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A B S T R A C T

Smart cities represent the future of urban evolution, characterized by the intricate integration of the Internet
of Things (IoT). This integration sees everything, from traffic management to waste disposal, governed by
interconnected and digitally managed systems. As fascinating as the promise of such cities is, they have
its challenges. A significant concern in this digitally connected realm is the introduction of fake clients.
These entities, masquerading as legitimate system components, can execute a range of cyber-attacks. This
research focuses on the issue of fake clients by devising a detailed simulated smart city model utilizing the
Netsim program. Within this simulated environment, multiple sectors collaborate with numerous clients to
optimize performance, comfort, and energy conservation. Fake clients, who appear genuine but with malicious
intentions, are introduced into this simulation to replicate the real-world challenge. After the simulation is
configured, the data flows are captured using Wireshark and saved as a CSV file, differentiating between
the real and fake clients. We applied MATLAB machine learning techniques to the captured data set to
address the threat these fake clients posed. Various machine learning algorithms were tested, and the k-
nearest neighbors (KNN) classifier showed a remarkable detection accuracy of 98 77%. Specifically, our
method increased detection accuracy by 4.66%, from 94.02% to 98.68% over three experiments conducted, and
enhanced the Area Under the Curve (AUC) by 0.49%, reaching 99.81%. Precision and recall also saw substantial
gains, with precision improving by 9.09%, from 88.77% to 97.86%, and recall improving by 9.87%, from
89.23% to 99.10%. The comprehensive analysis underscores the role of preprocessing in enhancing the overall
performance, highlighting its superior performance in detecting fake IoT clients in smart city environments
compared to conventional approaches. Our research introduces a powerful model for protecting smart cities,
merging sophisticated detection techniques with robust defenses.
1. Introduction

The Internet of Things (IoT) systems, a groundbreaking techno-
logical development, interconnect many devices and objects within
different environments. Embedded with sensors, software, and network
connectivity, these entities exchange and analyze data, transforming
everyday objects into smart, communicative devices [1,2]. Integrating
the physical and digital realms fosters automation, efficiency, and
convenience on an unprecedented scale. From household appliances
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to industrial machinery, IoT encompasses a diverse range of devices,
enabling them to interact and make intelligent decisions autonomously.
This network enhances our daily lives and revolutionizes various in-
dustry sectors by creating a connected world of smart, automated
systems [3,4]. The advantages of IoT are manifold and far-reaching.
IoT enables enhanced efficiency, convenience, and cost savings. It
empowers data-driven decision-making, improves communication and
connectivity, and offers opportunities for personalized experiences and
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improved client satisfaction [5,6]. IoT also holds the potential to trans-
form industries, optimize resource utilization, and drive operational
optimization. IoT’s advantages extend across various domains, from
smart homes to industrial automation, paving the way for a connected
and intelligent future [7].

IoT smart cities utilize advanced technology and interconnected
devices to enhance urban living by improving sustainability and ef-
ficiency. These cities integrate IoT into their systems, enabling the
collection and analysis of data from diverse sources, which is essential
for informed decision-making and intelligent urban system manage-
ment [8,9]. A network of sensors and devices embedded in urban
infrastructure monitors various aspects of city life, from energy con-
sumption to public safety, facilitating real-time data exchange and
monitoring [10]. This data, processed through advanced analytics and
machine learning, informs city planners and administrators, aiding
in resource optimization and effective management. Furthermore, IoT
smart cities exemplify the principles of cyber–physical systems (CPS),
intertwining physical infrastructure with digital technologies, such as
sensors, communication networks, and cloud computing. This inte-
gration creates a dynamic system that continually adapts and opti-
mizes city services based on real-time feedback, thus advancing urban
efficiency, sustainability, and resilience [11].

1.1. Background and motivation

The rapid advancement of IoT has given rise to smart cities, which
leverage IoT technologies to enhance urban efficiency, sustainabil-
ity, and quality of life. IoT devices, such as sensors, actuators, smart
meters, and connected vehicles, are key components of smart city
infrastructures, facilitating applications like traffic management, en-
ergy optimization, and public safety. However, this interconnectivity
introduces significant cybersecurity challenges, particularly the threat
of fake IoT clients. These malicious entities exploit vulnerabilities to
gain unauthorized access, engage in data theft, disrupt services, and
introduce malware. Traditional security measures, like firewalls and
intrusion detection systems, are insufficient for the dynamic IoT en-
vironments of smart cities. Thus, there is an urgent need for advanced
detection mechanisms. The motivation behind this paper is to address
this need by using the Netsim program to simulate real-world smart city
scenarios, introduce fake clients, and capture data flows for analysis. By
applying advanced machine learning techniques, we aim to accurately
identify and isolate fake clients, thereby enhancing the security and
resilience of smart cities.

1.2. Scope of the study

The scope of this research is to address the emerging problem of
fake clients in smart cities based on the Internet of Things. It involves
simulating an actual environment representing a smart city containing
both normal and fake clients connected to city controllers using the
well-known NetSim simulator. This network is configured to reflect the
reality of the problem, where normal clients send legitimate data flows
while fake clients attempt to disrupt the systems in various ways. Data
flows are captured using specialized tools and organized into a dataset
suitable for cybersecurity researchers interested in developing research
on detection processes, specifically using AI techniques and studying
the behavior of fake clients.

1.3. Problem definition

Smart cities, while offering numerous benefits, are susceptible to
various cyber-attacks. Key threats include Denial-of-Service (DoS) at-
tacks, Man-in-the-Middle (MitM) attacks, data manipulation, and unau-
thorized access. Ransomware attacks, insider threats, botnet attacks,
and supply chain attacks further complicate the security landscape.
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Fake IoT clients, specifically, pose significant risks by mimicking au-
thentic devices, launching attacks like DDoS attacks to disrupt critical
infrastructure, and gaining unauthorized access to sensitive data. These
activities can affect decision making processes, affect the efficiency of
smart city services, and compromise the overall security and privacy of
the urban environment.

1.4. Technical information

To address these challenges, this research presents a unique method
of risk reduction through the construction of a simulation-based model.
The model aims to identify and minimize the danger posed by fake
IoT clients in smart city settings. This is accomplished by integrating
real-time data streams and machine learning algorithms to enable dy-
namic identification and response to emerging threats. The simulation
environment, developed using NetSim software, includes a variety of
clients and sectors to replicate the real-world smart city scenario. Data
flows from this simulation are captured using Wireshark and analyzed
using MATLAB machine learning techniques.

1.5. Fake clients in smart cities

An IoT fake client in a smart city context is a malicious entity
that impersonates legitimate IoT devices to exploit vulnerabilities and
disrupt city services. These fake clients can mimic authentic devices,
launching attacks like denial-of-service to disrupt critical infrastruc-
ture, leading to service unavailability. They pose significant risks by
gaining unauthorized access to sensitive data and compromising data
integrity through security vulnerabilities. By manipulating or injecting
false data, they can impact decision-making processes, affecting the
efficiency of smart city services. Their actions can have cascading
effects on interconnected systems, highlighting the need for robust
security measures in smart city infrastructure to protect against such
sophisticated threats and ensure the resilience and reliability of the
ecosystem [12]. Table 1 presents the main differences between normal
and fake clients.

1.6. Research contributions and objectives

The research contributions and objectives of this paper are summa-
rized in the following points:

• We define a new term in the smart city security domain: the
Client.

• We generate a novel smart city simulation using NetSim simulator
containing Clients and normal clients using.

• We generate a novel dataset from the data flow of this simulation.
It is considered the first of its kind due to the need for more data
sets of this type.

• We utilized multiple ML classification algorithms to detect a fake
client over a smart city and prevent it from accessing the system
with high accuracy.

The structure of this paper is designed as follows. Section 2 shows
the related works part. Section 3 shows the procedure of the proposed
smart city simulation. Section 4 shows the results and discussion. The
conclusion and future work direction are given in Section 5.

