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This paper addresses the issue of controlling the drivetrain of electric vehicles. Taking into account 
both internal and external system disturbances, including the vehicle’s mass, rotational friction of the 
shafts, wind speed, vehicle aerodynamics, road type, and slope constraints, the controller’s task is to 
ensure robustness in vehicle behavior. The significant dynamics of these disturbances and uncertainties 
in vehicle parameters have a substantial impact on vehicle performance. To overcome these challenges, 
a nonlinear model of the entire controlled system is developed. Subsequently, a robust nonlinear 
controller is designed using the damping function version of the backstepping design technique to 
compensate for all uncertain terms. Within this framework, two primary control loops are established. 
Firstly, a speed control loop is implemented to achieve precise tracking of the driver’s speed reference. 
Secondly, the machine current is optimized to generate maximum torque. A formal analysis based 
on Lyapunov stability is conducted to describe the control system’s performance. Despite parameter 
uncertainties, it is demonstrated that all control objectives are asymptotically achieved. Ultimately, 
all control objectives are validated through simulation results using Matlab/Simulink, showcasing the 
efficiency and robustness of the proposed control technique.
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Abbreviations
CCM	� Coulomb counting method
DC/AC	� Direct current/Alternating current
EV	� Electric vehicle
OCV	� Open circuit voltage
PID	� Proportional-integral-derivative
PMSM	� Permanent magnet synchronous motors
RUN	� Runge kutta
SOC	� State of charge
RMSE	� Root mean square error
MPC	� Model predictive control

As the world moves toward more sustainable transportation, electric vehicles (EVs) are taking center stage in 
automotive innovation. This shift is driven by growing environmental concerns, stricter emission regulations, 
and rapid advancements in battery technology1,2. By 2040, EVs could exceed 50% of new car sales, making their 
role in reducing carbon emissions and improving efficiency crucial3. This demand calls for robust powertrain 
systems that adapt to various driving needs4. As EVs shape the future of mobility, optimizing their performance 
through advanced control strategies is essential.

In the domain of automotive engineering, cruise control systems play a pivotal role in enhancing driving 
comfort, fuel efficiency, and overall road safety5,6. These systems are meticulously designed to maintain a 
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desired vehicle speed, relieving the driver from constant throttle adjustments and allowing focus on critical 
driving tasks7,8. The need for precise and effective control in such systems is paramount. While traditional 
proportional-integral-derivative (PID) controllers are widely adopted for their simplicity9–11, they often 
struggle with the nonlinear dynamics and parameter uncertainties (e.g., wind speed, vehicle mass) inherent 
in electric vehicle (EV) powertrains, requiring frequent retuning. Advanced model predictive control (MPC) 
offers predictive capabilities12,13, but its reliance on precise models and high computational demands limits real-
time applicability. The literature also explores alternative structures, including fractional-order PID (FOPID)14, 
model predictive12,13, deep reinforcement learning15, fuzzy logic16, and real PID plus second-order derivative17 
controllers.”

Despite the satisfactory performance often delivered by these controllers, their design process can be 
time-consuming and may not consistently yield optimal results. To address these challenges, researchers 
have embraced metaheuristic algorithms, showing promise in solving complex optimization problems18. In 
the realm of vehicle cruise control systems, the application of metaheuristic algorithms has the potential to 
significantly enhance the time-domain performance and stability of the control system. Consequently, this 
paper focuses on developing and applying an enhanced Runge Kutta (RUN) optimizer, named IRUN, to achieve 
superior control performance. The proposed IRUN optimizer integrates several advanced strategies, including 
quadratic interpolation, Laplacian segment mutation, Levy flight, and information-sharing-based local search 
mechanisms, to augment its effectiveness. Through the incorporation of these strategies, the resulting IRUN 
algorithm showcases improved optimization capabilities, making it well-suited for fine-tuning the controller.

The study focused on comprehensive modeling of the electric vehicle’s traction system, incorporating the 
intricate components such as the Lithium-ion battery, the Motor-Converter association, and the mechanical 
transmission. This modeling approach extended to encompass the vehicle’s body dynamics and longitudinal 
behavior. The core innovation lay in the development and application of a robust nonlinear controller, tailored 
to optimize the vehicle’s performance. The methodology involved meticulous design, implementation, and 
validation of this controller using available empirical data. The research sought to enhance understanding 
and efficiency in electric vehicle powertrain systems, striving to contribute to advancements in sustainable 
transportation technology.

In order to comprehensively evaluate the effectiveness of the proposed method, the reference speed is 
provided that has to press/release either the accelerator in order to reduce the error between the actual speed 
and the speed from a drive cycle The driver model provides the torque demand to match the drive cycle speed 
profile. Thereafter, from the driver set-point, the energy required to overcome the opposing forces acting on the 
vehicle namely Aerodynamic Drag Force,Rolling Resistance Force, represents Gradient Resistance Force and the 
Inertia Resistance Force, is computed. The backward approach considers a reference speed profile, as input, to 
determine the forces acting at the wheels and then processes backward through the powertrain.

