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Abstract: In this paper, taking into account the intriguing recent results of Rabotnov functions,
Poisson functions, Bessel functions and Wright functions, we consider a new comprehensive subclass
Ou (A1, 0y, Az, Ay) of univalent functions defined in the unit disk A = {r € C: || < 1}. More
specifically, we investigate some sufficient conditions for Rabotnov functions, Poisson functions,
Bessel functions and Wright functions to be in this subclass. Some corollaries of our main results are
given. The novelty and the advantage of this research could inspire researchers of further studies to
find new sufficient conditions to be in the subclass O, (A1, Ap, Az, Ay) not only for the aforementioned
special functions but for different types of special functions, especially for hypergeometric functions,
Dini functions, Sturve functions and others.

Keywords: analytic functions; Rabotnov function; Poisson distribution; Bessel function; Wright
function

MSC: 30C45

1. Introduction and Preliminaries

In mathematics, hypergeometric functions are a basic family of special functions with
wide-ranging applications in number theory, probability theory, mathematical physics,
combinatorics and differential equations. In addition to serving as building blocks for
creating mathematical models and solving issues in a variety of scientific and engineering
disciplines, they offer solutions to differential equations that describe physical phenomena.
Their applicability makes them essential tools in mathematical analysis and scientific
research. These functions show many mathematical features and linkages as recurrence
relations and solutions to differential equations.

Specific instances of hypergeometric functions can be used to represent a wide range
of classical special functions, including the Gaussian hypergeometric function, confluent
hypergeometric functions and Legendre functions. Moreover, many correlations exist
between hypergeometric functions and other mathematical functions, including gamma
and Bessel functions.

In particular, in this paper we will consider Rabotnov functions, Poisson functions,
Bessel functions and Wright functions, respectively.

Symmetry 2024, 16, 982. https:/ /doi.org/10.3390/sym16080982

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym16080982
https://doi.org/10.3390/sym16080982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4341-6300
https://orcid.org/0000-0001-8608-8063
https://orcid.org/0000-0003-0745-3347
https://doi.org/10.3390/sym16080982
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16080982?type=check_update&version=2

Symmetry 2024, 16, 982

20f13

At first, let /- the class of analytic and univalent functions £ defined in the unit disk
A ={te€C:|1] <1} and meet £L/(0) —1 = L£(0) = 0. Thus, each £ € F has the
following series:

L(T):T+El2T2+a3T3+"':T+ZauTu/ (T€A). @

The Rabotnov function as a special function was introduced by Rabotnov [1] in 1948,

as follows:
Lu(C+1)

Dep(T ; u)+1 winy CPHTEC)

The well-known Mittag—Leffler function, which is frequently used to solve integral
equations, is represented by the Rabotnov function in particular cases.

The connection between the Mittag-Leffler function M and the Rabotnov function
@ 5(7) is shown in the recurrence relation

Pyp(t) = T My (BT, LB TEC

For additional details regarding Mittag—Leffler, see [2-5].
The Rabotnov function @ 5(7) is evidently not in class /. Consequently, it makes
sense to take into account the normalizing of the Rabotnov function that follows:

1 u—1
Rip(t) = THT(+1) Py p(t7T) = T+ 2 Wru TEA )

where { > —1and § € C.

A variable Y is considered Poisson- distributed if the values are takentobe 0,1,2,3, - - -

for the parameter v with probabilities eV, v 1‘1/ V2 92,1’ v 33,V , -+, respectively. Thus,

S,—V
P(Y =s) = % s=0,1,2,3, .

In 2014, the Poisson function was introduced by Porwal [6] (see also [7,8]), as follows:

K(v,

e V", (v>0,TeAN). 3)
U= 2

The radius of convergence for (v, T) is infinite.
The generalized Bessel function of the first kind of x(7), mentioned as:

e Dier 2t
X( ) Xp,hc —; p+b+1+u)(5) , teC (4)

is one specific solution to the linear differential equation of second order
2" (1) + bty (1) + [eT? — p* + (1 = b)plx(r) =0, p,bceC. (5)

The function x(7) is not univalent in symmetric domain A. Now, we examine the
function B . as follows:

b1, 2
)Tprzblcx(f

D=

Bp,b,c(T) =€, =2T(p+

).
Using the Pochhammer symbol, defined fora # 0, —1,—2,-- - by

(C)u—w_{glf ifu=0and { € C— {0};

r'(Q) (+1)..(C+u—1), fueNandZ € C
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we can rewrite the function By, ;, . as follows:

