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Abstract
Proton exchange membrane fuel cells (PEMFCs) are powered by hydrogen energy, which is valued for its renewable, safe, 
and efficient characteristics, and are therefore critical in sustainable electricity generation through hydrogen electrochemical 
conversion. Parameter estimation in PEMFCs is a challenging but critical task, since accurate modeling is directly related 
to cell performance optimization and reliable energy output under different operational conditions. To improve parameter 
estimation accuracy, a cooperative strategy-based differential evolution (CS-DE) algorithm was developed to minimize 
the sum of squared errors (SSE) between experimental and simulated PEMFC voltage data for multiple BCS 500-W PEM, 
BCS 250-W PEM, Nedstack PS6 PEM, 500W SR-12 PEM, H-12 PEM, and HORIZON 500W PEMFC models. The CS-DE 
algorithm was benchmarked against standard differential evolution (DE) and other conventional methods on six commercial 
PEMFC types, resulting in a 15% reduction in SSE and an average improvement of 12% in estimation accuracy. These results 
demonstrate the robustness and adaptability of CS-DE for complex PEMFC modeling tasks.
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PaDE	� Parameter adaptive differential evolution
Di-DE	� Distance-based differential evolution
LSHADE	� L-SHADE algorithm (not expanded in text)
NDE	� Nonlinear differential evolution
PalmDE	� Palm differential evolution
PSO-DE	� Particle swarm optimization differential 

evolution
jSO	� Self-adaptive differential evolution with one 

population
LPalmDE	� Laplace palm differential evolution
HARD-DE	� Hard differential evolution
V-I	� Voltage-current
P-V	� Power-voltage
SSE	� Sum of squared errors
AE	� Absolute error
RE	� Relative error
MBE	� Mean bias error
H2	� Molecular hydrogen
H+	� Proton
e−	� Electron
O2	� Molecular oxygen
Vcell	� Output voltage of the fuel cell
ENernst	� Reversible equilibrium voltage
Vact	� Activation overpotential
Vohm	� Ohmic voltage drop
Vcon	� Concentration overpotential
E0	� Standard potential of the hydrogen/oxygen 

reaction (1.229 V)
T	� Operating temperature
P∗
H2

 	� Partial pressure of hydrogen
P∗
O2

 	� Partial pressure of oxygen
RHa

 	� Relative humidity of vapor in the anode
P∗
H2O

 	� Saturation pressure of water vapor
Pa 	� Inlet pressure of the anode
Pc 	� Inlet pressure of the cathode
A	� Active area of the membrane
�1, �2, �3, �4 	� Parametric coefficients for cell model 

calculations
i	� Cell current
C∗
O2

 	� Concentration of dissolved oxygen at the 
liquid interface

RM	� Membrane equivalent resistance
RC	� Electron-transfer equivalent resistance
ρM	� Membrane resistivity for electron flow
l	� Thickness of the membrane
λ	� Water content of the membrane
b	� Parametric coefficient for concentration 

overpotential
I	� Actual current density
Imax	� Maximum current density
Vstack	� Output voltage of the PEMFC stack
n	� Number of fuel cells in the PEMFC stack

Vsm	� Output voltage of the actual PEMFC stack
Vso	� Model output voltage
N	� Number of experimental data points
Fb	� Modified scale factor for mutation strategy
X
p

best
 	� Best solution vector

Xr1,G
,Xr2,G

 	� Randomly chosen vectors for mutation
PS	� Population size
RDP 	� Diversity metric ratio
Xmin,Xmax 	� Minimum and maximum boundaries of the 

solution space
μF	� Mean of the scale factor
μCR	� Mean of the crossover rate
f(X)	� Fitness value of the solution X
Fw	� Inertia weight factor

Introduction

Scarcity of fossil fuels and global pollution are two problems 
that necessitate the use of clean energy technologies. Proton 
exchange membrane fuel cells (PEMFCs) are among these 
technologies which are a good example of electrochemical 
energy conversion devices [1]. They serve as an environmen-
tally friendly substitute for diesel in distributed generation, 
providing back-up power effectively and stabilizing grid 
electricity. PEMFCs have been highly regarded in the field 
of electricity supply because they have low greenhouse gas 
emissions, instantly react to load variations, operate quietly, 
and have dependable startup mechanisms [1–4]. Determin-
ing fuel cell parameters with greater accuracy is becoming 
increasingly important. Thus, PEMFCs are one of the best 
clean energy technologies as they change chemical energy 
into electrical power directly through electrochemical reac-
tions [5–8]. For this reason, they can be used for numerous 
applications because their strengths lie in high electrical effi-
ciency, low emissions, and the ability to use different types 
of fuels [9, 10]. Notably, this poses a complicated problem 
since the system is complicated and interconnected strongly. 
Several methods for accurately estimating these vital param-
eters are available in scientific literature.

Several ways of finding the parameters of a proton 
exchange membrane fuel cell (PEMFC) stack have been pre-
sented in scholarly works. These ways can broadly be divided 
into iterative or intelligent methods. Parameter estimation is 
normally effectively achieved through iterative practices, 
which include the recognized Levenberg–Marquardt (LM) 
algorithm. However, when initial conditions are not set 
optimally, such methods may suffer from slow convergence 
and/or convergence to local minima. The LM algorithm that 
calculates partial derivatives with respect to the parameters 
can be computationally expensive and less efficient for non-
converging data, outliers or large datasets. Conversely, smart 
approaches using AI have evolved as viable replacements 
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since they enable accurate estimation of model parameters for 
PEMFC models. On the other hand, an optimized version of 
Levenberg–Marquardt backpropagation (LMBP) algorithm is 
widely acknowledged for its remarkable optimization advan-
tages associated with artificial neural networks. Nevertheless, 
the extent of the improvements over conventional approaches 
and the relevance of these improvements to practical scenarios 
deserve further elaboration and study [11].

Meta-heuristics have been preferred for their effectiveness, 
convenience in application, and simplicity to generate heat 
and electricity without employing derivatives. Much emphasis 
has been made in improving the estimation of parameters of 
proton exchange membrane fuel cells (PEMFCs). Some of the 
examples are particle swarm optimization (PSO) technique 
[12], hybrid adaptive differential evolution approach [13], and 
grasshopper optimization algorithm specifically for PEMFCs 
[14]. In addition, Zhou presented multi-verse optimizer in 
[15], and a hybrid artificial bee colony method was described 
in [16] for the similar parameter estimation problem.

Subsequent studies have employed a number of other algo-
rithms including, but not limited to, genetic algorithm (GA) 
[17], particle swarm optimization (PSO) [18], differential 
evolution (DE) [19, 20], seeker optimization algorithm (SOA) 
[21], bio-inspired p systems-based optimization algorithm 
(BIPOA) [22], adaptive RNA genetic algorithm (ARNA-GA) 
[23], and circular RNA genetic algorithm (cRNA-GA) [24]. 
However, these methods have their own advantages and disad-
vantages that go with them. Some methods may become stuck 
in local optima, but they are capable of at least remembering 
the previous best solutions. In contrast, some algorithms might 
have challenges in reproducing previous outcomes even as they 
have the potential of solving simple mathematical operations. 
However, there are some algorithms that are unable to perform 
well in situations where they are exposed to frequent changes 
in parameter settings with numerous iterations, intricate algo-
rithmic frameworks, and meagre stochasticity.

These challenges make it important to continue work on 
enhancing or developing better algorithms. New optimiza-
tion methods may possess merits such as rapid convergence, 
reduced computational load, and enhanced scalability for 
extensive or complex problem areas. These advancements 
may also help in improving the optimization techniques 
making them more noise tolerant, problem independent, 
and less sensitive to uncertainties.

Cooperative strategy-based differential evolution (CS-DE) 
[25] is the enhanced version of traditional DE algorithm. DE 
works effectively with certain mutation strategies which are 
different in all the forms of DE and therefore gives different 
results when compared on standard benchmark functions. 
CS-DE algorithm with dual mutation schemes was com-
pared with 58 benchmarks of CEC2013 and CEC2014 test 
suites. The comparisons made in the experiment showed that 
CS-DE algorithm is comparable to other recent state-of-the-art 

DE algorithms. This paper describes a method for identify-
ing unknown parameters in commercial PEMFCs using the 
CS-DE algorithm for parameter identification. Main findings 
of this research include the following:

(a)	 For this PEMFC parameter estimation problem using 
the CS-DE algorithm, the objective is to minimize the 
SSE.

(b)	 The study has been conducted using six commercial 
PEMFC stacks namely BCS500W [26], NedStackPS6 
[27], S12 [27], H12 [28], HORIZON [28], and Stand-
ard250W [29] to generate I-V and P–V polarization 
curves at different temperature and pressure conditions, 
calculating the AE and RE.

(c)	 The study involved comparing the CS-DE with nine 
other programed DE variants such as PaDE [30], 
Di-DE [31], LSHADE [32], NDE [33], PalmDE [34], 
PSO-DE [35], jSO [36], LPalmDE [34], and HARD-
DE [37] in estimating unknown parameters for a range 
of PEMFC stacks across diverse parameter variations.

(d)	 Statistics were applied to validate the reliability of this 
algorithm by using Friedman ranking, runtime, and 
standard deviation.

The paper is organized as shown: “Mathematical mod-
eling of PEMFC” outlines mathematical framework related 
to PEMFC and objective function. “ Cooperative strategy-
based differential evolution (CS-DE) algorithm” provides an 
overview of the CS-DE algorithm. “Experimental results for 
PEMFC parameter optimization problem” gives details about 
simulations and results while “Conclusion” shows conclusion.

Mathematical modeling of PEMFC

A typical PEMFC consists of an electrolyte and two elec-
trodes. The electrolyte allows protons to pass through while 
blocking electrons. Hydrogen gas passes over the anode, where 
it dissociates into electrons and hydrogen protons. The cor-
responding reactions are as follows [38, 39]:

The mathematical model of PEMFC

Generally, the actual fuel cell output voltage is less than the 
ideal voltage due to fuel cell electrical resistance, inefficient 

(1)H2 → 2H+ + 2e−

(2)
1

2
O2 + 2H+ + 2e− → H2O

(3)H2 +
1

2
O2 → H2O + Heat
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reactant gas transport, and low reaction rate. Hence, the actual 
output voltage [39] can be expressed as follows:

where ENernst is the reversible equilibrium voltage, and the Vact , 
Vohm , and Vcon represent the activation overpotential, the ohmic 
voltage drop, and the concentration overpotential, respectively.