Summarising the aforementioned literature and considering the discussion mentioned above, the main 
contributions of this paper can be stated as follows:

•	 Precision in Vehicle Speed Tracking: This paper addresses the critical challenge of ensuring that the vehicle 
speed accurately follows the reference speed set by the driver. This is particularly noteworthy given the various 
disturbances encountered, including wheel friction, wind velocity, vehicle aerodynamics, vehicle mass, and 
variations in road type or slope. The proposed approach focuses on mitigating these disturbances to enhance 
the accuracy of speed tracking, contributing to a safer and more comfortable driving experience.

•	 Disturbance Mitigation Strategies: Innovative strategies to mitigate disturbances, contributing to a robust, 
adaptable vehicle speed control system.

•	 Optimization of Stator Current for Maximum Torque: optimizes stator current for maximum torque, enhanc-
ing overall vehicle performance and fuel efficiency.

•	 Adaptability to Variable Road Conditions: Acknowledging the influence of road type and slope on vehicle 
dynamics, the proposed methods aim to optimize speed control in diverse road conditions. This adaptability 
is a key contribution, as it enhances the overall safety and stability of the vehicle across varying terrains.

These contributions have real-world benefits for EV powertrain control. Precise speed tracking improves energy 
efficiency and safety, whether in stop-and-go city traffic or on steep inclines, making EVs more reliable for 
daily drivers. Effective disturbance mitigation ensures stable performance despite external factors like wind or 
changing loads, reducing strain on powertrain components and extending battery life, which is key to lowering 
costs. Optimizing stator current for maximum torque enhances acceleration and hill-climbing, improving 
the driving experience and making EVs more competitive with traditional combustion vehicles. Altogether, 
these advancements make EV control systems more robust and adaptable, paving the way for next-generation 
autonomous and high-performance electric vehicles while accelerating the shift to sustainable transportation.

The rest of the paper is organized as follows: Section “Vehicle modelling” introduces the mathematic models 
of the whole system. In Section “Robust nonlinear controller design”, the control strategy using nonlinear robust 
backstepping controller is described in details. Section “System simulation” shows the simulation setup, results 
and analysis. Finally, concluding remarks are discussed in Section “Robustness of the proposed control”.

Vehicle modelling
The considered conversion system consists, as shown in Fig. 1, of a association of several modules. On the one 
side, there is a storage battery is used to supply (reversible energy source) the power conversion chain through 
a DC/AC inverter. The role of this latter is to generate an adequate power supply to the electromechanical 
converter (synchronous machine), associated in turn with a transmission system representing the differential 
and the various mechanical connections between the traction machine and the vehicle’s wheels. On the other 
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side, at the end of the conversion chain, there is the mechanical load where the rolling environment of the vehicle 
is considered (wind, slope, load, type of road, vehicle shape...).

Thanks to their better mass/power ratio and their ability to develop a much higher power level and present 
a more satisfactory efficiency, permanent magnet synchronous motors (PMSM) are more suitable for electric 
vehicles. A control unit allowing the control of all the elements of the traction chain is necessary in order to 
satisfy the driver requirements.

Model of vehicle body and longitudnal dynamics
An electric vehicle is subject to forces that the traction system must overcome in order to move the vehicle 
forward or backward, These forces are distributed as shown in Fig. 2.

Several more or less complex mechanical models are developed in the literature19. In this paper, the model 
considering the vehicle as a massive point and which undergoes a time varying forces sum has been adopted20. 
The following opposing forces are considered in the proposed model as a common technique in the literature as 
shown in Fig. 2:

•	 Gradient Resistance Force: due to the road inclination with regard to the horizontal plane.
•	 Rolling Resistance Force: mainly due to the friction between the tyres and the road.
•	 Aerodynamic Drag Force: due to the friction between the vehicle body and the air.
•	 Inertia Resistance Force: related to the forces required for the linear acceleration of the vehicle and the in-

crease of the rotational speed of the rotating components

	 Ftr = Faero drag + Frolling resistance + Fgrade + Facc� (1)

 Where:

Fig. 2.  (a) Longitudinal vehicle dynamics model and (b) simplified wheel dynamics model.

 

Fig. 1.  Topology of traction chain of an electric vehicle.
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Faero drag  denotes the Aerodynamic Drag Force, Frolling resistance designates the rolling resistance force, 
Fgrade represents the Gradient Resistance Force, Facc is the Inertia Resistance Force.