) —c\4 T
Bp,b,c(T> = Z (47;,3_17

and define the function £, ,(u,c; T) as

Lyp(u,¢;T) = TByp (T —T—l—Z

wherec <0,—-1,-2,--- andd = p+ b%l # 0. The function Ep,b(u, ¢;T) = L,(7T) is entire
and satisfies the equation

4T2£Z(T) +2(2p +b+1)TL, () + cTLy(T) = 0. (7)

The Bessel function is essential in many areas of mathematical physics and applied
mathematics, including as signal processing, hydrodynamics, radio physics and acoustics.
Thus, a great deal of research has been conducted on Bessel functions. For example, Baricz
et al. [9] gave sufficient conditions for Bessel functions. Frasin et al. in [10] determined
some conditions for the function z(2 — u,(z) ), where u, denotes the Bessel function of order
p to be in various subclasses of analytic functions. Saiful et al. in [11] determined various
conditions in which Bessel functions have certain geometric properties in the unit disc.

Finally, we will examine the Wright special function, which is defined as

= T
o(¢.&7) ; gou—O—s ) u!

u

—,p> -1, C. (8)

Wright functions have been mentioned in papers pertaining to partial differential
equations and in other applications; see, for example [12-15].

Remark 1. For ¢ = 1, & = p + 1 and the functions o(1, p + 1; —72/4), it is possible to write the
following using the Bessel functions J,(T):

T e T/2)%
(0 = (3) et p+1— =L +p+1)(/2u)g 4

Furthermore, for ¢ > 0and p > —1, the function o(¢,p+ 1, —7) = ]If(r) is generalized
Bessel function.

Observe that the Wright function o(¢, ¢, T) is not in class F . Thus, we define the next
two Wright functions:

(o) M+1
) () g T
W (g, &1) :=T(e)T0(9, € T) ; T(pu+e) u!
i I'(e) T
=T+ , p>—-1,e>0,TEA )
Lipu-nrge 1

) u+1
Wlpe) = Tp+0(o(050) 1) = L e ra sy

[ 1—' u
—t+ ) - (¢ +e) L 9>-19+e>0,TcA.  (10)
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Furthermore, observe that W(l)(q), £T), W(z)(q), &T) and Hy (1) = w

satisfied by the following relations, respectively

are

et W (g,57)) = (e~ YW (e~ L) + (9 +e + W (g, 67),

TW®(g,51)) =W (9,9 +5T)
and

Hy (T) = 1,(1(;)(_828)H¢,¢+g(r).

Recently, numerous scholars have examined classes of analytic functions that involve
special functions in order to determine certain conditions in A. Many features, generaliza-
tions and applications of many kinds of geometric functions have been covered widely in
the literature. For example, Miller et al. in [16] determined conditions for the univalence
of Gaussian. Ponnusamy et al. in [17] found conditions for function f to be starlike or
convex. Ponnusamy et al. in [18] studed sufficient and necessary conditions, in terms of the
coefficient A;, for a function f € A to be in subclasses of univalent functions. Ponnusamy
et al. in [19] determined conditions for convexity and starlikeness. Yagmur et al. in [20]
presented some applications of convexity involving Struve functions. In [21], Frasin et al.
provided conditions for the Struve functions to be in two classes of analytic functions.

In this paper, we introduce a new subclass of analytic functions. (’)y (A1, Ag, A3, A4) of
the class /-, which generalizes many of the previous classes of analytic functions defined
in A.

Definition 1. A function £ € F is said to be in class Oy (A1, Ay, Az, Ay) if
[e0]
Y <A1M3 + Apu® + Agu + A4) lau| <,
u=2
where Ay, Ay, Az and Ay are real numbers and y > 0.
By precisely specializing for the coefficients A, Ay, Az, Ay and p in Definition 1, we

note the following:
(1) A function £ € p(A,7) = O1-(0,A,1 — A, —7) (which is due to [22]) if

agk

(w+Au(u—1) —9)|ay| <1—1.
2

3
||

(2) A function £ € (A, 7) = O1-,(A, 1 = A, —v,0) (which is due to [23]) if

[eo)

Y u(uA4Au(u—1) —)lay| <1—1.
u=2

(3) A function £ € @3 (7,B8) = O1-(0,0,+ 1, —A(y + B)) (Which is due to [24]) if

[e9)

Y (u(B+1)—A(y+p))|au] <1—1.