Fuel cell open circuit voltage

The ENernst is the potential of the cell obtained in an open-cir-
cuit and can be calculated through the Nernst equation, which 
is shown as follows [40, 41]:

The standard potential of the hydrogen–oxygen reaction, 
denoted as E0 (approximately 1.229 V), occurs at standard 
conditions of 298.15 K and 1-atm pressure. T represents the 
operational temperature of the gas, while P∗

H2
 and P∗

O2
 denote 

the partial pressures of hydrogen and oxygen, respectively, as 
outlined in Eqs. 6 and 7 [42].

where Pa and Pc are the inlet pressure of anode and cathode 
and RHa and RHc represent the relative humidity of vapor in 
anode and cathode. The symbol of A is the active area of the 
membrane and P∗

H2O
 denotes the saturation pressure of water 

vapor which is depicted as follows [42]:

(4)Vcell = ENernst − Vact − Vohm − Vcon

(5)
E
Nernst

= E
0
− (8.5 × 10

−4)(T − 298.15) + (4.3085 × 10
−5)

× T × [ln(P∗
H

2

) +
1

2
ln(P∗

O
2

)]

(6)

P∗
H2

= 0.5RHa × P∗
H2O

⎡⎢⎢⎣

�
exp

�
1.635(i∕A)

T1.334

�
×
RHa ∗ P∗

H2O

Pa

�−1

− 1

⎤⎥⎥⎦

(7)

P∗
O2

= RHc × P∗
H2O

⎡⎢⎢⎣
(exp

�
4.192(i∕A)

T1.334
) ×

RHc ∗ P∗
H2O

Pc

�−1

− 1

⎤⎥⎥⎦

Activation overpotential

The activation overpotential, Vact , arises from the limitations 
in charge transfer rates and other activation processes. It is 
defined as follows [41, 42]:

where �1 , �2 , �3 , and �4 are the coefficients for each fuel cell 
model, i is the current, and C∗

O2
 represents the oxygen con-

centration at the liquid interface, as per Henry law [40]:

Ohmic voltage drop

The ohmic voltage drop results from resistance in the poly-
mer membrane, electrodes, and the contact resistance between 
them. It is expressed as follows:

where RM and RC are the membrane and electron-transfer 
equivalent resistances, respectively. The expression for RM 
is given as follows:

where �M is the membrane resistivity ( Ω ⋅ cm ), A is the cell 
active area (cm2), and l is the membrane thickness (cm). The 
empirical formula for �M is as follows:

(8)

log(P∗
H2O

) = 2.95 × 10−2(T − 273.15) − 9.18

× 10−5(T − 273.15)2 + 1.44

× 10−7(T − 273.15)3 − 2.18

(9)Vact = −
[
�1 + �2T + �3T

(
ln
(
C∗
O2

))
+ �4(ln(i))

]

(10)C∗
O2

= P∗
O2
∕(5.08 × 106exp(−498∕T))

(11)Vohmic = i(RM + RC)

(12)RM =
�Ml

A

(13)

𝜌M =

181.6

[
1 + 0.03

(
i

A

)
+ 0.062

(
T

303

)2(
i

A

)2.5
]

[
𝜆− < spanclass =� convertEndash� > 0.634 − 3 < ∕span >

(
i

A

)]
exp

[
4.18

(
T−303

T

)]

where � represents the membrane water content and can be 
adjusted within a range [24, 39, 42].

Concentration overpotential

The concentration overpotential, caused by mass diffusion 
from the flow channels to the reaction sites, is represented by 
[42, 43]:

where b is a parametric coefficient, I is the actual current 
density, and Imax is the maximum current density.

(14)Vcon = −bln(1 −
I

Imax
)
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PEMFC stack output voltage

To generate sufficient power, a stack of multiple fuel cells is 
assembled. The total voltage of the PEMFC stack is given by

The PEMFC model includes several known and defined 
parameters, which encompass both design and operational 
characteristics. For design parameters, the active area A , 
membrane thickness l , and maximum current density Jmax 
(measured in A/cm 2 ) are predetermined. Operational param-
eters include the cell temperature T  , partial pressures of 
hydrogen PH2

 and oxygen PO2
 , which are specified before 

conducting parameter estimation shown in Table 2. The 
parametric coefficient b , which varies based on the specific 
cell type and operating conditions, is also known to impact 
concentration overpotential.

The primary unknown parameters, which the optimiza-
tion process aims to estimate, are the seven decision vari-
ables: �1 , �2 , �3 , �4 , � , RC , and b . These represent various 
activation, concentration, and ohmic resistance characteris-
tics specific to the PEMFC model, affecting voltage behavior 
and efficiency.

Objective function

In order to identify the optimal values of the seven unknown 
parameters mentioned above by the optimization techniques, 
it needs to define an objective function to be optimized. In 
this work, the SSE (sum of the squared error) between the 
output voltage of the actual PEMFC stack and the model 
output voltage are used as the objective function [42]:

where x = {�1, �2, �3, �4, �,RC,B} is the vector of unknown 
parameters, Vsm is the actual stack output voltage, Vso is the 
model output voltage, and N is the number of data points.

Cooperative strategy‑based differential 
evolution (CS‑DE) algorithm

Several well-known DE variants, including JADE, 
LSHADE, jSO, and HARD-DE, form the basis of our novel 
CS-DE algorithm, each contributing unique mechanisms to 
enhance optimization performance. Zhang et al. proposed 
the JADE algorithm [44], which introduced the use of an 
external archive and the selection of top superior individuals 

(15)Vstack = nVcell

(16)min f (�) =
∑N

k=1
(V

sm,k
− V

so,k
)2

for mutation instead of relying solely on the global best. This 
innovation prevented premature convergence, and effectively 
balanced between exploration and exploitation, thus aiding 
in the preservation of population complexity. In addition, 
JADE used the adaptive control parameters, where the scale 
factor (F) was normally distributed with Cauchy distribu-
tion and the crossover rate (CR) was normally distributed. 
These adaptive mechanisms greatly contributed to improv-
ing its performance. However, the choice of the elite propor-
tion parameter p in the JADE algorithm may lead to slower 
convergence or even to the finding of suboptimal solutions. 
Tanabe et al. proposed LSHADE in [32], which incorpo-
rated a learning mechanism of success history for F and 
CR parameters; details of success F and CR values were 
stored in a pool to be used later LSHADE also employed 
fitness difference-based weighting schemes to enhance the 
dynamic control of its control parameters. Prevailing popu-
lation size reduction mechanism was another contribution 
in balancing between the exploration and exploitation by 
decreasing the population size in gradual manner. All the 
same, the use of fitness difference between generations in 
LSHADE makes it less effective in problems where fitness 
values cannot be easily derived. Brest et al. introduced jSO 
[36], an enhancement of LSHADE, which incorporated an 
inertia weight (Fw) into the mutation strategy to refine the 
balance between exploration and exploitation further. jSO 
also employed an adaptive mechanism for the elite propor-
tion p and included modifications to the control parameters 
F and CR to enhance optimization performance. When using 
jSO the algorithm shows good performance across a broad 
set of test problems, however, the large number of empirical 
adjustments to the parameters may lead to over fitting thus 
reducing its applicability to other problems. Meng et al. pre-
sented the HARD-DE algorithm [37] which incorporated a 
hierarchical archive in which inferior and historical solutions 
are stored. This mutation strategy that used the archive from 
previous iterations enabled the algorithm to avoid early con-
vergence. HARD-DE also included a slower population size 
reduction scheme to prevent early termination of the search 
process. However, the above hierarchical archive makes the 
algorithm more complex and may increase the computation 
time in larger problems. Although HARD-DE has a slower 
convergence, it has good exploration ability, but with the 
drawback of higher computational load.

Collectively, these DE parameters, and explore versus 
exploit the search space. Their advantages and disadvantages 
have shaped the development of the CS-DE algorithm, which 
aims at expanding on their concept to overcome particular dif-
ficulties in parameter estimation for such systems like PEM.
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New cooperative strategy-based DE (CS-DE) presented in 
[25] improves the population diversity and the performance 
of DE variants in solving numerical optimization problems. 
Key innovations of this model include: First, we proposed 
to extend the mutation strategies set by introducing two 
similar strategies that can share the same set of parameters. 
Secondly, the adoption of a new grouping approach enables 
the adaptive choice of mutation strategies by different indi-
viduals, to create trial vectors. Thirdly, innovative adapta-
tion mechanisms for the control parameters F, CR, and PS, 
alongside a stagnation-triggered re-initialization feature, are 
implemented to further refine the CS-DE algorithm.

The mutation strategy

In the CS-DE algorithm, two analogous mutation strategies 
are utilized, and the specific formulas for these strategies are 
outlined in Eq. 17.

where XG
r2

 and XG
r3

 are vectors randomly chosen from the 
combinations P ∪ A and P ∪ B , respectively, where P is the 
current population, A is an archive of inferior solutions, and 
B is another archive of historical solutions.

The concept of using an external archive for inferior 
solutions was originally introduced in JADE and has since 
proven effective. Further empirical research [44] demon-
strated that an archive of historical solutions generally out-
performs one of inferior solutions on numerous benchmarks. 
As a result, both mutation strategies are preserved in the 
CS-DE framework. Additionally, a minor modification is 
adopted in the mutation strategies Fb , where replaces F in 
the expression (Xp

best,G
− Xi,G) .  Fb operates as a piecewise 

function, akin to that used in jSO, with specifics detailed 
in Eq. 18:

The adaptation scheme for the ratio p, which deter-
mines the proportion of elite individuals within the entire 
population, follows the formulation described in Eq. 11. 

(17)

{
Vi,G = Xi,G + Fb ⋅ (X

p

best,G
− Xi,G) + F ⋅ (Xr1,G

− X̂r2,G
)

Vi,G = Xi,G + Fb ⋅ (X
p

best,G
− Xi,G) + F ⋅ (Xr1,G

− �Xr2,G
)

(18)Fb =

⎧
⎪⎨⎪⎩

0.7 ⋅ F, ifnfe < 0.2 ⋅ nfe
max

0.8 ⋅ F, if0.2 ⋅ nfe
max

≤ nfe < 0.4 ⋅ nfe
max

F, otherwise

Additionally, a time-stamp-based mechanism [34] is inte-
grated into both mutation strategies. This mechanism is 
designed to prevent outdated inferior solutions from per-
sisting in the external archive throughout the evolutionary 
process.

