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ABSTRACT Coronavirus (SARS-CoV-2) is a novel global pandemic, which requires rapid and accurate
identification techniques to curb its spread. COVID-19, the disease induced by the virus, causes severe
respiratory complications, necessitating advanced diagnostic tools for early detection. Recent research
indicates the potential of radiographic imaging in unravelling critical insights into the characteristics of
this formidable pathogen. Leveraging the advancements in Computer Vision (CV) and deep learning
methodologies, an automated system can be devised to discern respiratory anomalies from X-ray images,
enhancing conventional diagnostic methods. In this study, we propose a pioneering approach for COVID-19
diagnosis utilizing chest radiographs. The proposed methodology encompasses four distinct phases:
initial segmentation of raw chest radiographs employing Conditional Generative Adversarial Networks
(CGAN), followed by feature extraction through a tailored pipeline integrating both manual computer
vision algorithms and pre-trained Deep Neural Network (DNN) models. Subsequently, a graph-based
feature reconstruction technique amalgamates these extracted features across the network, culminating in
a comprehensive representation. These reconstructed features serve as input to a classification module,
comprising a multi-layer neural network, GCN, adept at processing graph-structured data, alongside
conventional machine learning classifiers such as Support Vector Machine (SVM), Extreme Gradient
Boosting (XGBoost), and Random Forest (RF), facilitating categorization of chest X-ray images into
COVID-19, pneumonia, and normal cases. Furthermore, we conduct an exhaustive evaluation of the selected
DNN architectures to ascertain the efficacy of our proposed models vis-à-vis existing research, thus ensuring
the deployment of the most robust diagnostic framework.

INDEX TERMS COVID-19, image segmentation, C-GAN, deep neural network (DNN), key point
extraction, classification models.

I. INTRODUCTION
During the ongoing global crisis caused by the highly
contagious respiratory disease [1], [2] resulting from the
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CORONA virus, the importance of swift detection, accurate
diagnosis, and effective treatment cannot be overstated.
COVID-19, an ongoing pandemic for over four years now,
continues to exact a toll, spreading rapidly and claiming
millions of lives worldwide. The virus, initially identified
in Wuhan, China, poses significant challenges due to its
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rapid transmission through direct contact and respiratory
droplets. Experts emphasize the need for affordable, efficient
diagnostics to curb its spread.

In light of the exponential surge in COVID-19 cases, both
viral nucleic acid tests (VNATs) and imaging techniques have
become indispensable for prompt diagnosis. While VNATs,
particularly the RT-PCR test, are renowned for their sensi-
tivity [3], [4], imaging techniques such as chest radiology
imaging and CT scans offer alternative diagnostic avenues.
However, chest radiology, while practical, exhibits lower
sensitivity compared to RT-PCR and CT scans, highlighting
the need for enhanced diagnostic methodologies [5].

X-ray imaging emerges as a cost-effective alternative for
COVID-19 detection [6], albeit with limitations in clinical
relevance and interpretational challenges. To address these
limitations and enhance diagnostic accuracy, the development
of a computer-assisted approach for automatic detection and
identification becomes imperative. Such a system would not
only aid medical professionals in early disease detection
but also assist radiologists in distinguishing COVID-19
from other respiratory conditions, thereby facilitating timely
clinical decisions and treatment planning.

In alignment with the World Health Organization’s
recommendations [6], [7], this study aims to present a
comprehensive methodology for image segmentation, feature
extraction, and graph-based representation to enable precise
categorization of chest X-ray images. The key contributions
of this study include:

• Conducting a critical analysis of existing image seg-
mentation techniques to identify their strengths and
limitations in the context of COVID-19 detection.

• Proposing a robust deep learning-based feature extrac-
tion method that is effective, structured, and practical
for identifying key features indicative of COVID-19
infection.

• Outlining a systematic approach for incorporating
graph representation to facilitate feature reconstruction,
considering the spatial relationships between features
within the image.

• Developing a methodical strategy for feature extrac-
tion and picture categorization using the pertinent
features identified, enabling accurate classification of
chest X-ray images into distinct categories, including
COVID-19, pneumonia, and normal cases.

By addressing these objectives, this research endeavors to
contribute to the advancement of diagnostic approaches
for COVID-19, aiding in its timely identification and
containment.

II. LITERATURE REVIEW
Advancements in deep learning have significantly enhanced
COVID-19 detection and analysis via medical imaging,
particularly chest X-rays (CXR) and computed tomography
(CT) scans. Convolutional Neural Networks (CNNs) such
as COVID-Net, COVIDX-Net, and transfer learning models
like MobileNetV2 have demonstrated high accuracies in

binary andmulti-class classifications. Generative Adversarial
Networks (GANs) have emerged as a critical tool for
augmenting datasets and improving diagnostic performance.
Techniques integrating deep learning with GANs and hybrid
frameworks, including federated and blockchain technolo-
gies, have addressed challenges like dataset limitations,
image quality issues, and data privacy concerns. Studies
reveal promising accuracies exceeding 90% across various
models, with methodologies incorporating transfer learning,
segmentation, and region-of-interest (ROI) prioritization,
optimizing classification and resource efficiency. These
advancements underscore the transformative potential of AI
in COVID-19 diagnostics and the broader field of medical
imaging. Following is the extensive literature review related
to our study shown in Table 1.

III. METHODOLOGY
In every research project, the primary step involves iden-
tifying the problem, while the crucial step in improving
upon previous work lies in proposing a method to address
the identified problem. Extensive research has focused on
utilizing images for COVID-19 detection. It’s essential
to acknowledge that implementing our idea effectively
necessitates adhering to specific protocols for each method.
The entire system development concept comprises six com-
ponents, as illustrated in the process flowchart in Figure 1.

