement field and the modified Sander’s theory assumptions [38],
the linear strain–displacement relations are found as follows.

Q. Zhang et al.
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where the components of shear strain, L ij, and normal strain, E ij, are,

respectively. Not to mention, c0 = 1
2

(
1
R1 −

1
R2

)

. The Sander’s shell theory

feature that is used to account for the condition of zero strain for rigid
body motion is this constant [38].

According to Hooke’s elasticity, the MHLN layer’s stress-strain
equations may be expressed as follows [39]

In which

T 11 = T 22sin4θ + 2(T 12 +2T 66)sin2θcos2θ + T 11cos4θ (12)

T 12 = T 12
(
cos4θ+ sin4θ

)
+ (T 22 +T 11 − 4T 66)cos2θsin2θ

T 22 = T 11sin4θ + T 22cos4θ + 2T 12sin2θcos2θ

+ 2(T 12 +2T 66)cos2θsin2θ

T 44 = T 55sin2θ + T 44cos2θ

T 55 = T 44sin2θ + T 55cos2θ

T 66 = T 66
(
cos2θ − sin2θ

)2
− 4(2T 12 − T 11 − T 22)cos2θsin2θ

The terms involved in Eq. (12) would be obtained as [39]:

T 11 =
E11

(1 − υ12υ21)
,T 12 =

υ12E11
(1 − υ12υ21)

,T 22 =
E22

(1 − υ12υ21)
(13)

T 66 = G12,T 55 = G13,T 44 = G23

The panel’s constitutive equations with the linear piezo electro-
elastic effects included may be expressed as [40]
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T 11 =
E

1 − υ2,T 12 =
υE

1 − υ2,T 22 =
E
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=
E

2(1+ υ)

In Eq. (14), electric displacement coefficients, dielectric permittivity
coefficients, elements of the electric field vector, piezoelectric constants,

elastic constants, shear stress components, and normal stress compo-
nents are introduced via Di, ηi, Ei, eij, T ij, τij, and σij, respectively. The
negative gradient of the electric potential yields the components of the
electric field for each of the piezoelectric layers [41]. Electric potential
may be seen as a linear function of the thickness coordinate when
piezoelectric layers are sufficiently thin. A three-dimensional layerwise
finite elements analysis is used in [42] to support this assumption for
thin piezoelectric layers. Additionally, because only the transverse
electrical field is prominent, other components of the in-plane electrical
field across the piezoelectric layers are ignored [41]. As a result, the
electric fields for the two layers may be expressed as follows:
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Here, the electric potential difference function between the two
surfaces of the actuator and sensor layers is denoted by Φs and Φa,
respectively. Φs and Φa denote the electric potential of the top surface of
the sensor and actuator, respectively, when the bottom surface of each
piezoelectric layer is grounded. The stress resultants are connected to
the stresses by the equations when Z /R1 and Z /R2 are insignificant in
contrast with unity, based on the shallow shell FSDT (which accepts the
requirements h/R1, h/R2 < 0.05 [43]).

(nX X , nY Y , nX Y ) =

∫
−
1
2h

H

−
1
2h

H − hs
(σX X , σY Y , τX Y )dZ

+

∫
1
2h

H

−
1
2h

H

(σX X , σY Y , τX Y )dZ

+

∫
1
2h

H + ha

1
2h

H

(σX X , σY Y , τX Y )dZ (16)

(mX X ,mY Y ,mX Y ) =

∫−
1
2h

H

−
1
2h

H − hs
Z (σX X , σY Y , τX Y )dZ

+

∫
1
2h

H

−
1
2h

H

Z (σX X , σY Y , τX Y )dZ

+

∫
1
2h

H + ha

1
2h

H

Z (σX X , σY Y , τX Y )dZ

(q
X Z

, q
Y Z

) = Ks

∫
−
1
2h

H

−
1
2h

H − hs
(τX Z , τY Z )dZ + Ks

∫
1
2h

H

−
1
2h

H

(τX Z , τY Z )dZ

+ Ks

∫
1
2h

H + ha

1
2h

H

(τX Z , τY Z )dZ

The shear correction factor is denoted by Ks. Since it is well
acknowledged that the value of 5/6 may be used to estimate Ks for
composite plates and panels [44], the shear correction factor for the
hybrid shell panel in this study is Ks = 5/6.

3. Equations of motion

Using the Hamilton principle [45–47], the equations of motion for a
hybrid doubly curved panel are determined. This principle states that
the following equality must exist for a point in the structures to be in
equilibrium.

∫t1

0

(δUe + δUs + δV − δK)dt = 0 (17)

where δUs, δUe, δV and δK stand for the virtual strain energy, virtual
electrical energy, virtual work performed by externally applied forces,
and virtual kinetic energy of the current system, respectively. For a
panel-type construction, the previously mentioned purposes become
[41,48]

δUs =

∫

Z

∫

A

(σX X δE X X + σY Y δE Y Y + σX Y δL X Y

+KsτX Z δL X Z +KsτY Z δL Y Z )dAdZ
(18)

δUe = −

∫

Z

∫

A

(
Da

Z δEaZ +Ds
Z δEsZ

)
dAdZ

δV = −

∫

A

(pδW + qaδΦa)dA

The external mechanical applied load and the surface charge density
applied to the actuator layer are denoted by p = F0H(t) and qa, respec-
tively, in function δV. Since the sensor layer is often not activated
externally, this word is not present in δV. The following system of
equations of motion is obtained by going back to Eq. (15), replacing Eq.
(18) with Eq. (17), and using the Green-Gauss theorem to alleviate the
virtual displacements.