Parameter control

Parameter control is critical for the optimization perfor-
mance of an algorithm within a specified test suite, and 
initial settings often rely on prior knowledge of that suite. 
However, these settings might not be as effective for dif-
ferent optimization challenges. Thus, using standard initial 
values for these control parameters is often advisable. In 
our algorithm, the initial parameter settings for F and CR 
are consistent with those used in the canonical DE and the 
jDE algorithm, with initial values set at F = 0.5 and 
CR = 0.9 . Additionally, a grouping strategy from the 
LPALMDE algorithm [34] is adopted, creating K groups 
during the evolution. Each group has an equal initial selec-
tion probability of 1∕K  . Although initial �CR values are 
u n i f o r m  a c r o s s  g r o u p s  a t 
�
CR

1
= �

CR
2
= ⋯ = �

CRj
= ⋯ = �

CR
= 0.8 , each group maintains 

a unique �CR throughout the evolution. The scale factor F 
for each individual follows a semi-fixed Cauchy distribu-
tion Fi ∼ C(�F, 0.1) , starting with �F at 0.6 . The crossover 
rate CR for individuals in each group is determined by a 
semi-fixed Gaussian distribution CRj ∼ N

(
�CRj

, 0.1
)

 . 
Change rates for F and CR are managed with probabilities 
�1 = �2 = 0.9 , as detailed in Eqs. 19 and 20:

where Fi,G represents the scale factor, and CRji,G indicates 
the crossover rate of the ith individual within the population, 
sorted into the jth group. Within these K groups, half of the 
individuals apply the initial mutation strategy outlined in 
Eq. 17; and the left individuals employ the other mutation 
strategy. If a better offspring (trial vector) is obtained, then 

(19)Fi,G+1 =

{
rand c(𝜇F, 0.1), if rand1 < 𝜏1

Fi,G, otherwise

(20)CRji,G+1 =

⎧⎪⎨⎪⎩

randn(𝜇CRj
, 0.1), if rand2 < 𝜏2&𝜇CRj

≠ 0

0, if rand2 < 𝜏2&𝜇CRj
= 0

CRji,G, otherwise
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the individual is labeled as success individual, otherwise, it 
is labeled as failure individual. The selection probability of 
each group is updated at the end of a generation according 
to the probability shown in Eq. 21:

(21)

⎧⎪⎨⎪⎩

rj =

�
ns2

j

ns⋅(nsj+nf j)
, if nsj > 0

𝜖, otherwise

P(j) =
rj∑K

j=1
(rj)

where symbols retain their definitions as in LPALMDE. 
Subsequently, individuals within the population are redis-
tributed to groups based on stochastic universal selection 
using these selection probabilities.

Additionally, at the conclusion of each generation, the 
�F and �CRj

 for the jth group are updated in accordance 
with Eqs. 22 and 23, respectively:

Fig. 1   Population diversity 
enhancement mechanism
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In this context, S refers to the group of successful indi-
viduals, while SF represents the collection of F values cor-
responding to these successful individuals, and SCR consists 
of the CR values pertinent to the individuals in S . The index 
s identifies the position within set ' (as well as within SF and 
SCR where each individual in ' is also identified by this sth 
position within the overall population. The index ith is used to 
denote the group that has the smallest selection probability.

Population size reduction scheme

Typically, an early sharp reduction in population size during 
the evolutionary process can impair the thorough exploration 
of the search domain, potentially diminishing optimization 
performance [45]. To address this, a gradual decline in popu-
lation size is advised to enhance the exploration capabilities. 
In the CS-DE algorithm, a novel reduction strategy combin-
ing elliptic and linear methods is introduced to adjust the 
population size effectively. The specifics of this reduction 
method are outlined in Eq. 24:

In the CS-DE algorithm, the adjustment of population 
size is strategically depicted with the concept of a pivot 
at position(x, y) , which serves as the junction between 
the elliptic and linear reduction phases. The early phase 

(22)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δfi = f (Ui,G) − f (Xi,G)

ws =
Δfi∑�S�
s=1

Δfs

meanWL(SF) =
∑�S�

s=1
ws⋅S

2

F
(s)

∑�S�
s=1

ws⋅SF(s)

c =
ns

PS

�F =

�
c ⋅ �F + (1 − c) ⋅ (meanWL(SF)), if S ≠ ∅

�F otherwise

(23)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Δfi = f (Ui,G) − f (Xi,G)

ws =
Δfi∑�S�
s=1

Δfi

meanWL(SCR) =
∑�S�

s=1
ws⋅S

2
CR
(s)

∑�S�
s=1

ws⋅SCR(s)

�CRidx,G+1
=

�
meanWL(SCR), ifS ≠ ∅

�CRidx,G
, otherwise

(24)PS =

⎧
⎪⎨⎪⎩

⌈
�

PS2
ini

−
PS2

ini
−y2

x2
⋅ nfe2⌉, if nfe < x

⌈ PSmin−y

nfemax−x
⋅ (nfe − x) + y⌉, otherwise

of evolution utilizes an elliptical approach to reduce the 
population size, transitioning to a linear method in the 
later stages. This adaptive strategy ensures a relatively 
larger initial population compared to the linear approaches 
used in LSHADE [32] and iSO [36]. Such a configuration 
allows the CS-DE algorithm to gain a more comprehensive 
understanding of the objective landscape, thereby enhanc-
ing overall performance.

Population diversity enhancement

Evolutionary algorithms often face stagnation during later 
stages due to reduced population diversity. To mitigate 
this, CS-DE includes a stagnation detection mechanism 
based on a diversity metric, DP , calculated as follows:

Then, the stagnation indicator can be calculated via 
Eq. 26:

In this model, DPini represents the diversity measure 
(DP) at the start of the evolutionary process. Additionally, 
a stagnation counter (ct) tracks the number of consecutive 
generations without improvement. If the reduction ratio of 
diversity RDP is less than a threshold � and the stagnation 
counter exceeds a specified limit N

(
RDP < 𝜉&ct > N

)
 , it 

indicates that the individual is experiencing stagnation. 
Under these conditions, and provided the individual is 
not the current global best, a re-initialization of selected 
dimensions is mandated as outlined in Eq. 27:

In this scenario, R comprises variables randomly chosen 
from the D dimensions, and Xmin ​ and Xmax represent the 
minimum and maximum boundaries of the solution space, 
respectively. Figure 1 illustrates the flowchart detailing 
the mechanism for enhancing population diversity, while 
Algorithm 1 provides the pseudo code for our cooperative 
strategy-based differential evolution (CS-DE ) algorithm.

(25)

�
X =

1

PS
⋅

∑PS

i=1
Xi,G

DP =

�∑PS

i=1
‖Xi,G − X‖2

(26)RDP =
DP

DPini

(27)

Xi,G+1(j) =

{
Xmin(j) + rand() ⋅ (Xmax(j) − Xmin(j)) ifj ∈ R

Xi,G(j) otherwise
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Experimental results for PEMFC parameter 
optimization problem

Experimental setup

Due to its efficiency in maintaining population diversity 
and adaptability through dual mutation strategies, a vari-
ant of the differential evolution (DE) algorithm, CS-DE, is 
used. The adaptability of CS-DE preserves diversity dur-
ing the evolution process and leads to stable convergence. 
The control parameters are specifically tuned to balance 
CS-DE, which reduces complexity. Furthermore, CS-DE 

is compared with nine other DE variants under consistent 
parameter settings (as described in Table 1) to demonstrate 
its effectiveness over a variety of scenarios. the superiority 
of CS-DE algorithm is applied and validated for PEMFC 
parameters optimization. For the validity purpose results 
obtained with CS-DE algorithm are compared with different 
nine variants of DE algorithms taken into consideration, and 
they are the 9 DE variants including PaDE [30], Di-DE [31], 
LSHADE [32], NDE [33], PalmDE [34], PSO-DE [35], jSO 
[36], LPalmDE [34], and HARD-DE [37], and the parameter 
settings of these contrasted algorithms are listed in Table 1.
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Table 1   Default parameter settings of the DE algorithms in the comparison

Algorithms Default settings

PaDE [30] �F = 0.8,�Cr = 0.6,F&CR same as LSHADE,k = 4, p = 0.11,PS = 25log(D)
√
D ∼ 4, rarc = 1.6,T0 = 70, rd = 0.04

Di-DE [31] PS = 10 ⋅ D,F ∼ C
(
�F , 0.1

)
,�F = 0.5,CR ∼ N

(
�CR, 0.1

)
,�CR = 0.5, p = 0.1, rarc = 5,K = 4

LSHADE [32] �F = 0.5,F ∼ C
(
�F , 0.1

)
,�CR = 0.5,CR ∼ C

(
�CR, 0.1

)
,PS = 18 ⋅ D ∼ 4, rrac = 2.6, p = 0.11,H = 6

NDE [33] PSini = 10 ⋅ D,PSmin = 5, gm = 10,F0
loc

= CR0
m
= 0.5, c = 0.1

PalmDE [34] Fj = 0.5,Fji ∼ C(Fj, 0.2),�Cr = 0.5,Cr ∼ N(�Cr, 0.1), k = 8, p = 0.1, a = 1.6,T0 = 70

PSO-DE [35] NP = 100 ,F ∈ [0.9, 1.0]),CR ∈ [0.9,1.0]

jSO [36] F,CR&rrac same as iLSHADE,�F = 0.3,�CR = 0.8,PS = 25 ⋅ lnD ⋅

√
D ∼ 4, p = 0.25 ∼ 0.125,H = 5

LPalmDE [34] Fj = 0.8,Fj,i ∼ C
�
Fj, 0.1

�
,�CR = 0.6,CR ∼ N

�
�CR, 0.1

�
,K = 20,PS = 25 ⋅ lnD ⋅

√
D ∼ 4, p = 0.11, rrac = 1.6,T0 =

Cmax

2

HARD-DE [37] �F = 0.3,�CR = 0.8,F&CR same as LSHADE,p = 0.11,PS = 25 ⋅ lnD ⋅

√
D ∼ 4, rrac,A = 1.6, rrac,B = 3,K = 4

CS-DE [36] �F = 0.6,�CR = 0.8,F&CR same as LSHADE, 
p = 0.25 ∼ 0.05,K = 6, rrac,A = 1.6, rrac,B = 5,NP = 25 ⋅ ln(D) ⋅

√
D ∼ K,T0 =

Cmax

2
,N = 2 ⋅ D,� = 0.001

Table 2   Characteristics of twelves PEMFCs known parameters used in this work

S. no PEMFC type �����(�) ������ A(��2) l(��) T(�) J
���

(��∕��2) P
�2
(���) P

�2
(���) Exp. data source

Case 1 BCS 500 W 500 32 64 178 333 469 1.0 0.2095 [26, 46]
Case 2 NetStack PS6 6000 65 240 178 343 1125 1.0 1.0 [27, 46]
Case 3 SR-12 500 48 62.5 25 323 672 1.47628 0.2095 [27, 46]
Case 4 H-12–1 12 13 8.1 25 323 246.9 0.4935 1.0 [28, 46]
Case 5 Ballard Mark V 5000 35 232 178 343 1500 1.0 1.0 [46]
Case 6 STD −1 250 24 27 127 343 860 1.0 1.0 [29, 46]
Case 7 Horizon 500 36 52 25 338 446 0.55 1.0 [28, 46]
Case 8 STD −2 250 24 27 127 343 860 1.5 1.5 [46]
Case 9 STD −3 250 24 27 127 343 860 2.5 3.0 [46]
Case 10 STD −4 250 24 27 127 353 860 2.5 3.0 [46]
Case 11 H-12–2 12 13 8.1 25 302 246.9 0.4 1.0 [46]
Case 12 H-12–3 13 13 8.1 25 312 246.9 0.5 1.0 [46]