2. Literature review

The integration of the IoT in the development of smart cities brings
a transformative impact on traditional urban environments [9,13,14].
This integration addresses the challenges of escalating urban growth
and contributes significantly to environmental preservation by reducing
energy consumption and mitigating pollution. Moreover, IoT tech-
nology fosters economic development and enhances the quality of
life by providing increased comfort and luxury [15]. This paradigm
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Table 1
Comparison between normal client and fake client.

Aspect Normal client Fake client

Purpose Legitimate use of smart city services Malicious intent, unauthorized activities
Authorization Authenticated and authorized access Takes the role of an authorized client
Behavior Follows expected protocols and standards Mimics behavior but performs malicious actions
Data Handling Uses data as intended respects privacy May manipulate or steal sensitive data
System Interaction Interacts with smart city infrastructure Attempts to exploit vulnerabilities
Service Disruption Does not disrupt services intentionally Can launch attacks to disrupt services
Monitoring Regular user of services May attempt unauthorized monitoring
Security Measures Adheres to security protocols and measures Seeks to bypass security measures
Impact Contributes to the functioning of the system Poses risks to security and privacy
Detection Typically not flagged as suspicious May be detected through security measures
Intent Genuine interest in utilizing smart city services Carrying out activities with malicious intent
shift positions information technology as a crucial tool for control-
ling, exchanging, and managing systems across various human life do-
mains [16]. In the healthcare sector, the application of IoT exemplifies
its potential: remote monitoring of patients by medical practitioners,
with temperature and heart rate sensors providing real-time alerts for
prompt medical intervention. This advances the healthcare sector by
enabling flexibility, professionalism, and precision, allowing effective
patient monitoring from afar [17].

The traffic department in smart cities dramatically benefits from
implementing IoT, using sensors to monitor and regulate traffic flow,
reducing congestion. These sensors provide data that is analyzed to
understand traffic patterns, identify congested areas, and inform city
administrators about effective traffic management. This information
allows for real-time updates to commuters on congested routes and
alternative options, enhancing urban mobility [18]. In blockchain-IoT
systems, security concerns such as exploiting fake clients in Sybil at-
tacks pose significant challenges, particularly in the Internet of Medical
Things (IoMT). For instance, in a blockchain IoT healthcare system,
a fake client might transmit false temperature reports, posing as a
legitimate sensor. To counter this, using digital signatures has been
suggested to address authentication and integrity issues. However, the
effectiveness of digital signatures is limited by vulnerabilities like pri-
vate key compromise, indicating that security concerns in such systems
remain a critical challenge.

Wireless Sensor Networks (WSNs) are integral to IoT networks and
comprise nodes with various capabilities. A recent study designed a
signature-based collaborative blockchain Intrusion Detection System
(IDS) for IoT, employing rules and signatures for intrusion detec-
tion and database updates across nodes. This system, however, faced
challenges with internal attacks, where nodes might provide fake signa-
tures, affecting the IDS’s performance. To address this, the researchers
implemented a blockchain technique that uses a distributed database
to detect intrusions and reduce the impact of these fake malicious sig-
natures [19]. Another study highlighted vulnerabilities in a handmade
IoT system, particularly in an ESP32-based temperature measurement
device. An experiment showed that attackers with basic network hack-
ing and ESP32 programming skills could gain unauthorized access and
manipulate data by creating a fake ESP32 client. This vulnerability
underscores the need for enhanced security measures, such as adopting
TCP over UDP and more robust authentication mechanisms, to protect
against unauthorized access and data manipulation by fake clients [20].

A study examining model poisoning attacks in federated learning
noted that the assumption of access to a significant portion of com-
promised genuine clients is unrealistic in large-scale systems. A new
method termed the Model Poisoning Attack based on Fake Clients
(MPAF) was proposed, where fake clients introduce carefully crafted
false model updates into the system. This approach effectively di-
minishes the global model’s test accuracy by steering it towards a
low-accuracy base model, challenging the efficacy of conventional
defenses like norm clipping. These findings highlight the need for ad-
vanced defense strategies in federated learning [21]. Moreover, another
3

study delved into IoT vulnerabilities, focusing on insider attacks. By
analyzing data from heterogeneous sources within an organizational
network, various machine learning algorithms were assessed for threat
detection. XGBoost emerged as the most effective, with a classification
accuracy of 93.8%, while LSTM recorded the lowest at 90.2%. Ran-
dom Forest also demonstrated high efficiency with an accuracy of 93.
7%. This research underscores the vital role of machine learning in
enhancing IoT security, especially when it involves multi-source data,
providing a comprehensive perspective for identifying and mitigating
cyber threats [22]. Table 2 provides a summary of the related works.

The reviewed literature highlights the multifaceted applications and
benefits of IoT in smart cities, ranging from enhanced traffic manage-
ment to improved urban sustainability. However, it also underscores
significant cybersecurity challenges, particularly concerning fake IoT
clients. While several studies have addressed various aspects of IoT
security, such as blockchain-based IDS and the role of machine learn-
ing in threat detection, there remains a critical gap in the real-time
detection and mitigation of fake clients in smart city environments. For
instance, Zahmatkesh et al. (2020) and Brundu et al. (2016) focus on
the general benefits of IoT integration but do not address specific se-
curity threats. Djahel et al. (2014) concentrate on traffic management,
leaving broader IoT security issues unexplored. Studies like Cao et al.
(2022) and Selvakumar et al. (2019) discuss blockchain and federated
learning approaches to IoT security. Still, these methodologies differ
significantly from the machine learning-based detection of fake clients
proposed in our study.

Our research fills this gap by simulating a real-world smart city
environment using NetSim, introducing fake clients, and capturing data
flow for comprehensive analysis. By applying advanced machine learn-
ing techniques, we aim to provide a robust and scalable solution for the
real-time detection and isolation of fake clients, thereby enhancing the
overall security and resilience of smart cities. This approach addresses
the current shortcomings in existing security measures and contributes
a novel perspective to the ongoing discourse on IoT security.

3. Methodology

In our methodology to detect fake clients within IoT smart city
environments, we first simulated a smart city network using a Net-
Sim simulator, encompassing sectors like City HQ, Traffic and Police,
Healthcare, and Education and introduced potential fake clients. This
fake client can carry out many cyber-attacks. Our simulation contains
a group of fake clients that establish a DDoS attack on legitimate
clients in the smart city. Data flow from this simulation was captured
using Wireshark and stored in a CSV file. The methodology involved
two main parts: initially, create the dataset from the simulation, then
execute three ML experiments for fake client detection. The first exper-
iment used the original dataset, while the second involved a 100,000
record subset undergoing further preprocessing. The third experiment
applied the Synthetic Minority Over-sampling Technique SMOTE model
to a balanced dataset, progressively improving detection accuracy with

each step. These processes and their outcomes are detailed in Fig. 1.
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Table 2
Summary of literature review on IoT in smart cities.

Author Focus area Key findings Methodology Implications Comparison with current
study

Zahmatkesh et al.
(2020), Brundu
et al. (2016)

IoT in Smart
Cities

IoT’s integration in urban
environments enhances
sustainability, reduces
energy consumption, and
improves the quality of
life.

Discussed the
transformative impact of
IoT on various urban
sectors, including
healthcare.

Highlights IoT’s role in
urban growth,
environmental
preservation, and
healthcare advancements.

Focuses on the general
benefits of IoT, whereas
the current study
specifically addresses
cybersecurity threats from
fake clients.

Djahel et al. (2014) IoT in Traffic
Management

IoT sensors in traffic
departments help reduce
congestion and optimize
traffic flow.

Analyzed traffic data from
IoT sensors for traffic
management.

Emphasizes IoT’s
importance in urban
mobility and traffic
regulation.

Concentrates on traffic
management; current study
addresses broader IoT
security issues.

Cao et al. (2022) Blockchain-IoT
Systems Security

Addressed security
vulnerabilities in
blockchain-IoT systems,
especially regarding fake
clients.

Discussed the limitations of
digital signatures in
securing IoT systems.

Points to the need for
stronger security measures
in IoT and blockchain
systems.

Similar focus on fake
clients; current study
introduces simulation and
machine learning for
detection.

Selvakumar et al.
(2019)

Blockchain IDS
in IoT Networks

Developed a
blockchain-based IDS for
IoT, addressing internal
attack challenges.