δU : nX X ,X + nX Y ,Y + c0mX Y ,Y +
qX Z

R1

=

(

S1 +
2
R1
S2
)

Ü +

(

S2 +
1
R1
S3
)

f̈X (19)

δV : nX Y ,X + nY Y ,Y − c0mX Y ,X +
qY Z

R2

=

(

S1 +
2
R2
S2
)

V̈ +

(

S2 +
1
R2
S3
)

f̈Y

δW : T X Z ,X + T Y Z ,Y −
nX X

R1
−

nY Y

R2
+ p = S1Ẅ

δfX : mX X ,X +mX Y ,Y − qX Z =

(

S2 +
1
R1
S3
)

Ü + S3 f̈X

δfY : mX Y ,X +mY Y ,Y − qY Z =

(

S2 +
1
R2
S3
)

V̈ + S3 f̈Y

δΦa :
1
ha

∫
1
2h

H + ha

1
2h

H

Da
Z dZ = qa

δK =

∫

Z

∫

A

ρ
{[(

1+
Z

R1

)

U̇ ˙+Z ˙f ˙
X

][(

1+
Z

R1

)

δU̇ ˙+Z δ ˙f ˙
X

]

+

[(

1+
Z

R2

)

V̇ ˙+Z ˙f ˙
Y

][(

1+
Z

R2

)

δV̇ ˙+Z δ ˙f ˙
Y

]

+ Ẇ ˙δẆ ˙

}

dAdZ

Q. Zhang et al.
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δΦs :
1
hs

∫−
1
2h

H

−
1
2h

H − hs
Ds

Z dZ = 0

where Si = Ii + haHa
i + hsHs

i and Ii =
∫−
1
2h

H

−
1
2h

H − hs
Z i− 1ρ(Z )dZ +

∫
1
2h

H

−
1
2h

H

Z i− 1ρ(Z )dZ +

∫
1
2h

H + ha

1
2h

H

Z i− 1ρ(Z )dZ , i = 1,2,3.

We solely address the immovable clamped-supported edge circum-
stances and the moveable simply-supported edge conditions in this
study. This is one way to write mathematical formulas for this type of
edge support: Movable simply-supported edge:

U (X ,0, t) = U (X , b, t) = 0, V (0,Y , t) = V (a,Y , t) = 0 (20)

mY Y (X ,0, t) = mY Y (X , b, t) = 0, mX X (0,Y , t) = mX X (a,Y , t) = 0

f
X
(X , 0, t) = f

X
(X , b, t) = 0, f

Y
(0,Y , t) = f

Y
(a,Y , t) = 0

W (X ,0, t) = W (X , b, t) = 0, W (0,Y , t) = W (a,Y , t) = 0

nY Y (X ,0, t) = nY Y (X , b, t) = 0, nX X (0,Y , t) = nX X (a,Y , t) = 0

Φa(X , 0, t) = Φa(X , b, t) = 0, Φa(0,Y , t) = Φa(a,Y , t) = 0

Φs(X , 0, t) = Φs(X , b, t) = 0, Φs(0,Y , t) = Φs(a,Y , t) = 0

Immovable clamped-supported edge

U (X ,0, t) = U (X , b, t) = 0, U (0,Y , t) = U (a,Y , t) = 0 (21)

V (X ,0, t) = V (X , b, t) = 0, V (0,Y , t) = V (a,Y , t) = 0

W (X ,0, t) = W (X , b, t) = 0, W (0,Y , t) = W (a,Y , t) = 0

f
X
(X , 0, t) = f

X
(X , b, t) = 0, f

X
(0,Y , t) = f

X
(a,Y , t) = 0

f
Y
(X , 0, t) = f

Y
(X , b, t) = 0, f

Y
(0,Y , t) = f

Y
(a,Y , t) = 0

Φa(X , 0, t) = Φa(X , b, t) = 0, Φa(0,Y , t) = Φa(a,Y , t) = 0

Φs(X , 0, t) = Φs(X , b, t) = 0, Φs(0,Y , t) = Φs(a,Y , t) = 0

3.1. Controller scheme

This study uses a constant-gain negative velocity feedback control
technique that links the direct and inverse piezoelectric effects in a
closed-loop system to provide feedback control of the integrated doubly
curved structure. Many different kinds of buildings employ this
controller for buckling and vibration control [41,49]. The aforemen-
tioned control law’s mathematical formulation is

Φa = − GV Φ̇˙s (22)

In this instance, the velocity feedback control gain is shown as GV .

4. Solution through Numerical Method

The main procedures for using the DQA to arrive at a numerical
answer are described in this section.

4.1. Differential quadrature approach (DQA)

According to DQA, a one-dimensional function’s pth derivative may
be obtained as [50–52]

∂pT (X )

∂X p =
∑N X

j=1
K

(p)
sj T

(
X j
)
for s = 1, 2, ...,N X (23)

here K
(p)
sj signifies the weight coefficients for the sth grid-point

(j= 1, 2,…,N X ) and N X signifies the grid-points’ total number.
Employing Eq. (24), K

(p)
sj for s ∕= j will be achieved as [53]

K
(p)
sj = p

(

K
(p− 1)
ss K

(1)
sj −

K
(p− 1)
sj

X s − X j

)

, p = 2,3, ...,N X − 1and s, j

= 1, 2, ...,N X (24)

here K
(1)
sj would be formulated by the next relation [53]

K
(1)
sj =

M
(1)
(X s)