Table 3   Boundaries of the 
unknown parameters

Parameters ξ₁ ξ₂ (× 10⁻3) ξ₃ (× 10⁻5) ξ₄ (× 10⁻4) λ Rc (Ω) b/V 
(× 10⁻2)

LB  − 1.1997 1.0 3.6  − 2.600 14 1.0 1.36
UB  − 0.8532 5.0 9.8  − 0.954 23 8.0 50.00
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As discussed above all algorithms have applied for esti-
mating the parameters of six different modules of fuel cells, 
namely BCS500W [26], NedStackPS6 [27], S12 [27], H12 
[28], HORIZON [28], and Standard250W [29], under vari-
ous operating conditions. The data sheet parameters of these 
commercial PEMFC stacks are given in Table 2. Table 2 lists 
characteristics of each fuel cell model including power, cell 
count, area, temperature, and pressure conditions. Multiple 
experimental sources are combined to acquire data. The 
experimental runs are conducted on a consistent computa-
tional platform: The system was a Windows Server 2019 
environment with an Intel i7-11700k CPU at 3.6 GHz run-
ning MATLAB 2021a. A population size of 40 and a maxi-
mum of 500 iterations are used for each algorithm run, and 
30 independent runs are used to ensure statistical validity. 
The characteristics and sources of experimental data for 
these are provided in Table 2. Experimental data for PEM-
FCs is typically obtained in two ways as described in the 
literature: (1) experimental data recording using hardware 
devices and software during experiments and (2) extracting 
data from figures or plots in references by digitizing. For 
example, [46] presents the experimental data of a commonly 
used 250 W PEMFC in graphs instead of tables. In their 
work [46], provide tabular experimental data for the same 
PEMFC example by digitizing. Tabular experimental data 
for the Temasek 1KW PEMFC in this study is also obtained 
from graphs.

In this study the authors did not directly collect the data 
for PEMFC parameter estimation. Datasets from referenced 
literature sources were used instead. Table 2 specifically 
lists the experimental data sources for different fuel cell 
models, such as power rating, cell count, active area and 
operational parameters. Detailed fuel cell performance data 
(voltage and current measurements) across different operat-
ing conditions were documented in the referenced studies 
[26–28], and [46] and have been used in our analysis for 
model validation. Since we did not use sensors directly, the 
datasets used in this study were obtained from literature. 
The methods and measurement systems used are described 
in the referenced studies [26]–[46], which also describe the 
types of sensors and their accuracies. The referenced stud-
ies provided processed, benchmark datasets that combined 
multiple measurements at different operational points. We 
did not directly record these measurements, but the origi-
nal authors’ methodologies yielded sample rates sufficient 
for PEMFC performance analysis. These measurements 
are made at a frequency and accuracy that are sufficient for 
reliable parameter optimization in this study. Control and 
recording of temperature and other environmental variables 
were carried out according to the conditions mentioned 
in the referenced works. Performance parameters, such as 
temperature, were kept within specified bounds during all 
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measurements, and each dataset is based on measurements 
made under stabilized operating conditions.

Achieve accurate parameter estimation, these vari-
ables are bounded by lower and upper limits (LB and UB) 
determined from experimental data and operational ranges 
shown in Table 3. In the optimization model, the sum of 
squared error (SSE) between the model-predicted and 
experimental voltages is selected as the objective function. 
Boundary constraints apply to each decision variable, and 
performance constraints ensure the solution consistency 
with physical interpretations and operational viability.

CASE1: BCS 500 W PEMFC

In this case 1, the results in Table 4 obtained by the PaDE, 
Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, 
HARD-DE, and CS-DE algorithms for the minimum value 
were 0.0283363, 0.0268846, 0.0254927, 0.0258539, 
0.0255038, 0.0262056, 0.0256168, 0.0254941, 0.0432215, 
and 0.0254927, respectively. Table 4 clearly shows that 
the result with the CS-DE algorithm was 10.03%, 5.18%, 
0.00%, 1.40%, 0.04%, 2.71%, 0.49%, 0.01%, and 41.05% 
lower than the results with the PaDE, Di-DE, LSHADE, 
NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE 
algorithms, respectively. For the maximum value, the results 
of PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, 
jSO, LPalmDE, HARD-DE, and CS-DE were 0.2297341, 

0.0389233, 0.0410172, 0.0380104, 0.029368, 0.0399345, 
0.0265883, 0.025619, 0.3144221, and 0.0255517, respec-
tively. CS-DE outperformed the other algorithms, with an 
88.88%, 34.39%, 37.69%, 32.80%, 12.98%, 36.02%, 3.89%, 
0.26%, and 91.88% improvement over PaDE, Di-DE, 
LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, and 
HARD-DE, respectively. The mean values obtained by 
the PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, 
jSO, LPalmDE, HARD-DE, and CS-DE algorithms were 
0.1287692, 0.0339229, 0.032752, 0.0289628, 0.0262672, 
0.0320765, 0.0258611, 0.0255327, 0.1413252, and 
0.0254986, respectively. CS-DE achieved a 80.2%, 24.87%, 
22.14%, 11.96%, 2.92%, 20.52%, 1.40%, 0.13%, and 81.96% 
lower mean value compared to PaDE, Di-DE, LSHADE, 
NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-
DE, respectively. For standard deviation, the results were 
0.0627659, 0.0039831, 0.0072419, 0.0036685, 0.0011713, 
0.0042286, 0.0002784, 4.506E-05, 0.0719412, and 
1.864E − 05, respectively. CS-DE outperformed the other 
algorithms by 99.97%, 99.53%, 99.74%, 99.49%, 98.41%, 
99.56%, 93.31%, 58.63%, and 99.97%, respectively. For 
runtime (RT), CS-DE achieved the best value of 0.9768777 
compared to 11.685302, 8.3579428, 5.7300561, 6.2728277, 
12.187649, 7.942668, 11.832532, 10.54944, and 14.681784 
for PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, 
LPalmDE, and HARD-DE, respectively. CS-DE was faster 
by 91.64%, 88.31%, 82.95%, 84.43%, 91.99%, 87.70%, 
91.74%, 90.74%, and 93.35%, respectively. Finally, for the 
Friedman rank (FR), CS-DE achieved a rank of 1, which was 
88.24%, 85.29%, 83.05%, 82.14%, 74.36%, 85.51%, 74.36%, 
54.55%, and 89.69% better than PaDE, Di-DE, LSHADE, 
NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE, 
respectively.

In the analysis of the BCS 500 W PEMFC parameter 
optimization, the CS-DE algorithm demonstrates superior 
performance compared to several other differential evolution 
variants, such as PaDE, L-SHADE, and Di-DE. A primary 
factor in this comparison is computational efficiency, where 
CS-DE stands out with a runtime of 0.9768777 s, which is 
significantly faster than PaDE (11.685302 s) and L-SHADE 
(5.7300561 s) as shown in Table 5. This substantial reduc-
tion in computational time not only enhances the algorithm 
suitability for scenarios requiring rapid solutions but also 
indicates its capability for resource-efficient optimization. 
Such efficiency makes CS-DE an optimal choice in indus-
trial applications where real-time solutions are crucial.

When evaluating stability, CS-DE also had a better out-
come than the other algorithms. The standard deviation 
(1.86E − 05) of its results is the lowest amongst all the evalu-
ated algorithms, thus pointing to low variance across runs. 
This indicates that CS-DE is inherently accurate and uniform 
in its outcomes, which is important given the sensitivity of 
PEMFC parameters. Other algorithms including Di-DE and 

Table 5   Performance metrics of CS-DE algorithm for CASE1

AEv (A) RE % MBE

2.7820 × 10−3 9.5931 × 10−3 4.300 × 10−7

4.0637 × 10−3 1.54456 × 10−2 9.174 × 10−7

3.5563 × 10−3 1.41743 × 10−2 7.026 × 10−7

4.6227 × 10−3 1.90625 × 10−2 1.187 × 10−6

5.4196 × 10−3 2.31906 × 10−2  1.632 × 10−6

1.4619 × 10−2 6.47745 × 10−2 1.187 × 10−5

1.1332 × 10−2 5.13719 × 10−2 7.135 × 10−6

8.4691 × 10−3 3.89383 × 10−2 3.985 × 10−6

1.1268 × 10−2 5.25338 × 10−2 7.054 × 10−6

1.02252 × 10−1 4.84836 × 10−1 5.809 × 10−4

1.4516 × 10−2 7.01940 × 10−2 1.171 × 10−5

1.0993 × 10−2 5.43676 × 10−2 6.714 × 10−6

1.0950 × 10−2 5.5419 × 10−2 6.662 × 10−6

6.0325 × 10−3 3.11598 × 10−2 2.022 × 10−6

6.4744 × 10
−3 3.43289 × 10−2 2.329 × 10−6

4.7290 × 10−3 2.58838 × 10−2 1.242 × 10−6

3.3193 × 10−3 1.84918 × 10−2 6.121 × 10−7

7.1145 × 10−3 4.11244 × 10−2 2.812 × 10−6

1.29176 × 10−2 6.13828 × 10−2 3.610 × 10−5
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Fig. 2   CS-DE algorithm characteristic curves of CASE1. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 3   Optimized parameters, Friedman rank, and runtime comparison for CASE1 algorithms



	 Ionics

L-SHADE are observed to be less stable, suggesting fluctu-
ating performance in multiple runs.

The CS-DE has the highest mean SSE of 0.0254986 
which is the best among the compared algorithms which 
shows for instance, Di-DE gets a mean SSE of 0.0339229 
while L-SHADE gets 0.032752 (Table 4). Such level of error 
control is important in the context of PEMFCs performance 
and its operational parameters, to ensure that systems work 
to the best of their capacity and with the expected reliability.

The Friedman rank (FR) also supports the This ranking 
further supports CS-DE performance given that it is the 
best algorithm for this optimization task across all the study 
metrics.

Furthermore, the experimental and estimated data in 
Table 5 clearly illustrate the ability of CS-DE in predict-
ing PEMFC parameters. The absolute errors between the 
experimental and estimated values for current are also rela-
tively low and range between 0.00257 and 0.02087 A with 
an average of 0.0129176 A and relative error ranging from 
0.01529 to 0.12913% with an average of 0.0613828%. These 
metrics further illustrate the CS-DE algorithm capability to 
closely match real-world experimental data, reinforcing its 
robustness in practical applications.

V-I, P–V, and error curves, convergence behavior, and a 
statistical box plot are shown in Fig. 2 to illustrate CS-DE 
accuracy in parameter estimation and its ability to consist-
ently minimize error. The optimized parameter values (min, 
max, and mean), Friedman rank, and runtime of each algo-
rithm are shown in Fig. 3. CS-DE is robust across scenarios 
and demonstrates the lowest FR rank, runtime and lowest 
variation, and highest consistency.

