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Abstract: This paper aims to investigate metallurgical changes and mechanical properties of 

stir casted AA2014 and AA6061 metal matrix composites and their as-weld condition 

developed with FSW technique. The composites, AA2014 and AA6061were developed by 

adding 5% WC and 5% Al2O3 using stir casting process to study the impact of nano-particulates 

on material’s properties. The stir casting developed samples were joined using FSW process 

using square tool to investigate the weldability, weld strength quality, wear and corrosion 

behavior. In addition, the microstructural changes due to the nano-particulates and welding 

process at the weld zone were reported. The tensile strength and micro-hardness were evaluated 

by applying uni-axial loads and indentation loads on the surface, respectively. Wear rate and 

corrosion resistance of FSW dissimilar joint were measured by using pin-on-disc and cyclic 

sweep tests, respectively. The UTS of AA2014 and AA6061 stir casted composites was 

observed as 155 and 184 MPa respectively whereas the UTS of dissimilar welded AA2014 and 

AA6061 composites was observed as 156 MPa with std. deviation of ±2. The average micro-

hardness number is observed as 116 HV for AA2014 and 46 HV for AA6061 stir casted 

samples. The hardness number was increased in HAZ and TMAZ of AA2014 side in FSW joint 

as compared to stir casted composite. The FSW welded sample showed excellent resistance to 

environmental degradation with a low corrosion rate of 0.0131563 mm/year and excellent wear 

resistance, as evidenced by a less wear depth of 20 microns. Microstructures revealed that the 

nugget zone is exhibited with uniform, defect-free joints with evenly distributed reinforcement 

phases. The findings highlight the material's suitability for lightweight, durable components in 

aerospace, automotive, and marine industries.  

Keywords: Stir casting; AA2014 and AA6061 Alloys; Friction stir welding; Mechanical 

characterization; metallurgical studies, wear and corrosion rate. 

 

Nomenclature: 

Friction Stir Welding – FSW 

Tungsten Inert Gas –TIG 

Tungsten Carbide – WC 

Aluminium Alloys Metal Matrix Composites – AAMMC 

Electrical Discharge Machining – EDM 

American Society for Testing and Materials – ASTM 

Optical Microscope – OM 

Scanning Electron Microscopy – SEM 

Energy Dispersive X-ray Spectroscopy – EDS 

Co-efficient of Friction – COF 

Ultimate Tensile Strength – UTS 

Yield Strength – YS 

Base Metal – BM 

Heat-Affected Zone – HAZ 
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Thermo-Mechanically Affected Zone – TMAZ 

 

 

1. Introduction 

AA2014 is a copper-based alloy that possesses exceptional strength and outstanding machining 

properties. AA2014 is frequently employed in numerous aerospace structural applications 

owing to its exceptional strength [1]. AA6061 mostly consists of magnesium and silicon which 

is usually precipitation hardened. It possesses favorable mechanical properties, demonstrates 

excellent weldability, and is widely used alloy of Al for general-purpose applications [2]. Due 

to excellent properties, such as being lightweight, having a very high strength-to-weight ratio, 

and corrosion resistance, Al forms the basis for advanced composites. Incorporation of 

reinforcements in Al leads to MMCs that realize high mechanical and thermal property 

enhancements, making it very appropriate for modern engineering applications.  

Researchers have fabricated the MMCs by reinforcing nano-particulates to produce the 

desired mechanical properties. To list a few, Kumar et al. [3] studied the mechanical and 

tribological properties of Al matrix composites reinforced by WC through stir casting 

technique. This study concludes that the hardness along with tensile strength and wear 

resistance due to the addition of WC is improved, while increased ductility is observed by 

increasing the content of WC. Deep et al. [4] used ultrasonic-assisted stir-squeeze casting to 

investigate the impact of Al₂O₃ nanoparticles in AA5456 alloy hybrid nanocomposites. It was 

observed that Al₂O₃ nanoparticles enhanced the density, hardness (158.64 HV), and mechanical 

properties of the composite significantly. The yield strength increased by 51.02% and the 

ultimate tensile strength by 35.32%. Grain boundary strengthening and an increase in overall 

compressive strength were also influenced by the addition of Al₂O₃ nanoparticles. Long et al. 

[5] considered the reinforcing influence of nano-WC in an AlSi10Mg alloy using an in-situ 

surface modification method. The UTS value with addition of 3wt.% of nano-WC is increased 

to 464 MPa and a corresponding elongation of 5.6%. The addition of nano-WC particles 

contributed towards a columnar-to-equiaxed microstructure transition that had a significant 

contribution in increasing the strength and wear resistance. 