(
X s − X j

)
M

(1)(
X j
), s, j = 1, 2, ...,N X (25)

Next relationship would be employed to acquire A
(p)
sj

K
(p)
ss = −

∑N X

j=1,j∕=s
K

(p)
sj , s = 2, 3, ...,N X and p = 1, 2, ...,N X − 1 (26)

One can derive M
(1) in Eq. (25) as

M
(1)
(X k) = −

∑N X

j=1,j∕=k

(
X k − X j

)
,Yor k = 1,2, 3, ...,N X (27)

4.2. Two-dimensional approximation

Using the DQA’s principles, the first and second derivatives of a
function such as G (X ,Y ) may be produced as follows [54]:

∂T
∂X

⃒
⃒
⃒
⃒
X =X s ,Y =Y j

=
∑N X

p=1

∑N Y

k=1

K
X

sp i
Y

pkT kj (28)

∂T
∂Y

⃒
⃒
⃒
⃒
X =X s ,Y =Y j

=
∑N X

p=1

∑N Y

k=1
i
X

sp K
Y

pkT kj

∂
∂X

(
∂T
∂Y

⃒
⃒
⃒
⃒
X =X s ,Y =Y j

)

=
∑N X

p=1

∑N Y

k=1

K
X

sp K
Y

pkT kj

∂2T
∂X 2

⃒
⃒
⃒
⃒
X =X s ,Y =Y j

=
∑N X

p=1

∑N Y

k=1
L

X

sp i
Y

pkT kj

∂2T
∂Y 2

⃒
⃒
⃒
⃒
X =X s ,Y =Y j

=
∑N X

p=1

∑N Y

k=1

i
X

sp L
Y

pkT kj

The equivalent weight coefficients are K
Y

pk , K
X

ip , L
Y

pk , and L
X

ip in this
case. Additionally, the number of discrete grid points in the circumfer-
ential and radial directions is represented by N X and N Y . i

X

ip , i
Y

pk , i
X

ip ,

and i
Y

pk are identity tensors, one should conclude. The polar coordination
of
(
X i,Y j

)
as the grid-point representation may be established as fol-

lows with the use of the Chebyshev-Gauss-Lobatto function [53]:

X s =
a
2

(

1 − cos
(

(s − 1)
(N X − 1)

π
))

s = 1, 2,3, ...,N X (29)
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Y j =
b
2

(

1 − cos
(

(j − 1)
(N Y − 1)

π
))

j = 1,2, 3, ...,N Y

The first five equations of motion (19), taking into account Eq. (28),
and taking into consideration Eqs. (20) and (21) may be expressed in the
following way.

[M
ΔΔ

]5N X N Y × 5N X N Y

{
Ÿ
}

5N X N Y × 1

+
[
K

YY
]

5N X N Y × 5N X N Y
{Y}5N X N Y × 1

+
[
K

YΦ]

5N X N Y × 2N X N Y
{X}2N X N Y × 1

=
{
F

Y
}

5N X N Y × 1 (30)

Here, {Y} = {U 0, V 0, W 0, f
X
, f

Y
}
T is the displacement vector

and {X} = {A ,S }
T is the electrical potential vector. Additionally, the

mass, stiffness, and piezoelectric matrices are represented by the
matrices

[
M

YY
]
,
[
K

YY
]
and

[
K

YX
]
, respectively. These matrices’

components are listed in Appendix A. Additionally, the term
[
C

YY
]
=

(
α
[
M

YY
]
+ β

[
K

YY
])
{Ẏ˙}5N X N Y × 1 should be added to the left side of

the preceding equation if Rayleigh damping is of relevance. In this case,
α and β are Rayleigh constants [52]. Electrical equations, represented as
the sixth and seventh equations of the system, may be expressed simi-
larly to mechanical equations by taking into account Eqs. (20), and (21)
[
K

XY
]

2N X N Y × 5N X N Y
{Y}5N X N Y × 1

−
[
K

XX
]

2N X N Y × 2N X N Y
{X}2N X N Y × 1

=
{
F

X
}

2N X N Y × 1 (31)

Here,
[
K

XY
]
=
[
K

XY
]T and

[
K

XX
]
is the permittivity matrix that its

elements are presented in Appendix A.
When {X} is eliminated between Eqs. (30), (31), displacement vector

is revealed through the next system of equations

When there is no controller scheme between the piezoelectric layers,
the following equation is achieved (i.e., passive case). In this instance,
F X equals zero if both piezoelectric layers function as sensors; however,
F X ∕= 0 if they function as actuators. If piezoelectric layers serve as the
sensor in this scenario, the sensory voltage is determined using Eq. (31)
as

{X} =
[
K

XX
]− 1
2N X N Y × 2N X N Y

[
K

XY
]

2N X N Y × 5N X N Y
{Y}5N X N Y × 1

(33)

When the controller rule (22) is created between piezoelectric layers
(i.e., the active case [55]), one layer acts as the sensor (the bottom layer)
and the other as the actuator (the top layer). The mechanical stimulation
of the panel results in the generation and accumulation of electric
charges in the sensor layer. Through the closed-loop regulation
described in Eq. (22), the charges produce electric potentials that are
amplified and converted into the open circuit voltage.

The distributed actuator then receives the signal again. Stresses and
strains are produced as a result of the piezoelectric layer effect, which
was noted in the sixth equation of Eq. (19). The resulting force has the
ability to actively regulate the structure’s dynamic response. The pro-
duced potential on the sensor is obtained from Eq. (19) because the
sensor layer does not take any applied external charge into account as an
input.