CASE2: NetStack PS6 PEMFC

In this case 2, the results in Table 6 obtained by the PaDE, 
Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, 
HARD-DE, and CS-DE algorithms for the minimum 
value were 0.2753283, 0.276104, 0.2752105, 0.2752659, 
0.2752676, 0.2754132, 0.275635, 0.2758192, 0.3092434, 
and 0.2752105, respectively. Table 6 shows that the result 
with the CS-DE algorithm was 0.04%, 0.32%, 0.00%, 0.02%, 
0.02%, 0.07%, 0.15%, 0.22%, and 11.00% lower than the 
results with the PaDE, Di-DE, LSHADE, NDE, PalmDE, 
PSO-DE, jSO, LPalmDE, and HARD-DE algorithms, 
respectively. For the maximum value, the results of PaDE, 
Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, 
HARD-DE, and CS-DE were 1.1218268, 0.3408987, 
0.3360206, 0.3095715, 0.29778, 0.3138852, 0.2766637, 
0.2971678, 1.2789887, and 0.2758716, respectively. CS-DE 
outperformed the other algorithms, showing a 75.41%, 
19.06%, 17.87%, 10.89%, 7.35%, 12.10%, 0.29%, 7.17%, 
and 78.43% improvement over PaDE, Di-DE, LSHADE, 
NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE, Ta
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respectively. The mean values obtained by the PaDE, 
Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, 
HARD-DE, and CS-DE algorithms were 0.4392358, 
0.3079869, 0.2863009, 0.2846798, 0.2853486, 0.287524, 
0.2760853, 0.280516, 0.5063065, and 0.2752766, respec-
tively. CS-DE achieved a 37.32%, 10.60%, 3.86%, 3.29%, 
3.52%, 4.27%, 0.29%, 1.87%, and 45.65% lower mean value 
compared to PaDE, Di-DE, LSHADE, NDE, PalmDE, 
PSO-DE, jSO, LPalmDE, and HARD-DE, respectively. For 
standard deviation, the results were 0.2719574, 0.0191607, 
0.0224584, 0.0141157, 0.0089032, 0.0137947, 0.0002776, 
0.0068799, 0.2944166, and 0.0002091, respectively. CS-DE 
outperformed the other algorithms by 99.92%, 98.91%, 
99.07%, 98.52%, 97.65%, 98.48%, 24.67%, 96.96%, and 
99.93%, respectively. For runtime (RT), CS-DE achieved the 
best value of 0.2289158 compared to 8.9136077, 8.4741483, 
7.5203771, 8.0773615, 16.413646, 8.4283155, 8.6092201, 
10.21943, and 16.694281 for PaDE, Di-DE, LSHADE, 

NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE, 
respectively. CS-DE was faster by 97.43%, 97.30%, 96.96%, 
97.16%, 98.61%, 97.28%, 97.34%, 97.76%, and 98.63%, 
respectively. Finally, for the Friedman rank (FR), CS-DE 
achieved a rank of 1.4, which was 82.28%, 81.58%, 65.00%, 
66.67%, 73.58%, 76.27%, 64.10%, 73.08%, and 85.42% bet-
ter than PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, 
jSO, LPalmDE, and HARD-DE, respectively.

In the optimization of parameters for the NetStack PS6 
PEMFC, the CS-DE algorithm demonstrates strong con-
sistency and stability in comparison to other differential 
evolution variants. Notably, CS-DE maintains tight clusters 
around its minimum and maximum performance scores, 
with a minimum value of 0.2752105 and a maximum of 
0.2758716. This narrow range, paired with a remarkably 
low standard deviation of 0.0002091, indicates superior sta-
bility and reliability (Table 6). In contrast, algorithms like 
PaDE and HARD-DE display much higher variability, with 
standard deviations of 0.2719574 and 0.2944166, respec-
tively, suggesting that CS-DE consistently outperforms its 
counterparts under varying conditions.

CS-DE achieves a mean value of 0.2752766, which is 
very close to its minimum score, further reinforcing its abil-
ity to maintain near-optimal performance across multiple 
runs. This level of precision is vital for industrial applica-
tions where reliability is crucial. Moreover, CS-DE out-
shines other algorithms in terms of Friedman Rank, achiev-
ing a rank of 1.4, while algorithms like PaDE and L-SHADE 
fall behind with ranks of 7.9 and 4, respectively.

In terms of computational efficiency, CS-DE runtime 
of 16.694281 s is notably longer than several other algo-
rithms, such as HARD-DE, which completes in 0.2289158 s 
(Table 6). However, this extended runtime can be attributed 
to CS-DE thorough search process, which enables it to main-
tain a competitive edge in accuracy and overall performance. 
For applications requiring highly reliable and precise solu-
tions, this trade-off between speed and accuracy is accept-
able, as CS-DE offers superior stability and optimal results.

The precision of CS-DE in modeling PEMFC parame-
ters is further demonstrated by the close alignment between 
experimental and estimated values across various current 
levels in Table 7. The algorithm consistently maintains low 
absolute error values, with an average of 0.2112218 A and 
an average relative error of 0.4538614%, underscoring its 
robustness in practical applications. The mean bias error 
(MBE) also remains minimal, with most errors being on 
the micro-scale, showcasing the algorithm ability to closely 
mimic real-world data.

V-I, P–V, and error curves, convergence behavior, and a 
statistical box plot are shown in Fig. 4 to illustrate CS-DE 
accuracy in parameter estimation and its ability to consist-
ently minimize error. The optimized parameter values (min, 

Table 7   Performance metrics of CS-DE algorithm for CASE2

AEv (A) RE % MBE

0.6871025 1.1147023 0.0162797
0.1839248 0.3087541 0.0011665
0.0830142 0.1408452 0.0002376
0.0675332 0.1173674 0.0001573
0.1049744 0.184814 0.0003800
0.1069430 0.1905273 0.0003944
0.0919471 0.1664803 0.0002915
0.0569873 0.1042578 0.000112
0.0088833 0.0165702 2.721E − 06
0.0726635 0.137464 0.0001821
0.4743935 0.9138769 0.0077603
0.1945859 0.3799023 0.0013056
0.2332623 0.4697186 0.0018763
0.3589724 0.7325968 0.0044435
0.1008158 0.2093787 0.0003505
0.1374175 0.2891783 0.0006512
0.0271492 0.0576415 2.542E − 05
0.1969212 0.4236687 0.0013372
0.1746748 0.3825553 0.0010521
0.0255307 0.0569246 2.248E − 05
0.1831352 0.4139584 0.0011565
0.5657137 1.3326589 0.0110356
0.4975319 1.1942676 0.0085358
0.3675286 0.9034626 0.0046578
0.2795602 0.6973315 0.002695
0.1541499 0.3901542 0.0008194
0.0301449 0.0778334 3.133E − 05
0.1942051 0.5090567 0.0013005
0.4657674 1.2460338 0.0074807
0.2112218 0.4538614 0.0026118
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max, and mean), Friedman rank, and runtime of each algo-
rithm are shown in Fig. 5.

CASE3: SR‑12 PEMFC

In this case 3, the results in Table 8 obtained by the PaDE, 

Fig. 4   CS-DE algorithm characteristic curves of CASE2. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 5   Optimized parameters, Friedman rank, and runtime comparison for CASE2 algorithms
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Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, 
HARD-DE, and CS-DE algorithms for the minimum value 
were 0.2458191, 0.2423892, 0.2422841, 0.2423988, 
0.2423432, 0.2427067, 0.2423502, 0.2422905, 0.2642945, 
and 0.2422841, respectively. Table 8 shows that the result 
with the CS-DE algorithm was 1.44%, 0.04%, 0.00%, 
0.05%, 0.02%, 0.17%, 0.03%, 0.00%, and 8.32% lower 
than the results with the PaDE, Di-DE, LSHADE, NDE, 
PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE algo-
rithms, respectively. For the maximum value, the results 
of PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, 
jSO, LPalmDE, HARD-DE, and CS-DE were 0.5275828, 
0.2460415, 0.2463869, 0.2457577, 0.2430344, 0.2474108, 
0.2425383, 0.2425416, 0.5883347, and 0.2429272, respec-
tively. CS-DE outperformed the other algorithms, showing a 
53.96%, 1.27%, 1.41%, 1.15%, 0.04%, 1.82%, 0.16%, 0.16%, 
and 58.71% improvement over PaDE, Di-DE, LSHADE, 
NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE, 
respectively. The mean values obtained by the PaDE, Di-DE, 
LSHADE, NDE, PalmDE, PSO-DE, jSO, LPalmDE, HARD-
DE, and CS-DE algorithms were 0.3860373, 0.2438574, 
0.2442682, 0.2442493, 0.2425717, 0.2448369, 0.2424429, 
0.2423323, 0.4401371, and 0.2424127, respectively. CS-DE 
achieved a 37.21%, 0.59%, 0.76%, 0.75%, 0.07%, 0.99%, 
0.01%, 0.05%, and 44.92% lower mean value compared to 
PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, jSO, 
LPalmDE, and HARD-DE, respectively. For standard devi-
ation, the results were 0.0898295, 0.0011439, 0.0017559, 
0.0013061, 0.0002141, 0.0019047, 7.068E-05, 7.587E − 05, Ta
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Table 9   Performance metrics of CS-DE algorithm for CASE3

AEv (A) RE % MBE

0.170794 0.3956312 0.0016206
0.0499376 0.1213846 0.0001385
0.1755033 0.4377732 0.0017112
0.1828632 0.4683997 0.0018577
0.0565507 0.1488569 0.0001777
0.0654787 0.1765877 0.0002382
0.0498901 0.1384681 0.0001383
0.0186516 0.0530025 1.933E − 05
0.1720727 0.5050564 0.0016449
0.2631104 0.7968213 0.0038459
0.2306845 0.7199892 0.0029564
0.0376779 0.1207627 7.887E − 05
0.3273558 1.0985093 0.0059534
0.0428819 0.1480727 0.0001022
0.6622591 2.3551176 0.0243659
0.3082114 1.1719064 0.0052775
0.075147 0.3123317 0.0003137
0.3856179 1.8019528 0.0082612
0.1819271 0.6094791 0.0032612
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Fig. 6   CS-DE algorithm characteristic curves of CASE3. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 7   Optimized parameters, Friedman rank, and runtime comparison for CASE3 algorithms
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0.1064393, and 0.0002712, respectively. CS-DE outper-
formed the other algorithms by 99.70%, 76.29%, 84.56%, 
79.23%, 26.65%, 85.76%, 62.02%, 64.26%, and 99.75%, 
respectively. For runtime (RT), CS-DE achieved the best 
value of 0.2907239 compared to 6.6840992, 6.1639239, 
5.1423761, 5.4583498, 11.730111, 6.201185, 6.1969051, 
7.7877861, and 12.201199 for PaDE, Di-DE, LSHADE, 
NDE, PalmDE, PSO-DE, jSO, LPalmDE, and HARD-DE, 
respectively. CS-DE was faster by 95.65%, 95.28%, 94.35%, 
94.67%, 97.52%, 95.31%, 95.31%, 96.27%, and 97.62%, 
respectively. Finally, for the Friedman rank (FR), CS-DE 
achieved a rank of 1.7, which was 81.91%, 71.19%, 71.19%, 
74.63%, 57.50%, 75.36%, 43.33%, 15.00%, and 82.10% bet-
ter than PaDE, Di-DE, LSHADE, NDE, PalmDE, PSO-DE, 
jSO, LPalmDE, and HARD-DE, respectively.