The welding of Al alloys is challenging due to its susceptibility to produce welding 

defects [6]. FSW is a solid state joining technique used especially for joining Al alloys, with 

weld strength that is superior to the base metal and minimal distortion, which are critical for 

maintaining the lightweight and high-performance characteristics. FSW utilizes a revolving 

tool made of a durable material with a specified shape to generate heat through friction and 

soften it to join two different materials [7, 8]. The benefits of FSW encompass enhanced 

efficiency, reduced energy consumption, increased tensile and fatigue strength, the ability to 

weld thicker sections without flash, absence of filler material, and simpler edge preparation [9, 
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10]. In addition, it mitigates welding defects such as solidification cracking, deformation, and 

porosity that are prevalent in the fusion welding process [9, 10]. 

To attain the highest quality weld, it is crucial to comprehend the impact of process 

factors, particularly the axial force, welding speed and rotating speed. Xavier et al. [11] adapted 

FSW to create lap and butt joints of AA2014-T6 alloys at varying process parameters such as 

pin length, shoulder diameter, major and minor diameters of pin, rotation speed and transverse 

speed and emphasized the importance of selecting the right tool and process parameters for a 

high-quality weld, highlighting the significance of plastic deformation, material flow, and 

recrystallization. Kannaiyan et al. [12] studied the defects of FSW AA5083 and AA6061-T6 

weldments using acoustic emission techniques. They found that defect-free welds had the 

highest tensile strength and superior hardness, while pinhole and pipe defects showed 

significant variances due to their larger defect regions. The cracked areas showed fractures that 

occurred in a ductile nature, characterized by elongated dimples and micro-voids. The study 

by Bindhushree et al. [13] examined FSW of cast A356 and A2014 alloys, analyzing the effects 

of various parameters like tool pin shape, rotation speed, and welding speed. The results 

showed complete joining of parent alloys, no micro-porosities, and re-crystallization forming 

smaller grains. Rana et al. [14] studied on welded butt- welded joints of AA7075 and AA6061 

and revealed that the combination of TIG welding and FSW resulted in higher mechanical 

strength and hardness in the nugget zone. The refined grain structures and defect-free bonding 

were obtained through the combined use of TIG and FSW techniques.  

The tool rotational speed significantly impacts FSW, influencing heat formation, 

material flow, and microstructure evolution. Kar et al. [15] investigated the mechanical 

characteristics of FSW of Al alloys to titanium alloy and observed that increased speeds 

improve material plasticity and weld mixture mixing, while excessive speeds can cause 

overheating and defects. In another study, Zhu et al. [16] observed that excessively high 

rotational speeds can cause overheating, which in turn can lead to the formation of coarse grains 

and the occurrence of defects such as voids and tunnel formation. The traverse speed 

impacts the thermal cycle and the rate at which the material cools down, Wang et al. [17]. The 

investigation on under water FSW of Al-Mg-Si, Sabry et al. [18], observed that the increased 

traverse speed resulted in decreased heat input, which in turn leads to the formation of smaller 

grain structures and enhanced mechanical characteristics. On the contrary, Essa et al. [19] 

inferred that, reducing the pace at which the weld is made might lead to a higher amount of 

heat being applied, particularly in AA5083 and AA7075 alloys, causing the material to become 

softer and resulting in a decrease in the quality of the weld. In FSW of AA2024-T6, Tobin et 

al. [20] investigated that the axial force has an impact on both the depth of penetration as well 

as the material strength. In another study on FSW, Caetano et al. [21] concluded that the 

effective control over the axial force enables adequate mixing of materials and the formation 

of bonds, while avoiding excessive tool erosion. Li et al. [22] investigated the effect of welding 
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time on the properties of ultrasonic spot-welded AA7075-T6 and casting Al alloy A380. The 

findings indicated that the increase in welding time increased the peak temperature and 

enhanced the shear tensile strength when compared to base metals. Sun et al. [23] discussed 

the influence of ZrB2 and Al2O3 nanoparticles on friction stir welded 7085Al matrix composites 

regarding their microstructure and mechanical characteristics. The weld nugget grains are 

refined to 1.82 µm, whereas MgZn₂ re-precipitation is enhanced via accelerated heterogeneous 

nucleation due to Al₂O₃, which caused dynamic recrystallization. The improvement in ultimate 

tensile strength has been achieved by adding 3 vol.% of Al₂O₃ to reach a value of 492.95 MPa 

and elongation to 12.87% with a joint efficiency of 76.3%. 

The above studies demonstrate significant improvements in mechanical properties of 

Al alloys, through the incorporation of nanoparticles like WC and Al₂O₃ and processing 

techniques via stir casting and FSW. The incorporation of WC enhances hardness, wear 

resistance, and tensile strength, whereas Al₂O₃ enhances grain refinement and strength. FSW 

and stir casting facilitate the incorporation of these nanoparticles in a manner that results in 

stronger, wear-resistant composites. In this research, the base metals AA2014 and AA6061 are 

reinforced with 5% of WC and Al2O3 using stir casting technique to develop the composites. 

These stir casted composited are joined using FSW technique using a square tool pin. A 

comprehensive assessment is carried out on both stir casted composites and FSW welded 

samples for mechanical properties, metallurgical changes, wear rate and corrosion resistance. 

The effect of reinforced particulates on Al alloys and welding characteristics are reported. 