{S } =
[
K

XX
]− 1s

1 × 1

[
K

XY
]s
1 × 5N X N Y

{Y}5N X N Y × 1 (34)

Taking into account the specification of the controller law (Eq. (22))
the actuation voltage is found as

{A } = − GV

[
K

XX
]− 1s

1 × 1

[
K

XY
]s
1 × 5N X N Y

{Ẏ˙}5N X N Y × 1 (35)

Combining the Eqs. (30), (34), (35) gives us

Fig. 2. A schematic view of the presented hybrid deep feedforward neural networks.

[
M

YY
]

5N X N Y × 5N X N Y

{
Ÿ
}

5N X N Y × 1
+
[
C

YY
]

5N X N Y × 5N X N Y
{Ẏ˙}5N X N Y × 1

+
([

K
YY
]

5N X N Y × 5N X N Y
+
[
K

YX
]

5N X N Y × 2N X N Y

[
K

XX
]− 1
2N X N Y × 2N X N Y

[
K

XY
]

2N X N Y × 5N X N Y

)
{Y}5N X N Y × 1

=
{
F

Y
mn

}

5N X N Y × 1 +
[
K

YX
]

5N X N Y × 2N X N Y

[
K

XX
]− 1
2N X N Y × 2N X N Y

{
F

X
}

2N X N Y × 1 (32)
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[M̃ ]5N X N Y × 5N X N Y

{
Ÿ
}

5N X N Y × 1
+ [C̃ ]5N X N Y × 5N X N Y

{Ẏ˙}5N X N Y × 1

+ [K̃ ]5N X N Y × 5N X N Y
{Y}5N X N Y × 1

= {F̃ }5N X N Y × 1.

(36)

wherein the need for the following definitions

[M̃ ] =
[
M

YY
]

5N X N Y × 5N X N Y
(37)

[C̃ ] = α
[
M

YY
]

5N X N Y × 5N X N Y
+ β
[
K

YY
]

5N X N Y × 5N X N Y

− GV

[
K

YX
]a
5N X N Y × 1

[
K

XX
]− 1s

1 × 1

[
K

XY
]s
1 × 5N X N Y

[K̃ mn] =
[
K

YY
]

5N X N Y × 5N X N Y

+
[
K

YX
]s
5N X N Y × 1

[
K

XX
]− 1s

1 × 1

[
K

XY
]s
1 × 5N X N Y

{F̃ } =
{
F

Y
}

5N X N Y × 1

Eq. (36) is used to manage the vibration of panels using two curves.

4.3. Laplace transform

In the event that an out-of-plane dynamic loading is applied to a shell
panel, the system of Eqs. (32) or (36) must be solved. Initial conditions
throughout the panel should be specified in order to handle the dynamic
analysis of the panel. The following starting conditions specify the
panel’s state before loading when it is initially at rest.

U 0(0) = V 0(0) = W 0(0) = f
X
(0) = f

Y
(0) = 0 (38)

U̇ ˙
0(0) = V̇ ˙

0(0) = Ẇ ˙
0(0) = ˙f ˙

X
(0) = ˙f ˙

Y
(0) = 0

The Laplace domain transformation of Eqs. (32) or (36) results in the
dynamic response of equations of motion. s is the Laplace trans-
formation parameter, let’s suppose. Under such circumstances, a new
system of equations in which time dependence is abolished is obtained
by applying the Laplace transform to either Eqs. (32) or (36) while
keeping in mind the initial conditions (Eq. (38)). For example, equations
in the Laplace domain for the situation of active control are expressed as
[
K̂ + sĈ + s2M̂

]

5N X N Y × 5N X N Y
{Ỹ}5N X N Y × 1 = {F̂ }5N X N Y × 1

(39)

Here, the Laplace transform function of each quantity is shown by a
line above it.

Upon solving the system of Eq. (39), every component of the
displacement vector may be acquired in a closed-form expression inside
the Laplace domain. Re-transferring the displacement vector from the
Laplace domain into the time domain requires the use of the Laplace
inverse definition.

The displacement for each layer may be obtained by solving Eq. (39)
layer-wise after applying the Laplace transform [56]. The stresses for
each layer can then be derived by including the displacement for each
layer in Eq. (9). The tension and displacements along the annular plate’s
transverse orientation would then be determined using Eqs. (11) and
(14). Using the fully modified formulation of Dubner and Abate’s solu-
tion [57], the displacements, stresses, heat flow, and temperature

gradient term are temporally realized when the Laplace transform is
inverted. Thus, the procedure for inverting the Laplace transform in this
study is given by Eq. (40).

F (t) =
2eat

T

[

−
AptCommandmathbba0

2

+
∑∞

k=0

(

AptCommandmathbbakcos
(
2kπt
T

)

− AptCommandmathbbbksin
(
2kπt
T

))]

(40)

where

AptCommandmathbba0 = Re[f(a)],AptCommandmathbbak

= Re
[

f
(

a+ i
2kπ
T

)]

,AptCommandmathbbbk

= Im
[

f
(

a+ i
2kπ
T

)]

(41)

s = a+ i
2kπ
T

, aT = 5.

5. Hybrid machine learning method

Four models were utilized: two basic methods (Deep neural networks
(DNN) and support vector regression (SVR)) and two optimized hybrid
models grey Wolf optimizer-based SVR (GWO-SVR) and Particle Swarm
Optimization based SVR (PSO-SVR). A schematic view of the presented
hybrid deep feedforward neural networks is shown in Fig. 2.