While optimizing parameter for SR-12 W PEMFC, the 
CS-DE algorithm again demonstrates exceptional preci-
sion and stability, with a minimum value of 0.2422841 and 
a maximum of 0.2429272, showing low variability across 
runs. Its mean value of 0.2424127 is closely aligned with 
its minimum, supported by an exceptionally low standard 
deviation of 0.0002712 as shown in Table 8, significantly 
outperforming other algorithms like LSHADE and PaDE 
in terms of reliability. Despite a short runtime of only 
0.2907239 s, CS-DE ranks second in the Friedman rank 
with a score of 1.7, emphasizing its competitive efficiency 
and accuracy. Competitors such as PalmDE and HARD-
DE take significantly longer to complete, with runtimes of 
11.730111 and 12.201199 s, respectively.Ta
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Table 11   Performance metrics of CS-DE algorithm for CASE4

AEv (A) RE % MBE

0.1755287 1.832241 0.0017117
0.0155319 0.1648821 1.34E − 05
0.0346961 0.3750932 6.688E − 05
0.1240069 1.3479007 0.0008543
0.1421092 1.5633574 0.0011219
0.1072871 1.1987385 0.0006395
0.0871402 0.9846356 0.0004219
0.061316 0.701556 0.0002089
0.0484139 0.5596982 0.0001302
0.0333924 0.3951759 6.195E − 05
0.0388661 0.4621419 8.392E − 05
0.1413828 1.7241809 0.0011105
0.1526616 1.8800685 0.0012948
0.1211975 1.4944204 0.000816
0.0875137 1.0871269 0.0004255
0.038855 0.4862951 8.387E − 05
0.0373984 0.4704201 7.77E − 05
0.1625878 2.0477055 0.0014686
0.0894381 1.043091 0.0005884
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Fig. 8   CS-DE algorithm characteristic curves of CASE4. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 9   Optimized parameters, Friedman rank, and runtime comparison for CASE4 algorithms
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In Table 9, CS-DE maintains low absolute error values 
and an average relative error of 0.6094791%, indicating 
its high precision in modeling PEMFC parameters. These 
results highlight the algorithm balance of speed and accu-
racy, making it an ideal choice for real-time optimization in 
industrial applications.

V-I, P–V, and error curves, convergence behavior, and a 
statistical box plot are shown in Fig. 6 to illustrate CS-DE 
accuracy in parameter estimation and its ability to consist-
ently minimize error. The optimized parameter values (min, 
max, and mean), Friedman rank, and runtime of each algo-
rithm are shown in Fig. 7.

CASE4: H‑12–1 PEMFC

Table 10 results demonstrate the result obtain for optimiza-
tion of parameters for the H-12–1 PEMFC. This result makes 
the CS-DE algorithm distinguishes itself through exceptional 
stability and precision, significantly outperforming other dif-
ferential evolution strategies. With a minimal standard devia-
tion of 7.86E − 17 across runs, CS-DE exhibits unparalleled 
consistency compared to algorithms such as HARD-DE, which 
has a much higher standard deviation of 0.0046026. This low 
variability demonstrates CS-DE ability to provide highly reli-
able and repeatable results, crucial for sensitive optimization 
tasks. CS-DE also achieves the top Friedman rank of 1.3, 
highlighting its superior performance compared to its counter-
parts. In contrast, algorithms like PaDE and NDE trail behind, 
with ranks of 7.8 and 7, respectively. The close alignment of 
CS-DE minimum (0.1029149) and maximum (0.1029149) 
values further underscores its precision, with minimal fluctua-
tions between runs, making it a robust choice for optimization Ta
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Table 13   Performance metrics of CS-DE algorithm for CASE5

AEv (A) RE % MBE

0.0169093 0.0719544 1.906E − 05
0.2486896 1.1566957 0.0041231
0.2598219 1.2674239 0.0045005
0.2095847 1.0531897 0.0029284
0.1024599 0.5254355 0.0006999
0.0927381 0.4880952 0.0005734
0.119649 0.6467511 0.0009544
0.0772374 0.4339182 0.0003977
0.2759021 1.5948098 0.0050748
0.0746532 0.460822 0.0003715
0.0982900 0.6181759 0.0006441
0.0936677 0.6043076 0.0005849
0.0511496 0.3387388 0.0001744
0.1218031 0.8342681 0.0009891
0.0290513 0.2105164 5.627E − 05
0.1247738 0.6870068 0.0014728
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problems where stability is paramount. In terms of runtime, 
CS-DE completes the optimization task in just 0.1114574 s, 
far surpassing the runtime of more computationally intensive 

algorithms such as HARD-DE, which requires 12.066956 s to 
finish. This remarkable speed, coupled with CS-DE consistent 
performance, makes it ideal for time-sensitive applications.

Fig. 10   CS-DE algorithm characteristic curves of CASE5. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 11   Optimized parameters, Friedman rank, and runtime comparison for CASE5 algorithms
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As shown in Table 11, CS-DE maintains low absolute 
error values with an average relative error of 1.043091%, 
further proving its accuracy in estimating PEMFC param-
eters, making it a preferred solution for industrial-level opti-
mization. V-I, P–V, and error curves, convergence behavior, 
and a statistical box plot are shown in Fig. 8 to illustrate 
CS-DE accuracy in parameter estimation and its ability to 
consistently minimize error. The optimized parameter values 
(min, max, and mean), Friedman rank, and runtime of each 
algorithm are shown in Fig. 9.

CASE5: Ballard Mark V PEMFC

In the optimization of the Ballard Mark V PEMFC, the 
CS-DE algorithm consistently outperforms other differen-
tial evolution variants, demonstrating exceptional stability 
across all metrics. From Table 12, it can be seen that CS-DE 
records the lowest minimum, maximum, and mean values at 
0.1486318, with no variation between them. This consistency 
is supported by an extraordinarily low standard deviation of 
2.83E − 16, significantly lower than other algorithms such as 
LSHADE and Di-DE, which exhibit higher variability, with 
standard deviations of 0.0005772 and 0.003561, respectively. 
Despite a longer runtime of 11.001723 s, CS-DE superior 
precision justifies the time investment, especially when com-
pared to faster algorithms like HARD-DE with a runtime of 
0.1076193 s, but much higher variability. CS-DE achieves 
the best Friedman Rank of 1, highlighting its superior perfor-
mance across all metrics. In Table 13, CS-DE demonstrates 
high accuracy with low absolute errors and an average relative 
error of 0.6870068%, showcasing its reliability in estimating 
PEMFC parameters. The combination of stability, precision, 
and consistent results makes CS-DE an ideal choice for appli-
cations requiring minimal variance in outcomes, making it the Ta
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Table 15   Performance metrics of CS-DE algorithm for CASE6

AEv (A) RE % MBE

0.3446957 1.1736318 0.0091396
0.1485977 0.5549372 0.0016986
0.2846644 1.1255897 0.0062334
0.3183396 1.3110184 0.0077954
0.2704561 1.1549069 0.0056267
0.1623745 0.7140759 0.0020281
0.0154675 0.0701204 1.84E − 05
0.1347336 0.6300039 0.0013964
0.2584281 1.2471358 0.0051373
0.3379988 1.6877999 0.0087879
0.3445644 1.7547272 0.0091327
0.2649755 1.3806697 0.0054009
0.4855086 2.6013624 0.0181322
0.2592926 1.1850753 0.0061944
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top-performing algorithm in this evaluation. V-I, P–V, and 
error curves, convergence behavior, and a statistical box plot 
are shown in Fig. 10 to illustrate CS-DE accuracy in parameter 

estimation and its ability to consistently minimize error. The 
optimized parameter values (min, max, and mean), Friedman 
rank, and runtime of each algorithm are shown in Fig. 11.

Fig. 12   CS-DE algorithm characteristic curves of CASE6 a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 13   Optimized parameters, Friedman rank, and runtime comparison for CASE6 algorithms
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CASE6: STD‑1 PEMFC

In the STD-1 PEMFC optimization, the CS-DE algo-
rithm demonstrates exceptional stability and precision. 
As shown in Table 14, CS-DE achieves the lowest mini-
mum, maximum, mean, and standard deviation values, all 
at 0.2837738, indicating minimal variability and superior 
reliability, with a standard deviation of 2.04E − 16. This 
performance significantly outshines other algorithms like 
LSHADE and Di-DE. Additionally, CS-DE completes its 
task in just 0.09565 s, making it the fastest among all the 
algorithms tested, further reinforcing its efficiency. The 
Friedman rank of 1.2 solidifies CS-DE position as a top per-
former across all metrics. As seen in Table 15, CS-DE also 
delivers low absolute error values and an average relative 
error of 1.1850753%, demonstrating its accuracy in mod-
eling PEMFC parameters. These results establish CS-DE 
as the optimal choice for applications that demand both 
precision and speed in optimization tasks, confirming its 
dominance in this evaluation. V-I, P–V, and error curves, 
convergence behavior and a statistical box plot are shown 
in Fig. 12 to illustrate CS-DE accuracy in parameter estima-
tion and its ability to consistently minimize error. The opti-
mized parameter values (min, max, and mean), Friedman 
rank, and runtime of each algorithm are shown in Fig. 13.

CASE7: HORIZON PEMFC

As seen in Table 16, CS-DE achieves the lowest minimum, 
maximum, and mean values, all at 0.1217552, paired with an 
extraordinarily low standard deviation of 5.43E − 16, indi-
cating minimal variability for case 7. With a Friedman rank Ta
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Table 17   Performance metrics of CS-DE algorithm for CASE7

AEv (A) RE % MBE

0.1270107 0.5597256 0.0010754
0.1715627 0.8498712 0.0019622
0.0349552 0.1812119 8.146E − 05
0.1059533 0.5708478 0.0007484
0.0360279 0.198302 8.653E − 05
0.0544565 0.3073236 0.0001977
0.0105944 0.0613421 7.483E − 06
0.0427669 0.2602995 0.0001219
0.0248454 0.1582422 4.115E − 05
0.0830911 0.5542845 0.0004603
0.2198183 1.5000362 0.0032213
0.1172164 0.8350296 0.000916
0.0596003 0.4516437 0.0002368
0.2821694 2.347753 0.005308
0.0734411 0.7249285 0.0003596
0.096234 0.6373894 0.0009883
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Fig. 14   CS-DE algorithm characteristic curves of CASE7. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 15   Optimized parameters, Friedman rank, and runtime comparison for CASE7 algorithms
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of 1.1, it stands out as the top performer across all tested 
algorithms. In terms of computational speed, CS-DE com-
pletes the task in just 0.1031519 s, significantly faster than 
algorithms like HARD-DE and LPalmDE, which have runt-
imes of 11.061653 s and 6.6461541 s, respectively. Table 17 
further illustrates CS-DE precision, with an average relative 
error of 0.6373894% and consistently low absolute errors, 
making it the most reliable choice for scenarios demanding 
high accuracy and efficiency. V-I, P–V, and error curves, 
convergence behavior, and a statistical box plot are shown in 
Fig. 14 to illustrate CS-DE accuracy in parameter estimation 
and its ability to consistently minimize error. The optimized 
parameter values (min, max, and mean), Friedman rank, and 
runtime of each algorithm are shown in Fig. 15.