2. Material and methods 

2.1 Materials  

The alloys chosen in this study are AA2014 and AA6061 and the chemical composition of the 

metals is highlighted in Table 1. It is very important using stir casting followed by FSW 

because it assists in the good distribution of reinforcing particles, which are 5% WC and 5% 

Al2O3, that improve the strength and wear resistance of the composite [24]. FSW technique is 

used to join reinforced AAMMCs in the solid state process by employing a square tool pin 

geometry [25]. The methodology of the present research work is mentioned as flow chart and 

shown in Fig. 1. 

Table 1. The chemical composition of AA2014 and AA6061 [11, 21] 

Base 

metal 

Cu Cr Fe Si Ti Mg Zn Mn Al 

AA2014 4.2 0.003 0.115 0.851 0.02 0.714 0.032 - Balance 

AA6061 0.15 0.05 0.5 0.5 - 0.8 0.03 0.1 Balance 
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Fig. 1 The methodology followed in the present study 
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2.2 Stir casting of AA2014 and AA6061 to produce AAMMC 

The stir casting process is a widely used technique for making metal matrix composites, 

ensuring that the reinforcing particles are evenly spread throughout the metal matrix. The 

process involves heating the matrix metal, which consists of AA6061 and AA2014 Al alloys, 

until they melt at the necessary temperature. The Fig. 2(a) portrays the crucible employed for 

the fusion of the Al alloys. After the metal has completely melted, the reinforcement 

particulates, consisting of 5% WC and 5% Al2O3, are introduced into the molten metal to 

prepare AAMMC samples with combinations of AA2014+5%WC+5%Al2O3 (AAMMC1) and 

AA6061+5%WC+5%Al2O3 (AAMMC2). The Fig. 2(b) depicts the arrangement for supplying 

heat to the crucible; the liquefied blend is aggressively agitated to ensure the uniform dispersion 

of the reinforcing particles within the substance, as illustrated in Fig. 2(c) of the stirring 

mechanism. Figure 2(d) presents the process of pouring the molten mixture into molds. Once 

the molten composite has been thoroughly mixed, it is poured into molds that have been 

prepared in advance. The composite then solidifies in these molds, taking on the desired shape, 

where the cast specimens are marked and readied for further testing. 

 

Fig. 2. Stir casting of AA2014, AA6061 with 5%WC and 5%Al2O3 

2.3 Friction stir welding of AAMMCs 

Two AAMMCs stir casted plates, of 150 × 60 × 6 mm each, were utilized in the FSW. The 

AAMMCs plates were thoroughly prepared by cleansing their surfaces to eliminate any 
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impurities and thereafter firmly fastened to prevent any displacement during the welding 

procedure. The process parameters were chosen examining the literature and by considering 

the capabilities of the FSW machine utilized, Kumar et al. [26]. The FSW machine has a 

capacity of 12 kVA/440V and offers a speed range of 300 to 3000 rpm. The tool material used 

is H13 tool steel. Profile is square pin with shoulder diameter 25 mm, pin height 5.6 mm, and 

tapered pin length from 7 mm at top and 5 mm at bottom. The square pin profile provides a 

notable advantage by generating greater frictional heat compared to alternative pin profiles. 

This enhances the process of softening and mixing the material. The square pin's corners 

produce increased shear forces, resulting in more pronounced plastic deformation, Gadakh et 

al. [27]. A sharper corner in a square tool will increase localized pressure, thus raising frictional 

heat and plastic deformation [26]. This could decrease load-bearing capacity if too much heat 

results in grain coarsening or defects but might increase strength if controlled dynamic 

recrystallization takes place [26]. Oxide layer formation might improve wear resistance but 

may decrease if stress concentration leads to abrasion and fatigue wear [26]. Additionally, this 

operation successfully disintegrates and redistributes the microstructure of the material, leading 

to a more consistent microstructure and improved mechanical properties of the weldments. In 

addition, the square pin profile equally disperses the forces throughout the whole length of the 

pin. This not only enhances the weld quality, but also decreases tool wear, resulting in 

increased durability. The developed AAMMCs FSW specimen is shown in Fig. 3. 

 

Fig. 3. Developed friction stir welded sample 

2.4 Characterisation 
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The stir casted composites and welded samples were sliced using wire-EDM machine to 

conduct the various mechanical testing’s and to study the microstructural changes. The tensile 

test (ADITYA UTE 40) was conducted by applying uni-axial loads with a shear rate of 1 

mm/min as per ASTM E8 standard [12]. To determine the micro-hardness, the polished 

specimens were subjected to a force of 500 gf for a duration of 10 s. The micro-hardness was 

evaluated, by creating several indentations along the thickness of the specimen, starting from 

the bottom and moving towards the top, using the Vickers’s Hardness tester 

(MATSUZAWAMMTX7). Optical microscopy was utilized to examine the micro- and macro-

structural properties of AAMMCs and FSW welded samples. The conventional metallurgical 

technique was utilized to polish the cut specimens and examine their microstructure. Keller's 

regent was then applied to the polished surface. Also, SEM/EDS analysis was carried out on 

welded AAMMCs samples to reveal the alloy composition at various zones. The wear test was 

conducted to assess the tribological characteristics of the welded AAMMCs. The pin-on-disc 

arrangement employed to assess the wear properties in accordance with the ASTM standard 

G9906 [8]. The pin-on-disc arrangement comprises of an SS304 wear test specimen with a 

semi-circular surface that is rubbed on a hardened EN 31 steel disc. The wear test specimen 

was subjected to a weight of 10 N and rotated at a speed of 400 rpm while being slid for 2000 

m. In addition, during the wear test, a track diameter of 80 mm was consistently maintained. 