5.1. Performance assessment

A random process was often used to split the experimental database
into three subgroups, accounting for the classification of the majority of
prior experiments; these subsets were called the training set, validation
set, and testing sets [58,59]. The training set was used to optimize the
model’s parameters, e.g., weight and bias in the case of an Artificial
Neural Network (ANN). Conversely, the validation set was used to assess
the model’s development and convergence during the training process.
It was often used to adjust the hyperparameters. The testing set was used
to assess the model’s generalizability, or its capacity to correctly forecast
a fresh set of databases after hyperparameter optimization [60,61]. The
prediction performance difference was evaluated by comparing four
machine learning models using absolute error, error percentage, mean
absolute error (MAE), coefficient of determination (R2), mean absolute
percentage error (MAPE), root mean squared error (RMSE), and
RMSE-to-observation’s standard deviation ratio (RSR) [62]. These
methods allowed for the quantification of the degree to which the ex-
pected value and the actual value were similar. Two of the parameters
were determined by evaluating a single sample (mix proportion), and
the remaining five were determined by the algorithm fitting degree of
multiple subsets. Furthermore, it is possible to combine these five sta-
tistical factors into a single measuring parameter called the composite
performance index (CPI) [63]. Eq. (42), where ýi and yi represent the
expected and actual values, respectively, may be used to describe the
eight parameters indicated before. Pj is the statistical parameter of the
j-th parameter, and y is the average value. Using the same machine
learning model, Pmin,j and Pmax,j represent the lowest and highest values
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of the jth statistical parameter for each of the five values.

Absoluteerror = yʹ
i − yi (42)

Errorpercentage =
yʹ
i − yi
yi

R2 = 1 −

∑n
i=1(yʹ

i − yi)2
∑n

i=1(yi − y)2

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yʹ
i − yi)2

n

√

MAE =
1
n
∑n

i=1
|yʹ

i − yi|

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yʹ
i − yi
yi

⃒
⃒
⃒
⃒ × 100

RSR =
RMSE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1(yi − y)2
√

CPI =
1
N
∑N

j=1

Pj − Pmin,j
Pmax,j − Pmin,j

5.2. Partial dependence plots (PDP)

The primary goal of a machine learning business application is to
generate informed assessments that can be used for making decisions.
Model interpretability refers to the understanding of the model’s un-
derlying mechanism and the results it produces. The higher the inter-
pretability of a machine learning model, the easier it is for humans to
understand the reasoning behind its conclusions or predictions. The
significance of this is evident in the following ways: during the modeling
stage, it aids developers in understanding, comparing, selecting, and
fine-tuning the model as needed; during the operational stage, it clarifies
the model’s internal workings to the business party and explains the
model’s outcomes. Machine learning (ML) is often considered a black
box activity, where the link between data, calculations, and projected
outcomes is not easily understood. To address this, interpretable local or
global methodologies are needed to visually analyze the ML process.
Partial dependence plot (PDP) is a commonly used method for global
interpretability. It can not only show the limited impact of one or two
features on the model’s predictions but also determine the importance of
features based on the operational results. The PDP analysis can deter-
mine whether the relationship between the target variable and the
feature is linear, monotonous, or more complex [64]. The partial
dependence function in regression is formally defined as:

f̂ xS (xS) = ExC
[
f̂ xS (xS, xC)

]
=

∫

f̂ xS (xS, xC)dP(xC) (43)

The variable xS represents the feature and the partial dependency
function that will be depicted, whereas xC represents the other charac-
teristics utilized by the machine learning model. Typically, set S pos-
sesses only one or two distinct attributes. We are specifically interested
in the feature (s) in S that have a significant impact on the prediction.
The feature space x is defined by the concatenated feature vectors xS and
xC. Partial dependency is a technique that involves calculating the
average output of a machine learning model for a specific feature dis-
tribution in set C. This allows us to understand the relationship between
the features in set C and the predicted outcomes. By disregarding or
downplaying other characteristics, a function can be derived that relies

Table 1
The properties of MHLNC [65].

Carbon (fiber) Epoxy (matrix) Carbon nanotube
E11f(GPa)=233.05 vm=0.34 Ecnt(Gpa)=640
E22f(GPa)=23.1 ρm(kgm3)=1200 dcnt(m)=0.14×10-9
G11f(GPa)=8.96 Em(Gpa)=3.51 tcnt(m)=0.034×10-9
υf=0.2 lcnt(m)=0.25×10-9
ρf(kg/m3)=1750 ϑ12=0.33

ρcnt(kg/m3)=1350

Table 2
Properties of G− 1195N as sensor and actuator layer [42].

E (GPa) ρ (kg/m3) ν e31 (c/m2) e32 (c/m2) η3 (F/m)
63 7600 0.3 22.86 22.86 1.5 × 10− 8

Table 3
Comparison of the nondimensional frequencies of the FG doubly curved shells.

