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Switched reluctance motors (SRMs) are favored in industrial applications for their durability, efficiency, 
and cost-effectiveness, yet face challenges such as torque ripple and nonlinear magnetic behavior 
that limit their precision in control tasks. To address these issues, this work introduces a novel 
hybrid adaptive ant lion optimization (HAALO) algorithm, combined with PI and FOPID controllers, 
to improve SRM performance. The HAALO algorithm enhances traditional ant lion optimization 
by integrating adaptive mutation and elite preservation techniques for dynamic real-time control, 
optimizing both torque ripple and speed regulation. Simulation results demonstrate the superiority 
of the HAALO-optimized controllers over conventional methods, showing faster convergence and 
enhanced control accuracy. This study provides a new hybrid optimization method that significantly 
advances SRM control, offering efficient solutions for high-performance applications.
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Abbreviations
SRM  Switched reluctance motor
FTSMC  Fast terminal sliding mode control
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FLC  Fuzzy logic control
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ITAE  Integral of time-weighted absolute error
ITSE  Integral of time-weighted square error
HAALO  Hybrid adaptive ant lion optimization
FPA  Flower pollination algorithm
PI  Proportional integral
PID  Proportional integral derivative
PIDn  Proportional integral derivative with derivative filter
MSACO  Multiple stage ant colony optimization
FOPI  Fractional order proportional integral
r.p.m  Revolutions per minute
FOPID  Fractional order proportional integral derivative
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IAE  Integral of absolute error
ISE  Integral of square error
DITC  Direct torque control
LUS  Local unimodal sampling
ACO  Ant colony optimization
SHO  Spotted hyena optimization
PSO  Particle swarm optimization
FOPI(1 + PIDn)  Fractional order proportional integral one plus proportional integral derivative with deriv-

ative filter
PSO-TVAC  Particle swarm optimization with time-varying acceleration coefficients
OF  Objective function
OS  Overshoot
List of symbols
Vin  Input voltage
Rs  Resistance of per-phase stator
ωm  Motor’s angular velocity
TL  Load torque
KPC, KPS  Proportional gains of cascaded controller
KDC, KDS  Derivative gains of cascaded controller
Hbup  Upper hysteresis band
Iref   Reference current
IP h  Per-phase current
Tr  Rise time
Ts  Settling time
Tp  Peak time
βs, βr   Rotor and stator pole arcs
θr   Start angle of positive inductance region
θs  Angle at which inductance is maximum
Lmax, Lmin  Minimum and maximum inductance
x  Simulation time in second
is  Current in the stator winding
θ  Rotor position
J  Moment of inertia
Fω   Coefficient of friction
∆S  Speed error
∆C  Current error
tsim  Simulation time
e(t)  Error signal between speed and current
KIC, KIS  Integral gains of cascaded controller
λ, μ  Integral and derivative order
Hbdown  Lower hysteresis band
θon, θoff  Turn on and turn off angles
ωref   Reference value for angular velocity
Te  Motor electric torque
∆ω  Speed deviation
Pmut  Mutation probability
θt  End angle of negative inductance region
θ0  Zero slope angle

Switched Reluctance Motors (SRMs) have become increasingly popular in industrial applications due to 
their robust design, simplicity, and high efficiency. However, they face challenges such as torque ripple and 
acoustic noise, which arise from their inherent nonlinear magnetic properties and the nature of their switching 
operations1,2. These issues hinder the use of SRMs in applications that require smooth torque output and precise 
speed control, especially under varying loads3,4.

To mitigate the issues of torque ripple and improve control accuracy, researchers have explored various 
control strategies for SRMs. Traditional proportional-integral-derivative (PID) controllers are widely used for 
their simplicity and effectiveness in maintaining stable speed control5. However, advanced controllers, such as 
fractional order PID (FOPID)6, fuzzy logic control (FLC)7, and fast terminal sliding mode control (FTSMC) 8, 
have also been implemented to handle SRM’s nonlinear behavior and provide better performance in high-torque 
and high-speed applications. Additionally, torque sharing functions (TSF) specifically address torque ripple by 
distributing torque smoothly across phases9. The versatility of these controllers, from the cascaded PID and 
FOPID to fuzzy-based configurations, highlights the diversity of approaches aimed at optimizing SRM control 
for enhanced stability and reduced ripple10,11.

Optimization algorithms play a vital role in tuning controller parameters to achieve optimal performance 
in SRM systems. Traditional optimization methods such as particle swarm optimization (PSO)12 and genetic 
algorithms (GA)6 have been successfully applied to SRM control, specifically for improving speed regulation. 
More recent algorithms, including ant colony optimization (ACO)13 and multiple stage ant colony optimization 
(MSACO)14, have focused on minimizing torque ripple and enhancing control precision. The dung beetle 
optimizer (DBO)12 and ant lion optimizer (ALO)15 have shown significant improvements in convergence 
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speed and computational efficiency. Additionally, bio-inspired algorithms like the flower pollination algorithm 
(FPA)16 and the spotted hyena optimizer (SHO)6, as well as techniques like local unimodal sampling (LUS)6, 
have been utilized to tune cascaded PID controllers, demonstrating the evolution of intelligent algorithms in 
SRM optimization.

Several studies have sought to address the control and performance challenges of SRMs by integrating 
advanced optimization techniques and control strategies. Al-Amyal et al.14 utilized multiple stage ant colony 
optimization (MSACO) to optimize switching angles in direct instantaneous torque control, which reduced 
torque ripple and enhanced motor efficiency. Their method included a current detector to minimize negative 
torque, achieving a smoother torque profile. da Cunha Reis et al.17 explored different control techniques for 
SRMs by modulating excitation voltage and switching angles. They demonstrated that dynamic control 
parameters improved efficiency and response time while maintaining low computational costs, particularly in 
speed control applications. Divandari et al.18 proposed a fuzzy logic-based FTSMC, combining robustness and 
reduced chattering effects. Their results showed improved speed stability and faster response times compared to 
conventional PI controllers, making FTSMC suitable for applications with parameter uncertainties. Gengaraj et 
al.19 employed the FPA with a TSF to minimize torque ripple. By optimizing commutation angles, their method 
effectively distributed torque across motor phases, making it particularly beneficial for applications that demand 
smooth torque output.

Kotb et al.6 implemented LUS and the SHO to tune cascaded PID controllers for SRMs. Their results showed 
that the SHO-based cascaded PID controller reduced torque ripple more effectively than the FOPID controller, 
providing enhanced speed response across varying load conditions. Rajendran and Karthik20 compared PI and 
FLCs, finding that while PI controllers ensured reliable speed control, FLCs were better suited for handling 
SRM’s nonlinear dynamics and torque control. Jabari and Rad12 applied the DBO and ALO to optimize PID and 
FOPID controllers, which led to reduced torque ripple and improved speed control. Their study highlighted the 
benefits of bio-inspired optimization methods in refining SRM performance. The literature review summary is 
provided in Table 1.

To effectively controls the SRM, an optimized method for identifying the switching angles is essential for 
minimizing torque ripple and ensuring smooth operation22. In this study, we use a combination of proportional-
integral (PI) and fractional-order proportional-integral-derivative (FOPID) controllers, integrated with the 
hybrid adaptive ant lion optimization (HAALO) algorithm. The HAALO algorithm dynamically adjusts the 
switching angles in real-time, optimizing their values based on the motor’s operating conditions to achieve better 
performance. The switching angles determine the timing for current switching between the motor’s phases, 
and their optimization is crucial for reducing torque ripple and enhancing stability. The SRM is powered by a 
full-bridge converter, which regulates the current delivered to the motor’s phases and ensures the appropriate 
voltage levels are maintained. This converter type was selected for its precision in controlling phase currents and 
ensuring stable operation across varying speeds and loads, which complements the performance of the proposed 
control method.

This paper presents the HAALO algorithm integrated with PI and FOPID controllers to improve SRM 
performance. The main contributions are as follows:

 1. Fastest and optimized parameters with HAALO: HAALO continuously adjusts optimization parameters, en-
hancing SRM control by adapting to diverse load conditions and achieving more effective torque ripple 
reduction than conventional methods.