	

Trω = RωFtr

= Rω

(1
2ρSf Cx(V ± Vw)2 + MgCrolling resistance + Mg sin(θ) + CiM

dV

dt

)� (2)

Where:
Trω  is the resistant torque on wheels,Rω  designates the wheel radius,V is the vehicle speed in (m/s),Vw  is 

the wind speed, which has a positive sign when it is tailwind and a negative sign when it is headwind,M is the 
vehicle mass in (kg),g is the gravitational constant (m/s2), θ is the road slope angle in radians, ρ is the air density 
in (kg/m3),Sf  is the frontal surface of the vehicle, Cx is the drag coefficient,Ci is the inertia factor, which is 
assumed to be around 1.15 (a typical value),Crolling resistance is the rolling resistance coefficient.

Model of mechanical trnasmission
In order to adjust the wheels speed (Ωω) and/or torque (Trm), a gearbox linked to the drive shaft with the wheel 
axis. This gearbox can be modeled by a product of reduction ratio (r) and efficiency representing the friction 
losses (ηt)20.

	
ηt = Pω

Pm
= Trω

Trm

Ωω

Ω � (3)

 where Pω  output mechanical power on the wheel side, Pm motor mechanical power, Trm motor resistive 
torque; Ωω  wheel angular velocity; Ω is the angular rotor speed.

	

{
Trm = r

ηt
Trω

Ωω = rΩ
� (4)

 where r reduction ratio; ηt gearbox efficiency;

Model of Lithium-ion battery
The modeling of batteries is an important and complex issue, i.e. a mathematical description of its chemical 
behavior. Indeed, it is required to model its charging and discharging behaviors according to the battery type 
and parameters variation i.e. state of charge (SOC), current, temperature, etc. Several battery models have been 
developed in previous works. A compromise between complexity, accuracy and model parameterization is 
considered when chosing a model : i) Thevenin-based, impedance-based, and runtime-based models. ii) Model 
using neural network21; iii) electrochemical models22–24; iv) Empirical models25,26.

In the present work, the modified Shepherd model is adopted25. It is a dynamic model that can be 
parameterized to generate the charge and discharge curves. This model is based on equations that describe the 
battery open circuit voltage as a function of the state of charge and the exchanged current, as shown in Fig. 3.

The open circuit voltage (OCV) in charge and discharge modes of a Lithium-ion battery, according to the 
shpherd model, is described in(5) (if i < 0) and (6) (if i > 0) respectively (see (7)(8)).

•	 Charge mode (i < 0)

	
OCV =E0 − K∗

i
Qn

0.1Qn − Qb
+ KQb

Qn

0.1Qn − Qb
+ A exp(−BQb) � (5)

•	 Discharge mode (i > 0)

Fig. 3.  Shepherd model of the battery storage.
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OCV =E0 − K∗

i
Qn

Qn − Qb
+ KQb

Qn

0.1Qn − Qb
+ A exp(−BQb) � (6)

where E0 is the constant voltage; Qn is the nominal capacity; Qb is the discharged capacity; K is the polarization 
constant; A is the amplitude of the exponential zone; B is the time constant inverse of the exponential zone; and 
i∗ is filtred current with low dynamic. Several methods, for estimating the battery’s SoC, exist in the literature. 
These methods are mainly based on the electrical quantity’s measurement (voltage and current) and battery 
parameters. According to Shepherd model, assume that the initial SoC is known and the battery current is 
available. The simplest and robust method named Coulomb counting method (CCM) can be used. The Eqs. (7) 
and (8) allow to compute SoC(t) based on the battery current measurement i(t).

	
Qb(t) = 1

3600

∫ t

0
i(t)dt � (7)

	
SoC(t) = SoC0 − 100 Qb

Qn
� (8)

The battery voltage Vb depends on the current direction and can be described as follows :

	 Vb(t) = OCV (t) ± Rbi(t)� (9)

Generally, the battery parameters quoted in (5), (6) and (9), namely Rb which is the internal resistance of the 
battery K, A, B and E0 can be determined empirically by OCV(Qb) curve especially from the discharge curve 
or from the datasheet provided by the battery manufacturer25,27. Figure 4 shows the characteristic of voltage 
variation as a function of charge capacity during a discharge case28. It is a non-linear characteristic that allows 
the battery-parameters to be determined as follows:

	 A = Vf − Ve � (10)

	
B = α

Qe
� (11)

	
K = β[Vf − Vn + A(exp(−BQn) − 1)]Qf − Qn

Qn
� (12)

	 E0 = Vf + K + Riin − A � (13)

	
Rb = Vn

1 − η

0.2Qn
� (14)

where Vf  is the fully charged voltage; Ve the voltage at the end of exponential zone; Vn is the rated voltage; Qn 
is the maximum capacity of the battery; Qe is the capacity at the end of exponential zone; in is the rated current 
of the battery; η represents the battery efficiency; α and β constants values are usually determined to improve 
the fit to a battery data26. *

Model of the motor-converter association
The structure of the sub-systém considered is described by the Fig. 5. It consist of converting electric energy 
provided by the battery into mechanical energy, using the permanent magnet synchronous motors (PMSM)29. 
After the well-known Park transformation, the mathematical model of the converter-machine association in the 
dq frame (more suitable for developing control laws), can be described by the Eqs. (15a)–(15c)30.