Method k = 0 k = 0.5 k = 1 k = 4 k = 10
R1 = R2→∞ Ref. [67] 0.0577 0.0490 0.0442 0.0382 0.0366

Ref. [66] 0.0577 0.0492 0.0443 0.0381 0.0364
Present 0.0576 0.0491 0.0441 0.0382 0.0365

R1 = R2 Ref. [67] 0.0746 0.0646 0.0588 0.0491 0.0455
Ref. [66] 0.0751 0.0657 0.0600 0.0503 0.0464
Present 0.0747 0.0645 0.0587 0.0490 0.0454

R1 = − R2 Ref. [67] 0.0548 0.0465 0.0420 0.0363 0.0347
Ref. [66] 0.0563 0.0479 0.0432 0.0372 0.0355
Present 0.0547 0.0464 0.0422 0.0362 0.0346

R2→∞ Ref. [67] 0.0617 0.0527 0.0477 0.0407 0.0385
Ref. [66] 0.0622 0.0535 0.0485 0.0413 0.0390
Present 0.0618 0.0525 0.0476 0.0407 0.0383
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just on the features present in set S, including how they interact with one
another. Here are various steps of the presented MATLAB code imple-
menting a hybrid machine learning algorithm using artificial neural
network (ANN) and support vector regression (SVR), along with two
optimized hybrid models using Particle Swarm Optimization (PSO) and
Grey Wolf Optimizer (GWO) for SVR:

Step 1: Load Data
load(’vibrational_data.mat’);
This step loads the data from the file ’vibrational_data.mat’ into the

MATLAB environment. Make sure the file contains the necessary data for
training and testing.

Step 2: Data Preprocessing unnuber figure
Here, the data is split into training and testing sets. The ’train_ratio’

Fig. 3. Dimensionless dynamic a) deflection and b) velocity with respect to dimensionless times (T* × 1000) plots with and without an intelligence controller (IC).

Fig. 4. Dimensionless dynamic a) deflection and b) velocity with respect to dimensionless time (T* × 1000) plots with 5 and 9 laminated layers.

Fig. 5. Dimensionless dynamic deflection with respect to dimensionless time
(T* × 1000).

Fig. 6. Dimensionless dynamic deflection with respect to dimensionless time in
different length to thickness ratio (a/h).
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variable determines the proportion of data used for training. The
’train_data’ and ’test_data’ variables store the training and testing
datasets, respectively.

Step 3: Feature and Target Variable Extraction unnuber figure
In this step, the features (X) and target variables (y) are extracted

from the training and testing datasets. ’X_train’ and ’X_test’ contain the
features, while ’y_train’ and ’y_test’ contain the corresponding target
values.

Step 4: Training the Artificial Neural Network (ANN)
hidden_layer_size = 10;

net = fitnet(hidden_layer_size);

net = train(net, X_train’, y_train’);
An ANN model is trained using the ’fitnet’ function with a specified

number of neurons in the hidden layer (’hidden_layer_size’). The ’train’
function is then used to train the network with the training data.

Step 5: Prediction using ANN
y_pred_ann = net(X_test’)’;
The trained ANN model is used to make predictions on the testing

data (’X_test’). The predictions are stored in ’y_pred_ann’.
Step 6: Training the Support Vector Regression (SVR) Model
svr_model = fitrsvm(X_train, y_train);

Fig. 7. Dimensionless dynamic deflection with respect to dimensionless time in
different radius curvature ratios (R1/R2).

Fig. 8. Dimensionless dynamic deflection in the free vibration zone with
respect to dimensionless time with 5 and 10 laminated layers.

Fig. 9. Dimensionless natural frequency under external excitation with respect
to h/a for different radius curvature ratios.

Fig. 10. Dimensionless natural frequency under external excitation with
respect to R1/a for different radius curvature ratios.

Fig. 11. Loss factor with respect to epoch for training and test sets of mathe-
matical modeling datasets.
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The trained SVR model is used to make predictions on the testing
data (’X_test’). The predictions are stored in ’y_pred_svr’.

Step 8: Combining Predictions from ANN and SVR
y_pred_hybrid = (y_pred_ann + y_pred_svr) / 2;

The predictions from the ANN and SVR models are combined by
taking their average. This creates a hybrid prediction (’y_pred_hybrid’).

Step 9: Evaluation
Root Mean Square Error (RMSE) is calculated for each model to

evaluate their performance on the testing data.
Step 10: Optimization using Particle Swarm Optimization (PSO)
options = optimoptions(@particleswarm, ’SwarmSize’,

50, ’MaxIterations’, 100);
pso_params = particleswarm(@(params) svr_fitness

(params, X_train, y_train, X_test, y_test), 3, [], [],

[], [], [0 0 0], [10 10 10], options);

PSO is used to optimize the SVR parameters (BoxCon-

straint, Epsilon, and EpsilonTolerance) by minimizing

the fitness function ’svr_fitness’.
Step 11: Optimization using Grey Wolf Optimizer (GWO)
options_gwo = optimoptions(@ga, ’MaxGenerations’,

100);

gwo_params = ga(@(params) svr_fitness(params,

X_train, y_train, X_test, y_test), 3, [], [], [], [], [0

0 0], [10 10 10], options_gwo);

GWO is used to optimize the SVR parameters (BoxConstraint,
Epsilon, and EpsilonTolerance) by minimizing the fitness function
’svr_fitness’.

Step 12: Defining Fitness Function

This function calculates the RMSE of the SVR model with given pa-
rameters (’params’) on the testing data.

Step 13: Prediction using PSO-SVR and GWO-SVR y_pred_pso =

predict(svr_model_pso, X_test); y_pred_gwo = predict(svr_model_gwo,
X_test);

The optimized SVR models obtained from PSO and GWO are used to
make predictions on the testing data.

Step 14: Evaluation of PSO-SVR and GWO-SVR
RMSE is calculated for the predictions made by PSO-SVR and GWO-

SVR to evaluate their performance on the testing data. This summarizes
the various steps involved in the provided MATLAB code for a hybrid
machine learning algorithm integrating ANN and SVR, along with PSO
and GWO optimization techniques for SVR.