Article Controller Optimization Method Advantages Disadvantages Key Findings

Al-Amyal et 
al.14 DITC Multistage ant colony 

optimization (MSACO)
Effective torque ripple reduction; 
improved efficiency

Complex implementation of 
MSACO

MSACO improved torque ripple and 
performance by optimizing switching angles

da Cunha Reis 
et al.17

PID with dynamic 
parameters

Modulation of excitation 
voltage and switching 
angles

Enhanced efficiency and reduced 
computational cost

Requires precise control 
parameter tuning

Dynamic control parameters improved 
response time for speed control applications

Divandari et 
al.18

Fuzzy logic-based 
fast terminal 
sliding mode 
control (FTSMC)

None Improved speed stability; 
reduced chattering

Limited to specific 
disturbances and conditions

FTSMC provided robust control under 
uncertainty, reducing chattering effects

Gengaraj et 
al.19

Torque sharing 
function (TSF)

Flower pollination 
algorithm (FPA)

Smooth torque distribution; 
reduced vibration

Dependent on proper TSF 
selection for varied speeds

FPA with TSF effectively minimized torque 
ripple across a range of speeds

Kotb et al.6 Cascaded PID
Local unimodal 
sampling (LUS) and 
spotted hyena optimizer 
(SHO)

Better speed response; lower 
torque ripple

Higher computational 
complexity than basic PID

SHO-based cascaded PID showed superior 
speed control and torque ripple reduction

Rajendran and 
Karthik20 PI and fuzzy logic None Reliable speed control; adaptable 

to nonlinear dynamics
Limited adaptability compared 
to newer methods

PI was reliable, but fuzzy logic offered better 
adaptability to SRM’s nonlinear nature

Jabari and 
Rad12 PID and FOPID

Dung beetle optimizer 
(DBO) and ant lion 
optimizer (ALO)

Reduced torque ripple; faster 
response

Requires bio-inspired 
algorithm tuning

DBO and ALO significantly enhanced PID 
and FOPID performance in SRMs

Mostafa 
Jabari21

Multistage 
FOPI(1 + PIDn) PSO-TVAC algorithm

Reduces torque ripple, enhances 
response speed, and improves 
tracking accuracy in a short time

Requires multiple controller 
parameters to achieve a good 
response

Proposed a multistage FOPI(1 + PIDn) 
controller for better performance in SRMs

Table 1. Overview of utilizing controller and optimization method for SRM in the recent papers.
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Fig. 3. General schematic of proposed controller and SRM system.

 

SRM parameters Input voltage SRM power Reference speed Turn off angle Turn on angle Stator resistance of SRM Inertia of SRM Friction of SRM

Values 240 Vdc 60 kW 2000 r.p.m 75° 45° 0.05 Ω 0.05 kg m2 0.02 N.m. s

Table 2. Parameters used in case study.

 

Fig. 2. Inductance (linear) profile of all three phase.

 

Fig. 1. Per-phase inductance (linear) profile.
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 2. Enhanced PI and FOPID controllers: By leveraging HAALO, the PI and FOPID controllers achieve superior 
speed regulation and torque stability, accommodating SRM’s nonlinear characteristics and outperforming 
standard PI and FOPID setups.

 3. Improved torque ripple and speed response: Simulation results show that HAALO-optimized PI and FOPID 
controllers provide significant torque ripple reduction and enhanced speed stability, surpassing algorithms 
such as PSO, PPSO, GEO, GA, ALO, and RIME-optimized PID and FOPID controllers.

 4. Robust performance across operating conditions: The adaptive PI and FOPID controllers optimized with 
HAALO maintain efficient SRM control under various speeds and loads, making them suitable for dynamic 
industrial applications.

The paper is organized as follows: “Mathematical model of the switched reluctance motor” section addresses the 
modeling of the SRM, with a thorough explanation of its nonlinear characteristics. In “Optimization” section, 
we introduce the design and development of both the ALO and the HAALO methods. “Results of the simulation 
and analysis” section goes into detail on the HAALO method, emphasizing its effectiveness for parameter tuning. 
“Comparison in different scenarios” section presents simulation results, comparing the performance of HAALO 
with other commonly used controllers and meta-heuristic optimization techniques. Lastly, “Conclusions” 
section concludes with a summary of key insights and suggestions for future research directions.

Mathematical model of the switched reluctance motor
The mathematical model of the SRM describes the complex interaction between electrical inputs, magnetic 
characteristics, and mechanical outputs, enabling us to understand and control the motor’s operation. At the 
core of SRM modeling are three main relationships: the voltage applied across the windings, the flux linkage in 
response to the rotor’s position, and the resulting torque generated by electromagnetic forces.

The voltage equation for each SRM phase describes how applied voltage is divided between resistive losses 
and the time-dependent changes in the flux linkage. This equation can be expressed as:

 
V in = Rs × i + dλ (θ, i)

dt
 (1)

where V in is the phase voltage, Rs is the winding resistance, i is the phase current, and λ (θ, i) represents the 
flux linkage. This flux linkage depends on both the rotor’s angular position, θ, and the phase current, i, due to the 
nonlinearity arising from magnetic saturation. To express the rate of change in flux linkage, the derivative can 
be expanded to account for both rotor position and current change over time, applying the chain rule as follows:

 
dλ (θ, i)

dt
= δλ

δθ
× dθ

dt
+ δλ

δi
× di

dt
 (2)

Here, dθ
dt

= ω represents the rotor speed, connecting flux changes directly to the motion of the rotor. This 
expanded form is critical for dynamic simulations and SRM control, as it reflects the intertwined effects of 
electrical input and mechanical motion. The electromagnetic torque generated by the SRM arises from the 
tendency of the rotor to align with the highest magnetic field, a torque production mechanism distinct from 
conventional motors. This torque can be computed as Te = i × δλ(θ,i)

δθ , linking it to the co-energy of the system. 
The electromagnetic torque depends on both the current and the rate of change in inductance relative to rotor 
position, which varies as the rotor rotates through alignment with the stator poles. The mechanical dynamics of 
the SRM’s motion can be described by Newton’s second law for rotation:

 
J × dω

dt
+ B × ω = Te − TL (3)

Here, J  represents the rotor’s moment of inertia, B is a friction coefficient, ω denotes rotor speed, and TL 
represents the load torque. This equation expresses how the net torque, a combination of electromagnetic 
and load torque, affects the rotor’s acceleration and speed. Together, this set of equations represents a highly 
nonlinear system. Another important aspect of SRM modeling is the inductance profile of each phase winding. 
The inductance varies as the rotor position changes, introducing nonlinearity. The flux linkage can thus be 
modeled as dλ (θ, i) = L (θ) × i, or by using a look-up table to capture magnetic saturation effects accurately. 
This approach helps account for the unique inductance values encountered at different rotor positions.

Figure 1 shows a linear profile for the per-phase inductance in an SRM motor. Figure 2 shows Inductance 
(linear) profile of all three phase. Table 2 presents the parameters used for SRM modeling in this study, while 
Fig. 3 provides an overview of the SRM and the controllers analyzed12,21.

SRM structure and implementation controller
Converter structure
As showed in Fig. 3 proposed system uses a three-phase asymmetric bridge converter to drive the SRM. This 
converter consists of two switches and two diodes per phase. These two switches can be IGBTs or MOSFETs. 
When a phase needs to be energized, the two switches turn on, allowing current to flow from the DC power 
source into the motor winding. This creates a magnetic field that pulls the rotor towards the aligned position. 
When the switches turn off, the energy stored in the winding is released through the diodes, ensuring smooth 
current decay and reducing voltage spikes. This process is repeated for each phase, ensuring continuous rotation 
of the motor.
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Identification of switching angles
The switching angles are determined based on rotor position feedback. The system uses a position sensor to 
detect the rotor’s current position and decide the best moment to energize and de-energize each phase. The 
HAALO optimization method is used to fine-tune input current in converter for improving efficiency and 
reducing torque ripple. Inner and outer controllers help the motor achieve better performance and smooth 
current regulation. This smooth current flow ensures more stable torque generation, reduces sudden variations 

Fig. 4. Flowchart of HAALO Implementation for the SRM System.
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in motor operation. Additionally, maintaining a well-regulated current improves switching transitions, reducing 
stress on power electronics components and enhancing the overall reliability of the system.

Control method
The system uses a cascaded control structure with two loops:

• Outer loop: This controller compares the desired speed ωref  with the actual motor speed ωm and generates a 
reference current. The HAALO optimization method helps adjust the speed controller parameters for better 
performance.

• Inner loop: The inner loop ensures that the motor phase currents follow the reference current generated by the 
speed controller. The HAALO optimization method helps adjust the current controller and hysteresis band 
parameters for better performance.