	
dΩ
dt

= 3
2

km

Jm
iq − Fm

Jm
Ω − Trm

Jm
� (15a)

Fig. 4.  Discharge curve of a Li-ion battery.
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diq

dt
= −Rs

Ls
iq − pΩid − km

Ls
Ω + uq

Ls
Vb � (15b)

	
did

dt
= −Rs

Ls
id + pΩiq + ud

Ls
Vb � (15c)

 where Rs and Ls are the stator resistor and inductance; id and iq  denotes the stator currents in dq coordinates; 
Jm, Fm and p are respectively the rotor inertia, viscous coefficient and number of poles pairs; Trm denote the 
resistant torque on the motor which include all forces applied on the vehicle ( see Eq. (4) and (2)); km = p.ϕr  
is the motor coefficient, with ϕr  is the rotor flux norm; ud and uq  are the DC/AC input control in the dq 
coordinates; Vb is the battery voltage described in (9).

In view from the motor axis, the resistant torque Trm take the following expression, obtained by replacing 
the Eq. (2) in (2.2).

	
Trm = KDω(V ± Vw)2 + δDM M + kiM

dΩ
dt

� (16)

where KDω  is the wind disturbance coeficient, δDM  is the mass disturbance function, which take variation 
following the state of the road and the slope percentage, Ki is the inertia coeficient. 

	
KDω = rRω

2ηt
ρSf Cx � (17a)

	
δDM = rRω

ηt
g(Croll + S%) � (17b)

	
Ki = Ci(rRω)2

ηt

� (17c)

•	  Remarks   δDM  is very dependent on the mass of the vehicle that its variation is generally very limited. In 
this work, we consider the parameters of the function δDM  as constant and defined by their average values.

•	 As the dynamics of the aerodynamic force is slowly with respect to the speed, one can approximate Faer  to 
a linear function around the rated speed. Using Taylor young’s theorem, the aerodynamic torque takes the 
following expression:

	

Tae = KDω(V ± Vw)2

= A4 + (A3Vω + A2)Ω + A1(Vω)2� (18)

where Ai, (i = 1, ..4) are a constants coefficients depending to the vehicle parameters, as defined bellow: 

	
A1 = KDω = rRω

2ηt
ρSf Cx � (19a)

	
A2 = (rRω)3

ηt
ρSf CxΩ0 � (19b)

	
A3 = (rRω)2

ηt
ρSf Cx � (19c)

Fig. 5.  Electrical scheme of a PMSM with rectifier.
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A4 = (rRω)3

2ηt
ρSf CxΩ2

0 � (19d)

 Using (16) and (18) it follows from (15) that the speed dynamics undergoes the Eq. (20), defined in the follo 
state space representation of the whole system including the vehicle environment, mechanical transmission and 
motor-converter association.

	
dΩ
dt

= 3
2

km

J
iq − Fv

J
M − ψw

J
� (20)

where J is the whole system inertia J = Jm + KiM , Fv  is the vehicle friction including the motor 
friction, transmission friction, and the linear terme of wind friction by the vehicle, which is expressed by 
Fv = Fm + A3Vω + A2 and ψw  is the non linear influence of wind velocity on vehicle taking the expression 
ψw = A1V 2

ω + A4. Now, let us introduce the state variables x1 = Ω, x2 = iq  and x3 = id and the inputs 
control u1 = uq  and u2 = ud. Then the state space representation of the traction system can be presented as: 

	
dx1

dt
= 3

2
km

J
x2 − Fv

J
x1 − δDM

J
M − ψw

J
� (21a)

	
dx2

dt
= −Rs

Ls
x2 − px1x3 − km

Lq
x1 + Vb

Ls
u1 � (21b)

	
dx3

dt
= −Rs

Ls
x3 + px1x2 + Vb

Ls
u2 � (21c)

Robust nonlinear controller design
Control objectives
This section focuses on developing a nonlinear controller which is capable of achieving the following operational 
control objectives:

•	 Speed regulation : the vehicle speed must track, as accurately as possible the reference speed specified by the 
driver, despite the several disturbance, in particular the wheel friction, wind velocity, vehicle aerodynamic, 
vehicle mass and road type or slope inconvenience.

•	 Regulate the d-axis current component to zero, in order to optimize the stator current in the machine and 
thus develop a maximum torque31.

In the following subsections, a nonlinear state feedback controller will be performed using the Robust 
Backstepping technique to achieve the above control objectives. The choice of backstepping technique in this 
study is motivated by its systematic, recursive design process. Backstepping allows for step-by-step stabilization 
of subsystems, such as speed and current loops, while explicitly addressing nonlinearities and uncertainties 
through Lyapunov-based stability guarantees32,33.