A. DATASETS
The initial stage involves selecting and preparing a dataset for
future analysis. In this process, COVID-19 was distinguished
from pneumonia and normal images using chest X-ray
(CXR) images sourced from various freely available online
resources. The datasets utilized to train segmentation and
classification models in this framework are:

1) SEGMENTATION DATASET
For training the segmentation network, the CXR images
dataset for segmentation [34] was utilized. This dataset
comprises frontal view posterior anterior (PA) chest images
and facilitates the segmentation of anatomical parts like the
lungs, heart, and clavicles.

2) CLASSIFICATION DATASET
The chest X-ray images represented in Figure 2 constitute
the dataset used for categorization. We utilized a publicly
accessible dataset consisting of COVID-19 chest X-ray
(CXR) images provided by [35]. Additionally, another dataset
comprised images of pneumonia and typical individual chest
X-rays (CXR), known as the pneumonia dataset [36]. Similar
to the segmentation dataset, all chest X-ray (CXR) images are
frontal views.

B. IMAGE PRE-PROCESSING
Preprocessing, which involves applying various transforma-
tion techniques to enhance features and make the data more
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TABLE 1. Literature review of deep learning techniques for COVID-19 detection.

manageable for analysis, is a crucial step in ensuring the
quality of a dataset.

1) SEGMENTATION DATASET PRE-PROCESSING
The segmentation dataset underwent preprocessing by cre-
ating three folders: train, test, and validation, to divide the
dataset. Lung masks (images) for the left and right lungs were
stored in separate folders from the original source images.
These lung masks (images) were then vertically integrated
with their respective source photos, initially overlapped to

form a single mask image comprising both lungs. The images
were cropped and shuffled to introduce variation before input
to the masking model.

2) CLASSIFICATION DATASET PRE-PROCESSING
The classification dataset was organized into two distinct
folders for training and testing purposes. Images in the
dataset were masked using a previously trained mask model.
However, before masking, low-contrast images underwent
preprocessing techniques such as Histogram equalization
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FIGURE 1. Proposed methodology.

FIGURE 2. (a) Pneumonia CXR images (b) Normal CXR images
(c) COVID-19 Infected CXR images.

and CLAHE to enhance contrast. Additionally, thresholding
was applied during the masking process to facilitate easier
analysis of the images.

C. IMAGE SEGMENTATION
Segmentation techniques are employed to isolate the regions
of interest in images, particularly in the case of COVID-19

detection where the lungs are primarily affected. However,
certain regions of the lung tissue, especially those towards the
edges, may introduce noise due to their radio density values
falling outside the normal range. To address this issue, a U-net
architecture conditional generative adversarial segmentation
network will be utilized to filter out noise effectively.

1) CONDITIONAL-GAN
The conditional generative adversarial network (C-GAN) is
a powerful tool commonly used in image processing [37]
(Figure 3 and 4). In our system, the C-GAN consists of a
generator and a discriminator. The generator is tasked with
creating novel images based on a set of input samples, while
the discriminator is trained to distinguish between real and
fake images. The two networks compete during training
to enhance performance. Specifically, in our setup, the
generator takes chest X-rays (CXRs) as input and produces
accurate lung masks. These masks are then evaluated by
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FIGURE 3. C-GAN Flow diagram.

the discriminator alongside ground truth masks and input
CXR images. The discriminator’s role is to distinguish
between genuine and fake pairs, and its weights are updated
accordingly to improve performance.

2) TRAINING SEGMENTATION NETWORK
A U-net architecture, trained on [38], is employed for
image segmentation. This involves training the generator
using a pix-to-pix approach [39] and the discriminator using
a classifier similar to Patch GAN. Each neural network
competes to outperform the other during training. The
generator loss decreases as the discriminator loss increases.
Once trained, the generator produces accurate mask images
for input CXR images. These generated masks, along with
ground truth masks representing true segmentation, are then
applied to the raw CXR images to create segmented lung
images.

This approach allows for the extraction of meaningful fea-
tures and enhances the quality of the dataset for subsequent
stages of the analysis pipeline.

D. FEATURES EXTRACTION
Identification of relevant image features is crucial for
effective classification, as each pixel in an image carries
valuable information that can be utilized for analysis. Feature
extraction involves measuring and extracting these values to
represent the image or object digitally. In our framework,
feature extraction from segmented lung images plays a
vital role in distinguishing between COVID-19 cases and
pneumonia (Figure 5).
Historically, manual feature extraction methods have been

successful, but the recent surge in Deep Learning (DL)
approaches have revolutionized feature extraction, offering

superior performance by automatically detecting hidden
patterns in data.

Our framework for feature extraction comprises two key
components:

1) DEEP LEARNING MODELS
Various transfer learning strategies, including DenseNet-
169, DenseNet-201, VGG-16, VGG-19, Inception-ResNet,
NasNetLarge, Xception, and a customized simple CNN
(sCNN) model, will be employed in this research. DenseNet
architectures are preferred due to their advantages, such
as direct layer-to-layer interaction and support for feature
reuse [40]. VGG models with 16–19 weight layers have
demonstrated superior performance in terms of precision and
validity [12]. Inception-ResNet [41] was chosen for its ability
to learn both local and global features while maintaining
acceptable training dynamics. NASNet-Large [42] was
selected for its accuracy and computational efficiency, and
Xception citeReference33 has shown promising results in
feature extraction applications. Additionally, a customized
sCNNmodel has been developed to compare its effectiveness
in extracting distinctive characteristics from segmented lung
images with transfer learning methods. Once trained, features
are computed from the FC3 layer of the neural network as
shown in Figure 6.

2) KEY-POINTS DETECTION
The second component involves using computer vision
algorithms, namely SIFT and BRISK, to extract significant
details from the images. These algorithms identify key points
or blobs resembling local characteristics in the segmented
lung images. SIFT [43] is commonly used to extract rotation
and scale-invariant features, while BRISK [44] is known
for its fast processing and high precision. By applying
the SIFT/BRISK algorithm to lung images, key regions
are identified and separated into groups using the k-means
clustering method. This results in a final 384-dimensional
feature vector derived from the segmented lung images,
combining information from DL models and key-points
detection algorithms.