Implemented a blockchain
technique with a
distributed database for
intrusion detection.

Shows the effectiveness of
blockchain in enhancing
IoT network security.

Uses blockchain for IDS;
current study uses machine
learning for fake client
detection.

Barybin et al.
(2019)

IoT System
Vulnerabilities

Exposed security
weaknesses in a handmade
IoT system, highlighting
the risk of unauthorized
access.

Conducted an experiment
to demonstrate
vulnerabilities in an
ESP32-based device.

Underlines the necessity of
robust security protocols in
IoT systems.

Focuses on vulnerabilities;
current study focuses on
detection and mitigation of
fake clients.

Cao et al. (2022) Model Poisoning
in Federated
Learning

Proposed a novel Model
Poisoning Attack based on
Fake Clients (MPAF) in
federated learning systems.

Introduced MPAF to
compromise the accuracy
of federated learning
models.

Calls for more
sophisticated defenses in
federated learning against
model poisoning.

Similar focus on fake
clients; current study
emphasizes real-time
detection in smart cities.

Chowdhury et al.
(2021)

IoT Security and
Machine
Learning

Investigated the role of
machine learning in
detecting IoT insider
attacks using
heterogeneous data.

Utilized machine learning
algorithms for threat
detection in IoT networks.

Highlights the effectiveness
of machine learning in IoT
security against insider
threats.

Uses machine learning for
threat detection; current
study applies it specifically
to fake client detection.
Integrating IoT devices in urban environments is a cornerstone of
mart city development, enabling the optimization of services like en-
rgy management, traffic control, waste management, and healthcare.
owever, the IoT’s transformative impact on urban development brings
ybersecurity challenges, particularly the issue of fake clients. These
ake clients, masquerading as legitimate users or devices within the
oT ecosystem, exploit trust-based communication protocols to gain
nauthorized access, manipulate interconnected devices and services,
nd carry out various cyber-attacks, including data breaches and Dis-
ributed Denial of Service (DDoS) attacks. This vulnerability poses a
ignificant threat to the security and sustainability of smart cities.
o address this, our work introduces a simulation of a smart city
nvironment involving fake clients to demonstrate the impacts and risks
ssociated with these deceptive entities, as shown in Fig. 2, and the
mportance of robust security measures in maintaining the resilience of
rban IoT networks.

1. Sensors and Clients:
Camera sensors are used in smart cities for several critical
applications due to their ability to capture visual data. Here
are some key reasons why camera sensors are essential in IoT-
based smart cities. Camera sensors are vital in monitoring pub-
lic spaces, streets, and critical infrastructure for security and
surveillance purposes. They can help in crime prevention, de-
tection of suspicious activities, and provide evidence for inves-
tigations. Cameras monitor traffic flow, detect congestion, and
analyze traffic patterns. This data helps optimize traffic signal
timings, manage traffic flow, and improve overall transportation
efficiency. Camera sensors in smart cities provide valuable visual
data for real-time decision-making, improve urban planning, and
enhance the quality of life for residents and visitors.
4

Temperature sensors are crucial components in IoT-based
smart cities as they provide valuable data for various applica-
tions and services. Here are some key reasons why temperature
sensors are used in IoT-based smart cities. Temperature sensors
deployed across the city can provide real-time weather data.
This information is essential for accurate weather forecasts,
climate monitoring, and predicting extreme weather events.
Temperature sensors help identify urban heat islands and areas
in cities where temperatures are significantly higher than their
surroundings. Understanding and mitigating this effect is crucial
for improving urban planning and reducing heat-related health
risks.
Alarm sensors are crucial in IoT-based smart cities, providing
an early warning system for various critical scenarios. Alarm sen-
sors, such as motion and door/window sensors, detect unautho-
rized entry or intrusions in homes, businesses, public buildings,
and sensitive areas. They trigger alarms and alert security per-
sonnel or residents in real time, enabling quick responses to po-
tential security threats. Overall, alarm sensors enhance the safety
and security of smart cities by providing early detection and
warning capabilities. They allow fast responses to emergencies,
prevent accidents, and protect residents and infrastructure.

2. Applications:
HTTP Applications: HTTP, the Hypertext Transfer Protocol,
serves as the backbone of web communication, facilitating data
exchange between clients (e.g., web browsers) and servers. In
our simulation, we leverage HTTP applications to emulate real-
world web traffic patterns and study how servers, proxies, and
content delivery networks (CDNs) respond under various net-
work conditions. By analyzing HTTP traffic, we gain insights into
server loads, response times, and network performance, enabling
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Fig. 1. Proposed methodology.
us to optimize server configurations and caching strategies for
improved web service delivery.
CBR Applications: CBR applications play a vital role in evaluat-
ing the network’s handling of a constant and uninterrupted data
flow without rate fluctuations. In our simulation, CBR traffic
helps us understand how congestion control mechanisms operate
and the impact of congestion on data delivery. We use CBR
simulations to study multimedia streaming applications like real-
time audio or video streams. Through this analysis, we can assess
the quality of multimedia content delivery over the network and
optimize mechanisms for smoother and more reliable streaming
experiences.
Email Applications: Incorporating email application simula-
tions into our study allows us to gain deeper insights into email
traffic patterns and usage behavior. We can better understand
email users’ behaviors and preferences by analyzing the volume
of emails exchanged, email sizes, and communication frequen-
cies. Additionally, this data aids in optimizing email server
configurations, ensuring efficient and seamless email delivery
and reception.
6lowpan-gateway: The 6lowpan gateway plays a pivotal role
in our simulation, bridging the 6lowpan network and other
5

IP-based networks like the Internet. It enables communication
between devices operating on low-power and lossy networks,
like IoT devices and traditional IP networks. In our setup, the
6lowpan gateway facilitates the HTTP and email traffic exchange
between IoT devices and servers, ensuring seamless connectivity
and integration into more extensive networks.
Ad Hoc Networking: Ad hoc networking, a decentralized form
of wireless communication, plays a crucial part in our simula-
tion. It allows devices to communicate directly without relying
on a fixed infrastructure, like a centralized router. In our context,
devices in the simulation can form ad hoc networks, enabling
direct interactions between IoT devices, 6lowpan-gateways, and
other components, fostering efficient and dynamic data ex-
change.
Router: The router acts as a critical component in our simula-
tion, responsible for forwarding data packets between different
networks, including ad hoc networks and traditional IP-based
networks. It is critical in ensuring proper data routing and
enables seamless communication between IoT devices, 6lowpan-
gateways, and other connected devices. The router’s efficient
routing capabilities are essential in maintaining stable connec-
tions and optimizing data transmission across the simulation.
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Fig. 2. Our simulation of smart city involving fake clients.
By linking these components sequentially, our simulation creates a
holistic environment to study various network conditions, traffic pat-
terns, and communication dynamics. Through this interconnected
setup, we gain comprehensive insights into the performance of web
applications, multimedia streaming, and email services over diverse
network architectures, enabling us to make informed decisions for
enhancing overall network efficiency and user experiences.

In our study, we utilized fake clients in a simulation to replicate
attackers’ tactics, focusing on Distributed Denial of Service (DDoS)
attacks, where a network is overwhelmed by traffic from multiple
sources, leading to service disruptions. These fake clients generate mali-
cious traffic, targeting critical network components such as servers and
routers, causing congestion and hindering access for legitimate users.
The dual purpose of introducing fake clients was to assess the network’s
resilience against cyber threats and analyze its response to excessive
traffic, identifying vulnerabilities and failure points. To conduct these
cyber-attacks, we deployed eight clients in each smart city sector,
complemented by two fake clients per sector. We modified application
parameters to emulate a DDoS attack; for HTTP applications, we in-
creased the number of pages to 1000 with a page size of 20,000 bytes,
raised the packet size in CBR applications to 200,000 bytes, and set
email sizes to 100,000 bytes in email applications. These changes aimed
to overwhelm the server with requests, replicating the effects of a DDoS
attack. This comprehensive approach allowed us to thoroughly examine
the impact of such attacks on network functionality, observing factors
like latency, packet loss, and data transfer rates. It provided valuable
insights into the network’s behavior under attack, as illustrated in Fig. 3
of our study.