Vehicle model with parameter uncertainties
The disturbance undergoes by the vehicule are not supposed to be known (Fv, Vω) or not accuratly mesurable 
(M). It’s just supposed to be delimited within a known intervals as shown below: 

	 M = M0(1 + ∆M ) � (22a)

	 Fv = Fv0(1 + ∆F ) � (22b)

	 Vω = Vω0(1 + ∆ω) � (22c)

 with M0 the nominal mass of the vehicle, Fv0 and Vω0 are respectively the mean values of the vehicle friction 
and wind velocity, concerning ∆M , ∆F  and ∆ω  denotes the possibly varying uncertainties such that. 

	 ∆MIN
M ≤ ∆M ≤ ∆MAX

M � (23a)

	 ∆MIN
F ≤ ∆F ≤ ∆MAX

F � (23b)

	 ∆MIN
ω ≤ ∆ω ≤ ∆MAX

ω � (23c)

 where ∆MIN  and ∆MAX  are known bounds, using (22) in (21a), the dynamics of the speed is described as 
follows:

	
dx1

dt
= 3

2
km

J
x2 − Fv0

J
x1 − δDM

J
M0 − ψw

J
+ ϕ1∆� (24)

With ϕ1 and ∆ are the uncertain terms defined as:
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ϕ1 = [x1 δDM Kω1 Kω2]

∆T = − 1
J

[FV 0∆F M0∆M V 2
ω0∆ω (Vω0∆ω)2]

∆T = [∆1 ∆2 ∆3 ∆4]

� (25)

Speed regulation loop
Now, the goal is to designe the control law of the vehicule speed reference tracking, which is foist by the driver. 
Basing on robust backstepping technique, where the machine parameters and the vehicle disturbances must be 
tolerated, u1 in (21b) stand as input control of the loop, so let consider the following speed tracking error.

	 z1 = x1 − Ωref � (26)

By substituting (24) in (26), the error dynamics can be described as follows:

	
ż1 = 3

2
km

J
x2 − Fv0

J
x1 − δDM

J
M0 − ψw

J
+ ϕ1∆ − ˙Ωref � (27)

To get stabilizing the subsystem (24), let consider α = 3
2

km

J
x2 as a virtual control input for z1 dynamics, which 

must track to the stabilizing function αref  defined as mentioned below.

	
αref = −ς1z1 − k1|ϕ1|2z1 + Fv0

J
x1 − δDM

J
M0 + ψw0

J
+ Ω̇ref � (28)

Note that |ϕ1| denotes the Euclidean norm of ϕ1 and ς1 > 0 is a negative scalar design parameter. The quantity 
k1|ϕ1|2z1 is a nonlinear damping term that is introduced to dominate the unknown term ϕ1∆.

If α = αref , one would have:

	 ż1 = −ς1z1 − (k1|ϕ1|2z1 − ϕ1∆)� (29)

Then, if V1 = 0.5z2
1  considered as the the Lyapunov function candidate, one would get the following time-

derivative along the z1 -trajectory.

	 V̇1 = z1ż1 = −ς1z2
1 − (k1|ϕ1|2z1 − ϕ1∆)z1 � (30)

Note that in case of no variation in disturbances (∆ = 0), the dynamic of the Lyapunov function (30) is defined 
as negative function (V̇1 < 0); consequently the z1 error vanish in a finite time. However, to ensure regulation 
in all cases, let introduce a new error z2 = α − αref . The virtual control input (28) should track αref , in 
order to ensure global loop regulation and eliminate the associated error z1. Nevertheless, using the fact that 
α = z2 + αref  in (27), it follows that the z1-dynamics undergos the following equation:

	 ż1 = −ς1z1 − (k1|ϕ1|2z1 − ϕ1∆) + z2� (31)

The next aim is to ensure the asymptotic stability of the subsystem (21a)-(21b); i.e. the two tracking errors 
(z1, z2) must converge to zero in a finite time. Thus, the time derivative ofz2-error gives

	 ż2 =β(x) −
(
ς1 + (k1|ϕ1|2)2z1 + (ς1 + k1|ϕ1|2)2z2

)
+ ϕ2∆ − α̈ref + γ(x)u1 � (32)

with

	

β(x) = −3
2

km

J

(
Rs

Ls
x2 + px1x3 + km

Ls
x1

)
+

(
Fv0

J
− 2k1x1z1

)

(
− Fv0

J
x1 + 3

2
km

J
x2 − δDM

J
M0 − ψω0

J

) � (33)

	
ϕ2 = ϕ1

(
Fv0

J
+ (ς1 + k1|ϕ1|2) + 2k1x1z1

)
� (34)

	
γ(x) = 3

2
km

J

Vb

Ls
� (35)

To recap, the errors dynamics ż1 and ż2 finally follow up the equations rewritten below:

	 ż1 = −(ς1 + k1|ϕ1|2)z1 − ϕ1∆ + z2 � (36)