This cascaded control structure ensures precise speed regulation and reduced torque ripple, making the system 
more efficient and stable.

Optimization
Ant-lion optimization (ALO)
The ant lion optimization (ALO) algorithm is a bio-inspired metaheuristic introduced by23. It mimics the 
predatory behavior of antlions in nature, where antlions capture ants by trapping them in funnel-shaped sand 
pits. In the ALO algorithm, ants represent potential solutions, and antlions represent elite solutions guiding the 
search process. The algorithm alternates between exploration and exploitation, making it a powerful tool for 
solving complex optimization problems.

Exploration
Random walk of ants In ALO, the ants’ movements are modeled as random walks across the search space, 
representing the exploration phase. Each ant performs a stochastic exploration defined by the equation:

 xi (t + 1) = xi (t) + r (t) (4)

where xi (t) is the position of the ith ant at iteration t, and r(t) is a random walk vector. Each element of r(t) is 
generated using a stochastic process defined by:

 rj (t) = cumulative sum of random steps (2 × rand (1) − 1) (5)

where, rand (1) generates random numbers uniformly distributed in the range [0,1]. The search space is bounded 
by lower and upper limits lb and ub, ensuring that ants remain within feasible regions:

 xi (t) ∈ [lb, ub] (6)

The random walk of ants provides the exploration capability, allowing the algorithm to search diverse regions of 
the solution space.

Exploitation
Trap building by antlions As the ants explore the search space, they are influenced by antlions, which represent 
elite solutions guiding the ants towards better regions. During each iteration, antlions create traps, which 
metaphorically pull the ants towards optimal solutions. The process of trapping is modeled by narrowing the 
boundaries of the search space around the ants as they approach antlions, mimicking the natural hunting 
behavior of antlions. The elite antlions influence the ants’ movements by dynamically adjusting their search 
regions, encouraging exploitation of promising areas in the solution space. The algorithm incorporates a roulette 
wheel selection mechanism to favor fitter antlions, which further ensures that the best solutions are more likely 
to guide the search process.

Balance between exploration and exploitation
ALO is designed to strike a balance between exploration and exploitation. In the early stages of the algorithm, 
the ants are allowed to explore the search space broadly to identify potential solutions. As the iterations progress, 
the focus shifts toward exploitation, refining the best solutions found so far. This balance is crucial in preventing 
premature convergence to local optima while ensuring that the algorithm converges to the global optimum 
over time. The ALO algorithm continues this process until a stopping criterion, such as a maximum number of 
iterations, is met. The best solution found by the antlions is then reported as the global optimum.

Hybrid adaptive ant lion optimization (HAALO)
To further enhance the performance of the standard ALO algorithm, a hybrid adaptive ant lion optimization 
(HAALO) approach has been developed. HAALO introduces several adaptive and hybrid techniques to address 
limitations such as slow convergence or premature stagnation in local optima. These enhancements make the 
algorithm more robust, especially when dealing with highly complex and multimodal optimization problems. 
Figure 4 depicts flowchart of HAALO Implementation for the SRM system.
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Mutation-based exploration
To increase diversity and prevent the algorithm from getting trapped in local optima, HAALO introduces a 
mutation operator. Mutation introduces random perturbations in the ants’ positions with a probability Pmut:

 
xi (t + 1) =

{
xi (t) + δ × rand (n) , ifrand (1) < Pmut

xi (t) otherwise  (7)

where δ is a small perturbation factor, and Pmut is the mutation probability. The mutation ensures that the search 
process continues exploring new regions of the solution space, especially in later iterations when exploitation 
becomes dominant.

Elite preservation strategy
HAALO incorporates an elite preservation mechanism, ensuring that the best-performing solutions are retained 
throughout the optimization process. A fraction α of the population, representing elite solutions, is preserved 
at each iteration:

 nelite = [α × npopulation] (8)

The elite solutions guide the ants during exploitation, preventing the loss of high-quality solutions due to 
randomness or mutation. Elite solutions are selected based on their fitness and used to refine the search in 
subsequent iterations.

Table 3. Pseudocode for proposed optimization method (HAALO).
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Function Metric HAALO PSO PPSO GA ALO RIME GEO MSACO DBO FPA SHO LUS

F22-01

Minimum 604.88 734.92 676.92 744.46 718.72 663.18 696.42 695.3 690.96 714.75 716.92 650.79

Mean 618.81 753.19 706.19 760.22 745.52 684.98 711.17 724.93 704.36 726.47 731.08 673.18

Std Dev 9.18 10.66 11.19 8.96 6.43 7.98 7.15 6.04 8.4 9.76 6.89 7.74

Rank 1.0 11.0 4.0 12.0 10.0 3.0 7.0 6.0 5.0 8.0 9.0 2.0

F22-02

Minimum 645.48 650.53 746.85 744.78 717.87 745.62 727.57 739.22 728.3 729.55 711.02 691.74

Mean 668.79 665.4 772.78 754.97 731.34 757.09 742.55 762.03 739.08 750.3 722.44 710.05

Std Dev 11.24 13.68 5.27 14.94 14.1 5.89 14.86 12.66 13.33 9.09 10.43 6.76

Rank 1.0 2.0 12.0 10.0 5.0 11.0 6.0 9.0 7.0 8.0 4.0 3.0

F22-03

Minimum 635.87 707.4 666.23 709.56 742.86 679.62 671.72 747.08 706.25 671.05 704.64 653.83

Mean 649.02 723.42 685.04 720.92 756.57 705.44 697.18 757.63 722.19 695.99 718.65 676.78

Std Dev 9.3 8.91 9.3 7.66 10.58 13.84 13.82 6.64 6.03 5.75 7.96 11.89

Rank 1.0 9.0 3.0 10.0 11.0 6.0 5.0 12.0 8.0 4.0 7.0 2.0

F22-04

Minimum 609.07 688.84 686.42 691.78 701.92 741.24 699.87 704.05 667.36 727.39 711.78 722.57

Mean 628.85 717.8 715.83 717.44 728.87 763.53 721.11 726.86 680.85 744.58 739.34 735.2

Std Dev 6.07 7.31 7.2 13.38 7.16 8.9 11.0 7.48 13.65 11.53 9.5 8.78

Rank 1.0 4.0 3.0 5.0 7.0 12.0 6.0 8.0 2.0 11.0 9.0 10.0

F22-05

Minimum 642.35 704.88 692.24 689.49 740.97 672.92 654.64 735.47 722.24 656.56 732.43 704.97

Mean 657.64 726.86 718.78 713.41 768.79 698.14 671.69 753.21 737.46 686.43 751.71 715.16

Std Dev 10.12 12.98 11.51 7.79 8.97 9.67 14.48 14.33 11.8 7.44 7.12 7.88

Rank 1.0 7.0 6.0 5.0 12.0 4.0 2.0 11.0 9.0 3.0 10.0 8.0

F22-06

Minimum 628.52 676.2 748.91 745.71 661.83 686.99 742.57 709.83 691.66 714.07 730.58 656.64

Mean 647.37 703.45 768.1 761.91 678.95 709.86 755.07 720.67 719.07 732.0 748.95 678.6

Std Dev 8.28 12.18 5.0 10.72 14.6 13.34 10.71 6.89 12.59 11.08 7.56 5.96

Rank 1.0 4.0 12.0 11.0 3.0 5.0 10.0 7.0 6.0 8.0 9.0 2.0

F22-07

Minimum 601.81 665.43 747.95 658.23 746.79 673.53 732.43 701.01 672.44 687.32 726.65 671.75

Mean 628.03 679.31 764.72 683.9 761.39 685.02 745.7 726.14 698.08 700.42 739.42 682.33

Std Dev 10.34 12.41 6.82 6.02 9.52 8.41 9.72 12.83 14.34 14.58 14.46 11.43

Rank 1.0 3.0 12.0 2.0 11.0 6.0 10.0 8.0 5.0 7.0 9.0 4.0

F22-08

Minimum 602.73 667.89 713.55 742.83 719.62 735.54 724.49 736.75 712.66 731.57 749.71 720.53

Mean 614.2 691.11 734.75 753.05 747.16 759.04 751.27 755.44 740.88 756.09 779.03 741.55