The wear test had a fixed sliding duration of 20 minutes. The weight loss and COF were 

recorded in response to the varying sliding distances. Tafel analysis was performed following 

the ASTM G102 standard [11] in a 3.5 wt.% NaCl solution at a scan rate of 10 mV/s for the 

measurement of corrosion rate. The sample dimension was 1.5 cm2 as a working electrode, and 

data during the scan at a particular scan rate was noted. 

3. Results and discussion 

3.1 Tensile test of stir casted AAMMCs 

The results of the tensile test for the stir casted AAMMCs are presented in Table 2. It is 

observed from Table 2 that AAMMC1 has an average tensile strength of 155 MPa. The highest 

average tensile strength for AAMMC2 is 184 MPa and yield strength of AAMMC2 is 155 

MPa. The adhesion between reinforcing particles and Al matrix is crucial for efficient load 

transfer, as voided interfaces can decrease tensile strength and composite material failure [28]. 

AAMMC1 exhibits higher ductility and elongation percentages (19.8%) than the base AA2014 

alloy (13.33%) [29], indicating small reinforcement particles hinders the movement of 

dislocations and delays the beginning of fracture. Similar findings were observed by Gaurav et 

al. [30]. AAMMC2 shows a significant decrease (1.6%) in elongation and area drop (37.16%), 

suggesting significant necking prior to failure, but AAMMC2 saw only a minor reduction in 

area (0.15%), indicating a weakening impact due to reinforcing particles. Reinforcing particle 

dimensions, configuration, and proportion influence mechanical characteristics, with larger, 

Jo
urn

al 
Pre-

pro
of



irregular particles causing stress concentrations and high proportions causing brittle behavior, 

reducing tensile strength [31]. 

The inclusion of 5% WC and 5% Al2O3 into AA2014 and AA6061 results in a notable changes 

of their mechanical properties. However, the effect on ductility varies: AAMMC1 shows 

decreased strength but increased ductility relative to its basic alloy. On the other hand, 

AAMMC2 exhibits a significant decrease in both the tensile strength and ductility, illustrating 

a compromise between improving hardness and wear resistance while sacrificing tensile 

characteristics. The observed variation in behavior suggests that the composition of the matrix 

alloy is a critical factor in defining the ultimate characteristics of the reinforced material. 

The stress-strain curves depicted in Fig. 4 demonstrate the behavior of the casted specimens of 

AAMMC1 and AAMMC2 under tensile loading, showcasing their unique mechanical 

characteristics. The stress-strain curve for AAMMC1 demonstrates a continuous and elongated 

plastic deformation area, which signifies its ductility. The high strain value emphasizes the 

composite's capacity to experience substantial plastic deformation prior to failure, indicating 

that the inclusion of Al2O3 and WC particles does not greatly hinder its ductility [32]. 

Conversely, the stress-strain curve for AAMMC2 has a significantly steeper incline in the 

elastic zone, which is then followed by a sudden shift to failure. The highest tensile stress for 

AAMMC2 is around 184 MPa, surpassing that of AAMMC1, suggesting superior strength. 

Nevertheless, the strain at fracture for AAMMC2 exhibits a notable decrease, approximately 

8%.  

Table 2. The results of tensile test for AAMMCs after FSW 

Sample ID Specimens UTS (MPa) YS (MPa) % of elongation % in Reduction area 

AAMMC1 1 154 68 19.8 36 

2 158 72 19.9 37.16 

3 152 67 19.6 38.32 

Average 155 69 19.8 37.16 

AAMMC2 1 182 154 1.8 0.15 

2 185 152 1.4 0.12 

3 186 158 1.5 0.17 

Average 184 155 1.6 0.15 
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Fig. 4. The stress-strain plot for AAMMC1 and AAMMC2 after stir casting 