Table 3 provides a comprehensive overview of key network per-
formance indicators related to packet queuing, dequeuing, and packet
drops across multiple devices and port IDs. These metrics are neces-
sary for evaluating network efficiency, identifying potential congestion
points, and assessing the reliability of data transmission within the
network infrastructure. The table’s structure starts by enumerating
various devices (Device IDs) and their corresponding port IDs (Port
ID), serving as a crucial reference for associating specific network
segments with their respective queue statistics. The ‘‘Queued Packet’’
column quantifies the number of packets currently awaiting processing
within the queue, offering insights into each device and port load.
Then, the ‘‘Dequeued Packet’’ column reflects the count of successfully
processed and dequeued packets, providing an assessment of packet
6

Table 3
Device queue metrics.

Device ID Port ID Queued packets Dequeued packets Dropped packets

1 2 18 18 0
2 1 19 19 0
2 7 9713 9713 0
2 8 407 540 407 540 0
3 1 18 18 0
3 7 715 715 0
4 1 841 886 836 299 541 242
4 2 19 19 0
5 1 18 18 0
5 2 841 911 836 307 13 689

processing efficiency. Finally, the ‘‘Dropped Packet’’ column highlights
the number of packets that have encountered discarding or deletion
during processing, shedding light on potential congestion or network
irregularities. Notably, Device 4, Port 1, and Port 2, as well as Device
5, Port 2, exhibit higher packet drops, indicating potential congestion
or capacity issues that warrant further investigation and optimization
efforts to ensure reliable network performance.

Table 4 presents the throughput values for different applications,
with higher values signifying superior data transmission efficiency.
Identifying applications with low throughput serves as a basis for
potential optimization efforts. Notably, the dataset exhibits a range of
throughput values, with the highest recorded at 0.563677 Mbps corre-
sponding to ‘‘App11_CBR’’ between Source ID 26 and Destination ID 8,
and the lowest at 0.000120 Mbps attributed to ‘‘App1_HTTP’’ between
Source ID 12 and Destination ID 7. Beyond throughput, analyzing
delay and jitter values for each application is crucial, as lower values
indicate faster and more stable communication. In contrast, higher
delay or jitter values may suggest network congestion or other un-
derlying issues requiring investigation. Of significance, ‘‘App3_HTTP’’
between Source ID 13 and Destination ID 7 exhibits the lowest jitter
value in the dataset, measuring 0.646122 ms. Conversely, ‘‘App1_HTTP’’
between Source ID 12 and Destination ID 7 presents the highest jitter
value in the dataset, reaching 12 408 000.800066 ms. These observations
underscore the diverse network performance characteristics revealed
by the data, prompting considerations for optimization strategies and
potential network enhancements.

Table 5 reflects a detailed account of network behavior across
several parameters. The high volume of packets transmitted on critical
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Fig. 3. Packets flow of smart city with fake clients.
Table 4
Application metrics.

App ID Application
name

Source
ID

Destination
ID

Packet
generated

Packet
received

Payload generated
(bytes)

Payload received
(bytes)

Throughput
(Mbps)

Delay (ms) Jitter (ms)

1 App1_HTTP 12 7 250 150 40 000 22 500 0.000120 6 204 733.734 12 408 000.800066
2 App2_HTTP 12 7 65 64 48 750 48 000 0.003440 213.019875 7.403476
3 App3_HTTP 13 7 99 99 74 250 74 250 0.005940 206.519968 0.646122
4 App4_HTTP 7 13 1936 209 290 400 197 250 0.023763 4 352 939.247331 385 784.545305
5 App5_HTTP 15 7 99 99 74 250 74 250 0.005940 207.088334 1.978367
6 App6_HTTP 16 7 99 99 74 250 74 250 0.005940 208.497778 2.644490
7 App7_CBR 23 16 5000 4811 7 300 000 7 030 000 0.526976 168 236.782460 4650.084068
7 App7_CBR 23 16 5000 4811 7 300 000 7 030 000 0.526976 168 236.782460 4650.084068
8 App8_CBR 24 8 5000 4812 7 300 000 7 052 360 0.561925 168 336.027689 657.924989
9 App9_CBR 25 8 5000 4812 7 300 000 7 052 360 0.562042 168 330.259172 658.043856
10 App10_CBR 24 8 5000 4812 7 300 000 7 052 360 0.562742 168 310.259213 657.085650
11 App11_CBR 26 8 5000 4826 7 300 000 7 045 680 0.563677 168 423.759017 658.172053
12 App12_EMAIL 17 9 1368 1050 1 941 120 1 541 120 0.121930 541 530.679491 951.852211
13 App13_EMAIL 18 9 1368 559 784 440 738 440 0.062877 426 005.501917 1594.153978
14 App14_EMAIL 19 9 1368 1320 1 956 800 1 584 760 0.157876 2855.682937 241.286257
15 App15_EMAIL 20 9 1368 513 741 320 713 320 0.059086 402 767.349280 1458.860313
16 App16_EMAIL 21 9 1368 505 728 960 696 960 0.058122 400 379.471284 1468.573568
17 App17_HTTP 7 39 1936 0 742 500 0 0.057334 7875.302677 291.445689
18 App18_HTTP 40 7 1936 0 742 500 0 0.057340 7875.306274 291.446596
19 App19_HTTP 41 7 1936 0 742 500 0 0.057341 7875.306871 291.446503
20 App20_HTTP 42 7 1936 0 742 500 0 0.057342 7875.307468 291.446410
links, such as Link_ids 1, 8, and 9, underscores their importance in
the network’s architecture, potentially identifying them as essential
junctions for data flow and thus prime targets for security measures
against fake clients. The error rates on certain links, particularly Link_id
18, warrant a closer examination for underlying vulnerabilities or the
need for enhanced error management protocols. Notably, the absence
of packet collisions across all links suggests high efficiency in network
management. Furthermore, the transmission overhead data points to
the bandwidth consumed by control signaling, which, while necessary
for network regulation, also represents an area for optimization to free
up capacity for increased payload transmission.

3.1. Extract dataset

This dataset is prepared to study and detect fake clients’ behavior
within a simulated IoT smart city environment. It provides a view
of packet transmissions and interactions, enabling machine learning
researchers to develop, train, and test algorithms to identify fake clients
7

in the network. The dataset contains 960,648 fake clients and 127,927
regular clients; the total number is 1,088,575, with 27 features.

The potential uses of this dataset are varied and impactful. Firstly,
it enables the development of machine learning models that can auto-
matically detect and flag fake clients in real time, enhancing security
measures in smart city infrastructures. Additionally, by analyzing the
transmission patterns within this data, researchers can uncover com-
mon characteristics or behaviors of fake clients. This analysis is crucial
for understanding and mitigating the risks they pose. Lastly, the dataset
is instrumental in enhancing smart city networks’ overall security and
reliability. It aids in identifying vulnerabilities and potential attack
vectors, creating more secure and resilient IoT environments. This
dataset provides an extensive resource for detecting fake clients and
a foundational tool for strengthening cybersecurity measures in the
rapidly evolving domain of smart cities.

Table 6 serves as an essential guide to navigating the intricacies of
the dataset. Each entry in the table elucidates the purpose and signifi-
cance of a particular column, ensuring clarity and understanding for the
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Table 5
Link metrics from smart city network simulation.