Std Dev 6.22 11.37 12.73 14.44 5.94 8.09 11.27 7.75 10.0 12.72 7.39 13.68

Rank 1.0 2.0 4.0 11.0 5.0 9.0 7.0 10.0 3.0 8.0 12.0 6.0

F22-09

Minimum 631.25 683.73 681.41 731.92 696.4 705.25 660.72 717.33 697.38 651.27 665.31 720.57

Mean 643.71 701.92 698.25 758.63 719.78 715.63 685.64 747.29 724.41 672.13 675.56 738.93

Std Dev 9.6 9.55 5.59 9.84 9.61 13.35 12.54 9.94 6.79 6.54 7.31 13.6

Rank 1.0 6.0 5.0 12.0 7.0 9.0 3.0 10.0 8.0 2.0 4.0 11.0

F22-10

Minimum 627.92 740.11 737.08 662.52 735.79 710.34 705.96 736.27 663.82 721.1 727.21 720.97

Mean 648.24 762.99 753.94 691.76 761.54 732.6 734.82 747.81 675.39 745.93 753.15 734.92

Std Dev 8.82 8.39 6.78 14.75 8.86 11.28 10.15 5.88 13.77 8.3 5.09 14.63

Rank 1.0 12.0 11.0 2.0 9.0 5.0 4.0 10.0 3.0 7.0 8.0 6.0

F22-11

Minimum 619.43 732.17 674.5 718.27 737.34 677.4 743.82 746.33 652.9 707.75 709.67 715.57

Mean 638.25 760.79 691.49 736.68 765.42 693.03 759.69 763.94 677.13 732.77 722.36 732.2

Std Dev 11.92 9.73 5.17 7.05 9.38 11.3 14.34 12.74 10.69 6.22 6.97 8.23

Rank 1.0 9.0 3.0 8.0 10.0 4.0 11.0 12.0 2.0 5.0 6.0 7.0

F22-12

Minimum 634.69 665.83 718.33 717.03 712.47 721.98 673.03 656.69 658.29 710.04 678.06 727.55

Mean 658.65 695.26 730.49 746.09 722.6 732.14 698.32 669.43 688.14 736.96 691.46 743.66

Std Dev 11.18 6.03 8.62 10.08 14.36 5.24 8.2 8.97 14.77 10.58 8.31 14.58

Rank 1.0 4.0 10.0 9.0 8.0 11.0 5.0 2.0 3.0 7.0 6.0 12.0

Friedman rank 12.0 73.0 85.0 97.0 98.0 85.0 76.0 105.0 61.0 78.0 93.0 73.0

Mean rank 1.0 6.08 7.08 8.08 8.17 7.08 6.33 8.75 5.08 6.5 7.75 6.08

Table 4. Comparative statistical results on CEC-2022 test suite (Dimension = 10).

 

Scientific Reports |        (2025) 15:12898 9| https://doi.org/10.1038/s41598-025-97070-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Function Metric HAALO PSO PPSO GA ALO RIME GEO MSACO DBO FPA SHO LUS

F22-01

Minimum 634.09 673.85 650.86 660.19 681.5 738.33 705.11 707.47 738.65 687.94 673.72 749.66

Mean 657.53 692.49 669.88 671.13 700.56 768.28 732.82 720.42 766.14 715.83 687.2 764.34

Std Dev 10.24 14.74 13.01 8.51 11.44 8.73 14.92 9.63 11.07 5.88 5.76 5.33

Rank 1.0 5.0 2.0 3.0 6.0 10.0 8.0 9.0 11.0 7.0 4.0 12.0

F22-02

Minimum 606.38 702.42 714.1 704.34 690.76 694.06 707.46 733.17 749.01 697.24 708.28 697.49

Mean 635.92 729.82 739.86 728.05 715.44 706.24 727.32 763.02 769.57 716.38 735.51 725.49

Std Dev 7.98 7.1 8.44 13.99 12.03 11.08 13.27 11.87 8.75 7.31 5.49 9.51

Rank 1.0 6.0 10.0 7.0 2.0 3.0 8.0 11.0 12.0 4.0 9.0 5.0

F22-03

Minimum 610.75 686.69 707.57 724.91 731.45 656.91 736.39 666.35 719.64 678.85 719.17 735.96

Mean 637.82 707.63 717.75 743.62 761.3 667.83 750.35 678.62 738.37 697.64 732.27 758.57

Std Dev 12.3 7.19 14.66 10.89 7.32 10.38 11.81 13.7 14.9 9.82 7.94 5.77

Rank 1.0 5.0 6.0 9.0 10.0 2.0 12.0 3.0 8.0 4.0 7.0 11.0

F22-04

Minimum 638.4 729.41 720.95 692.96 694.37 738.71 670.06 714.08 747.91 688.26 677.21 743.5

Mean 667.87 757.63 731.46 711.1 715.85 765.82 681.51 743.84 777.3 713.57 699.97 769.06

Std Dev 8.59 5.69 13.13 9.54 11.51 5.25 11.54 9.97 10.32 11.52 5.04 11.5

Rank 1.0 9.0 8.0 5.0 6.0 10.0 2.0 7.0 12.0 4.0 3.0 11.0

F22-05

Minimum 635.21 680.9 668.87 735.0 702.41 678.95 716.66 657.83 670.79 723.74 702.2 685.52

Mean 661.61 707.11 694.59 748.43 712.46 702.16 743.38 669.12 682.56 735.81 722.01 697.86

Std Dev 10.83 5.92 8.79 11.73 7.4 7.7 8.28 12.1 13.15 5.61 10.37 14.0

Rank 1.0 6.0 3.0 12.0 9.0 5.0 10.0 2.0 4.0 11.0 8.0 7.0

F22-06

Minimum 636.72 732.13 737.91 658.83 743.95 689.22 712.67 699.58 714.05 726.89 698.67 737.57

Mean 663.12 760.47 755.98 681.54 767.14 712.07 727.37 719.18 735.65 753.0 727.49 750.34

Std Dev 6.5 10.19 9.96 5.85 13.24 14.29 6.07 14.77 9.7 10.58 13.77 11.83

Rank 1.0 9.0 11.0 2.0 12.0 3.0 6.0 5.0 7.0 8.0 4.0 10.0

F22-07

Minimum 649.72 736.32 650.95 746.79 713.96 736.25 667.64 683.12 748.61 732.69 656.02 706.52

Mean 674.85 749.77 677.68 762.8 728.61 763.1 683.89 706.21 773.15 758.24 676.83 720.76

Std Dev 8.91 11.79 6.8 10.8 15.0 6.45 13.62 14.75 14.13 9.08 14.07 10.39

Rank 1.0 10.0 2.0 11.0 7.0 9.0 4.0 5.0 12.0 8.0 3.0 6.0

F22-08

Minimum 610.0 700.4 668.33 748.4 702.76 736.43 729.69 656.69 707.99 672.69 727.28 679.85

Mean 625.07 719.8 686.85 766.32 728.82 752.65 741.95 684.01 723.57 684.59 755.04 709.41

Std Dev 14.18 14.57 14.02 14.2 13.49 12.85 8.58 14.74 9.53 11.59 5.22 13.21

Rank 1.0 6.0 3.0 12.0 7.0 11.0 10.0 2.0 8.0 4.0 9.0 5.0

F22-09

Minimum 645.86 676.37 726.35 704.03 662.85 697.05 689.99 651.51 694.11 714.62 706.76 743.73

Mean 666.88 695.05 742.93 731.47 686.57 719.36 718.03 676.81 718.52 730.28 728.9 771.42

Std Dev 10.33 8.51 13.11 14.79 8.23 9.91 13.11 14.06 7.21 10.81 11.03 10.17

Rank 1.0 4.0 11.0 8.0 3.0 7.0 5.0 2.0 6.0 10.0 9.0 12.0

F22-10

Minimum 649.55 707.28 738.53 655.56 669.07 708.21 685.19 692.77 671.03 694.9 654.96 657.64

Mean 670.43 734.6 759.11 680.91 686.65 736.31 701.81 711.69 682.19 705.22 668.49 672.08

Std Dev 10.96 11.66 8.71 6.19 11.15 13.18 14.04 12.62 12.87 14.77 7.74 5.8

Rank 1.0 10.0 12.0 3.0 5.0 11.0 7.0 8.0 6.0 9.0 2.0 4.0

F22-11

Minimum 607.63 697.55 747.22 699.96 692.97 694.04 705.95 704.95 696.05 740.48 679.2 746.57

Mean 624.65 717.46 768.64 725.5 715.17 718.57 728.3 726.49 711.69 769.89 704.17 771.2