u=2
(4) A function £ € ©5(7,B) = O1-,(0,+1, —A(y + B),0) (which is due to [24]) if

_2u(u(5 +1) =AMy +B))|au| <1—1.

u
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(5) A function £ € T (A, &) = O1-4(0,0,1 — aA, —a(1 — A)) (which is due to [25]) if

i(”(l —ad) —a(l=A))fay| <1—a.
u=2

(6) A function £ € C(A, &) = O1_4(0,1 —aA, —a(1 — A),0) (which is due to [25]) if
Y u(u(l—ar) —a(l—A))|a,) <1—a.
u=2
(7) A function £ € SPy(7,v) = Ocoso—0(0,0,2, — cos o — v) (which is due to [26]) if
Y (2u—coso —v)|ay| < coso —v.
u=2
(8) A function £ € UCSPp(0,v) = Ocoso—(0,2, — cos o — v,0) (which is due to [26]) if
Y u(2u —coso —v)|a,| < coso —v.
u=2

To give sufficient conditions for the Rabotnov function, Poisson distribution function,
Bessel function and Wright functions to be in the comprehensive subclass O, (A1, A, A3, Ay),
we need the next Lemma given by Stimer Eker [27]:

Lemmal. Foru € Nand h > 0, then
(h+ 1) u—1)IT(h+1) <T(u(h+1)).

Furthermore, from this Lemma, we can write

T(h+1) 1

T 1) = e ) Y1) (a

Furthermore, since T'(u — 1+ 3) < T(¢(u —1)+3) for 3 > 0 and u € C, the Lemma
holds. We can write

r(3) o1
Ieu—1)+3) = (3),—1

u—1

ueC (12)

Further, since
(D1 =33+DE@+2)---(3+u—-2)>23+1"? ueC

and using (12), then
r3) < 1
I'(p(u—1)4+3) — (3 +1)»2

(13)

2. Main Results

In this part, we examine a few prerequisites that must be met for Rabotnov functions,
Poisson functions, Bessel functions and Wright functions to be in the comprehensive
subclass Oy (A1, Ay, Az, Ay).

Theorem 1. If the following inequality is valid,

MPB? (6A1+D2)B% (7M1 +30 + A3)B
(0+1)> (0 +1)? (+1
Spu+ A+ A+ A3+ Ay

B
+A1+A2+A3+A4>€”1
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for > 0, then the Rabotnov function Ry g(T) is in the class Oy (Aq, Ay, Bz, Ay).

Proof. By Definition 1 and the Rabotnov function given by (2), it suffices to show that

S prir(e+1)

H;Z(A“ﬂ + Aou® + Aju + A4) T+ Du) < .

Let BT (4 1)
- T+

LA Bip) = E<A1u3+A2u2+A3u+A4)m.

Setting
u=w—-1)+1;
{ w=wu—-1(u—-2)+3u-1)+1; (14)
wW=u-1)(u-2)u—-3)+6u—-1)(u-2)+7u—-1)+1,
we obtain

(A, B 1) = Z{Alu—uu—><u—3>+<6A1+A2><u—1><u—2>

+(7A1 +3A2+A3)(11—1)+A1+A2+A3+A4}w.
_ i Ar(u—1)(u—2)(u—3)p" 'T(£+1)
T = T((£41)u)
> (6A1+ M) (u—1)(u—2)B* IT(L+1)
L F((C+ 1))
& (781438 + A3)(u — 1) 'T(L+1)
L (S
2 (A4 Ax+ Az + Ay) Y 1r(£+1)
Ty (€ + 1)u)

Under hypothesis (11), we have
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= (1= 1) (u—2)(u—3)p""! s —2)p!
i) = Zz £+1)“ Y —1)! 6 ta L,Zz €+1 ( —1)!
= (u—1)p!
+(7A3+3A2+A3)u§’2(£+1)”_1(u—1)!
e ‘Bu—l
+(A1+A2+A3+A4)u;2(€+1)u 1(u—1)!
_ 0 ‘Bufl A 00 'Bufl
RPN TR TR SRR P TR T Ty
00 'Bufl
+(7A1+3A2+A3)u§2 " a2
e ,3”_1
+(A1+A2+A3+A)Z(€+l)u 1( 1
MNP et (61 +A2)ﬁ2 (7 +3A2+A3)ﬁe%
C+1)° (0+1) (+1
+ (A1 4 A+ Az + Ay) (6551 — 1) . (15)

The right-hand term in (15) is bounded above by y; thus,

A B3 (6A1+M)B> (7M1 + 305+ A3)B
(r+1)> (0 +1)? (41
< H+A1+A2+A3+A4.