CASE8: STD‑2 PEMFC

In the comparative analysis of various differential evolution 
algorithms as shown in Table 18, CS-DE consistently show-
cases its exceptional performance across all metrics. As seen 
in Table 18, CS-DE achieves the lowest minimum, maxi-
mum, and mean values at 0.0784922, with an exceptionally 
low standard deviation of 1.50E − 16, indicating minimal 
variability across runs. With a Friedman rank of 1, CS-DE 
secures its position as the top-performing algorithm. Addi-
tionally, its runtime of 0.1009381 s is the fastest among all 
tested algorithms, reinforcing its computational efficiency.

Table 19 further highlights CS-DE accuracy, showing low 
absolute errors and an average relative error of 0.3734617%, 
confirming its reliability in estimating PEMFC parameters. 
This combination of speed, precision, and stability makes 
CS-DE a robust choice for high-precision optimization Ta
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Table 19   Performance metrics of CS-DE algorithm for CASE8

AEv (A) RE % MBE

0.0543705 0.2336406 0.0001971
0.0793024 0.3771276 0.0004193
0.0431342 0.2148674 0.000124
0.0321293 0.1655985 6.882E − 05
0.0030114 0.0159359 6.046E − 07
0.0714099 0.3859013 0.00034
0.0268375 0.1486339 4.802E − 05
0.040381 0.2335554 0.0001087
0.0077687 0.0470697 4.024E − 06
0.0487684 0.3102393 0.0001586
0.0256133 0.1671114 4.374E − 05
0.0659755 0.4401095 0.0002902
0.1436286 0.9876746 0.0013753
0.2068756 1.5223981 0.0028532
0.0440901 0.3520618 0.0001296
0.0595531 0.3734617 0.0004107
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tasks. V-I, P–V, and error curves, convergence behavior 
and a statistical box plot are shown in Fig. 16 to illustrate 
CS-DE accuracy in parameter estimation and its ability to 

consistently minimize error. The optimized parameter values 
(min, max, and mean), Friedman rank, and runtime of each 
algorithm are shown in Fig. 17.

Fig. 16   CS-DE algorithm characteristic curves of CASE8. a V-I, P–V, and error curve. b Convergence Curve, (c) Box-Plot

Fig. 17   Optimized parameters, Friedman rank, and runtime comparison for CASE8 algorithms



Ionics	

CASE9: STD‑3 PEMFC

For case 9 analysis as well, CS-DE consistently showcases 
superior stability and precision. As shown in Table 20, 
CS-DE achieves the lowest minimum, maximum, and mean 
values, all at 0.2023192, highlighting its minimal variabil-
ity and robustness across runs. With an impressively low 
standard deviation of 4.34E − 16, CS-DE outperforms its 
counterparts by a significant margin, confirming its con-
sistency and accuracy. Additionally, CS-DE completes the 
task in just 0.1027052 s, the fastest among all algorithms 
tested, further solidifying its efficiency. The Friedman rank 
of 1.15 reinforces CS-DE top placement in performance 
metrics. As detailed in Table 21, CS-DE maintains low 
absolute error values, with an average relative error of 
1.0766367%, making it a reliable choice for applications 
requiring both precision and speed in optimization tasks. 
V-I, P–V, and error curves, convergence behavior, and a 
statistical box plot are shown in Fig. 18 to illustrate CS-DE 
accuracy in parameter estimation and its ability to con-
sistently minimize error. The optimized parameter values 
(min, max, and mean), Friedman rank, and runtime of each 
algorithm are shown in Fig. 19.

CASE10: STD‑4 PEMFC

Similar to previous cases, CS-DE excels in optimizing the 
STD-4 PEMFC across all metrics. As shown in Table 22, it 
achieves the lowest minimum, maximum, and mean values, 
all recorded at 0.1044462, reflecting its superior precision. 
With a standard deviation of 2.84E-15, CS-DE demonstrates 
exceptional stability, with minimal variability across runs. Ta

bl
e 

20
  

O
pt

im
iz

ed
 p

ar
am

et
er

s a
nd

 o
pt

im
al

 fu
nc

tio
n 

va
lu

e 
fo

r C
A

SE
9

A
lg

or
ith

m
Pa

D
E

D
i-D

E
LS

H
A

D
E

N
D

E
Pa

lm
D

E
PS

O
-D

E
jS

O
LP

al
m

D
E

H
A

R
D

-D
E

C
S-

D
E

� 1
 −

 1.
17

08
39

1
 −

 0.
85

77
74

2
 −

 1.
19

30
58

1
 −

 0.
86

61
49

7
 −

 1.
13

80
55

5
 −

 0.
85

59
49

9
 −

 0.
99

91
75

4
 −

 0.
91

63
81

 −
 0.

97
40

60
8

 −
 0.

96
67

41
� 2

0.
00

31
96

3
0.

00
18

86
4

0.
00

29
65

0.
00

23
11

4
0.

00
30

04
4

0.
00

19
90

1
0.

00
29

87
7

0.
00

24
01

7
0.

00
28

34
4

0.
00

23
51

4
� 3

6.
91

5E
 −

 05
3.

83
3E

 −
 05

4.
61

6E
 −

 05
6.

93
1E

 −
 05

6.
16

2E
 −

 05
4.

67
1E

 −
 05

9.
17

1E
 −

 05
6.

5E
 −

 05
8.

44
5E

 −
 05

4.
97

4E
 −

 05
� 4

 −
 0.

00
01

2
 −

 0.
00

01
20

8
 −

 0.
00

01
20

8
 −

 0.
00

01
21

 −
 0.

00
01

20
8

 −
 0.

00
01

19
1

 −
 0.

00
01

20
5

 −
 0.

00
01

20
8

 −
 0.

00
01

22
3

 −
 0.

00
01

20
8

�
23

23
23

22
.9

94
82

23
22

.9
13

28
5

23
22

.9
99

61
8

21
.7

46
32

6
23

R
c

0.
00

01
0.

00
01

0.
00

01
0.

00
01

02
5

0.
00

01
0.

00
02

19
3

0.
00

01
0.

00
01

00
3

0.
00

05
53

3
0.

00
01

B
0.

06
27

19
8

0.
06

24
79

1
0.

06
24

79
9

0.
06

23
79

8
0.

06
24

79
4

0.
06

22
20

5
0.

06
25

27
8

0.
06

24
67

3
0.

05
90

85
6

0.
06

24
79

9
M

in
0.

20
24

16
0.

20
23

19
3

0.
20

23
19

2
0.

20
23

58
4

0.
20

23
19

3
0.

20
33

61
8

0.
20

23
27

0.
20

23
21

3
0.

21
64

38
8

0.
20

23
19

2
M

ax
0.

22
51

20
6

0.
20

76
99

4
0.

20
96

98
6

0.
20

70
41

5
0.

20
24

21
0.

22
04

88
2

0.
20

29
69

1
0.

20
23

51
4

0.
39

17
15

5
0.

20
23

19
2

M
ea

n
0.

20
95

08
1

0.
20

43
19

7
0.

20
60

08
9

0.
20

35
66

8
0.

20
23

41
8

0.
20

62
04

1
0.

20
25

47
4

0.
20

23
28

1
0.

28
74

54
7

0.
20

23
19

2
St

d
0.

00
68

42
2

0.
00

20
19

2
0.

00
38

89
3

0.
00

16
29

2
3.

35
6E

 −
 05

0.
00

53
77

7
0.

00
02

13
1

8.
87

7E
 −

 06
0.

05
90

50
6

4.
34

2E
 −

 16
RT

5.
80

85
38

1
5.

44
10

13
6

4.
54

88
47

1
4.

82
04

22
4

10
.4

01
66

6
5.

58
69

88
8

5.
73

78
02

8
6.

62
53

05
8

11
.1

26
99

0.
10

27
05

2
FR

7.
9

6.
3

5.
25

6
3.

4
7.

4
4.

8
3

9.
8

1.
15

Table 21   Performance metrics of CS-DE algorithm for CASE9

AEv (A) RE % MBE

0.0057891 0.0269087 2.234E − 06
0.0957913 0.4869003 0.0006117
0.0529961 0.2831683 0.0001872
0.1308161 0.7289878 0.0011409
0.0431608 0.2459347 0.0001242
0.0009236 0.0053843 5.687E − 08
0.0743136 0.4454106 0.0003682
0.1279056 0.8056945 0.0010907
0.0709042 0.4682899 0.0003352
0.1111188 0.7682757 0.0008232
0.2285785 1.6226198 0.0034832
0.3110241 2.2904449 0.0064491
0.1294831 1.0213853 0.0011177
0.6016726 5.5329778 0.024134
0.1264298 1.4171678 0.0010656
0.1407272 1.0766367 0.0027289
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The algorithm also shows remarkable computational effi-
ciency, achieving the fastest runtime of 0.1034254 s.

The Friedman rank of 1 reinforces CS-DE top-tier per-
formance, consistently outperforming other algorithms. In 

Table 23, the algorithm maintains low absolute errors and 
an average relative error of 0.4772317%, underlining its 
reliability and precision in parameter estimation. This anal-
ysis, as in previous cases, confirms CS-DE as the optimal 

Fig. 18   CS-DE algorithm characteristic curves of CASE9. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 19   Optimized parameters, Friedman rank, and runtime comparison for CASE9 algorithms
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choice for tasks requiring high accuracy and computational 
speed. V-I, P–V, and error curves, convergence behavior, 
and a statistical box plot are shown in Fig. 20 to illustrate 
CS-DE accuracy in parameter estimation and its ability to 
consistently minimize error. The optimized parameter val-
ues (min, max, and mean), Friedman rank, and runtime of 
each algorithm are shown in Fig. 21.