This comprehensive approach to feature extraction ensures
that relevant information is captured effectively, enhancing
the performance of the classification pipeline as shown in
Figure 7.

E. GRAPH-BASED FEATURE RECONSTRUCTION
The next step involves reconstructing the features using
the graph data obtained from the extracted features. This
process aims to enhance individual features by incorporating
information from their neighboring features. The term
‘‘features’’ here refers to the characteristics extracted by the
trained CNNs and transfer learning models.

Each extracted feature contributes to the creation of a
graph of features, where each node represents a feature.
These features are grouped into batches of equal sizes to
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FIGURE 4. (a) The encoder block. (b) The decoder block.

expedite computation. The total number of batches ‘‘n’’ can
be determined using the formula (n =

⌈
D/N

⌉
) for a feature

set F ∈ RD×M , where ‘‘D’’ is the number of features in the
dataset, ‘‘M’’ denotes the feature dimension, and ‘‘N’’ is the
batch size.

Using paired variables (Vi,Ei), where Vi represents the
nodes constituting each feature in the batch and Ei denotes
the edges or connections between the nodes, a corresponding
graphGi ∈ RM is generated for each Fi to depict the inherent
relationships among nodes. Each node is connected to its
k nearest neighbors by edges, determined by the shortest k
value of Euclidean distance. The adjacencymatrixAi ∈ RS×S

is crucial for constructing the graph Gi.
For each feature batch Fi, a graph Gi is initially created.

Subsequently, the distance between each feature and the
remaining features in the batch is computed, leading to the
creation of a distance matrix Distance ∈ RS×S . After sorting
each row of the distance matrix in ascending order, an index
matrix Index ∈ RS×S is generated to record the index of the
closest k features in the batch Fi.

When one of the closest ‘‘k’’ neighbors is identified at a
location, the value of one place in each row of Ai is set to 1.
Finally, each feature batch Fi is multiplied by the normalized
adjacency matrix Ai to produce a reconstructed feature batch
for classification purposes. Refer to Figure 8 for a visual
depiction of the feature reconstruction methods.

F. IMAGE CLASSIFICATION
We sought to deploy a GCN in conjunction with mul-
tiple machine learning models, including Support Vector

Machine (SVM), Extreme Gradient Boosting (XG-Boost),
and Random Forest (RF), which are frequently used as the
classification module, in order to perform a comparison
analysis. These classifiers will be trained and evaluated using
the features extracted from the feature extraction workflow
and feature reconstruction module.

1) GRAPH CONVOLUTIONAL NETWORKS (GCN)
GCN is a multi-layer graph neural network that applies
convolutional neural network theory and uses nodes from
graphs as input. This kind of network is frequently employed
in a number of applications. The system’s design consists
of an input layer and an output layer, the latter of which
generates output signals in response to input signals received
by the input layer. Due to their various layers, GCNs are
able to capture more complicated information than GNETs,
but they are typically more computationally expensive
[16], [17].

2) SUPPORT VECTOR MACHINE (SVM)
The Support Vector Machine (SVM) technique is used for
classification, which separates training data into distinct
classes using an ideal hyperplane. The discrimination and
assimilation of the training data are key components of this
supervised learning approach.

3) RANDOM FOREST (RF)
Random Forest, a supervised machine learning method,
is frequently employed for classification tasks. It has proven
to be adept at managing huge datasets and producing accurate
forecasts.
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FIGURE 5. A condensed flowchart representing the suggested pipeline.

FIGURE 6. The computational model of the neural network.

4) EXTREME GRADIENT BOOSTING (XG-BOOST)
The Extreme Gradient Boosting method, often known as
XG-Boost, is one of the classification modules used. It is
an improved version of the gradient boosting algorithm
that makes use of both tree-based and linear model-based
learning techniques. As a result of its ability to perform
parallel processing on a single machine, XG-Boost is a
quick and efficient method. An algorithm for predictive
modelling is improved as a result of the combination of these
techniques.

FIGURE 7. A diagrammatic representation that depicts the constituents
present in the Feature Extraction unit.

IV. EXPERIMENTAL RESULTS
The actual experiments are explained in 7 smaller sections.
The datasets utilised are described in Section A, along with

VOLUME 12, 2024 191329



I. Ihsan et al.: Graph-Based COVID-19 Detection Using Conditional Generative Adversarial Network

FIGURE 8. Feature reconstruction.

their size, number of classes, and any data preparation
methods applied. The experimental setup, including the
parameters for the algorithm, the specifications for the
hardware and software, and other pertinent information,
is described in Section B. Section C presents the training
times for all the models, followed by Section D’s graph
of model accuracy, Section E’s graph of loss model, and
Section F’s description of the metrics used to gauge the
success of the suggested strategy, such as average precision,
average recall, average F1-score, and accuracy. The base
classifiers ROC curves are shown in section G to make it
easier to evaluate how well they work.

A. DATASETS
We used two openly accessible datasets to carry out segmen-
tation and classification tasks. The segmentation network was
trained using X-ray images (CXR) from the Segmentation
Chest Radiographs (SCR) dataset [45]. The main dataset was
made up of 988 photos, of which 48 were used for testing and
the remaining 940 were split into two subsets for training and
validation with a roughly 90/10 split.

A dataset of 700 images from the front view that
were recognised as showing COVID-19 infection and had
metadata suggesting views from both the posterior-anterior
(PA) and anterior-posterior (AP) were also chosen for the
COVID-19 classification. Additionally, the CXR images
were used to derive the normal and pneumonia in the
pneumonia dataset [36]. In order to maintain class balance,
645 CXR images of normal condition and 655 CXR images
of pneumonia were randomly chosen, producing a total of
2000 images for categorization. Basic affine transformations
were used to supplement the training images because the
number of training images used was insufficient, bringing the
total number of training images to 3000. Last but not least,
the training images were split into training and validation
datasets using an 80/20 split.