Link ID Packet transmitted Packet errored Packet collided Bytes transmitted (bytes) Payload transmitted (bytes) Overhead transmitted (bytes)

Data Control Data Control Data Control

All 5 996 333 317 7237 0 0 0 8 987 068 268 8 706 972 140 280 096 128
1 836 278 38 1026 0 0 0 1 249 635 876 1 224 900 280 24 935 596
2 0 0 0 0 0 0 0 0 0
3 0 37 0 0 0 0 3004 0 3004
4 209 836 0 261 0 0 0 311 023 354 299 317 450 11 705 904
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 19 142 0 19 0 0 0 28 658 308 27 596 520 1 061 788
8 815 450 0 1001 0 0 0 1 239 685 980 1 194 374 780 45 511 200
9 828 857 42 1014 0 0 0 1 228 257 916 1 182 025 330 46 232 586
10 283 42 0 0 0 0 374 278 355 900 18 378
11 306 0 1 0 0 0 389 402 371 290 18 112
12 309 0 0 0 0 0 390 936 374 250 16 686
13 306 0 0 0 0 0 389 402 372 770 16 632
14 309 0 0 0 0 0 390 936 374 250 16 686
15 209 835 0 251 0 0 0 311 023 980 299 325 730 11 698 250
16 209 641 0 237 0 0 0 310 730 704 299 065 090 11 665 614
17 196 554 0 259 0 0 0 291 325 566 280 336 970 10 988 596
18 845 980 39 962 0 0 0 1 263 874 996 1 238 732 740 25 142 256
19 0 37 0 0 0 0 3108 0 3108
20 408 172 82 460 0 0 0 594 073 688 581 972 410 12 101 278
21 6 800 000 0 792 0 0 0 1 036 720 000 996 834 240 37 885 760
22 2769 0 5 0 0 0 4 105 086 3 948 160 156 926
23 2768 0 2 0 0 0 4 103 552 3 951 120 152 432
24 2767 0 6 0 0 0 4 102 018 3 943 720 158 298
25 2771 0 3 0 0 0 4 108 154 3 954 080 154 074
26 5000 0 5 0 0 0 7 570 000 7 292 700 277 300
27 5000 0 10 0 0 0 7 570 000 7 285 400 284 600
28 5000 0 10 0 0 0 7 570 000 7 285 400 284 600
29 5000 0 9 0 0 0 7 570 000 7 286 860 283 140
30 5000 0 7 0 0 0 7 570 000 7 289 780 280 220
31 2765 0 6 0 0 0 4 098 950 3 940 760 158 190
Table 6
Features and descriptions for our dataset.

No. Feature Description

1 PACKET_ID A unique identifier for each packet.
2 SEGMENT_ID A unique identifier for each segment of the packet.
3 PACKET_TYPE The type of the packet.
4 CONTROL_PACKET_TYPE_APP_NAME The name of the application associated with the control packet type.
5 SOURCE_ID The identifier of the source of the packet.
6 DESTINATION_ID The identifier of the destination of the packet.
7 TRANSMITTER_ID The identifier of the transmitter of the packet.
8 RECEIVER_ID The identifier of the receiver of the packet.
9 APP_LAYER_ARRIVAL_TIME_US_ The arrival time of the packet at the application layer in microseconds.
10 TRX_LAYER_ARRIVAL_TIME_US_ The arrival time of the packet at the transport layer in microseconds.
11 NW_LAYER_ARRIVAL_TIME_US_ The arrival time of the packet at the network layer in microseconds.
12 MAC_LAYER_ARRIVAL_TIME_US_ The arrival time of the packet at the media access control (MAC) layer in microseconds.
13 PHY_LAYER_ARRIVAL_TIME_US_ The arrival time of the packet at the physical layer in microseconds.
14 PHY_LAYER_START_TIME_US_ The start time of the packet processing at the physical layer in microseconds.
15 PHY_LAYER_END_TIME_US_ The end time of the packet processing at the physical layer in microseconds.
16 APP_LAYER_PAYLOAD_Bytes_ The size of the packet payload at the application layer in Bytes.
17 TRX_LAYER_PAYLOAD_Bytes_ The size of the packet payload at the transport layer in Bytes.
18 NW_LAYER_PAYLOAD_Bytes_ The size of the packet payload at the network layer in Bytes.
19 MAC_LAYER_PAYLOAD_Bytes_ The size of the packet payload at the media access control (MAC) layer in Bytes.
20 PHY_LAYER_PAYLOAD_Bytes_ The size of the packet payload at the physical layer in Bytes.
21 PHY_LAYER_OVERHEAD_Bytes_ The overhead size added by the physical layer in Bytes.
22 PACKET_STATUS The status of the packet.
23 SOURCE_IP The source IP address of the packet.
24 DESTINATION_IP The destination IP address of the packet.
25 GATEWAY_IP The IP address of the gateway.
26 NEXT_HOP_IP The IP address of the next hop.
27 Node The node associated with the packet.
dataset’s users. From unique identifiers for packets to intricate details of
transmission dynamics, the table methodically catalogs each attribute,
shedding light on its role within the broader framework of the dataset.
Such a detailed breakdown is instrumental for researchers, offering an
explicit data structure roadmap. By familiarizing themselves with this
8

table, users can effectively strategize their data analysis, ensuring that
they harness the full potential of the dataset in their endeavors to detect
and understand fake clients in IoT smart city environments.

3.2. Machine learning classifier

• Random Forest: Random Forest is an ensemble learning algo-

rithm that combines multiple decision trees to make predictions.
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It randomly selects subsets of data and features for each tree to
reduce overfitting. Each tree independently classifies or regresses
on the data, and the final prediction is determined by aggregating
the results from all trees. The algorithm leverages the ‘‘wisdom
of the crowd’’ principle to improve Accuracy and handle large
datasets. It is versatile, takes missing values, and provides feature
importance measures. Random Forest is widely used for classifi-
cation and regression tasks in various domains, including finance,
healthcare, and image recognition [23].
Random Forest combines the predictions of multiple decision
trees by either voting (classification) or averaging (regression).
For classification tasks, the mathematical equation for Random
Forest can be represented as

𝑦̂(𝑥) = 1
𝑁

𝑁
∑

𝑖=1

( 𝑇
∑

𝑗=1
𝑤𝑗 ⋅ ℎ𝑗 (𝑥)

)

(1)

where: 𝑦̂(𝑥) represents the predicted output for input 𝑥, 𝑁 denotes
the total number of decision trees in the forest, 𝑇 represents the
total number of nodes in each decision tree, 𝑤𝑗 represents the
weight of the 𝑗th tree, and ℎ𝑗 (𝑥) signifies the predicted output of
the 𝑗th decision tree for input 𝑥.

• Naïve Bayes (NB) classifier: Naive Bayes is a simple probabilis-
tic classifier based on Bayes’ theorem. It assumes that the features
are conditionally independent given the class. In other words,
each feature contributes independently to the probability of a
particular class. It calculates the probability of a class given the
features using prior probabilities and likelihoods. The classifier
assigns the class with the highest probability as the predicted
class. Naive Bayes is computationally efficient and works well
with high-dimensional data. However, its feature independence
assumption may sometimes limit its performance. It is commonly
used in text classification, spam filtering, and recommendation
systems [24].
The Naïve Bayes (NB) classifier is based on Bayes’ theorem and
assumes independence between features. The mathematical equa-
tion for the Naïve Bayes classifier can be expressed as follows
[25]:

𝑃 (𝑦|𝑥1, 𝑥2,… , 𝑥𝑛) =
𝑃 (𝑦) ⋅ 𝑃 (𝑥1|𝑦) ⋅ 𝑃 (𝑥2|𝑦) ⋅… ⋅ 𝑃 (𝑥𝑛|𝑦)

𝑃 (𝑥1, 𝑥2,… , 𝑥𝑛)
(2)

where:

– 𝑃 (𝑦|𝑥1, 𝑥2,… , 𝑥𝑛) is the posterior probability of the class 𝑦
given the features 𝑥1, 𝑥2,… , 𝑥𝑛.

– 𝑃 (𝑦) is the prior probability of the class 𝑦.
– 𝑃 (𝑥1|𝑦), 𝑃 (𝑥2|𝑦),… , 𝑃 (𝑥𝑛|𝑦) are the conditional probabilities

of each feature 𝑥1, 𝑥2,… , 𝑥𝑛 given the class 𝑦.
– 𝑃 (𝑥1, 𝑥2,… , 𝑥𝑛) is the probability of observing the features

𝑥1, 𝑥2,… , 𝑥𝑛.