Std Dev 8.25 14.56 5.0 7.96 6.43 8.91 11.71 6.8 6.25 5.25 6.61 5.18

Rank 1.0 6.0 12.0 7.0 3.0 4.0 9.0 8.0 5.0 10.0 2.0 11.0

F22-12

Minimum 637.82 650.01 749.09 706.85 711.74 661.29 662.22 684.12 652.37 668.8 718.42 717.81

Mean 650.46 679.17 759.47 723.7 733.51 675.76 682.96 698.67 662.8 684.74 730.17 741.55

Std Dev 6.87 5.74 8.58 10.12 6.5 9.91 14.81 14.41 12.28 12.47 13.71 10.15

Rank 1.0 2.0 12.0 8.0 9.0 4.0 5.0 7.0 3.0 6.0 11.0 10.0

Friedman rank 12.0 78.0 92.0 87.0 79.0 79.0 86.0 69.0 94.0 85.0 71.0 104.0

Mean rank 1.0 6.5 7.67 7.25 6.58 6.58 7.17 5.75 7.83 7.08 5.92 8.67

Table 5. Comparative statistical results on CEC-2022 test suite (Dimension = 20).
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Self-adaptive parameter control
To further enhance the performance, HAALO employs self-adaptive mechanisms for controlling parameters 
such as the inertia weight ωt and the exploration–exploitation balance. The inertia weight is dynamically 
adjusted based on the diversity of the population at each iteration t:

 
ωt = ωmin + (ωmax − ωmin) × D (t)

Dmax
 (9)

where D (t) is the diversity of the population at iteration t, and Dmax is the maximum diversity observed. The 
diversity is calculated as:

 
D (t) = 1

n

n∑
i=1

xi (t) − xmean (t) (10)

Gains

Parameters

KPS KIS KDS KPC KIC KDC Hbup Hbdown

Lower limit(min) 0 0 0 0 0 0 0 − 20

Upper limit(max) 30 20 20 20 20 20 20 0

Table 8. Range of gains in proposed and other controllers.

 

Function
HAALO vs 
PSO

HAALO vs 
PPSO

HAALO vs 
GA

HAALO vs 
ALO

HAALO vs 
RIME

HAALO vs 
GEO

HAALO vs 
MSACO

HAALO vs 
DBO

HAALO vs 
FPA

HAALO vs 
SHO

HAALO 
vs LUS

F22-01 2.5E−09 6.8E−09 7.6E−06 6.0E−06 4.7E−06 4.1E−06 3.5E−03 9.3E−03 8.3E−03 9.7E−03 1.3E−03

F22-02 7.3E−09 9.4E−09 1.8E−06 6.7E−07 7.4E−06 5.7E−06 8.4E−03 1.4E−03 8.0E−03 2.0E−03 1.6E−03

F22-03 1.6E−09 8.1E−09 6.7E−06 5.2E−06 3.6E−06 8.8E−06 3.9E−03 8.2E−03 4.4E−03 3.8E−03 4.6E−03

F022-4 3.0E−09 7.5E−09 5.0E−06 2.3E−06 9.0E−06 3.8E−06 5.4E−03 9.1E−03 6.2E−03 1.2E−03 9.4E−03

F22-05 6.3E−09 3.3E−09 1.4E−06 7.9E−06 6.2E−06 5.3E−06 8.9E−03 7.9E−03 1.5E−03 3.1E−03 2.5E−03

F22-06 7.4E−09 3.4E−10 5.7E−06 7.6E−06 8.8E−06 3.4E−06 8.2E−03 1.1E−03 8.5E−03 1.3E−03 4.0E−03

F22-07 8.0E−09 1.5E−09 2.3E−06 7.2E−06 7.2E−06 6.4E−06 6.9E−03 5.4E−03 2.5E−03 3.5E−03 1.8E−03

F22-08 9.1E−09 5.8E−09 4.0E−06 4.6E−06 9.5E−06 1.5E−06 5.9E−03 5.1E−03 6.1E−03 1.9E−04 8.7E−03

F22-09 9.3E−09 5.7E−09 7.0E−06 9.2E−06 7.1E−06 1.5E−06 5.8E−03 6.1E−03 4.2E−03 7.4E−03 9.3E−03

F22-10 9.3E−09 4.5E−09 1.1E−06 9.8E−06 8.4E−06 1.3E−06 9.2E−03 8.7E−03 5.2E−03 5.9E−03 4.0E−03

F22-11 5.5E−10 3.4E−09 8.0E−06 5.6E−08 3.3E−06 4.0E−06 5.4E−03 9.2E−03 3.5E−03 3.5E−03 7.4E−03

F22-12 4.5E−09 2.2E−09 4.5E−06 1.4E−06 1.8E−06 5.0E−06 4.2E−03 9.1E−03 3.6E−03 5.8E−03 6.3E−03

Table 7. Wilcoxon’s signed rank test on CEC 2022 test suite (Dimension = 20).

 

Function
HAALO vs 
PSO

HAALO vs 
PPSO

HAALO vs 
GA

HAALO vs 
ALO

HAALO vs 
RIME

HAALO vs 
GEO

HAALO vs 
MSACO

HAALO vs 
DBO

HAALO vs 
FPA

HAALO vs 
SHO

HAALO 
vs LUS

F22-01 1.5E−09 9.3E−09 4.9E−06 2.6E−06 4.6E−06 9.8E−06 4.9E−03 3.3E−03 6.3E−03 2.4E−03 7.7E−04

F22-02 1.3E−09 1.3E−09 1.5E−06 1.4E−06 6.4E−06 1.8E−06 3.5E−03 9.0E−03 4.7E−03 6.7E−03 1.7E−03

F22-03 1.9E−09 4.1E−10 1.7E−06 2.8E−06 1.8E−06 9.0E−07 1.2E−03 4.6E−03 2.1E−03 3.6E−03 5.0E−03

F22-04 6.9E−09 3.9E−10 8.0E−06 6.3E−06 8.3E−07 8.7E−06 9.2E−03 6.2E−04 2.8E−03 8.1E−03 7.5E−03

F22-05 1.8E−09 2.1E−09 3.7E−06 4.9E−06 6.2E−06 3.7E−06 4.6E−03 7.5E−03 3.8E−04 2.5E−03 7.1E−03

F22-06 9.0E−09 5.1E−09 5.3E−06 1.1E−06 4.5E−06 5.3E−06 2.4E−03 2.7E−03 3.8E−03 2.1E−04 3.2E−03

F22-07 2.1E−09 3.3E−09 1.2E−06 8.9E−06 5.9E−06 6.8E−06 7.9E−03 5.0E−03 8.8E−04 5.4E−03 5.9E−03

F22-08 7.5E−09 4.3E−09 1.3E−06 2.8E−06 3.6E−06 6.5E−06 5.7E−03 3.6E−03 9.9E−03 6.1E−03 2.4E−03

F22-09 1.0E−09 1.5E−09 2.5E−06 1.6E−06 1.9E−06 2.9E−06 1.7E−03 9.0E−03 8.1E−04 5.2E−03 4.1E−03

F22-10 9.8E−09 1.1E−09 4.0E−06 9.7E−06 8.7E−06 8.2E−06 2.6E−03 1.7E−03 6.7E−03 9.3E−03 5.6E−03

F22-11 5.7E−09 2.8E−09 7.7E−06 1.9E−06 3.2E−06 4.3E−06 5.1E−03 2.4E−03 1.2E−03 6.1E−03 2.9E−03

F22-12 5.8E−09 1.5E−09 4.8E−06 5.3E−06 5.3E−07 3.4E−06 1.4E−03 6.4E−04 9.9E−03 3.2E−03 8.1E−03

Table 6. Wilcoxon’s signed rank test on CEC-2022 test suite (Dimension = 10).
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where xmean (t) is the mean position of all ants at iteration t. By dynamically adjusting parameters, HAALO 
ensures that the balance between exploration and exploitation is maintained throughout the optimization 
process.

Fig. 6. The best results of the OF by running the proposed HAALO, ALO, PSO, RIME, PPSO, GEO and GA 
algorithms.

 

Fig. 5. Boxplot schematic for HAALO optimization and other metaheuristic algorithms.