B. EXPERIMENT SETTINGS
An experimental setup was made up of a computer
with 32 GB of RAM. Two different parameter sets were

FIGURE 9. Discriminator loss function for CGAN during training process.

employed for the sequential training of transferred networks
and GCN in order to prevent system problems brought on
by memory restrictions. Training for the features extraction
process took place over the course of 100 epochs with a
set batch size of 32. The batch size ‘‘N’’ and the number
of neighbours ‘‘k’’ in each batch were carefully chosen and
maintained across all experiments to guarantee the best graph
reconstruction results. The parts that followwill providemore
information.

1) TRAINING CONDITIONAL GAN
The Conditional Generative Adversarial Network (CGAN)
approach, which focuses on image-to-image translation,
was utilised during the training of the masking model to
transform one type of image into another [39]. Generative
Adversarial Network (GAN) subtype CGAN may generate
images depending on specified input data. The model was
trained using 830 training images over 250 epochs, and the
results were satisfactory. The loss functions are optimised in
relation to the number of epochs, as seen in the graphs below
(Figure 9).

a: DISCRIMINATOR LOSS
Figure 9 depicts the variance in discriminator loss as the
number of epochs increases. This is explained by the fact that
as time passes, the generator loss likewise gets better, leading
to an increase in the discriminator loss. However, the fact that
the all-over loss function keeps getting smaller as the number
of epochs increases suggests that the discriminator is getting
better at telling the difference between real and fake masks.

b: GENERATOR LOSS
TheGeneratormodel receives themajority of attention during
optimisation and training when using C-GAN to translate
images from one type to another. We looked at and examined
numerous graphs that the training process produced.

• Generator GAN Loss: The discriminator’s inability to
distinguish between real and fake images at the start of
the process, which led to a large generator GAN loss,
is obvious from the graph shown in Figure 10. However,
as the training went on, the discriminator got better
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FIGURE 10. Generator GAN loss function during training process.

at identifying the difference between the two kinds of
images, which led to a reduction in the generator GAN
loss. This shows that the fake images being created by
the generator were becoming more convincing, and the
quality of the generated masks as a whole was rising.

• Generator L1 Loss: Figure 11 illustrates the generator
L1 loss, which is the difference between the generated
output and the desired image. The generator’s L1 loss
lowers as the number of iterations rises, demonstrating
the generator’s capacity to produce images that closely
mimic the real world. As the generator becomes familiar
with the main characteristics of the lung mask, the
loss initially decreases quickly. However, the loss
swings between high and low values, demonstrating a
progressive decline over time, as the model tries to learn
the finer details, such as the margins of the mask or the
boundaries of the lungs in the chest X-ray (CXR).

• Generator Total Loss: According to the graph in
Figure 12, the generator total loss consists of two
different types of losses and fluctuates between high
and low levels. Due to the discriminator’s initial
inability to accurately distinguish between genuine and
created images, the overall loss of the generator soon
decreases, enabling the generator to swiftly capture the
key characteristics of the mask. As the discriminator’s
performance improves, the loss fluctuates and gradually
decreases.

This occurs because the generator has trouble learning
the micro-features that correspond to the lungs’ borders
or margins on chest x-rays (CXR). Figure 13 shows the
segmented images, which show how the generative model
performed.

2) CLASSIFICATION PIPELINE IMPLEMENTATION
With computer vision feature extraction algorithms (SIFT
and BRISK), deep learning classifier Graph Convolutional
Network (GCN), and widely used machine learning methods
for classification like Support Vector Machine, Random For-
est, and XG-Boost for comparative analysis, we implemented
8 different deep learning approaches in all conceivable

FIGURE 11. Generator L1 loss during training process.

FIGURE 12. Generator total loss during training process.

FIGURE 13. One example of a chest X-ray image with its corresponding
original and predicted lung masks is shown in the image on the left,
center, and right, respectively.

combinations. In order to plot the comparison graph and use
the trained model for classification using machine learning
classifiers, we also used Keras callbacks in TensorFlow to
save the trained model in a.h5 file format. The resulting.h5
file can then be loaded to make predictions on new data or to
continue training the model.

a: DEEP LEARNING MODELS
Below are descriptions of several deep learning models while
the experimental setup is outlined in Table 2.

• Dense-Net: The foundation of Dense-Net models is
the idea of ‘‘dense connectivity’’ between layers. The
output of the layer before it serves as the input to
the subsequent layer in a conventional CNN. However,
in the case of Dense-Net, the feature maps produced by
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TABLE 2. DL models.

all of the earlier layers serve as the input that is supplied
to each layer. With greater feature propagation and
stronger gradients as a result of this dense connectivity,
model performance may be enhanced [40]. Due to their
advantages, Dense-Net designs were selected for our
study.With our dataset, we have applied two of the
variants: Dense-net169 and Dense-net201. with 169 and
201 layers respectively.

• VGG: There are several convolutional neural network
(CNN) designs known as the VGG (Visual Geometry
Group). It was developed in 2014 by the Visual
Geometry Group at the University of Oxford, and
there are other variations of it [12], including VGG-16
and VGG-19, which, according to [12], have 16 and
19 layers, respectively. We used both models to get
precise results.

• Inception-ResNet: Convolutional neural network
(CNN) designs integrate ideas from the Inception and
ResNet architectures to create the Inception-ResNet
architecture [41]. We chose this model because it can
retain acceptable training dynamics while learning both
local and global features.

• NASNet Large: In a research [42] published in 2018 by
Zoph et al. from Google Brain titled ‘‘Learning Trans-
ferable Architectures for Scalable Image Recognition,’’
the NASNet (Neural Architecture Search Network)
family of models—including NASNet-Large—was first
described. It is created using a neural architecture
search method based on reinforcement learning. Since
NASNet-Large is intended to be both extremely accurate
and computationally efficient, we employed it.