6. Results and Discussion

In this part, the influence of various parameters on the intelligent
controller for mitigating vibrations induced by external shock on the
presented sandwich structure. Tables 1 and 2 show the material prop-
erties of the core layer (MHLNC) and face sheets (G − 1195N as sensor
and actuator layer), respectively.

In this section, using the presented hybrid machine learning algo-
rithm, and mathematical modeling of the controller system, an intelli-
gent controller (IC) is presented to control the caused fluctuation in the
sandwich doubly curved panel under external excitation. Now, in this
section, the effects of various parameters in IC of the sandwich doubly
curved panel used external excitation is presented in detail.

Fig. 12. Output-Target and R-value plots for training and test sets of mathematical modeling datasets.
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6.1. Verification study

To show the accuracy of the mathematical modeling and solution
procedure section of the presented work, the results of the presented
doubly curved panel by changing the material properties to the one
functionally graded (FG) layer are compared with the outcomes of Refs.

[66,67] in Table 3. As is seen, the results are compared to obtain the
eigenvalue parameter of the solution procedure for various curvature
factors and FG power index. As is seen, by increasing the FG power
index, the dimensionless frequency of the mentioned structure due to
decreasing the stiffness, decreases. Also, an increase in the curvature
factors results in an increase in the dimensionless frequency of the

Fig. 13. Error histogram of the training and test sets of mathematical modeling datasets.

Fig. 14. Mean squared error (MSE) of the results for various iterations.
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system. It can be concluded that the results of the current work are in
good agreement with the outcomes of other published articles (Refs. [66,
67]).

6.2. Parameter study

6.2.1. Applied controller study
The image consists of two plots, labeled (a) and (b), illustrating the

behavior of a system under the influence of an intelligent controller (IC)
over a dimensionless time parameter (T*). In plot (a), the horizontal axis
represents (T*), ranging from 0 to 1, while the vertical axis is labeled as
the dimensionless deflection (W*), spanning from approximately -5 to 5.
This plot shows two datasets: one labeled "Without IC" in blue and the
other "With IC" in red. The blue-shaded region indicates the variance for
the "Without IC" scenario, while the red-shaded region represents the
variance for the "With IC" scenario. Initially, the deflection in the
"Without IC" case shows larger absolute values compared to the "With
IC" case. As T* increases towards 1, both datasets converge towards zero,
with the "With IC" dataset displaying slightly less variance than the
"Without IC" dataset, indicating that the intelligent controller effectively
reduces the deflection over time. In plot (b), the horizontal axis again
denotes (T*), ranging from 0 to 1, and the vertical axis is labeled as the
dimensionless velocity (V*), with a range from approximately -0.05 to
0.05. This plot also features two datasets: "Without IC" in blue and "With
IC" in red. Both datasets exhibit similar convergence behavior towards
zero as T* approaches 1. The blue region, representing the "Without IC"
data, initially shows a broader distribution, indicating greater variation
in velocity compared to the red region ("With IC"). This suggests that the
intelligent controller helps in stabilizing the velocity more effectively
than without its use. Overall, these plots illustrate the impact of using an

intelligent controller on the dimensionless deflection and velocity of a
system as functions of T*. The convergence towards zero in both cases
implies that the influence of the intelligent controller leads to more
stable and reduced deflection and velocity over time. The shaded areas
depict the spread or variance of the data, highlighting how the intelli-
gent controller affects the variability and stability of the system
throughout the observed time frame. These plots likely originate from a
study analyzing the effectiveness of intelligent controllers in managing
dynamic or physical processes. Analyzing the laminated composite
doubly curved panel under external excitation resulted in fluctuations
and vibrations. By connecting this composite panel to a controller with a
sensor-actuator system, the vibrations were dampened. Fig. 3 illustrates
the dimensionless dynamic parameters of the panel under forced
external excitation with and without an intelligent controller (IC). In
which, the dynamic parameters were calculated for the tip of the beam
where the most bending and movement occurred.

It can be seen that with the IC, both parameters of W* and V* sta-
bilized quite rapidly. Continuingly, since the structure under study was a
layered composite panel, this evaluation was also carried out for the
composite having various numbers of layers of 5 and 9 (Fig. 4).

Fig. 5 demonstrates the effect of increased cross-section area in the
composite panels. Whereas, it affects the tip deflection more than the
velocity. Structurally speaking, when the cross-section area of a shell-
like structure increases in height with a constant width, the second
moment of area rises. This phenomenon enhances the stiffness of the
overall structure. Therefore, less deflection, less velocity, as well as
lower vibration, is concluded in bending. Further evaluating the com-
posite panel, the dimensionless external dynamic force (F*) with values
of 1 and 1.5 was applied. The results are presented in Fig. 5.

The plot demonstrates the direct relationship between the bending

Fig. 15. Prediction data with respect to measured data of training and mathematics data for various RMSE parameters.

Q. Zhang et al.



Aerospace Science and Technology 153 (2024) 109430

16

force and the resulting deflection. That is, by increasing the excitation
force, the bending moment rises and thus, the composite panel deflects
more. To further investigate the dimensionless dynamic deflection of the
beam under external excitation, the length-to-thickness ratio of the
doubly curved panel (a/h) was studied with respect to dimensionless
time in the range between 0 and 1 as presented in Fig. 6. Additionally,
the ratio of the radius curvature factors along x and y directions were
considered for evaluation as the radius curvature ratio, accordingly (R1/

R2). Fig. 7 depicts the plotted curves for this ratio equal to 1, 1.5, and 2,
respectively.