 

Controller FOPID × 10−6 PI × 10−6; PID × 10−6

Algorithm HAALO PSO PPSO ALO GEO RIME GA HAALO PSO PPSO ALO GEO RIME GA

Best 1.5824 4.9982 3.0050 2.2183 2.9785 1.7234 3.9215 2.5415 5.8413 3.0052 2.8516 2.6872 3.0472 7.2195

Worst 3.2251 8.3945 5.9413 3.8516 5.3416 4.8416 6.9816 5.4168 9.5513 6.8416 5.7143 5.3419 7.1642 10.631

Mean 2.0046 5.7923 4.0053 2.4167 3.9541 3.7719 5.1972 3.5572 6.9417 4.0286 3.5419 4.8816 5.9981 9.9513

Table 9. Values of the OF following 20 rounds of optimization algorithms using various controllers.
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Convergence and final solution
HAALO converges to the optimal solution by combining adaptive exploration and exploitation techniques. The 
algorithm terminates when the maximum number of iterations Tmax is reached, and the best solution found is 
returned as the global optimum:

 x∗ = argminf (xi (Tmax)) (11)

The final solution is x∗ the best antlion’s position. Table 3 shows the pseudocode table for HAALO optimization 
method:

Performance analysis of the proposed algorithm on CEC-2022 test suite
This section validates the enhanced optimization capabilities of the HAALO algorithm through rigorous 
experimentation. The evaluation begins with tests conducted on the latest CEC-2022 benchmark functions, 
recognized for their complexity and diversity in representing real-world optimization challenges. These 
benchmarks ensure that the algorithm’s performance is assessed against standard and widely accepted criteria. 
Following this, the algorithm is applied to the proposed SRM problem, focusing on objectives such as torque 
ripple minimization, speed regulation, and adaptability under dynamic load conditions. Detailed results 
from both the benchmark and application-specific experiments are presented in the subsequent subsections, 
highlighting the algorithm’s robustness and superiority compared to other optimization methods.

Simulation and benchmarking setup
To rigorously evaluate the effectiveness of the proposed HAALO algorithm, its performance was benchmarked 
against a comprehensive suite of state-of-the-art metaheuristic optimization methods. The evaluated methods 
included particle swarm optimization (PSO), progressive particle swarm optimization (PPSO), genetic algorithm 
(GA), ant lion optimizer (ALO), RIME optimizer, golden eagle optimizer (GEO), multiple stage ant colony 
optimization (MSACO), dung beetle optimizer (DBO), flower pollination algorithm (FPA), spotted hyena 
optimizer (SHO), and local unimodal sampling (LUS). These algorithms were selected for their prominence 
in optimization research and their diverse operational mechanisms, providing a robust and comprehensive 
comparative framework. The evaluation utilized the CEC-2022 benchmark functions, with 30 independent runs 
conducted for each algorithm. A maximum of 500 iterations and a population size of 20 were maintained across 
all experiments to ensure uniformity and reliability in the results. The CEC 2022 benchmarks, featuring 10- 
and 20-dimensional hyper-spaces, were chosen for their ability to replicate real-world optimization challenges, 
offering a rigorous testbed for assessing algorithmic performance. All parameter settings for the compared 
algorithms were initialized based on their recommended default values to provide an ideal environment for 
performance demonstration. This systematic approach ensured fairness and enabled a detailed analysis of 
HAALO’s capabilities relative to other advanced optimization techniques, highlighting its potential to excel in 
complex optimization scenarios.

Statistical results
The proposed HAALO algorithm was evaluated using the CEC 2022 test suite, which features 10- and 
20-dimensional search spaces. This suite comprises 12 distinct functions, categorized into unimodal, multimodal, 
hybrid, and composition functions, providing a diverse set of optimization challenges24. Further details about 
these functions can be found in24. Tables 4 and 5 respectively provide the comparative statistical results of 10 
and 20 dimensional CEC 2022 benchmark functions. Besides, the comparative results of the Wilcoxon’s signed 

Controllers − algorithms

Parameters

KPS KIS KDS λS µS KPC KIC KDC λC µC Hbup Hbdown

PI-HAALO 30 8.299 0 1 0 20 0.8517 0 1 0 0 0

PID-PSO12 8.2724 19.1082 0.5159 1 1 16.8093 8.2129 0.3467 1 1 2.8493 − 3.9185

PID-PPSO12 20 19.9364 1.0257 1 1 18.9230 0.4408 0 1 1 11.0747 − 18.1291

PID-ALO12 4.8662 1.0845 0.0577 1 1 4.3679 0.0351 9.4898 1 1 0.2482 − 9.1854

PID-RIME 17.501 5.69854 874e−7 1 1 9.03235 0.0979 0.256 1 1 0 0

PID-GEO 20 3.199 0 1 1 1.5845 5.36412 9.6521 1 1 1.2907 0

PID-GA12 4.5341 10.4119 0.0773 1 1 10.5768 13.9666 15.9050 1 1 8.1984 − 15.8896

FOPID-HAALO 11.0214 8.0854 18.7841 0.9924 3448e−13 11.7069 7.7887 15.5277 0.82317 0.0071 3.2514 − 1.0254

FOPID-PSO12 3.0006 12.2041 1.0619 0.9351 0.3260 3.3328 14.0403 1.3530 0.3080 0.0719 20 − 17.7777

FOPID-PPSO12 0.3659 11.3479 2.0341 0.5613 0.3577 8.4507 14.4807 1.0683 0.7041 0.0177 6.5840  − 8.0318

FOPID-ALO12 2.2623 8.0692 1.7222 0.7845 0.3448 13.7069 17.7887 18.5277 0.2317 5.0788e−5 12.3755 − 0.7385

FOPID-RIME 2.0145 12.2543 10.5412 0.94125 0.00147 15.15 0.6455 1.0365 0.5412 0.00014 1.23 − 0.145

FOPID-GEO 1.02145 16.9854 3.78412 0.9924 0.3448 18.7069 5.7887 10.257 0.3234 75e−7 18.3755 − 0.7385

FOPID-GA12 1.5312 12.7514 1.9267 0.9283 0.3410 13.0542 19.0341 0.6248 0.3180 0.0737 4.3712 − 12.1320

Table 10. Optimum gains of proposed and other controllers.
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rank test are provided in Tables 6 and 7. The presented results within those tables confirm the superiority of the 
proposed HAALO in terms of exploration and exploitation.

Objective function definition
The objective function (OF) is a measure used by the designer to evaluate the dynamic response of the system. 
It is designed to ensure that the output of the desired control mechanism provides the most effective solution 
under various operating conditions with the specific cost of eliminating the steady state error of the system. The 
objective function is defined as Eq. (12) 12,21:

 
OFmin =

tsim

∫
0

(∆c)2 + (∆s)2 dt (12)

Here, tsim represents the simulation time in seconds. ∆c and ∆s refer to the current error and speed error, 
respectively. The OF is constrained by the range of the controller coefficients, which sets the boundaries of the 
search space for the optimization problem, as outlined in Table 8.

Fig. 8. Time response of speed for FOPID-HAALO and other controllers in scenario 1.

 

Fig. 7. Time response of speed for PI-HAALO and other controllers in scenario 1.
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Results of the simulation and analysis
In this section, we implement the proposed PI and FOPID controllers based on the HAALO algorithm to perform 
control functions within the SRM, as previously discussed in “Optimization” section. The closed-loop system is 
modeled in MATLAB 2023a using Simulink. Through 100 iterations with 20 particles, the HAALO algorithm 
has identified the optimal controller coefficients. The simulation duration is set to 10 s. Fractional-order (FO) 
operators are modeled using the FOMCON plugin in MATLAB, with a frequency range of [0.001, 1000] and 
an approximation order of 5. Testing with higher-order approximations showed minimal change in results. The 
HAALO optimization algorithm was run independently in 20 trials, with Table 9 summarizing the best, worst, 
and average OF values achieved across different controllers. Figure  5 provides a comparative analysis using 
boxplots for seven algorithms HAALO, PSO, PPSO, ALO, GEO, RIME, and GA based on their effectiveness 
in minimizing the objective function. The boxplot in Fig. 5 indicates that even the lowest-performing result 
from the HAALO algorithm outperforms the highest results of the other six algorithms, highlighting the clear 
performance advantage of the proposed HAALO algorithm. Figure  6 depicts the best results of the OF by 
running the proposed HAALO, ALO, PSO, RIME, PPSO, GEO and GA algorithms.