• Xception:A convolutional neural network design called
Xception was introduced by The Extreme Inception,
also known as Xception [46]. Xception has demon-
strated impressive results when utilised as a feature
extractor in transfer learning applications.

• Simple CNN: Self-customized simple CNN (sCNN
model), unlike transfer learning methods, was built from
the ground up. The FC3 layer’s features are computed
once a learnt deep learning model has been trained.

FIGURE 14. Sample lung images visually illustrate the detected features
through the utilization of SIFT and BRISK algorithms.

FIGURE 15. Graph representation of features.

b: KEY POINTS DETECTION METHODS
Key point detection algorithms such as SIFT and BRISK
are widely used in computer vision and image processing
applications to extract critical information from images and
videos. Figure 14 illustrates clearly how these algorithms
identify significant points.

c: GRAPH CONSTRUCTION
Since one of Stellar Graph’s primary characteristics is
that it supports deep learning models, including Graph
Convolutional Networks (GCNs),We used it to create a graph
from the retrieved data, with relevant labels treated as edges,
and the train and test characteristics are taken as nodes. The
generated graph is displayed in Figure 15.

The adjacency matrix A is generated after the graph is
created, and it produces a sparse matrix representation of the
graph. The edges are unweighted when the weighted option
is set to False. The identity matrix with ones on the diagonal
is then added, adding self-connections to the adjacency
matrix A. In order to meet the requirements of some graph
convolutional neural network (GCN) architectures, it is
ensured that each node has a self-loop by doing this. The
‘‘diags’’ function from the sparse module is then used to
compute the degree matrix to the power of −1/2. This matrix
is used to normalise the adjacency matrix, which improves
the GCN’s stability and convergence. Finally, The adjacency
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TABLE 3. GCN Parameters.

matrix is normalized by left-multiplying it by the degree
matrix and right-multiplying it by its transpose, resulting in
the normalized adjacency matrix. To create the normalised
adjacency matrix, the adjacency matrix is left-multiplied by
the degree matrix and right-multiplied by its transpose.

d: CLASSIFIERS
In this investigation, we employed two sets of classifiers:

• DL Classifier: GCN (Graph Convolutional Network),
a neural network designed to process graph-structured
data, was the neural network used in our study.
Convolutional filters are used on a graph in the primary
principle of GCN, similar to how convolutional filters
are used on images in conventional convolutional neural
networks (CNNs) [47]. We encoded the labels and
mapped the nodes to their indices in the adjacency
matrix before providing the graph as an input to GCN for
the purpose of graph classification. Hyper-parameters
used throughout the experiment are listed in Table 3
below.

• MLClassifiers:We experimented using Support Vector
Machines (SVM), Random Forest (RF), and XGBoost
on both the features extracted directly from deep
learning (DL) models, key detection algorithms, and the
reconstructed features from GCN in addition to using
GCN as a standalone classification model.

Using the trained GCN, embeddings are extracted for all
nodes in the graph. Utilising theModel class of Keras, we cre-
ated a neural network model that receives the same inputs as
the original model but outputs the second-to-last layer of the
model, which contains the node embedding. Figure 16 shows
an illustration of the Uniform Manifold Approximation and
Projection (UMAP) dimensionality reduction technique for
visualising the embedding.

The embeddings array are flattened and reshaped to a
2-dimensional matrix where each row corresponds to a node
and its features. The idea that each node is represented by
a vector of features is highlighted when the embeddings are
reshaped into a 2Dmatrix. For the data to be fed into machine
learning models, this is essential. These features are then
utilised as input features to trainML classifiers like SVM, RF,
and XG-Boost. The pre-trained deep learning (DL) models’
extracted features were used as training and testing inputs for
popular ML classifiers.

FIGURE 16. Nodes embeddings visualization using UMAP (uniform
manifold approximation and projection).

TABLE 4. Training time of DL models.

We were able to contrast the performance of GCN
as a solo model and its performance when integrated
with conventional ML classifiers by employing these two
alternative methodologies. We were able to choose the best
technique for our specific categorization target by weighing
the benefits and drawbacks of each approach.

C. TRAINING TIME
Table 4 displays the training time for the different CNN
architectures taken into consideration. The NASNet Large
model had the longest training duration (53432 s), averaging
7.55 s per step. The Simple CNN model, on the other hand,
required the least amount of time to train (3222 s), with an
average training time per step of 0.5372 s on Core i-5, 256
SSD with 8GB RAM.

D. VISUAL DEPICTION OF MODELS ACCURACY
The accuracy graphs in Figure 17 show how various models
performed over the course of training. The graph’s y-axis
represents the accuracy score, while the x-axis represents
the number of epochs. The graph shows an orange line
for the validation accuracy and a blue line for training
accuracy. The accuracy scores of several models can
be analysed and contrasted with the help of this visual
depiction.

E. GRAPHICAL REPRESENTATION OF MODEL LOSS
Figure 18’s loss graphs, which depict the model losses
throughout training, have an x-axis for the number of training
epochs and a y-axis for the loss score. The blue line shows
the loss during training, while the orange line shows the loss
during validation.
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FIGURE 17. Training and validation accuracy curves displaying the respective accuracies during training and validation.

F. EXPERIMENTAL RESULTS FROM THE CLASSIFICATION
PIPELINE
The proposed methodology involves training all the models,
and at each stage, performance parameters based on the
confusion matrix are calculated. The method combines both
traditional feature extraction techniques and deep learning
approaches, and it has produced successful results. Perfor-
mance indicators include parameters like accuracy (Acc),
sensitivity (Recall), precision, false positive rate (FPR), false
negative rate (FNR), and F1-Score.

The rates of correctly identified positive and negative
cases, as well as falsely identified positive and negative
cases, are represented by the four components of the
confusion matrix. The COVID-19, normal, and pneumonia
categorization outcomes of the segmented X-ray images are
shown in the confusionmatrix, denoted asC ∈ R3×3, in terms
of their expected and actual categories.