In the Naïve Bayes classifier, the assumption of feature indepen-
dence allows us to simplify the equation further:

𝑃 (𝑦|𝑥1, 𝑥2,… , 𝑥𝑛) = 𝑃 (𝑦) ⋅ 𝑃 (𝑥1|𝑦) ⋅ 𝑃 (𝑥2|𝑦) ⋅… ⋅ 𝑃 (𝑥𝑛|𝑦) (3)

This equation can be used to calculate the probability of each
class given the input features, and the classifier can select the class
with the highest probability as the predicted class.

• Classification and Regression Trees (CART) is a decision tree-
based machine learning algorithm for classification and regres-
sion tasks. CART employs binary splitting based on feature val-
ues to recursively partition the data, optimizing on criteria like
Gini impurity for classification and the sum of squared differ-
ences for regression. The tree structure provides intuitive inter-
pretability, making CART suitable for applications where decision
transparency is essential. Care is required to manage potential
overfitting through pruning and address data instability and class
imbalance challenges [26].
9

The Gini Impurity is a measure used in the CART algorithm to
quantify the disorder or impurity of a dataset concerning its class
labels. It provides a metric to evaluate how often a randomly
chosen sample would be incorrectly classified if it was randomly
labeled based on the distribution of labels in the dataset. The
formula for Gini Impurity is [27]:

Gini(𝑝1, 𝑝2,… , 𝑝𝑘) = 1 −
𝑘
∑

𝑖=1
𝑝2𝑖 (4)

where:

– 𝑝𝑖 represents the proportion of the data that belongs to class
𝑖.

– 𝑘 is the total number of classes.

• The 𝑘-Nearest Neighbors (KNN) is a supervised machine learn-
ing algorithm utilized for both classification and regression tasks.
It predicts an output based on the majority vote or average of
its 𝑘 closest data points from the training set. KNN is compu-
tationally intensive, requiring distance calculations for each test
point against the entire dataset, making feature scaling crucial
for accurate results. The choice of 𝑘 and distance metric can sig-
nificantly influence its performance. While KNN’s simplicity and
adaptability are strengths, it is essential to consider its sensitivity
to irrelevant features and the storage requirements of retaining
the whole dataset [28].
The core of the KNN algorithm revolves around the computation
of the distance between data points. Euclidean distance is one
of the most commonly used distance metrics in the context of
KNN [29].
For two data points in a 2-dimensional space, 𝑃 (𝑥1, 𝑦1) and
𝑄(𝑥2, 𝑦2), the Euclidean distance 𝑑 between them is given by:

𝑑(𝑃 ,𝑄) =
√

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (5)

For an 𝑛-dimensional space, where the two points are 𝑃 (𝑥1, 𝑥2,… ,
𝑥𝑛) and 𝑄(𝑦1, 𝑦2,… , 𝑦𝑛), the formula generalizes to:

𝑑(𝑃 ,𝑄) =

√

√

√

√

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2 (6)

In the context of KNN, once the distances from a test point to
all training points are computed using the formula above (or
another distance metric), the 𝑘 smallest distances are selected.
A majority vote (for classification) or average (for regression) of
their corresponding outputs is taken as the prediction.

• Long Short-Term Memory (LSTM) classifier: is a type of recur-
rent neural network (RNN) designed to analyze sequential data,
such as time series or text. When applied to a CSV dataset, an
LSTM classifier processes the data by considering the sequential
relationships between rows or entries. It utilizes a network archi-
tecture composed of LSTM cells that can capture and remember
long-range dependencies in the data. Each row of the CSV dataset
is treated as a time step, and the LSTM cells within the classifier
maintain internal states that allow them to remember or forget
information over time selectively. This enables the LSTM classifier
to learn patterns, trends, and contextual information within the
dataset, making it practical for tasks like classification where the
order of data is essential.

3.3. Evaluation metrics

The dataset split allocated 70% for training and 30% for testing.
The evaluation used confusion matrix-based metrics: TP, FP, FN, and
TN. Four key measures were applied: Accuracy, Precision, Recall (or

Sensitivity), and F1-score to assess model performance [30]. Accuracy
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F

indicates overall prediction correctness; Precision is the ratio of cor-
rect optimistic predictions, Recall is the identification rate of actual
positives, and the F1-score balances Precision and Recall.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(7)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

1-score = 2 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(10)

3.4. Experiments

In the previous stage, we created the simulation of the environment
proposed in this paper, which presents a smart city with many clients,
including (normal and fake), and we produced our dataset. This part
presents several experiments on this dataset to prepare a robust model
for detecting fake clients. So, we conducted the following experiments:

3.4.1. First experiment
This experiment, implemented as Benchmarking and Initial Assess-

ment, was oriented towards establishing a foundational understanding
of how various machine learning algorithms fare in identifying fake
IoT clients without any preprocessing interventions on the inherently
imbalanced dataset. This stage was crucial for setting a benchmark for
detection capabilities, aiming to answer the pressing research question:
How effectively can different machine learning algorithms pinpoint
fake IoT clients in a simulated smart city environment using raw,
unprocessed data. We hypothesized that, although machine learning
algorithms possess an inherent capacity to detect fake IoT clients to a
certain extent, the initial performance metrics would reveal substantial
opportunities for refinement, particularly in achieving a balanced sensi-
tivity and specificity. This hypothesis underscores our expectation that
raw data, with its intrinsic imperfections and class imbalances, would
present a challenging yet insightful starting point for our exploration.

In the first experiment, we will examine the original data set re-
sulting from the simulation, which contains 960,648 fake clients and
127,927 normal clients, and the total number of them is 1,088,575,
with 27 features. as shown in Table 6. Then, we divide the data set
into two parts. 70% training and 30% testing.

3.4.2. Second experiment
Moving into the second experiment, our focus shifted towards the

Impact of Preprocessing techniques and their influence on ML algo-
rithms’ performance with fake client detection. Specifically, we ex-
plored the effects of encoding categorical variables, converting IP ad-
dresses into a machine-readable format, and normalizing the data
to improve algorithmic interpretations. The central research question
guiding this experiment was: What impact do specific preprocessing
techniques have on the accuracy, precision, recall, F-measure, and AUC
of machine learning models in the context of fake IoT client detection?
Anticipating the outcomes, we posited that applying preprocessing
would result in marked enhancements across all evaluated performance
metrics, attributing this improvement to ameliorating data quality and
the heightened relevance of features for machine learning analysis. This
experiment demonstrated the transformative potential of methodical
data preprocessing in elevating model performance.

In this experiment, we will use an equivalent ratio of the original
data set of 100,000 records, including 90 836 fake and 9164 normal, to
facilitate dealing with the Huge data and preserve the original dataset
form. Then we apply preprocessing techniques to make the dataset
more suitable for AI classifiers to enhance the results of detection, The
preprocessing phase ensures that the dataset is primed for machine
learning algorithms. The raw data, abundant in information, can also be
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riddled with redundancies, inconsistencies, and inaccuracies. Through
preprocessing, we refine this data, bolstering the predictive capability
of our models. After that, we remove data duplication. Then, we applied
the same classification algorithms used before; the goal was to take an
equivalent ratio of the original data set to speed up the classification
process and preserve the original characteristics. As for the feature
selection process, the goal is to increase the classification accuracy. The
following illustrates each step of this experiment:

1. Equivalent Ratio The decision to select an equivalent ratio
of 100,000 records for the second experiment in our study
was guided by a blend of statistical rigor and the practical
necessity of managing the huge size of the original dataset.
Given the vast and complex nature of the data captured from
our simulation, processing the entire dataset due to the limited
capabilities of the personal computers on which we experiment
is considered the main challenge. To address this, we deter-
mined that an equivalent ratio of 100,000 records would strike
an optimal balance between computational feasibility and the
maintenance of analytical integrity. This size was deemed man-
ageable for efficiently conducting machine learning experiments
without sacrificing the quality of analysis. Our methodology
for achieving a statistically representative subset involved a
statistical sampling approach that ensured the preservation of
interaction distributions between real and fake clients within
the dataset. By identifying key variables and proportionally
sampling records based on their distribution, we maintained
the diversity necessary for training robust machine learning
models capable of generalizing well to unseen data. This careful
approach to sampling underscored our commitment to both effi-
ciency and statistical validity, ensuring that the selected subset
was practical for analysis and rich in the diversity of scenarios
necessary for detecting fake client behaviors effectively as shown
in Algorithm 1.