3.2 Microstructure Analysis of stir casted AAMMCs 

The microstructural examination of AAMMC1, both prior to and following etching, Fig. 5, 

illustrates the successful distribution of Al2O3 and WC particles throughout the AA2014 

matrix. Uniformly distributing reinforcement particles is essential for attaining the intended 

mechanical properties, as it eliminates the creation of vulnerable areas and ensures continuous 

load transfer across the material [32]. The etching process reveals a distinct and improved grain 

structure, suggesting that the reinforcing particles have a substantial impact on refining the 

grains [33]. Performing the microstructural investigation of AAMMC2 by stir casting, as 

shown in Fig. 6, the Al2O3 and WC particles were found to be dispersed regularly throughout 

the AA6061 matrix. After etching, a unique pattern of dendritic grains becomes noticeable 

which indicates that the cooling process was fast enough to allow quick solidification [34]. The 

absence of significant particle clustering suggests that the stir casting method succeeded in 

creating a consistent composite material. Nevertheless, the existence of these particles along 

the interfaces between grains could also impact the composite's ability to deform, perhaps 

rendering it more prone to fracturing under specific loading circumstances. 
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Fig. 5. The microstructures of AAMMC1 after stir casting (a) without etching at (b) with 

etching at different magnifications 
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Fig. 6. The microstructures of AAMMC2 after stir casting (a) without etching at (b) with 

etching at different magnifications 

3.3 Micro-hardness of stir casted AAMMCs 

The micro-hardness test was performed on AAMMCs to study the effect reinforced nano-

particulates of WC and Al2O3. The AAMMC1 had an average micro-hardness number of 116 

HV, which represents a significant rise in comparison to the micro-hardness of the base 

AA2014 alloy [29]. The notable enhancement in hardness can be ascribed to the existence of 

rigid ceramic particles (Al2O3 and WC) that are evenly dispersed inside the Al matrix. The 

presence of these particles hinders the migration of dislocations, which in turn improves the 

composite's ability to withstand plastic deformation and increases its overall hardness. In the 

AAMMC2, the average micro-hardness value measured 46 HV shows a significant 
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improvement compared to the base AA6061 alloy [29], which has an average hardness of 30 

HV. The hardness enhancement is attributed to the presence of rigid ceramic particles within 

the matrix, enhancing the material's resistance to indentation. Despite both composites having 

the same type and quantity of reinforcement, AAMMC2 exhibits a decreased hardness 

compared to AAMMC1. The disparity may arise from the inherent characteristics of the 

AA6061 matrix, which could potentially have distinct interactions with the reinforcement 

particles in contrast to the AA2014 matrix. Moreover, the dispersion and adhesion of the 

particles inside the AA6061 matrix may not be as efficient as in the AA2014 matrix, leading 

to comparatively reduced hardness. 

Table 3. The micro-hardness values for the stir casted AAMMCs 

Sample Id 1st Value 2nd Value 3rd Value 4th Value 5th Value Avg. Value 

AAMMC1 108.8 117 113 122.2 119.9 116 

AAMMC2 47.7 46.9 48.9 43 44.8 46 

 

3.4 Tensile test results of FSW AAMMCs 

The tensile test result of FSW welded samples is presented in Table 4. The FSW joint between 

AAMMC1 and AAMMC2 has an average tensile stress of 156 MPa with yield point stress of 

63 MPa. The FSW joint shows a decrease in ductility (5.96%) compared to composites, while 

AA2014 and AA6061 show 13.33% and 16% elongations, respectively, likely due to rigid 

ceramic particles. The decreased elongation indicates that the composite joint has a lower 

ability to undergo plastic deformation prior to fracturing. The FSW joint had a 24.28% 

reduction in area, indicating the extent of necking and plastic deformation the material endured 

before to fracture. The variations in stress-strain for the AAMMCs of weldments of FSW is 

illustrated in Fig. 7. The curve shows a linear relation until approximately 2% strain, which 

represents the material's elastic behavior. In this region, the stress increases in proportion to the 

strain. After this, the material undergoes plastic deformation, resulting in irreversible 

alterations and a deviation from the linear curve up to around 14% strain, demonstrates the 

material's ability to undergo plastic deformation. The presence of reinforcement particles 

contributes to increased strength while decreasing ductility, Raturi et al. [35].  
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Table 4. The tensile test results of AAMMCs after FSW 

Sample ID UTS 

(MPa) 

YS 

(MPa) 

% Elongation % Reduction in area 

AAMMC1 +  

AAMMC2 

158 62 5.98 22.00 

154 64 6.97 24.22 

156 62 4.89 26.64 

Average 156 63 5.96 24.28 

 

 

Fig. 7. The stress-strain curve for the friction stir welded AAMMCs 

3.6 Micro-hardness of friction stir welded AAMMCs 

The micro-hardness details of the friction stir welded AAMMCs is presented in Fig. 8. In the 

AA2014 base metal, the micro-hardness values exhibit a uniform pattern, with an average value 

of approximately 100 HV. Prior to the FSW, the AA2014 alloy exhibits consistent and even 

hardness. The addition of 5% Al2O3 and 5% WC enhanced the hardness of AA2014, making it 

harder. In AA6061 base metal, the micro-hardness values are relatively lower, with an average 
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range of approximately 40-50 HV. It is anticipated that AA6061 will be softer than AA2014, 

and the use of Al2O3 and WC reinforcements enhances the hardness, although to a smaller 

extent than in AA2014. The reduced hardness in AA6061 is a result of the inherent properties 

of the base metal, which experience a decreased strengthening effect from the additional 

particles, Mohan et al. [36]. The HAZ of AA2014 and AA6061 exhibit a marginal reduction in 

hardness when compared to the surrounding base metal areas. Abdollahzadeh et al. [37] have 

also observed that the decrease in strength can be attributed to the thermal cycles that occur 

during the FSW process may have caused the material to soften because of the dissolution or 

enlargement of strengthening precipitates in certain areas. 