The proposed methodology’s performance is assessed
by calculating the performance parameters based on the
confusion matrix at each stage and averaging them across
the three classes under consideration. How well different
deep transfer learning models, including the VGG family
(VGG-16 and VGG-19), the DenseNet family (DenseNet-
169 and DenseNet-201), Inception-Resnet, Xception, and
NasNetLarge, as well as a straightforward CNN, perform
when using deep features is outlined in a tabular format.
In the final layer of the deep learningmodels, Softmax (which
is the final layer of the models), SVM, RF, and XGBoost
are used to classify the feature matrices that these models
produce. This approach is suggested for locating COVID-19
in CXR images, and the effectiveness of the selected deep
neural network is assessed using these methods.

TABLE 5. Accuracy of ML classifiers with (SIFT & BRISK).

TABLE 6. Accuracy of DL models with ML classifiers.

1) ACCURACY
The accuracy ranges of classification using algorithms for
computer vision feature extraction and then commonmachine
learning (ML) classifiers like SVM, XG-Boost, and RF are
provided in Table 5 as shown below.

Table 6 shows the accuracy of the selected deep neural
network (DNN) models during the pipeline’s earliest stages,
including the accuracy ofDL transfer learningmodels both on
their own and in combination with ML classifiers like SVM,
XG-Boost, and RF.

Table 6 displays the models’ accuracy when used with key
point detection techniques like the SIFT/BRISK algorithms.
Table 7 display the model’s accuracy without a Graph
Convolutional Network, while Table 8 displays the models’
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FIGURE 18. Convergence curves of training and validation loss are presented. The terms ‘Loss’ and ‘Validation Loss’ are referred to the convergence
curves for training and validation loss.

accuracy when used with a graph convolutional network
(GCN) and critical point detection techniques like the
SIFT/BRISK algorithms.

2) AVERAGE F1-SCORE
Following the use of SVM, XGBoost, and Random Forest,
Table 9 displays the average F1 scores for classification that
are exclusively dependent on feature extraction methods in
computer vision.

Table 10 shows the average F1 score of the selected models
during the pipeline’s initial stages, including the average F1
scores of DL transfer learning models used both alone and
in conjunction with ML classifiers like SVM, XG-Boost, and
RF.

The F1 score of models combined with critical point
detection methods like the SIFT/BRISK algorithms is shown
in Table 11.

Table 12 displays the F1 score of variousmodels when used
in conjunction with a graph convolutional network (GCN)
and critical point detection techniques like the SIFT/BRISK
algorithms.

3) AVERAGE PRECISION
Following the usage of SVM, XG-Boost, and Random
Forest, Table 13 displays the average precision range
for classification when computer vision feature extraction
algorithms are applied.

Table 14 displays the average precision of the models
used in the pipeline’s earliest stages, including the average
precision of DL transfer learning models used both alone and

in conjunction with ML classifiers like SVM, XG-Boost, and
RF.

The average precision of models when used with critical
point detection techniques like SIFT/BRISK algorithms is
shown in Table 15.
The average precision of the models when combined

with the graph convolutional network (GCN) and critical
point detection techniques like the SIFT/BRISK algorithms
is shown in Table 16.

4) AVERAGE RECALL
The average recall range for classification simply based on
computer vision feature extraction algorithms and application
of popular machine learning (ML) classifiers as SVM, XG-
Boost, and RF is provided in Table 17.
The average recall of models at the beginning of the

pipeline, including DL transfer learning models as indepen-
dent classifiers and in combination with ML classifiers like
SVM, XG-Boost, and RF, are shown in Table 18.

The average recall of the models when combined with
critical point detection methods like SIFT/BRISK algorithms
is shown in Table 19.

The average recall of the models when combined with
the graph convolutional network (GCN) and critical point
detection techniques like the SIFT/BRISK algorithms is
shown in Table 20.
According to the aforementioned tables, the proposed

methodology tested a total of twenty different combinations
using eight different deep learning (DL) models, two
important feature extraction algorithms (SIFT, BRISK), one
DL classifier, and three widely used machine learning
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TABLE 7. Accuracy of DL models without GCN, BRISK/SIFT & ML classifiers.

TABLE 8. Accuracy of DL models with GCN, BRISK/SIFT & ML classifiers.

TABLE 9. Average F1 score of ML classifiers with (SIFT & BRISK).

TABLE 10. Average F1 score of DL classifiers with ML classifiers.

(ML) classifiers. One can observe that, in terms of
mean accuracy, recall, precision, and F1- score, transfer
learning techniques have outperformed the standard CNN
model.

Additionally, the random forest classifier outperformed
the other machine learning classifiers examined in terms of
classification performance measures. We have two models,
DenseNet-169 and DenseNet-201, that perform quite well.
When using features collected from deep neural network
models like the DenseNet-169 andDenseNet-201models, the
classifier based on the random forest algorithm has the high-
est classification performance with 99% average accuracy,
F1-score, precision, and recall. The simple customised CNN
model that used a machine learning model such as XGBoost
in the last layer demonstrated overall average accuracy,

F1-score, precision, and recall of 93%, 93%, 92%, and 93%,
respectively. Other transfer learning models have been found
to have comparable performance to that of top-performing
DenseNet-169 and DenseNet-201 models in several other
combinations.

Additionally, in accordance with the aforementioned
tables, the performance parameters were assessed by fusing
the deep features with the features manually retrieved
using the SIFT and BRISK algorithms. It was found that
the categorization performance indicators did not signifi-
cantly change, Evidently, by combining SIFT-based features
with deep features from the DenseNet-201 models with
classification layer employs a machine learning classifier
such as Random Forest, the average accuracy, F1-score,
precision, and recall achieved was 98% again out per-
forming all other models. However the statistics shows
a considerable decline in classification performance when
key-point features based on BRISK were merged with
features extracted from DenseNet-169 and DenseNet-201
models.