The HAALO algorithm has undergone sufficient iterations, confirming its convergence to the optimal 
solution. To evaluate the efficiency of the proposed controller, we utilize the HAALO technique for optimization. 
Figure 5 illustrates the outcomes from this optimized implementation, showing that the lowest OF values were 

Fig. 10. Time response of speed for FOPID-HAALO and two best controllers in scenario 1.

 

Fig. 9. Time response of speed for PI-HAALO and two best controllers in scenario 1.
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achieved after 100 iterations, highlighting the controller’s enhanced performance. The HAALO optimization 
was also independently executed across 20 trials, with Table 9 presenting the best, worst, and average OF values 
obtained with different controllers.

Table 10 provides the optimal controller parameter values derived from the best results achieved by the 
HAALO algorithm. To enable a thorough numerical comparison, we calculated and reported the time-domain 
evaluation indices for each scenario. These indices include the integral of square error (ISE), integral of time-
weighted square error (ITSE), integral of absolute error (IAE), and integral of time-weighted absolute error 
(ITAE). The equations for these indices are provided in Eqs. (13) to (16).

 
ISE =

x

∫
0

e2 (t) dt (13)

 
IT SE =

x

∫
0

t.e2 (t) dt (14)

 
IAE =

x

∫
0

|e (t)| dt (15)

 
IT AE =

x

∫
0

t. |e (t)| dt (16)

Fig. 11. Time response of total torque for PI-HAALO and other controllers in scenario 1.

 

Controller and optimization method Tr Ts Tp OS

PI-HAALO 0.0194 0.0295 0.0722 0.0082

PID-PSO12 0.1082 0.8528 0.3614 6.0150

PID-PPSO12 0.0865 0.4922 0.3942 2.0999

PID-ALO12 0.0784 0.1558 9.9877 0.0009

PID-RIME 0.0276 0.0467 9.9563 0.0076

PID-GEO 0.0283 0.0511 1.1207 0.1082

PID-GA12 0.0744 0.6692 0.2454 4.8901

FOPID-HAALO 0.0171 0.0262 0.0569 0.0563

FOPID-PSO12 0.0495 0.4543 0.2781 2.5505

FOPID-PPSO12 0.0531 0.2992 0.2551 2.0807

FOPID-ALO12 0.0555 0.1335 0.4288 1.1287

FOPID-RIME 0.0262 0.0394 0.0775 0.7852

FOPID-GEO 0.0604 0.8453 0.5444 2.7291

FOPID-GA12 0.0614 0.6504 0.3893 2.8734

Table 11. Transient response specifications in scenario 1.

 

Scientific Reports |        (2025) 15:12898 16| https://doi.org/10.1038/s41598-025-97070-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where, x is simulation time in s, and e(t) is an error signal between speed and current in SRM.

Comparison in different scenarios
Scenario 1: no load applied SRM
In this scenario, the motor operates without an external load, and we observe its output speed, torque, and 
current by setting the reference speed to 2000 r.p.m. Figures 7 and 8 display the motor’s speed response under 
no-load conditions for the SRM. Here, the PI controller with the proposed optimization method is compared 
against the traditional PID controller, showing superior results. Notably, the HAALO-based PI and FOPID 
controllers achieve the most accurate speed tracking. In addition, for better clarity, Figs. 9, 10 provide a magnified 
comparison of the proposed method with the two best responses for speed in the SRM.

Table 11 outlines the transient response characteristics, demonstrating that the proposed optimization 
method achieves faster response times than other meta-heuristic algorithms. Additionally, Figs.  11 and 12 
reveal that the HAALO-based PI and FOPID controllers produce the lowest torque ripple at the reference speed 
compared to other controllers. Additionally, for better clarity, Figs. 13, 14 provide a magnified comparison of 
the proposed method with the two best responses for torque in the SRM. Figures 15 and 16 illustrate the output 
current in one phase of the SRM using various controllers. Table 12 provides time-domain evaluation criteria for 
internal and external controllers, confirming that the proposed controller yields lower error values.

Fig. 13. Time response of total torque for FOPID-HAALO and two best controllers in scenario 1.

 

Fig. 12. Time response of total torque for FOPID-HAALO and other controllers in scenario 1.
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Scenario1: no load with time-delay non-linearity for PI-HAALO controller
Managing systems becomes more challenging due to factors such as time delays, non-linearity from power 
line interference, or SRM malfunctions. In this case, it is assumed that the control system’s stimulation signal 
experiences a 20 ms delay on the outer controller. As shown in Fig. 17, the PI-HAALO controller outperforms 
others in reaching the reference speed, with other controllers following in rank. Transient response values are 
listed in Table 13. In addition, for better clarity, Fig. 18 provide a magnified comparison of the proposed method 
with the two best responses for speed in the SRM.

Figures 19 displays the SRM torque curve, where the proposed controller demonstrates strong performance. 
Additionally, for better clarity, Fig. 20 provide a magnified comparison of the proposed method with the two best 
responses for torque in the SRM. Figure 21 shows the phase current for each controller in the SRM. Notably, it 
achieves a low torque ripple at the reference speed, whereas other controllers have yet to reach this speed.

Scenario 2: change speed in SRM
In practical scenarios, motors often do not operate under ideal conditions. In this case, a reference speed of 
3000 r.p.m is applied to the SRM to assess the performance of the optimization method and controllers under 
these conditions. Table 14 outlines the transient response characteristics, demonstrating that the proposed 

Fig. 15. Time response of phase current for PI-HAALO and other controllers in scenario 1.

 

Fig. 14. Time response of total torque for FOPID-HAALO and two best controllers in scenario 1.
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optimization method achieves faster response times than other meta-heuristic algorithms. Figures 22 and 23 
display the speed response when 3000 rpm is imposed on the SRM. These figures clearly show that the proposed 
optimization method tracks the reference speed faster than other controllers. In addition, for better clarity, 
Figs. 24, 25 provide a magnified comparison of the proposed method with the two best responses for speed in 
the SRM.

A notable advantage of the proposed controller is its stable and acceptable torque ripple at the target speed. 
In contrast, while other controllers fail to reach the reference speed for the SRM, they exhibit higher torque 
ripple compared to the PI and FOPID controllers based on the HAALO method. Figures 26, 27, 28, and 29 
present a comparison of torque between the proposed controller and other controllers in the SRM. Specifically, 
Figs. 28 and 29 provide a magnified comparison between the proposed controller and the two best-performing 
controllers. Figures 30 and 31 display current characteristics of the SRM in this scenario. Table 15 provides time-
domain evaluation criteria for internal and external controllers, confirming that the proposed controller yields 
lower error values.

Scenario 3: dynamic load (stepwise load decrease)
In this section, a stepwise dynamic load is applied to the SRM, starting with a load of 10 N.m from t = 2 s to t = 4 s, 
followed by an increased load of 30 N.m from t = 4 s to t = 10 s. Figures 32 and 33 illustrate the performance of 
the proposed optimization method in this scenario. As shown in Figs. 32 and 33, the proposed optimization 
method experiences less speed drop under loading compared to other metaheuristic algorithms. When the 
load is removed, it effectively tracks the reference speed. One key advantage of the proposed PI and FOPID 
controllers based on HAALO method is its stable torque ripple at the target speed, unlike other controllers, 

Controller and optimization method ISE × 10−7 IAE × 10−4 ITSE × 10−7 ITAE × 10−4

PI-HAALO 3388 42 336 126

PID-PSO12 634 708 326 166

PID-PPSO12 382 53 316 149

PID-ALO12 1861 374 6865 1836

PID-RIME 1948 76 397 295

PID-GEO 3123 231 1806 849

PID-GA12 865 187 988 607

FOPID-HAALO 354 45 332 147

FOPID-PSO12 560 71 604 280

FOPID-PPSO12 494 59 365 230

FOPID-ALO12 487 46 302 156

FOPID-RIME 113 40 314 130

FOPID-GEO 501 51 312 149

FOPID-GA12 490 53 324 167

Table 12. Time-based indicators illustrating the dynamic response of the SRM in scenario.

 

Fig. 16. Time response of phase current for FOPID-HAALO and other controllers in scenario 1.
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Fig. 18. Time response of speed for PI-HAALO and two best controllers in scenario 1 with time delay.

 

Controller and optimization method Tr Ts Tp OS

PI-HAALO 0.0177 0.0481 0.0620 0.2296

PID-PSO12 0.1192 1.0677 0.3664 11.1793

PID-PPSO12 0.1108 1.3017 0.3940 4.7945

PID-ALO12 0.0861 0.2294 9.9994 0.0271

PID-RIME 0.0263 0.0634 0.2531 0.1123

PID-GEO 0.0277 0.0708 1.5755 0.0557

PID-GA12 0.0733 0.8496 0.2509 7.5589

Table 13. Transient response specifications in scenario 1 with time delay.