4
+A1+A2+A3+A4>5“1

This concludes the proof of Theorem 1. [

Theorem 2. If the following inequality is valid,
AV + (6A1 + D)V + (781 + 380 + A3)v + (A + Do+ Az + Ag) (1 —e V) < .
for > 0, then the Poisson distribution function IC(v, T) belongs to O, (A1, Ny, A, Ay).

Proof. In view of Definition 1 and and Equality (3) for the Poisson function, it suffices to

show that
- 3 2 vt
A A A A B
u;( L+ Bolt” + At + 4) w—1° =H
Let
h 5 (A - Mgt + Agut - A3) e
2(1/,‘14) —u;z( 1u” 4+ Apu 4+ Asu + 4) (u—l)!e
Similar to Theorem 1, we obtain
=] 1/ufl 0 1/ufl
(v, i) = M eV + (6A1+ Ay) e’
u; (u—4)! l; (u—3)!
o u—1 00 1/ufl
+ (7M1 + 307 + A3) ): 2)|efv (A D+ A+ A Y va
u= - u=2 )

= All/ + (6A1 + Az)l/ + (7A1 + 3A, + A3)1/ + (Al + Ay + A3z + A4)(1 — efv) <u

This concludes the proof of Theorem 2. [J
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Theorem 3. If the following inequality is valid,

ALY (1) + (681 4 82) L3y (1) + (7A1 4382 + A3) L3, (1) 4 (D1 + Dy + Az + Ag) L (1)
Spu+A1+ 0+ A+ Ay

for u > 0, then the Bessel function Ep,b(u, ¢; T) belongs to Oy (A1, Ay, Az, Ayg).

Proof. By Definition 1 and the Bessel function given by (6), it suffices to show that

(79"

A + Mgt + Mg+ Ag) A7) <y
u;z( )((5)u_1(u—1)! K

Let
) (7C u—1

ha(c,0;m) = Y (Au® + Agr® + Agu+ Ay) —2———
# u;( )((5)u_1(u—1)!
Similar to Theorem 1, we obtain

NS -G )
s, ;1) = b g Oau—mi T OM1+82) ; (®)u_1(u—3)!

oo —c\u—1 oo
+ (701 +302 + A3) Y %+(A1+AZ+A3+A4) Y

u=
L M(F .
86+ 1)( 5+2 Z

n (7A1 +3A2§+ A3)(TC)
M)
BV e e O R ey

L (78t 3A25+ 83)(%°) Lpi1(1) + (Ay + Dy + Mg+ Ag) (Lp(1) — 1)

=MLY (1) 4 (6A1 + A2) Ly (1) + (781 + 38y + A3) L},(1)

+ (A + D+ Az +Ay) (Lp(1) — 1)
<upu

O

Theorem 4. If the following inequality is valid,

eg%l Aq 6A1+ Ay  7A14+3Ap 4 Aj n (e+ 1)(A1 + A+ A3+ A4)
e(e+1)2  ee+1) € €
(e+1)(A1+ A2+ A3+ Ay)

<pu+ .

for u >0, then W (,6;7) € Ou(A1, 02,03, Ay).
Proof. By Definition 1 and the Wright function given by (9), it suffices to show that

I'(e)
Tlou—1) 1) u—11 =

)
Z (A1u3 + Azuz + Azu + A4)
u=2

Let

fia (e, @i p) = i(Aw?’ + Apu? + Agu + A4> T(p(u— 11;(j-)8)(u -
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By (14), we obtain

IR - I'(e)
Male gip) = M ; T —1)+e)u—4)1 = T(p(u—1) +¢)(u—3)!

+ (A + D2+ A3+ Ayg) uz CCEDESICE

Under hypothesis (13), we obtain

1
hgﬁl’/ 12 S—I—l”z(

=

> 1
Y +(6A1+02) )
: U

—e(e+1)42(u—3)!
1
4 e(e+1)42(u —2)!
d 1
+ (A1 +A2+A3+A
(A1 482+ 45 4)’4;28(8%—1)”72(11—1)!
A 1 6A1 + Ay 7M1 +3A+ A3 1

ngk:

+ (7A1 + 3A; + Ag)

u

1
e+1

— e - = T petd
s(s—i—l) T (s%—l)e+ + € e
+ (€+1)(A1+§2+A3+A4) (6*‘*%1—1) S]/l

O
Theorem 5. If the following inequality is valid,

1 1 1
Balg-t e+ 1T+ (301 + Aa)eTHT 4 (81 + 82 + Ba)(g+ e+ 1) (757 ~1)

1

1
A € 12 e(p+£+1_
Fhlptetl) ( ptet1

—1> <(p+e)u

for u > 0, then W(Z)((p, &7T) € Oy(A1,02,03,Ay).