The TMAZ showed a more pronounced variation in hardness levels. On the AA2014 

side, the hardness exhibits a gradual increase towards the weld zone, reaching its highest point. 

The increase in hardness may be attributed to the synergistic impact of mechanical deformation 

and heat during the FSW process, [14]. This leads to the refinement of grains and maybe the 

partial re-precipitation of hardening phases. Nevertheless, the hardness of this region remains 

lower than that of the basic metal, suggesting a certain level of softening. On the AA6061 side, 

the TMAZ exhibits a more significant decrease in hardness closer to the weld area. The 

concurrent effect of heat exposure and mechanical deformation in this area is expected to result 

in the dissolving of strengthening precipitates, which in turn leads to the observed decrease in 

hardness values [38]. The weld zone demonstrates the highest levels of hardness, 140 HV. The 

notable increase in hardness could be due to the vigorous plastic deformation and dynamic 

recrystallization that take place during the FSW process, resulting in a more refined grain 

structure. Similar findings on the FSW of AA2014 were observed by Wang et al. [39]. 

Moreover, the even distribution of reinforcing particles (Al2O3 and WC) within the weld zone 

leads to the increased hardness. The hardness of the weld zone exceeds that of the base metals, 

showing that the FSW technique significantly improves the mechanical qualities in this area. Jo
urn
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Fig. 8. The micro-hardness of the friction stir welded AAMMCs 

3.7 Wear rate of the friction stir welded AAMMCs 

The results of the wear test for the friction stir welded AAMMCs, as shown in Fig. 9, 

demonstrate the material's ability to resist wear, its frictional characteristics, and its overall 

durability under conditions involving friction and wear. These conditions are tested on test 

samples by measuring the friction coefficient, friction force and wear depth in microns. Figure 

9(a) presents the total wear over time, demonstrating a steady and ongoing increase in wear 

depth. The linear trend is seen which illustrate a uniform retention for the given conditions, 

Bindhushree et al. [40]. The depth of wear if found to be 20 microns, indicating higher 

resistance to wear. Figure 9(b) exhibits a consistent value during the period of the test. The 

surface and contact interface of material with the surface remain in good condition throughout 

the test, as indicated by a consistent coefficient of friction, Mohrami et al. [41]. Figure 9(c) 

shows constant values throughout the experimental investigation with little variation. These 

variations can be related to the interaction between the roughnesses of the surfaces that are in 

contact. The presence of a consistent frictional force suggests that the surface roughness and 

hardness of the material create a constant barrier to sliding, hence reducing sudden fluctuations 

in frictional forces, Senthilraj et al. [42]. The consistent frictional force stability can be 

attributed to the ability of the reinforcing particles to endure the wear process, hence 

minimizing material loss and preserving contact integrity. 
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Fig. 9.  (a) Wear Vs time, (b) Coefficient of friction Vs time and (c) Frictional force Vs time.  

 

Furthermore, the microstructural homogenization, refined grain structure, and reduced 

elemental segregation has minimized localized galvanic effects and differential wear rates. The 

rationale for conducting the wear test is its assessment of the role of the mechanisms 

influencing particle dispersion, hardness gradients, and oxide layer stability in the processed 

material-load distribution, friction-induced deformation, and third-body abrasion. 

 

3.8 Corrosion test results of friction stir welded AAMMCs 

The results of the corrosion test for the friction stir welded AAMMCs are presented in Table 

5. The corrosion potential (Ecorr) is determined to be -1.308 V, reflecting the material's 

inclination to undergo corrosion. The relatively low value of Ecorr indicates that the FSW joint 

is prone to corrosion in the specified environment, Afify et al. [43]. The corrosion current 

density (Icorr) is measured as 0.58 mA, and it is directly proportional to the rate at which the 

material deteriorates. A greater value of Icorr generally indicates a more rapid rate of corrosion, 

Zamrudi and Setiawan [44]. The pitting potential (Epit) is determined to be -0.44 V, indicating 

the initiation of localized corrosion (pitting). The negative Epit result indicates that the material 

is susceptible to pitting corrosion in the given test conditions [45]. The predicted overall 

corrosion rate is 0.0131563 mm/year, suggesting that the material undergoes a certain degree 
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of corrosion over time, although it is not extremely high. The polarization curve, as shown in 

Fig. 10, demonstrates the corrosion characteristics of the FSW of AAMMCs. The point at 

which the cathodic and anodic curves intersect, known as the corrosion potential, is estimated 

to be -1.308 V. The substantially negative number indicates that the FSW AAMMCs are 

susceptible to corrosion in the evaluated environment [46]. The decrease in Ecorr relative to 

more corrosion-resistant materials suggests that the weld zone may be more prone to uniform 

corrosion. The cathodic node has a pronounced inclination, suggesting that the reduction 

reactions, possibly including hydrogen evolution, prevail at lower potentials. The anodic 

branch has a rather gradual incline at first, but it experiences a significant steepening with 

higher potentials. This pattern is a clear indication of localized corrosion processes, specifically 

pitting, which are frequently observed in Al alloys, particularly when exposed to chloride ions. 