2. Handling IP Addresses:
The dataset uniquely contained IPv4 addresses in columns such
as SOURCE_IP, DESTINATION_IP, GATEWAY_IP, and
NEXT_HOP_IP. The direct conversion was applied to these
addresses to:

• Transform each IP address into a distinct integer represen-
tation.

• Retain the specificity of each IP while presenting it in a nu-
merical format amenable to machine learning algorithms.

3. Encoding Categorical Variables Machine learning models, by
their nature, operate on numerical data. This is because the
mathematical computations and algorithms underlying these
models require numerical values for processing. However, real-
world datasets often contain categorical data, essentially non-
numerical values representing different categories or classes.
In our dataset, certain features like PACKET_TYPE,
CONTROL_PACKET_TYPE_APP_NAME, SOURCE_ID, DESTI-
NATION_ID, TRANSMITTER_ID, RECEIVER_ID, and
PACKET_STATUS were categorical in nature. These features
had different categories or classes represented as strings or
symbols.
Label Encoding is a technique that converts each unique cate-
gory in a feature into a distinct integer. For example, categories
‘‘black’’, ‘‘Blue’’, and ‘‘Green’’ might be encoded as 0, 1, and 2.
This method ensures consistent mapping, meaning ‘‘black’’ will
always be 0. It also keeps the data compact, as the encoded
feature remains a single column without expanding the dataset’s

dimensions.
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4. Data Normalization
Each feature can have its scale or range of values in datasets
with multiple features. For instance, one feature might range
between 0 and 1, while another could vary between 0 and 1000.
This discrepancy in scales can pose challenges when modeling,
as algorithms may inadvertently assign more importance to fea-
tures with larger scales, even if they are not necessarily more
informative. The Standard Scaler method is a solution to this
problem. It is a normalization technique that adjusts each feature
to have a mean (average) of 0 and a standard deviation (a
measure of data spread) of 1.

Algorithm 1 Sample Dataset Based on Value Distribution
1: ⊳ Input: Original.CSV dataset
2: ⊳ Output: Partial dataset saved in ’equivalent_ratio.CSV’

3: algorithm SampleDataset
4: ⊳ Read the CSV file into a data structure
5: data← load(′𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙.𝐶𝑆𝑉 ′)
6: ⊳ Identify the target column ’Node’ irrespective of case
7: variables← column names of data
8: for name in variables do
9: if name matches ′𝑁𝑜𝑑𝑒′ then

10: node_column_name← name
11: break
12: end if
13: end for
14: targetValues ← data[node_column_name]

15: ⊳ Calculate the distribution of values
16: uniqueValues, counts ← unique values and their counts in

targetValues
17: percentages ← counts∕sum of counts

18: ⊳ Determine sample sizes for each unique value
19: numSamples ← round(percentages × 100000)

20: ⊳ Create a partial dataset with proportional representation
21: partialData ← empty data structure
22: for i from 1 to length of uniqueValues do
23: value← uniqueValues[i]
24: indices← find(targetValues == value)
25: samples ← randomly select numSamples[i] from indices
26: for index in samples do
27: partialData ← partialData + data[index]
28: end for
29: end for

30: ⊳ Save the partial dataset to a new CSV file
31: save(partialData,′ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡_𝑟𝑎𝑡𝑖𝑜.𝐶𝑆𝑉 ′)
32: end algorithm

5. Feature Selection
The filter feature selection method is used in machine learning
and data mining to identify a dataset’s most relevant and infor-
mative features (variables or attributes). The ‘‘filter’’ method in-
volves filtering the features based on their characteristics rather
than considering the interactions between features or the specific
learning algorithm used. The filter feature selection method
applies a statistical measure or scoring metric to each feature
in the dataset. These measures assess the correlation or depen-
dency between each feature and the target variable without
considering the relationship between the features themselves.
The features are then ranked or scored based on their relevance
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to the target variable [31].
The Mutual Information (MI) metric was employed for our
dataset. MI is a non-parametric method that measures the de-
pendency between variables. Specifically, it quantifies the infor-
mation gained about one variable through another. A higher MI
score implies that knowing the value of the feature can provide
more information about the target variable, so we adopted val-
ues more significant than the mean of MI values as a threshold
to select most feature effects in the classification. Fig. 4 present
two bar charts; (a) presents the MI for all features, and (b) the
MI values for the selected features.

3.4.3. Third experiment
The final experiment in our series sought to address the challenge of

class imbalance through the implementation of the Synthetic Minority
Over-sampling Technique (SMOTE), aiming to evaluate its impact on
enhancing the detection accuracy of fake IoT clients. This endeavor was
driven by the research question: How does the balancing of the dataset
with SMOTE influence the performance of ML algorithms in detecting
fake IoT clients? Our hypothesis posited that the strategic balancing
of the dataset would significantly amplify the models’ capability to
accurately identify fake clients, as evidenced by improved accuracy
and AUC scores. This expectation was grounded in the notion that
addressing the bias towards the majority class, a common issue in
imbalanced datasets, would be instrumental in fostering more equitable
and effective model training processes.

In the previous experiment, a conspicuous dataset imbalance was
observed, characterized by a preponderance of fake records compared
to their regular counterparts. This observed disparity may raise con-
cerns regarding the equity of the dataset. A sequence of preprocessing
procedures will be undertaken to achieve a balanced dataset that
ensures equitable representation of record categories. The process in-
volves the removal of duplicate records, followed by applying the
SMOTE, a data augmentation method in machine learning that gener-
ates synthetic examples for the minority class by interpolating between
existing instances, effectively addressing the class imbalance. A stochas-
tic reshuffling of the data will also be conducted, and a randomized
subset of 127,927 samples will be extracted for both the fake and
normal categories, achieving a perfect dataset. Subsequently, the same
classification models employed in the antecedent experiment will be
applied.

4. Results and discussion

This section comprehensively analyzes the outcomes derived from
a series of ML experiments designed to detect fake client activities
within a simulated IoT smart city environment. This section delves
into the performance of various sophisticated algorithms ranging from
the ensemble-based Random Forest to the intricate Long Short-Term
Memory networks. the discussion interprets the nuanced improvements
and the algorithms’ adaptability to the evolving complexities of the
data. We explore the implications of these results, examining the role
of data preprocessing and the challenges posed by imbalanced datasets.
Table 7 presents the results of the adopted ML experiments. To evaluate
the effectiveness of the machine learning models, several performances
were analyzed:

• Accuracy: Measures the overall correctness of the model by cal-
culating the ratio of correctly predicted instances to the total
instances.

• Precision: Indicates the proportion of true positive predictions
among all positive predictions made by the model.

• Recall (Sensitivity): Measures the model’s ability to correctly
identify true positive instances from all actual positive instances.

• F1-score: Provides a harmonic mean of precision and recall, of-

fering a balance between the two.
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Fig. 4. (a) MI scores of all features. (b) MI scores of all selected features.
Table 7
Comparison of machine learning algorithm performance across three experiments.

Algorithm Accuracy (%) Precision (%) Recall (%) F_measure (%) AUC (%)

First
Exp

Second
Exp

Third
Exp

First
Exp

Second
Exp

Third
Exp

First
Exp

Second
Exp

Third
Exp

First
Exp

Second
Exp

Third
Exp

First
Exp

Second
Exp

Third
Exp

RF 94.02 98.00 98.68 96.52 88.77 97.86 96.75 89.23 99.10 96.63 89.00 98.47 98.8 99.77 98.83
CART 93.88 97.98 98.34 96.50 88.87 97.75 96.56 89.42 98.42 96.53 89.14 98.09 84.92 98.40 99.23
NB 96.29 97.98 95.30 95.97 89.61 98.70 1.000 88.21 90.22 97.94 88.91 94.27 98.53 98.51 99.25
KNN 94.38 97.94 98.77 96.37 89.24 97.89 97.29 88.14 99.25 96.83 88.68 98.57 99.32 93.53 99.81
LSTM 96.21 98.06 96.85 92.44 96.05 98.52 99.80 85.92 94.06 97.89 89.06 96.24 95.6 99.77 99.78
• Area Under the Curve (AUC): Represents the model’s ability to
discriminate between classes, with higher values indicating better
performance.