	 ż2 = β(x) − (ς1 + k1|ϕ1|2)2z1 + (ς1 + k1|ϕ1|2)z2 + ϕ2∆ − Ω̈ref + γ(x)u1 � (37)
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To get the stabilizing control law for the latter errors dynamics an augmented candidate Lyapunov function is 
defined as:

	 V2 = 0.5z2
1 + 0.5z2

2 � (38)

and using (36)-(37), the time derivative of V2 yields:

	 V̇2 = −(ς1 + k1|ϕ1|2)z1 + ϕ1∆z1 + z1z2 + z2ż2� (39)

Substituting the Eq. (37) in (39) turns out to be:

	

V̇2 = −(ς1 + k1|ϕ1|2)z2
1 + (ϕ1z1 + ϕ2z2)∆ + z1z2

+
(

β(x) − (ς1 + k1|ϕ1|2)2z1 + (ς1 + k1|ϕ1|2)z2 − α̈ref + γ(x)u1

)
z2

� (40)

According to (40), to ensure the convergence of the system in a defined time, the following control law u1 is 
proposed.

	 u1 = γ(x)−1(−z1 − β(x) + (ς1 + k1|ϕ1|2)2z1 − (ς1 + k1|ϕ1|2)z2 − (ς2 + k2|ϕ2|2)2z2 + Ω̈ref � (41)

where ς2 > 0 is a new positive design parameter for the second loop, and k2|ϕ2|2z2 is an introduced additional 
nonlinear damping term to overcome the second uncertain term ϕ2∆. Considering (41), the time derivative of 
the Lyapunov function V̇2 becomes:

	 V̇2 = −ς1z1
2 − ς2z2

2 − k1|ϕ1|2z1
2 − k2|ϕ2|2z2

2 + (ϕ1z1 + ϕ2z2)∆� (42)

As can be easily deduced from (42), V̇1 is defined as negative function (V̇1 < 0) although the uncertain term 
varies or disappears (∆ = 0). The stability analysis of the overall system (21a)-(21c) will be summarized in 
Theorem 1. Now, one determines the remaining control input u2.

d-Axis current regulation
Now the target is the control of d-axis current x3 whose dynamics is given by the Eq. (21c). For this let’s consider 
the tracking error z3 = x3 − idref . Then, by time derivative of z3 and using (21c), one obtains the error 
dynamics.

	
ż3 = −Rs

Ls
x3 + px1x2 + Vb

Ls
u2 − idref � (43)

To achieve objective (ii) and make x3 converges asymptotically to idref = 0, let’s introduce a new quadratic 
Lyapunov function V3 = 0.5z2

3 . The asymptotic stability is provided when V̇3 is negative definite, given in (44).

	
V̇3 =

(
−Rs

Ls
x3 + px1x2 + Vb

Ls
u2

)
z3 = −ς3z3

2� (44)

Where ς3 > 0 is a new design parameter. Now, the input control of the d-axis loop can be easily deduced from 
(44) as follows:

	
u2 = Ls

Vb

(
Rs

Ls
x3 − px1x2 − ς3z3

)
� (45)

Finally combining (45) and (43) gives:

	 ż3 = −ς3z3� (46)

To finish the design of the controller, in the following theorem, the control closed loops are analysed.

Theorem 1  Consider the traction chain system described by the nonlinear model (21a)-(21b) and the control 
laws (28), (41) and (45), there exist a Lyapunov function candidate V = V2 + V3 and a positive constants ςi, 
(i = 1, 2, 3)and (k1,k2) such that:

•	 The resulting closed-loop system undergoes, in the (z1, z2, z3)-coordinates, the following equation: 

	 ż1 = −(ς1 + k1|ϕ1|2)z1 − ϕ1∆ + z2 � (47a)

	 ż2 = −(ς2 + k2|ϕ2|2)z2 − ϕ2∆ � (47b)

	 ż3 = −ς3z3 � (47c)

 with (z1 = x1 − Ωref ), (z2 = α − αref ), and (z3 = x3 − idref )
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•	 The error vector z(t) = (z1, z2, z3) converges exponentially to a compact neighborhood of the origin [0 0 0]. 
Consequently, whatever the initial conditions, the observation error z(t) can be made arbitrarily small letting 
(k1, k2) be sufficiently larges.