Proof. By Definition 1 and the Wright function given by (10), it suffices to show that

I'(p+e)
u! S W

Aqu® + Apu® + Asu+ A
;z( e 4)F<¢<u—1>+<p+e> !

Let

ad T(go—i—s)
hs(e, gp) = Y (D11 + Mou® + Agu+ A .
5(& i) u:Z( ! 2 3 4>F(cp(u—1)+q0+e)u!
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Similar to Theorem 1, we obtain:
L AT (@ +¢) o0 ApuT (@ +¢)
fis (2, 9; 1) _Ezr((p(u—l)ﬂpw)(u—l)! +L;F((p(ufl)+go+e)(ufl)!
ad A31"(q)—|—s) ad A4F((P+£)
+l§2 T(p(u—1)+ ¢ +e)(u—1) +u;21"(g0(u—1) Foteul
v M1 —-2)T(p+e) o (8A1+Ag)(u —1)T(p +e)
_ug’zl"(q)(u—l)—i-q)—ks)(u—l)! +u§’21"(q0(u—1)+g0+£)(u—1)!
s (A1 + Ay + Ag) ((P + S) ad A4F(§0 + 8)
+u;21“((p(u—l)+(p—l—s)(u—l) + ;21"(<p(u—1)+(p+£)u!
2 MT (¢ +¢) - (31 +8y)T (9 +¢)
_;F( (u—1)4+¢+e)(u—23)! +u;2 I(p(u—1)+¢+¢e)(u—2)!
o (M + M+ M) (g +e) = AT (g +¢)
+ug:21"(cp(u—1)+g0+e)(u—1)! +u;21"(g0(u—1)+q0—|—£)u!'

Using hypothesis (13), with e = ¢ + ¢, we obtain

ad Al s 3A1+A2
his(e, ;) <
5(& @i ) Lg((p—i-s)(gv—&-s—l-l)“ 2(u —3) ; (p+e)(p+e+1)2(u—2)
> A+ Ay + A3 > AV
+
Ez((p+s)(rp+s+1>“ 2u—1)! ; (¢ +e)(g+e+1)2ul
_ ' Al ad 3A1+A2
- ; (p+e)(p+e+1)  lul +u§o (p+e)(p+e+1) ul
> A+ Ay + A3 > Ny
* Z “(p+e)(p+e+ 1) (u+1)! + ; (p+e)(p+e+1)4(u+2)!
_ Mp+e+d )em+3A1+ 2 w+11+(A1+A2+A3)((p+£+1) (Eﬁ_g
¢+te ¢+e ¢+e
+7(¢+8+1) e‘”f*l— 1 -1) <
Q+e p+e+1 -
O

3. Corollaries

By specializing the parameters Ay, Ay, Az, A4 and p in our Theorems, we obtain many
results studied by many authors. The following is an illustration:

LetA; =0,Ay =A,A3=1—-A, Ay = —yand y =1 — 7 in Theorem 1. We conclude
the subsequent corollary, which is due to [28] in Theorem 1.

Corollary 1. If0 <y < 1and 0 < A < 1, then the Rabotnov function Rg(T) belongs to the
class O1_,(0,A,1 = A, =) if

AB? (2A+1)B A
<(€+1)2+ T +1—’y>ef <2(1—7).

LetA; =A, Ay =1—-A, A3 =—7,A4 =0and 4 =1 — 7 in Theorem 1. We conclude
the subsequent corollary, which is due to [28] in Theorem 2.

Corollary 2. If0 < v < 1and 0 < A < 1, then the Rabotnov function Rw(r) belongs to the
class O1_ (A, 1= A, —7,0) if

AB? GA+1)B  (4A—v+3)B . ) B B
<(£+1>3+ ((+1) w1 ! 7)” <20=7.
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LetAy = Ay =0,A3 =B+1,A = —A(y+B) and ¢ = 1 — 7y in Theorem 2. We
conclude the subsequent corollary, which is due to [29] in Theorem 1.