Both of the defined ratios show the dimensionless dynamic deflection
moving towards stability. However, the speed of reaching this condition
varies between the values. As the length-to-thickness ratio increases, the
structure seems to become less stable. On the contrary, the largest radius
curvature ratio of 2 provides the most stable condition among the radius
curvature ratios.

Fig. 16. Predicted and measured dimensionless deflection with respect to dimensionless time for different HML patterns.
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6.2.2. Natural frequency study
Apart from varying amplitudes, the natural frequency was also

evaluated for the laminated composite doubly curved panel under
external excitation. Fig. 8 shows the natural frequency results for 5 and
10-layered laminated composite panels. It is observed that similar to the
aforementioned results, the more layers the composite has, the lower the
dimensionless dynamic deflection is.

In addition to studying multiple layers, radius curvature radius was
also examined. The results given in Fig. 9 indicate that lower values of
R2/R1 result in lower natural frequency amplitudes. The findings are in
accordance with the results given in Fig. 9 whereas higher R1/R2
demonstrated stability sooner.

Moreover, since Ω is shown with respect to thickness to length ratio
of the composite panel, all three curves demonstrate an inclining
manner as the result of the thickness increasing. When the panel gets
thicker, either by adding more layers or varying the thickness of each
layer comprising the composite, the structure becomes more prone to
stability and protests external excitations. Furthermore, the dimen-
sionless natural frequency data was visualized with respect to the radius
curvature along the x-axis to the length of the doubly curved panel ratio
(R1/a). The results of which are illustrated in Fig. 10.

Since there is a limit to R1/a, there isn’t much parameter value range
in this regard. Therefore, in this case, when the value reached approx-
imately 0.6 the structure reached stability. The peak of each curve in
Fig. 10 states this value. Correspondingly, as this radius curvature ratio
increases, the natural frequency experiences elevation as well, sup-
porting the results of this frequency with respect to R1/a.

6.3. Hybrid deep neural networks predictor

Finally, the dynamical responses of the laminated composite doubly
curved panel under external excitation were predicted with the help of
machine learning. Fig. 11 shows the loss factor trends for training and
test sets over epochs. The red line represents the training set, and the
black line represents the test set. Analyzing these trends can provide
insights into the machine learning model’s generalization ability across
different datasets or operational conditions.

The results of Fig. 11 indicate that as the epoch increases, the loss
factor shows more fluctuations for both datasets. Unlike the test set
showing fluctuations from the very beginning, the training set behaves
linearly until the epoch is equal to 2. The test set experiences more
fluctuations and loss factor decline compared to the training set. Finally,
when the epoch reached 150, the results for both training and test sets
reached an equal value. To additionally examine the training and test
sets, the alteration of the determined coefficient was considered as can
be seen in Fig. 12.

As the determined coefficient, R was higher in value, the more the
results of training and test sets were aligned with one another. This
showed acceptable and good prediction of the mathematical modeling
datasets. The errors of the targets and outputs are displayed in Fig. 13
considering training, test, and validation datasets as well as the zero
error line.

The epoch iteration was also evaluated by the mean square error
(MSE) which is shown in Fig. 14. The results demonstrate the conver-
gence of the model at 25 iterations. Therefore, it can be concluded that
25 is the minimum number of iterations required to reach stability.

For studying the prediction and measured data, the root mean
squared error (RMSE) was applied with different values (Fig. 15).

The data presented more fluctuation in the measured data between
0.2 to 0.8. Moreover, the fluctuations and noise of the training data
decreased by increasing the RMSE. At RMSE equal to 0.2712, the
training and mathematics data were in good accordance with each

other. To validate the data, the mathematics and machine learning
performed were compared. In this regard, four different patterns of
hybrid machine learning (HML) algorithms were considered. The curves
are presented in Fig. 16 for dimensionless dynamic deflection with
respect to dimensionless time.

The data of Pattern 4 demonstrated a good correlation with the
mathematics data. Thus, with the aid of artificial intelligence, good re-
sults were obtained for modeling the laminated composite doubly
curved panel under external excitation.

7. Conclusion

This research introduces an intelligent controller designed to miti-
gate vibrations induced by external shock on composite structures.
Leveraging the first-order shear deformation panel theory, a sophisti-
cated controller scheme is devised, integrating the differential quadra-
ture approach and Laplace transform methodologies. Moreover, ANN
and SVR techniques are incorporated to enhance prediction accuracy
and control efficiency. Additionally, two optimized hybrid models are
proposed, integrating PSO and GWO algorithms, to further refine the
controller’s performance. By leveraging sophisticated control strategies
and optimization algorithms, the controller can adapt dynamically to
varying shock scenarios, thereby minimizing vibrations and ensuring
structural integrity. Furthermore, the integration of ANN and SVR
techniques enhances the controller’s predictive capabilities, enabling it
to anticipate and respond to dynamic changes in external shock condi-
tions with precision. The optimized hybrid models, incorporating PSO
and GWO algorithms, further refine the controller’s performance,
ensuring optimal control efficiency. Overall, the proposed approach
represents a significant advancement in the field of structural control,
with potential applications in the aerospace, automotive, and civil en-
gineering industries. By effectively mitigating vibrations induced by
external shock, this research contributes to enhancing the safety, reli-
ability, and performance of composite structures in various engineering
applications.
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Appendix A

A.1. Elements of the mass matrix
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Other M ij are equal to zero.
A.2. Elements of the stiffness matrix
(For simplicity the superscript YY is dropped out)
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A.3. Elements of the piezoelectric matrix
(For simplicity the superscript YX is dropped out)
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A.4. Elements of the permittivity matrix
(For simplicity the superscript XX is dropped out)
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