Proof 	  (i).	 Equation (47) is specifically obtained by substituting (36) into (37) and from Eqs. (27) and (46).
	 (ii).	 To prove the second part (ii), let us consider the Lyapunov candidate function : 

	 V = V2 + V3 = 0.5(z2
1 + z2

2 + z2
3)� (48)

	 It easily follows that : 

	
V̇ = −

(
ς1z2

1 + ς2z2
2 + ς3z2

3 + (k1|ϕ1|2)z2
1 + ϕ1∆z1) + (k2|ϕ2|2)z2

2 + ϕ2∆z2) − z1z2

)
� (49)

V̇  can be bounded as follows: 

	

V̇ < −
(

ς1z2
1 + ς2z2

2 + ς3z2
3 − |z1||z2| + k1

(
|ϕ1||z1| − ||∆||∞

2k1

)

+k2

(
|ϕ2||z2| − ||∆||∞

2k2

)
− ||∆||∞

4k1
− ||∆||∞

4k2

) � (50)

	 The inequality (50) can be rewritten under the following form : 

	
V̇ ≤ −ςV + ||∆||∞

2ςk
� (51)

	 where ||∆||∞ denotes the L∞ norm and ς = min(ς1, ς2, ς3) and k = min(k1, k2). Recalling that 
V = 0.5(z2

1 + z2
2 + z2

3), which implies that the vector (z1(t),z2(t) and z3(t)) converges exponentially to 
the following compact: 

	
z2

1 + z2
2 + z2

3 ≤ ||∆||∞
ςk

� (52)

	 It is clear that the dimensions of such a compact are inversely proportional to ςk.□

System simulation
Protocol of simulation
In this section, investigates the performance of the proposed controller the module of the EV diagrams described 
by Fig. 6 is established in the MATLAB/Simulink environment.

To evaluate the performance of the proposed controllers, we take the wind speed profile shown in Fig. 7, and 
the vehicle mass shown in Fig. 8 and select a profile over a wide range of variation of the longitudinal dynamics 
of the vehicle, The simulation parameters are given in Table 1.

Remark 1  The control parameters of the robust backstepping controller were tuned using a trial-and-error 
method in MATLAB/Simulink to achieve optimal performance. This iterative process aimed to minimize key 
metrics such as convergence time and steady-state error. While trial-and-error proved effective for this study, 
alternative optimization methods could be explored for more systematic parameter tuning, such as trajectory 
and velocity planning using quartic bezier curves34 or QPSOMPC-based chassis coordination control35, which 
provide advanced optimization frameworks for vehicle control applications.

Simulation results
Use of the robust backstepping control technique, has demonstrated remarkable resilience to variations in the 
vehicle’s longitudinal dynamics. Figure  9a vividly illustrates the speed dynamics, demonstrating exceptional 
responsiveness with a very fast response time. Figures 9b and c offer zoomed views to show the response of the 
proposed control to rapid changes in the speed reference signal. This is a key achievement, as it signifies that the 
speed of the electric vehicle adeptly adheres to the reference trajectory.

In Fig. 10, we can observe the torque response, showcasing the adaptability of our control system to variations 
in parameters impacting longitudinal dynamics. The ability of torque to fluctuate appropriately in response 
to changes in vehicle mass, friction, and wind speed further exemplifies the system’s robustness. Moreover, 
Fig. 11 provides a snapshot of another essential control objective. Here, the isq  current, which represents the 
machine’s torque, exhibits a commendable performance. Notably, the isd current remains consistently at zero, 
underscoring the effectiveness of our control strategy in both static and dynamic current responses. In sum, our 
control system, based on the backstepping robust control technique, excels in maintaining high-speed dynamics 
with a short response time, as demonstrated in Fig. 9, the speed tracking performance is indeed impressive. 
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Figures 10 and 12 showcase the system’s adaptability, and Fig. 11 attests to the successful management of static 
and dynamic current responses. These results affirm the robustness and practicality of our approach, which 
holds promise for real-world applications.

Figure 13 demonstrates the behavior of the electrical angle θ over time, indicating precise and stable control 
as highlighted at the bottom of this figure. The three-phase stator currents (isabc) are shown in Fig. 14. The 
zoomed-in region displays near-perfect sinusoidal waveforms for the stator currents, confirming harmonic 
integrity and minimal distortion during steady-state operation. The system demonstrates precise and reliable 

Fig. 7.  Wind speed (m/s).

 

Fig. 6.  System simulation protocol.
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tracking of both the electrical position θ and the stator currents (isabc) , maintaining stability and accuracy even 
during dynamic operating conditions.

Robustness of the proposed control
To verify the robustness of the proposed control against variations in the system characteristics, the dynamic 
behavior of the system was studied by introducing a 30% uncertainty on the nominal values of the machine 
parameters, including the stator resistance and inductance (Rs, Ls), the viscous friction coefficient (Fm), 
and the rotor inertia (Jm). These variations were applied to simulate realistic conditions where the machine 
parameters may differ from their nominal values due to wear, temperature variations, or other external factors. 
The performance of the proposed control was evaluated in this context, and the results are presented in Figs. 15 
and 16. These figures illustrate the evolution of the machine states, including the rotor angular velocity (Ω) and 
the stator currents in the three-phase reference frame (Iabc).

During the time interval [2, 2.2] s,  the actual values of the machine parameters were used in the simulated 
model, while the nominal values were used in the control. Despite this discrepancy, after a brief transient period, 
the control demonstrated the ability to maintain stable and accurate performance, ensuring that the machine 
states converge to their reference values.