Corollary 3. If0 < v < 1,0 < A < 1land B > 0, then the Poisson distribution function IKC(v, )
belongs to the class O1_(0,0,+1, =A(y + B)) if

B+1v+(B+1-A(y+B)(1—e")<1—1.

LetA) =0,A0, =B+1,A3 = —A(y+B), Ay =0and ¢ = 1 —  in Theorem 2. We
conclude the subsequent corollary, which is due to [29] in Theorem 2.

Corollary 4. If0 <y <1,0< A <1landp > 0, then the Poisson distribution function K(v, T)
belongs to the class O1_ (0, +1,—A(y + B),0) if

B+ +(BB+3 = Ay +B) v+ (B+1-A(y+p))(1—¢¥) <1—1.

LetA; = Ay =0,A3 =1—aA, Ay = —a(1l — A) and p = B|b| in Theorem 3. We
conclude the subsequent corollary, which is due to [30] in Theorem 5.

Corollary 5. If0 < B < 1,0 < A < land b € C — {0}, then the Bessel function L, ,(u,c;T)
belongs to the class O1_,(0,0,1 — aA, —a(1 — 7)) if

(1—ar) L, (1) + (1 —a)Ly(1) <2(1—a).

LetAy = Ay =0,A3 =1—aA, Ay = —a(1 —A) and y = 1 — « in Theorem 3. We
conclude the subsequent corollary, which is due to [30] in Theorem 7.

Corollary 6. If0 < < 1,0 < A < 1land b € C — {0}, then the Bessel function Ep,b(u, G T)
belongs to the class O1_,(0,1 — aA, —a(1 —A),0) if

(1—=ar)Ly(1) + (B —a(1+21))L, (1) + (1 —a)Lp(1) <2(1 —a).

Let Ay =0y =0,A3 =2,Ay = —coso —vand y = cosc — v in Theorem 4. We conclude
the subsequent corollary, which is due to [31] in Theorem 1.

Corollary 7. If |o| < 7 and 0 < v < 1, then W (g, 1) in Ocosor—(0,0,2, — cos o — v) if
1 1
e(coso —v) + (s+1)(cosa+v—2)(em - 1) —2e# > 0.

Let Ay = Ay =0,A3 =2,A;, = —cosc—vand y = cosc — v in Theorem 4. We
conclude the subsequent corollary, which is due to [31] in Theorem 2.

Corollary 8. If |¢| < Zand 0 < v < 1, then W(l)(go, &T) in Ocoso—0(0,2, —coso — v,0) if

1
1

e(e+1)(coso —v) — 2eet

1
1

+ (e+1)(coso +v —6)ect
+ (s+1)2(cosa+v—2)(es%l - 1) > 0.

Let Ay = Ay =0,A3 =2,Ay = —cosc—vand 4 = cosc — v in Theorem 5. We
conclude the subsequent corollary, which is due to [31] in Theorem 3.
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Corollary 9. If |o| < 5§ and 0 < v < 1, then W@ (@,&1) in Ocoso—0(0,0,2, — cos o — v) if
1
(cp+s)(coso'—v)+(cosa+v)(¢+g+1)z<ew_1>
1
+(¢+€+1)(2—2€4’”“—Cosa—v> > 0.

Let Ay = Ay =0,A3 =2,Ay = —cosc —vand 4 = cosc — v in Theorem 5. We
conclude the subsequent corollary, which is due to [31] in Theorem 4.

Corollary 10. If |o| < Zand 0 < v < 1, then W®) (9, 7) in Ocoso—v(0,2, — cos o — v,0) if
1 1
(p+¢€)(coso—v) + (cosc+v—2)(¢p+e+1) (e¢+€+1 - 1) — 2e9FetT > ().

4. Conclusions

In this investigation, we determine sufficient conditions for the functions Ry 4(7),
K, ), Lpp(u,c1), W (g,&;1) and W@ (g, ¢;T) through the general comprehensive
subclass O, (A1, Az, A3, Ay) of univalent functions introduced in Definition 1. Furthermore,
some corollaries of the results are also discussed. By suitably specializing the real constants
A1, Ay, A3,A4 and p in our main results, we can determine new sufficient conditions for the
functions R 4(7), K(v, 1), L (1, ¢; T), W (g,&;1) and W) (g, ¢; T) in other subclasses
of analytic functions, which are new and have not been studied so far.
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