The significant rise in current density at elevated potentials, found in the anodic branch, 

indicates the initiation of pitting corrosion, Zhang et al. [47]. The pitting potential (Epit) is 

estimated to be -0.44 V, which is rather low, suggesting that the material is prone to pitting 

corrosion under the given test conditions. A greater Icorr value, as obtained in this test (0.58 

mA), is indicative of a higher corrosion rate. This finding indicates that the FSW joint of 

AAMMCs may undergo substantial degradation over a period when subjected to comparable 

environmental conditions. 

Table 5. The corrosion results of the friction stir welded AAMMCs 

Alloy ID Ecorr (V) Icorr (mA) Epit (V) Corrosion Rate (mm.y-1) 

AAMMC1 + 

AAMMC2 

-1.308 0.58 -0.44 0.0131563 
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Fig. 10. The potential and log curves of friction stir welded AAMMCs 

3.5 Macro and microstructures of friction stir welded AAMMCs 

The friction stir welded AAMMCs were analyzed at both macro and microstructural levels, as 

shown in Fig. 11, to observe the structural changes that occurred in different areas such as the 

base metals (AA6061 and AA2014), the TMAZ on both sides, and the stir zone. Figure 11(a) 

shows that AA6061 base metal has a grain structure that is rather coarse, with elongated grains 

which indicates that the material is in a rolled condition. Similarly, Fig. 11(f) shows that 

AA2014 base metal exhibits a coarse, dendritic microstructure that is typical of cast Al alloys 

[13]. The existence of this rough formation in both base metals suggests that they have not 

undergone substantial modifications prior to the welding procedure, serving as a standard for 

evaluating the welded areas.  

The TMAZ on both the AA6061 side, Fig. 11(b), and the AA2014 side, Fig. 11(e) exhibit 

significant alterations in microstructure because of the combined influence of heat and 

mechanical deformation during FSW. Figure 11(b) shows that the TMAZ on the AA6061 side 

has a more finely structured grain compared to the base metal, indicating some degree of partial 

recrystallization [48]. The grains show distortion along with stretching which indicates that the 

material has undergone plastic deformation. The AA2014 side, shown in Fig. 11(e), has a more 

refined and equi-axed grain structure compared to the coarser particles of the TMAZ base 

metal. The smaller grains in TMAZ suggest that temperature changes led to recrystallization, 

enhancing the mechanical properties in this specific area [36]. 

The stir zone is the region where the most substantial alterations in microstructure take place 

as a result of the high levels of plastic deformation and heat produced during FSW. The Fig. 

11(c) shows a top stir zone with a well-developed and restructured grain structure, 

characterized by a consistent distribution of small, equi-axed grains. The observed structure is 

a distinctive feature of the dynamic recrystallization process that takes place during FSW, 

leading to a notable enhancement in mechanical properties, such as enhanced hardness and 

strength [49]. The refined grain structure is observed in the bottom stir zone of Fig. 11(d), with 

slightly larger grains compared to the top stir zone. The disparity may arise from fluctuations 

in the thermal dispersion and the speed at which the weld area cools [50]. The consistent grain 

structure throughout the stir zone suggests adequate mixing during FSW. 
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Fig. 11. Macro/microstructures of (a) Base metal AA6061, (b) TMAZ AA6061 side, (c) top 

nugget zone, (d) bottom nugget zone, (e) TMAZ AA2014 and (f) base metal AA2014 

3.9 SEM analysis 

The microstructure of the AA6061 base metal, as depicted in Fig. 12(a), shows a grain structure 

that is rather coarse, as is typical in the base metal prior to experiencing substantial plastic 

deformation. The microstructure exhibits a high degree of uniformity, with the presence of 

discernible second-phase particles, most likely precipitates, which significantly enhance the 

mechanical properties of the alloy [51]. The lack of substantial flaws suggests that the base 

material was in a satisfactory state prior to the welding process. Figure 12(b) illustrates the 

boundary between the TMAZ and the AA6061 base metal. The FSW process results in a 

notable reduction in the size of the microstructure in this area, which is attributed to the 

combined influence of heat and plastic deformation [52]. The grains next to the TMAZ exhibit 

elongation and deformation, which suggests the presence of mechanical agitation and a 

moderate level of recrystallization. The presence of smaller, more evenly spread particles 

indicates that the welding process improved the scattering of reinforcement particles, resulting 