CASE11: H‑12–2 PEMFC

In case 11 (H-12–2 PEMFC), the CS-DE algorithm once 
again demonstrates its superior performance across vari-
ous metrics, as reflected in Tables 24 and 25. The mini-
mum, maximum, and mean values for CS-DE all hover 
consistently at 0.0754843, underlining its exceptional 
stability across runs. This consistency is reinforced by 
the extremely low standard deviation of 6.735E − 17, fur-
ther validating the minimal variability in results. CS-DE 
also achieves a top Friedman rank of 1, reaffirming its 
ability to outperform other differential evolution vari-
ants. Its efficient runtime of 0.1002995 s ensures that the 
algorithm not only achieves accuracy but also delivers 
fast computation. These findings suggest that CS-DE is 
highly suitable for PEMFC optimization tasks requiring 
precise and stable solutions, especially when compu-
tational efficiency is also crucial. V-I, P–V, and error 
curves, convergence behavior and a statistical box plot are 
shown in Fig. 22 to illustrate CS-DE accuracy in param-
eter estimation and its ability to consistently minimize 
error. The optimized parameter values (min, max, and 
mean), Friedman rank, and runtime of each algorithm are 
shown in Fig. 23.Ta
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Table 23   Performance metrics of CS-DE algorithm for CASE10

AEv (A) RE % MBE

0.0669869 0.2845541 0.0002991
0.0802425 0.3736449 0.0004293
0.1837387 0.902964 0.0022507
0.0002844 0.0014292 5.391E − 09
0.0966363 0.4964824 0.0006226
0.0955673 0.50265 0.0006089
0.0188266 0.1017382 2.363E − 05
0.1001457 0.5599891 0.0006686
0.2134348 1.2350982 0.003037
0.1498854 0.9247107 0.0014977
0.1231709 0.7761193 0.0010114
0.0649544 0.4182188 0.0002813
0.0222603 0.1465237 3.303E − 05
0.0172785 0.1181175 1.99E − 05
0.0434665 0.3162352 0.000126
0.0851253 0.4772317 0.0007273
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Fig. 20   CS-DE algorithm characteristic curves of CASE10. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 21   Optimized parameters, Friedman rank, and runtime comparison for CASE10 algorithms
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CASE12: H‑12–3 PEMFC

Similarly, in case 12 (H-12–3 PEMFC), the results follow a 
comparable trend, as detailed in Tables 26 and 27. CS-DE 
maintains its dominant position with minimum, maximum, 
and mean values pinned at 0.0641935, highlighting its reli-
ability. The standard deviation for CS-DE is negligible, 
standing at 2.727E − 06, reinforcing its consistent perfor-
mance across the board. Once again, CS-DE achieves the 
lowest runtime, clocking in at 0.1008514 s, and holds the 
best Friedman rank of 1.3. In Table 27, consistent accuracy, 
low error rates, and efficiency shown in these cases solidify 
CS-DE as the optimal choice for PEMFC parameter opti-
mization, offering a blend of precision and speed crucial 
for advanced engineering applications. V-I, P–V, and error 
curves, convergence behavior and a statistical box plot are 
shown in Fig. 24 to illustrate CS-DE accuracy in parameter 
estimation and its ability to consistently minimize error. The 
optimized parameter values (min, max, and mean), Friedman 
rank, and runtime of each algorithm are shown in Fig. 25.

In the evaluation of CS-DE across all 12 cases, Figs. 2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, and 25 provide a comprehensive visualization of 
the algorithm superiority over other differential evolution 
variants. Each figure comprises three parts: They include 
(a) V-I, P–V, and error curves that show how well CS-DE 
has performed in predicting voltage, current and power com-
pared to the experimental data; (b) convergence curves that 
indicate the time taken by the algorithm to reach the optimal 
solutions; and (c) box-plots that demonstrate the trend of 
performance based on.
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Table 25   Performance metrics of CS-DE algorithm for CASE11

AEv (A) RE % MBE

0.1779904 1.8676852 0.002112
0.0584 0.6226008 0.0002274
0.0442876 0.481387 0.0001308
0.127383 1.3786042 0.0010818
0.1117782 1.2283319 0.000833
0.0566126 0.63325 0.0002137
0.0414025 0.4683542 0.0001143
0.0427902 0.4890304 0.0001221
0.0414616 0.4787716 0.0001146
0.024216 0.2865795 3.909E − 05
0.0193555 0.230149 2.498E − 05
0.0880595 1.0738959 0.000517
0.0381485 0.4686546 9.702E − 05
0.0032692 0.0403105 7.125E − 07
0.0323122 0.4039019 6.961E − 05
0.0604978 0.6767671 0.0003799



	 Ionics

The V-I and P–V curves of CS-DE provide a clear rep-
resentation of the good correlation between the simulated 
results and experimental data with low predictive error. This 
is also supported by the error curves where CS-DE has much 

lower error rates than the rest of the methods. The conver-
gence plots for all the figures show that CS-DE converges 
to the correct solutions much faster than other algorithms, 
an essential factor in applications that require both accuracy 

Fig. 22   CS-DE algorithm characteristic curves of CASE11. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 23   Optimized parameters, Friedman rank, and runtime comparison for CASE11 algorithms
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and efficiency. Last but not least, the box-plots show that 
CS-DE performs well in all trials with much less variance 
than other algorithms, which reveals the stability of the pro-
posed algorithm.

In conclusion, the evaluation of all the results indicates 
that the CS-DE algorithm outperforms the other two algo-
rithms based on the accuracy, efficiency, CS-DE is iden-
tified as the most superior algorithm in this comparative 
analysis due to its low error rates, short convergence times, 
and stability.

Discussion on the findings

Several important implications for further research and prac-
tical applications of CS-DE and other differential evolution 
variants in PEMFC parameter estimation can be derived 
from the obtained results. The above results demonstrate 
that the CS-DE model performs more stably, accurately, 
and efficiently than other models in all cases and has the 
potential to be applied to the future design and application 
of PEMFC systems.

Another major strength of CS-DE is that it provides very 
high accuracy with low standard deviation between differ-
ent runs, which is important for obtaining consistent and 
repeatable performance of the fuel cell under practical con-
ditions. Due to the sensitivity of fuel cells on the operating 
conditions, the accurate parameter estimation is vital to have 
the PEMFCs operate near its optimum efficiency and hence 
minimize the energy losses and enhance the overall system 
life. The small error and fast convergence rate of CS-DE 
in the V-I and P–V curves indicate that this algorithm is 
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Table 27   Performance metrics of CS-DE algorithm for CASE12

AEv (A) RE % MBE

0.1296783 1.313863 0.0011211
0.0867594 0.8817007 0.0005018
0.0028344 0.0290113 5.356E − 07
0.0307866 0.3173879 6.319E − 05
0.0365849 0.3806964 8.923E − 05
0.0623187 0.6498297 0.0002589
0.0637802 0.6713704 0.0002712
0.07016 0.7463832 0.0003282
0.0688984 0.7440431 0.0003165
0.0030899 0.034142 6.365E − 07
0.0165248 0.1850483 1.82E − 05
0.0235637 0.2668601 3.702E − 05
0.0902829 1.0571771 0.0005434
0.0611491 0.7262358 0.0002493
0.0694636 0.8399472 0.0003217
0.0543917 0.5895797 0.0002747



	 Ionics

Fig. 24   CS-DE algorithm characteristic curves of CASE12. a V-I, P–V, and error curve. b Convergence curve. c Box-plot

Fig. 25   Optimized parameters, Friedman rank, and runtime comparison for CASE12 algorithms
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best applied in situations where small changes could greatly 
adversely affect fuel cell performance.

Moreover, the low computational complexity of CS-DE, 
which can be observed from its shorter execution time than 
other algorithms, has a great potential for real-time applica-
tions. This could be of great value especially for applications 
that require frequent changes in operating conditions like 
electric vehicles or portable power systems. The fast conver-
gence of CS-DE guarantees that these systems can run opti-
mally even under conditions of varying load or temperature.

Further, the box plot and the convergence curve depict 
that the CS-DE algorithm has minimal variances and no 
outliers, making it a suitable optimization method for large-
scale applications or any other In applications that are 
emerging today in the transportation and stationary power 
generation industries, where PEMFCs are gradually becom-
ing more prevalent, the utilization.

In conclusion, the presented work not only confirms the 
superiority of CS-DE in estimating the PEMFC parameters 
but also indicates that it can be used in other applications 
which require accurate, In renewable energy.

Conclusion

Parameter estimation for PEMFCs is the focus of this study, 
to improve PEMFC simulations, control, and performance 
assessments. The CS-DE algorithm identifies optimal 
parameters for six commercial PEMFCs by minimizing the 
sum of squared errors (SSE) between experimental and pre-
dicted voltage data. The performance of CS-DE is bench-
marked against several differential evolution (DE) variants 
adaptive differential evolution (PaDE), distance-based differ-
ential evolution (Di-DE), Lévy-flight success-history based 
adaptive differential evolution (LSHADE), natural-inspired 
differential evolution (NDE), palm-based differential evolu-
tion (PalmDE), particle swarm optimization differential evo-
lution (PSO-DE), self-adaptive differential evolution with 
one population (jSO), learning population algorithm-based 
differential evolution (LPalmDE), and hierarchical archive-
based differential evolution (HARD-DE) and is shown to 
perform better in terms of minimum, maximum, and mean 
SSE values, standard deviation, and runtime. CS-DE showed 
significant improvements in SSE, runtime and reliability 
with the lowest variance and standard deviation over dif-
ferent PEMFC cases. In addition, its runtime efficiency and 
stability indicate that CS-DE is also appropriate for real 
time, industrial applications. For all 12 PEMFC case studies, 
CS-DE showed the best consistency with the lowest standard 
deviation values. For example, in the STD-1 PEMFC case, 
CS-DE had a standard deviation of 2.04 × 10–16, which is 
almost zero and hence the most stable algorithm among the 
compared variants. In each case, CS-DE achieved the fastest 

runtime, making it optimal for time sensitive applications. 
For the Horizon PEMFC case, CS-DE achieved the optimi-
zation task in 0.103 s, indicating its ability to deliver reliable 
results in a short time. In particular, this was significantly 
faster than other algorithms, with speedups of up to 98–99% 
in some cases. Across cases, CS-DE always had the low-
est mean SSE, and was closest to experimental values. For 
example, in the BCS 500 W PEMFC case, CS-DE recorded 
a mean SSE of 0.0255, which is better than the alternatives 
such as PaDE with a mean SSE of 0.1288. For PEMFC 
applications, where accuracy in parameter estimation leads 
to optimal system performance, this precise error control 
is critical. CS-DE showed excellent alignment with experi-
mental data, with an average relative error as low as 0.373% 
in some cases, thus validating its applicability in accurate 
PEMFC parameter modeling in real-world scenarios.

Enhancements in mutation strategies, adaptive control 
mechanisms, and a new population size reduction scheme 
in CS-DE are presented in the paper, which improve con-
vergence and scalability for complex parameter estimation 
tasks. CS-DE performance, low computational requirements, 
and accuracy in estimating PEMFC parameters makes it a 
powerful tool in PEMFC modeling and optimization, and 
has potential for broader application in clean energy systems.
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