Vehicle body

Characteristic Values Units

Curb weight 1390 kg

Aerodynamic drag coeff 0.3 -

Frontal area 2.38 m2

Wheelbase 2570 mm

Powertrain

Characteristic Values Units

Motor type PMSM -

Rated speed 1500 rpm

Torque sensitivity 0.6324 N.m/A

No. of pole pairs 4 –

Stator resistance 0.916 mΩ/phase

D-axis inductance Ld 3.55 mH/phase

Q-axis inductance Lq 3.55 mH/phase

BEMF constant (λ) 0.1054 V/elect rad/s

Friction coefficient (F) 0.001871 Nm/rad/s

Moment of inertia (motor and load) (J) 0.00243 kg.m2

Transmission

Simple fixed gear ratio 1:1 –

Table 1.  VE system characteristics36.

 

Fig. 8.  Mass of vehicle (Kg).
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The proposed control demonstrates stability and effectiveness even under significant variations in machine 
parameters, confirming its robustness against system uncertainties. The results indicate that it accurately tracks 
speed and current references despite disturbances caused by parameter variations, as highlighted in the zoomed 
view in Fig. 15. Moreover, these variations do not significantly impact overall system performance, validating 
the robustness of the control design.

Comparative analysis
To rigorously validate the proposed robust backstepping controller, a comparative analysis was conducted against 
a standard backstepping controller and a conventional PID controller, with results summarized in Table 2. All 
controllers were simulated in MATLAB/Simulink under identical conditions, including the reference speed 
profile (Figure 7) and vehicle mass variations (Figure 8). The proposed robust backstepping controller achieves 
a root mean square error (RMSE) of 0.12rad/s, significantly outperforming the standard backstepping controller 
(0.25rad/s) and PID controller (0.35rad/s), reflecting superior speed tracking precision. Its convergence time 
to within 2% of the reference speed is 0.15s, compared to 0.22s for standard backstepping and 0.28 s for PID, 

Fig. 10.  Torque motor.

 

Fig. 9.  Top: Vehicle speed Ω(rad/s) and its Reference Ωref (rad/s). Bottom: Zoom on Vehicle speed rad/s.
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indicating faster response dynamics. The peak overshoot is reduced to 1.5% versus 2.8% and 4.2%, respectively, 
while the steady-state error drops to 0.03rad/s from 0.07rad/s and 0.10rad/s. Moreover, under varying wind speed 
and mass conditions, the proposed controller maintains robust performance with RMSE values of 0.14rad/s and 
0.13rad/s, compared to 0.28rad/s and 0.26rad/s for standard backstepping, and 0.40rad/s and 0.38rad/s for PID. 
These results, highlight the proposed approach’s enhanced accuracy, responsiveness, and resilience to parameter 
uncertainties.

Conclusion
In conclusion, the primary objective of this study was to develop a precise computer-based model for Electric 
Vehicle (EV) energy consumption during various driving cycles. A comprehensive forward vehicle simulation 
model was evaluated through a simulation using MATLAB/Simulink, encompassing the intricate powertrain 
system and longitudinal vehicle dynamics. This model integrated the Thevenin equivalent circuit battery model, 
inverter, and permanent magnet synchronous motor (PMSM), contributing to a holistic roepresentation of 
the EV’s energy dynamics. Additionally, the resistance forces opposing the vehicle’s motion were accurately 
characterized within the longitudinal vehicle dynamics, further enhancing the model’s accuracy. To regulate 
the vehicle’s speed, a robust nonlinear controller, specifically the backstepping robust technique, was adeptly 
designed and incorporated into an elaborated driver model. A formal stability analysis employing Lyapunov 
tools provided assurance that the system operates in a stable manner, crucial for real-world applications. The 
results obtained from this comprehensive model undeniably demonstrate its effectiveness in achieving the 
defined control objectives with remarkable performance and robustness. Looking ahead, future work could 
focus on integrating real-time adaptive algorithms to enhance the controller’s responsiveness to unpredictable 

Fig. 12.  Resistant torque on wheels (N.m).

 

Fig. 11.  Stator current isd, isq(A).
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environmental conditions, such as sudden weather changes or road surface variations. Additionally, 
experimental validation on a physical EV prototype would help bridge the gap between simulation and practical 
implementation. Investigating the scalability of the proposed approach across different EV architectures (e.g., 
hybrid or multi-motor systems) could further broaden its applicability.

Fig. 14.  Top: Stator current isabc( A). Bottom: Zoom on stator current.

 

Fig. 13.  Top: the electrical angle θ. Bottom: Zoom on the electrical angle θ.
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Fig. 16.  Top: Stator current isabc( A). Bottom: Zoom on stator current.

 

Fig. 15.  Top: Vehicle speed Ω(rad/s) and its reference Ωref (rad/s). Bottom: Zoom on vehicle speed rad/s.
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