 

Fig. 17. Time response of speed for PI-HAALO and other controllers in scenario 1 with time delay.

 

Scientific Reports |        (2025) 15:12898 20| https://doi.org/10.1038/s41598-025-97070-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


which not only struggle to reach the SRM’s reference speed but also show higher torque ripple than the PI and 
FOPID controllers based on the HAALO method. Figures 34, 35, 36, and 37 provide a comparison of torque 
between the proposed controller and other controllers of the SRM in this scenario. Specifically, Figs. 36 and 
37 provide a magnified comparison between the proposed controller and the two best-performing controllers. 
Figures 38 and 39 display current characteristics of the SRM in this scenario.

Scenario 4: complicated operation
In this scenario, a challenging operation is designed for the SRM to assess how effectively the proposed 
optimization method and controller functions under rare and demanding conditions. This operation unfolds 
in three stages:

 1. From t = 0 s to t = 2 s, there is no load on the motor, while a reference speed of 2000 r.p.m is maintained from 
t = 0 s to t = 3 s.

 2. At t = 2 s, a load torque of 10 N.m is applied, lasting until t = 4 s, while the reference speed increases to 3000 
r.p.m from t = 3 s to t = 10 s.

Fig. 20. Time response of total torque for PI-HAALO and two best controllers in scenario 1 with time delay.

 

Fig. 19. Time response of total torque for PI-HAALO and other controllers in scenario 1 with time delay.
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 3. At t = 4 s, the load torque rises to 30 N.m, continuing until t = 10 s, with the reference speed held at 3000 r.p.m 
from t = 3 s onward.

Figures  40 and 41 demonstrate that the proposed optimization approach, combined with PI and FOPID 
controllers based HAALO method, achieves more adaptable performance compared to other PID and FOPID 
controllers, ensuring the SRM operates reliably even in abnormal conditions. Figures 42 and 43 display the SRM’s 
torque during this period, showing that, unlike other controllers that result in motor speeds below the reference, 
the optimized method enables the motor to achieve a desirable torque at the reference speed. Additionally, 
for better clarity, Figs. 44 and 45 provide a magnified comparison of the proposed method with the two best 
responses for torque in the SRM. Figures 46 and 47 illustrate the output current for one phase of the SRM under 
different controllers.

Conclusions
SRMs by integrating the HAALO algorithm with PI and FOPID controllers. The proposed method significantly 
reduces torque ripple and enhances speed regulation, offering a more adaptable and robust solution compared 
to traditional control methods. Simulation results confirm that HAALO-optimized controllers outperform 
established optimization techniques, showing faster convergence, reduced computational overhead, and superior 
control accuracy. While the simulation results demonstrate the effectiveness of the proposed method, there are 

Controller and optimization method Tr Ts Tp OS

PI-HAALO 3.0306 3.0571 3.0915 0.1720

PID-PSO12 3.0613 3.5627 3.3559 2.7903

PID-PPSO12 3.0470 3.1321 3.3866 1.2259

PID-ALO12 3.0412 3.1129 9.9825 0.0062

PID-RIME 3.0318 3.0592 3.1960 0.2023

PID-GEO 3.0313 3.0601 3.6213 0.0769

PID-GA12 3.0430 3.2855 3.2462 2.0561

FOPID-HAALO 3.0241 3.0461 3.0698 0.1819

FOPID-PSO12 3.0307 3.0697 3.2511 1.3777

FOPID-PPSO12 3.0308 3.0773 3.2418 1.2288

FOPID-ALO12 3.0301 3.0881 3.3715 0.8059

FOPID-RIME 3.0307 3.0572 3.0965 0.7955

FOPID-GEO 3.0303 3.1132 3.5074 1.5510

FOPID-GA12 3.0317 3.0922 3.3612 1.5466

Table 14. Transient response specifications in scenario 2.

 

Fig. 21. Time response of phase current for PI-HAALO and other controllers in scenario 1 with time delay.
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practical limitations to consider. The real-world implementation of the HAALO-optimized controllers may be 
constrained by factors such as hardware limitations, real-time computational capacity, and the ability to maintain 
control precision under extreme operating conditions. In practice, challenges such as sensor inaccuracies, 
external disturbances, and system nonlinearity could affect the accuracy of switching angle optimization and 
the overall system performance.

Future work should focus on addressing these limitations by investigating the practical implementation of 
the proposed control system in real-time applications. This would involve testing the system with actual SRM 
hardware, exploring hardware-specific adjustments, and evaluating performance under real-world conditions. 
Additionally, integrating machine learning techniques for predictive control and fault detection could further 

Fig. 23. Time response of speed for FOPID-HAALO and other controllers in scenario 2.

 

Fig. 22. Time response of speed for PI-HAALO and other controllers in scenario 2.
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enhance the adaptability of the system. The extension of the HAALO algorithm to multi-objective optimization, 
targeting energy efficiency and thermal management, could provide even more practical benefits for high-
performance applications. Lastly, exploring hybrid optimization methods that combine HAALO with other 
advanced control strategies may lead to further improvements in SRM performance in industrial environments.

Fig. 25. Time response of speed for FOPID-HAALO and two best controllers in scenario 2.

 

Fig. 24. Time response of speed for PI-HAALO and two best controllers in scenario 2.
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Fig. 27. Time response of total torque for FOPID-HAALO and other controllers in scenario 2.

 

Fig. 26. Time response of total torque for PI-HAALO and other controllers in scenario 2.
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Fig. 29. Time response of total torque for FOPID-HAALO and two best controllers in scenario 2.

 

Fig. 28. Time response of total torque for PI-HAALO and two best controllers in scenario 2.
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Fig. 31. Time response of phase current for FOPID-HAALO and other controllers in scenario 2.

 

Fig. 30. Time response of phase current for PI-HAALO and other controllers in scenario 2.
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Fig. 32. Time response of speed for PI-HAALO and other controllers in scenario 3.

 

Controller and optimization method ISE × 10−7 IAE × 10−4 ITSE × 10−7 ITAE × 10−4

PI-HAALO 23,046 128 59,720 473

PID-PSO12 28,946 166 85,580 541

PID-PPSO12 85,246 155 255,500 540

PID-ALO12 2372 387 8627 1905

PID-RIME 6944 145 15,720 628

PID-GEO 9524 330 22,070 1407

PID-GA12 2012 273 5128 1096

FOPID-HAALO 18,432 121 45,360 435

FOPID-PSO12 1217 101 2774 428

FOPID-PPSO12 2387 100 6308 443

FOPID-ALO12 199 83 5053 339

FOPID-RIME 3506 85,340 7665 327

FOPID-GEO 6167 102 17,550 373

FOPID-GA12 1362 93 3189 374

Table 15. Time-based indicators illustrating the dynamic response of the SRM in scenario 2.
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Fig. 34. Time response of total torque for PI-HAALO and other controllers in scenario 3.

 

Fig. 33. Time response of speed for FOPID-HAALO and other controllers in scenario 3.
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Fig. 36. Time response of total torque for PI-HAALO and two best controllers in scenario 3.

 

Fig. 35. Time response of total torque for FOPID-HAALO and other controllers in scenario 3.
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Fig. 38. Time response of phase current for PI-HAALO and other controllers in scenario 3.

 

Fig. 37. Time response of total torque for FOPID-HAALO and two best controllers in scenario 3.
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Fig. 40. Time response of speed for PI-HAALO and other controllers in scenario 4.

 

Fig. 39. Time response of phase current for FOPID-HAALO and other controllers in scenario 3.
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Fig. 42. Time response of total torque for PI-HAALO and other controllers in scenario 4.

 

Fig. 41. Time response of speed for FOPID-HAALO and other controllers in scenario 4.
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Fig. 44. Time response of total torque for PI-HAALO and two best controllers in scenario 4.

 

Fig. 43. Time response of total torque for FOPID-HAALO and other controllers in scenario 4.
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Fig. 46. Time response of phase current for PI-HAALO and other controllers in scenario 4.

 

Fig. 45. Time response of total torque for FOPID-HAALO and two best controllers in scenario 4.
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Fig. 47. Time response of phase current for FOPID-HAALO and other controllers in scenario 4.
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