In contrast, machine learning classifiers like RF showed
considerable gains in classification performance. After
combining BRISK-based features with deep features from
VGG-16 with RF as ML classifier showed 96% average
accuracy, F1-score, precision, and recall which is the highest
of all for this specific combination.

In addition, we discovered that feeding deep features from
Inception Resnet andNasNet-Largemodels and SIFT-BRISK
based features to GCN produced superior results than other
models under consideration. The best accuracy of 87% was
obtained in a combination when deep features from the
NasNet-Large model were combined with BRISK-based fea-
tures and sent to the GCN classifier. While the best accuracy
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TABLE 11. Average F1 score of DL models, ML classifiers and SIFT/BRISK.

TABLE 12. F1 score of DL models, GCN, ML classifiers & BRISK/SIFT.

TABLE 13. Average precision of ML classifiers with (SIFT & BRISK).

TABLE 14. Average precision of DL classifiers with ML classifiers.

of 83% was obtained in a combination when reconstructed
features from Inception Resnet andNasNet-Largemodels and
SIFT-BRISK have been fed to ML classifiers like SVM, XG-
Boost and Random Forest.

Figure 19 presents the classification report for the
DenseNet-169 model’s optimal pipeline level and displays
the model’s performance.

Figure 20, which displays the classification report for the
DenseNet-201 model’s ideal pipeline level, shows how well
the model performed.

To showcase the performance of the proposed feature
extraction models in each class, Figure 21 illustrates the
confusion matrices for a combined set of 240 test images.
This provides specific evidence of how the models perform

for each class. Each cell of the matrix contains a numerical
value representing the count of images that belong to the
corresponding category based on classification. The matrix
sum can provide the overall classification accuracy for a
given model. The experimental outcomes for classification
accuracy are shown in Figure 21.

The DenseNet-201 model with RF in the last layer
demonstrated an overall classification accuracy of 99%,
with correct classification of 82 COVID-19, 91 normal, and
64 pneumonia images, as depicted in Figure 21 (a). The other
models, including DenseNet-169 model with RF, VGG16-
BRISK and RF, Inception-Resnet-SIFT-GCN and SVM,
NasNetLarge-BRISK- GCN and XG-Boost, also exhibited
similar class-specific performance, as indicated in (b), (c),
(d), and (e) of the Figure 21.
Finally, it is noteworthy to mention that In this research,

the DenseNet-169 and DenseNet-201 architectures, used
with RF or combined with SIFT and RF, exhibited the
most exceptional performance compared to all other models
suggested.

G. ROC CURVE
Better performance is indicated by classifiers that show
curves closer to the upperleft corner. A random classifier
is expected to produce outcomes that lie on the diagonal
line, where the true positive rate (TPR) is equal to the
false positive rate (FPR). Figure 22 shows the ROC
curves of the DenseNet-201 model with SVM/XGBoost/RF,
DenseNet-169 model with SVM/XG-Boost/RF, VGG16-
BRISK and SVM/XG-Boost/RF, Inception-Resnet-SIFT-
GCN and SVM/XG-Boost/RF, NasNetLarge-BRISKGCN
and SVM/XG-Boost/RF.
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TABLE 15. Average precision of DL models, ML classifiers, and SIFT/BRISK.

TABLE 16. Average precision of models with GCN, BRISK/SIFT & ML classifiers.

FIGURE 19. Categorization report of the DenseNet-169 model.

TABLE 17. Average recall of ML classifiers with (SIFT & BRISK).

V. RESULTS AND DISCUSSION
A. COMPARISON WITH EXISTING STATE-OF-THE-ART
METHODS
We provide a comparison in Table 21 of our top-performing
models against other advanced DL techniques used for

identifying COVID-19 in CXR images. According to a
source [48], by combining the deep features computed from
Gaussian filtered images using Inception V3 architecture
with local binary patterns (LBP) features, an average
accuracy, sensitivity, and specificity of 95.11%, 93.15%, and
96.5% have been achieved respectively.

The usage of feature extraction from MobileNet v2 with
transfer learning documented in [17] yielded an average
classification accuracy of 93.33%, along with a recall of
90.66% and specificity of 95.23%. The performance of two
different models has been evaluated for identifying lung
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FIGURE 20. Categorization report of the DenseNet-201 model.

FIGURE 21. A set of confusion matrices generated for various feature extraction networks proposed in the study: (a) DenseNet-201 with RF
(b) DenseNet-169 model with RF (c) VGG16-BRISK and RF (d) Inception-Resnet-SIFT-GCN and SVM (e) NasNetLarge-BRISK-GCN and XG-Boost.

infections in X-ray images. ResNet-34 based features were
used in the transfer learning model, which resulted in an
average accuracy of 95.29%, recall of 92.97%, and specificity
of 96.46% [22].

Another model, proposed in [49], combined ResNet-50
with SVM, demonstrating an average classification accuracy,
recall, and specificity of 93.33%, 90.41%, and 95.07%,

respectively. According to [50], an AlexNet model that was
fine-tuned achieved an average classification accuracy, recall,
and specificity of 95.72%, 93.59%, and 96.78%, respectively.

However, in our proposed framework, which incorpo-
rates DenseNet201 and DenseNet-169 models, method for
extracting features based on SIFT and RF classifier, the table
demonstrates that we have surpassed the performance of
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FIGURE 22. ROC Curves for the different proposed feature extraction networks: (a) DenseNet-201 model with SVM/XG-Boost/RF (b) DenseNet-169 model
with SVM/XG-Boost/RF (c) VGG16-BRISK and SVM/XG-Boost/RF (d) Inception-Resnet-SIFT-GCN and SVM/XG-Boost/RF (e) NasNetLarge-BRISK-GCN and
SVM/XG-Boost/RF.

TABLE 18. Average recall of DL classifiers with ML classifiers.

the currently available techniques for identifying COVID-19
and pneumonia. Additionally, our proposed framework takes
segmented lung images as input, unlike methods that extract
features from raw CXR images.