In the quest to enhance the detection of fake clients within a
simulated smart city environment, our study meticulously examined
various machine learning algorithms, uncovering the profound influ-
ence of preprocessing on the proposed detection model’s effectiveness.
Through three experiments, we observed nuanced shifts in perfor-
mance metrics—Accuracy, Precision, Recall, F-measure, and AUC—
underscoring the pivotal role of data quality in refining detection
capabilities.

The initial foray into this investigation, Experiment 1, leveraged
the original dataset obtained from the simulation, spotlighting the NB
classifier for its remarkable Recall of 100%, signifying its excellent
sensitivity to detecting fake clients, with a fairly good accuracy of
96.29%. However, We acknowledge that the outcomes achieved thus
far are moderately satisfactory. Nonetheless, there is potential for
enhancement through the implementation of preprocessing techniques.
Preprocessing is a widely recognized and essential practice in Artificial
Intelligence (AI), designed to refine the dataset, thus rendering it more
suitable for classification via ML algorithms. Notably, our observations
from the second experiment confirm that applying these preprocessing
methods has indeed contributed to improving detection results.

Experiment 2 marked a turning point in a narrative as diverse pre-
processing techniques, from encoding categorical variables to data nor-
malization, were introduced. In coordination with the preprocessing,
the received results have demonstrated a substantial change. Specifi-
cally, the accuracy of the Random Forest algorithm skyrocketed from
94.02% to an impressive 98.00%. This represented better discrimi-
native capabilities of the algorithm and the impact of preprocessing
on the noise removal and maintenance of feature relevance. At the
same time, the precision of the Long Short-Term Memory networks
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also significantly increased — from 92.44% to 96.05%. The enhanced
performance of the LSTM network was achieved due to the clarity and
organization of the data provided by preprocessing, which helped the
network establish complex, temporal dependencies within the layers
assigned to the noise.

Experiment 3 revamped the narrative by focusing on the class
imbalance through the Synthetic Minority Over-sampling Technique in
the pursuit of the k-Nearest Neighbors. This approach helped the KNN
algorithm to demonstrate the peak of performance with an Accuracy
of 98.68% and an AUC score of a whopping 99.81%. This result
showed that with preprocessed, balanced classes, the noise reduction
was so significant that both the sensitivity and the specificity increased,
making KNN the best algorithm in fake client detection. Meanwhile,
The LSTM network reduced the accuracy to 96.85% but upheld an AUC
score. This nuanced conclusion demonstrated significant variability
in how balanced classes impacted algorithms and showed that token
tactics should be used when training the model. Experiment compar-
ison allowed us to uncover rich insights into the machine learning
mechanics in cybersecurity. The initial experiment’s hardship of class
imbalance and raw data transformed into the structured analysis of
preprocesses in the following steps, outlining the path to improvement.
Preprocessing in shaping the data and class balancing were deemed
essential learning points in raising the model’s accuracy and precision.
The class balancing unveiled the path to the equilibrium between fake
client detection and understanding false alarms, giving the ground
for an appropriate precision–recall balance. In this regard, this study
demystified the differences in the performance of multiple machine
learning algorithms, advocated for preprocessing, and discovered the
importance of the class works for fake client detection in smart city
applications. Thus, the data preparation, algorithm identification, post-
fix noise assessment, and balanced class approach were identified as
the components of an effective fake-client detection strategy in smart
cities through this narrative.
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Fig. 5. Packets flow of smart city with fake clients.
Table 8
Comparison of our work with the related work.

Authors Dataset used ML classifier Highest accuracy

[22] Collected dataset XGBoost 93.8%
[32] – Logistic Regression 92.14%
[33] KDD Cup 99 Decision tree 92.9%
Proposed model Simulation dataset KNN 98.77%

The bar chart in Fig. 5 demonstrates the performance of five ML
classifiers, RF, CART, NB, KNN, and LSTM, across three experiments
in detecting fake clients. Performance generally improves by the third
experiment, suggesting the positive impact of data preprocessing and
balancing. While NB shows a high initial Recall that later drops,
LSTM consistently scores well in Accuracy. The overall trend indicates
that careful data preparation significantly enhances model effective-
ness, particularly in complex scenarios like smart city simulations.
demonstrated

Fig. 6 presents ROC curves for the ROC curve for the best clas-
sifier across each experiment, NB, KNN, and LSTM classifiers. Upon
reviewing the AUC values, LSTM leads marginally with a score of
99.78, closely followed by KNN at 99.77, indicating excellent model
performance and discriminative capability. While slightly trailing with
an AUC of 98.53, NB also demonstrates predictive solid power. The
proximity of KNN and LSTM ROC curves to the top-left corner reflects
their high accurate positive rates and low false favorable rates, affirm-
ing their efficacy in accurately classifying instances in each experiment
conducted.

Table 8 contrasts machine learning methods for detecting fake
clients. Author [22] reached 93.8% accuracy with an XGBoost model
on a custom dataset, showcasing XGBoost’s adaptability. Author [32],
using an unspecified dataset and Logistic Regression, achieved 92.14%
accuracy, demonstrating the model’s effectiveness despite its simplicity.
Author [33] utilized the KDD Cup 99 dataset with a decision tree to
attain 92.9% accuracy, reflecting the decision tree’s capability with
non-linear data. Distinguished from these, the proposed model applied
a KNN classifier to a simulation dataset, achieving a high accuracy of
98.77%, indicating KNN’s proficiency in a simulated smart city con-
text. This suggests that well-crafted simulations aligned with advanced
classifiers like KNN can significantly enhance model performance, em-
phasizing the importance of dataset selection and classifier choice in
smart city modeling.

5. Conclusion

The proliferation of the IoT in urban landscapes has accentuated
the necessity for verifying the legitimacy of interconnected devices.
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Addressing the predicament of identifying counterfeit IoT devices in a
mock smart city setting, this study embarked on three separate experi-
ments, each emphasizing varied preprocessing and data harmonization
methodologies. While the inaugural experiment delved directly into the
dataset, the subsequent trial incorporated preprocessing and feature
discernment, and the final one concentrated on rectifying dataset im-
balances via the SMOTE. An array of evaluation matrices revealed the
efficacy of data normalization and feature selection in bolstering the
prowess of machine learning paradigms. Augmenting the dataset’s equi-
librium using SMOTE further elevated this efficacy. Among the gamut
of assessed algorithms, KNN emerged as a stalwart performer. Yet, dis-
tinct algorithms like NB and LSTM manifested their respective merits.
Building on these insights, a subsequent algorithm was conceived to
respond to these predictions, effectively sidelining and ostracizing de-
ceptive devices, underscoring the pragmatic application of the research.
This culminates in an earnest call to action for prompt preventive
measures to fortify the security fabric of smart city infrastructures.

Future work and limitations

Future research should expand the scope of attack types beyond
simulated DDoS attacks, including Man-in-the-Middle (MitM) attacks,
data manipulation, unauthorized access, and botnet attacks. Lever-
aging advanced deep learning models, such as CNNs, RNNs, LSTMs,
and GANs, can further enhance detection capabilities. Real-world im-
plementation and testing in smart city environments are crucial for
practical applicability. This study has limitations, including reliance
on simulations. Future work should explore more powerful computa-
tional infrastructure. Incorporating Quantum Key Distribution (QKD)
to enhance IoT security, as discussed by Golec et al. (2024) [34], can
provide secure communication channels against fake clients. Advanced
cryptographic techniques, such as homomorphic encryption and zero-
knowledge proofs, are essential for maintaining data privacy. Quantum
cloud computing can improve data processing capabilities, enhanc-
ing the efficiency and accuracy of machine learning algorithms for
detecting fake clients in real-time. Addressing these challenges and
integrating these technologies will contribute to the development of
secure, efficient, and resilient smart city infrastructures.
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Fig. 6. ROC curve for the best classifier across each experiment.
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