B. DISCUSSION
This paper presents a novel deep learning approach to
detect COVID-19 by incorporating graph-based feature
reconstruction through the processes of segmenting images,
extracting features, and classification.

Our hypothesis is that reconstructed features will be more
meaningful if they are reconstructed by neighboring data
points. Therefore, we developed a graph-based reconstruction
technique. Although our approach involves generating graphs
and reconstructing features, these are essential components of
our method, we examined all stages of image classification,
comprises of various stages, which include segmenting the
image, extracting its features, reconstructing the features, and
ultimately classifying it.

Regarding segmentation, the C-GAN model produced the
most favorable results compared to other supervised learning
methods tested. A feature extraction pipeline was built using
a combination of deep CNN models and algorithms for
key point extraction. According to a study [51], key point
descriptor algorithms are effective in acquiring intensity
information from objects in images. Therefore, to aid in
the categorization of segmented lung images, we employed
key point descriptors, namely SIFT and BRISK, to extract
significant key intensity points. As previously noted, the
model utilizes CNN architectures to extract deep features.
These models have demonstrated remarkable accuracy and
improved convergence with an increase in the quantity
of layers. The features derived from the last layer are
subsequently categorized using both a DL classifier and
several ML techniques. The segmentation and classification
methods proposed in this study have undergone training using
datasets that are openly accessible.

The study demonstrated a comprehensive evaluation of the
framework’s performance, including the impact of intensity
key point features and feature reconstruction on the results.
The experimental findings suggest that in all cases, the deep
transfer learningmodels outperformed the simple customized
CNN model. The findings show that the technique is highly
effective in distinguishing CXR images of corona infected
individuals, pneumonia infected individuals, and normal
individuals which can be a valuable diagnostic tool for
radiologists.

To ensure the efficiency of our proposed framework, our
future objectives involve validating it on a more extensive
dataset that contains a greater quantity of CXR images that
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TABLE 19. Average recall of DL models, ML classifiers and SIFT/BRISK.

TABLE 20. Average recall of DL models with GCN, BRISK/SIFT & ML classifiers.

TABLE 21. Performance comparison of the proposed method for CXR image classification.

correspond to patients with COVID-19. Furthermore, our
intention is to train the proposed model on a dataset that
comprises CT scans of individuals with COVID-19, and then
assess its efficacy against a model that has been trained using
X-ray images.

VI. CONCLUSION AND FUTURE DIRECTIONS
A. CONCLUSION
This study presents a novel approach for detecting
COVID-19, which combines graph-based feature recon-
struction with image segmentation, feature extraction, and
classification to increase the accuracy of identifying COVID-
19, pneumonia, and normal CXR images through the use
of deep learning. We propose a graph-based reconstruction
method that enhances features using the information from
neighboring pixels. The graph construction and feature
reconstruction are critical components of our method. The
segmentation of lung images was carried out using a
conditional GAN algorithm’s pix-to-pix approach, that has
been trained utilizing CXR images having ground truth
masks.

The proposed method in this study involved using a trained
segmentation network for lung image segmentation, followed
by a feature extraction pipeline comprised of several Deep

Neural Networks (DNN), including VGG-16, VGG-19, and
DenseNet-169, DenseNet 201, Inception-Resnet, simple cus-
tomized CNN, NasNetLarge, and Xception and techniques
for detecting key points, for instance, algorithms like SIFT
and BRISK. The derived features were then reconstructed
utilizing a graph-based method, which aggregated features
throughout the graph. The extracted features were then fed
into GCN and certain ML classifiers like softmax, RF, SVM,
and XG Boost, to classify the different classes of images. The
combination of DenseNet-169 andDenseNet201models with
RF obtained the maximum average classification accuracy of
99%, while VGG-16 model with BRISK and RF achieved
97% accuracy. Our approach to identifying COVID-19 by
analyzing CXR images demonstrated superior performance
compared to existing methods.

B. RESEARCH CONTRIBUTIONS
With the urgency to find precise and effective techniques for
identifying COVID-19 on the rise, deep learning models have
shown to have promising potential in COVID-19 detection.
The study highlights the following contributions:

• Our framework suggests utilizing CXR images to
identify COVID-19 through a segmentation model,
a classification pipeline and features reconstruction
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technique and achieves high accuracy in detecting
COVID-19.

• We were able to segment chest X-ray images efficiently
by utilizing a conditional generative adversarial network
(C-GAN).

• Further, we developed a feature extraction pipeline that
incorporates both deep transfer learning models and
key-point features detectors like SIFT and BRISK.

• We used Stellar-Graph for creating graph from the
extracted features.

• For feature reconstruction, node embedding is used for
dimensionality reduction and feature reconstruction.

• Dataset of radiographs have been classified into three
classes such as COVID19, pneumonia, and normal
classes utilizing a DL model GCN for and various
machine learning models in the classification module
such as SVM, XG-Boost and RF

C. FUTURE WORK
The proposed framework provides a promising approach for
COVID-19 detection, there are several potential areas for
future improvement. Here are a few possibilities:

• It could benefit from a larger and more diverse dataset,
which could help enhance the model’s capacity to adapt
to novel cases.

• While our work mainly focuses on chest X-ray images,
there may be additional clinical data that could improve
COVID-19 detection. For example, including informa-
tion on symptoms, comorbidities, and laboratory tests
could help improve the accuracy of the model.

• Our framework has shown great promise for image
classification, but it can be difficult to interpret and
may not provide insight into the specific features or
biomarkers that are driving classification decisions.
Future work could explore techniques for explainability
and interpretability, to help understand what features the
model is using to make its predictions.

• The potential of a method utilizing deep learning (DL)
for the identification of COVID-19 in clinical settings
will determine its success. Future work could focus on
developing a user-friendly interface for the model and
integrating it into electronic health record systems to
facilitate practitioners.
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