in enhanced mechanical characteristics in this area [53]. 
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The nugget top zone, depicted in Fig. 12(c), signifies the central region of the weld where the 

most significant plastic deformation and thermal exposure take place. The microstructure in 

this area is distinguished by a significantly finer grain structure, which is a consequence of 

dynamic recrystallization occurring during the FSW process [54]. The presence of small, 

evenly shaped grains in this area enhances the hardness and strength commonly observed in 

the nugget zone [55]. The even distribution of reinforcement particles in this area indicates that 

the stirring action of the FSW tool successfully spread the particles throughout the matrix, 

hence improving the overall mechanical properties of the joints. Figure 12(d) depicts the 

bottom zone of the nugget that has experienced substantial microstructural refinement. 

Nevertheless, the grains in this region exhibit a larger size compared to the grains in the upper 

zone, potentially attributed to variations in cooling rates or heat dispersion during the welding 

procedure. The homogeneous grain structure with dispersed particles in the bottom nugget zone 

suggests that it too experiences the strengthening effects of the FSW process [56-58]. 

As shown in Fig. 12(e), the interactions between TMAZ and AA2014 base metals exhibit a 

pattern of microstructural refinement similar to that reported for the AA6061 phase. The grains 

near the TMAZ on the AA2014 side are more refined than the base metal and the partial 

recrystallization is attributed to the heat and mechanical influences exerted by the FSW [36]. 

Figure 12(f) illustrate the microstructure of the AA2014 base metal with a coarse, dendritic 

structure. The microstructure exhibits a high degree of uniformity, characterized by prominent 

grains and discernible second-phase particles, which significantly enhance the alloy's intrinsic 

strength and hardness [59-61]. 
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Fig. 12. (a) AA6061 base metal, (b) Interface left TMAZ AA6061 right, (c) Nugget top zone, 

(d) nugget bottom zone, (e) Interface left TMAZ AA2014 right and (f) AA2014 base metal 

3.10 Energy Dispersive X- Ray Analysis 

The EDX examination of different regions in the friction stir welded AAMMCs, as shown in 

Fig. 13, yields elemental composition data for the TMAZ of AA6061, the nugget zone and the 

TMAZ of AA2014. The EDS spectrum of the AA6061 TMAZ, Fig. 13(a), reveals the presence 

of Al, Cu, O2 and Mg as the main detected elements. The prominent Al peak (Al Kα1) aligns 
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with the elemental composition of AA6061. The existence of O2 suggests the existence of oxide 

phases, which are probably derived from the reinforcing particles (Al2O3) [55]. The presence 

of a Cu peak indicates that Cu is present in the TMAZ, which enhances the strength of the 

alloy. The FSW process has effectively maintained the consistency of the constituents of the 

material as indicated by the evenly distributed reinforcing particles over the TMAZ zone [62-

64]. 

Fig. 13(b) illustrate the EDX spectrum of the nugget zone exhibits abundant Al, with prominent 

Cu, O2 and Mg surfaces. The visible O2 peak indicates a large fraction of oxides, probably due 

to the inclusion of Al2O3 and possibly WC. The presence of these oxides is essential for the 

stability and durability of the nugget zone. A noticeable peak in Cu indicates that Cu is spread 

evenly throughout the nugget area, which improves the overall strength [36]. The FSW process 

has effectively mixed the matrix as well as the reinforcement particles, producing a 

homogenized and reinforced nugget zone [65-67]. 

EDX analysis of TMAZ AA2014, Fig. 13(c), shows distinct peaks for Al, Cu, O2 and Mg, 

similar to those observed in other regions. AA2014 is mainly made up of Al and Cu, with Cu 

being a key element that strengthens the material. The distribution of these elements in the 

TMAZ indicates that the FSW process effectively preserved the structural integrity of the 

material while mixing the reinforcement particles. The results from the EDX analysis of the 

AA2014 TMAZ align with those of the AA6061 TMAZ. 
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Fig. 13. (a) AA6061 TMAZ, (b) Nugget zone and (c) AA2014 TMAZ 

 

Owing to their superior mechanical characteristics and enhanced performance in demanding 

industrial environments, the applications of stir casting and FSW with WC and Al2O3-based 

nano-particulates reinforced AA2014 and AA6061 aluminum alloys have attracted substantial 

interest. Stir casting, which is both cost-effective and efficient, is frequently implemented to 

fabricate Al-matrix composites that are reinforced with WC and Al2O3 nano-particles [68-70]. 

The nano-reinforcements are homogenously dispersed through this process, resulting in 

composites that exhibit strengthened hardness, tensile strength, and resistance to abrasion [71-

72]. Consequently, they are highly suitable for aerospace, automotive, and defense applications 

that require lightweight, high-strength materials [73-74]. The incorporation of WC and Al2O3 

nano-particulates results in a rise in operational efficiency and a reduction in maintenance costs 

by prolonging the service lifespan of components including, engine-blocks, brake-rotors, and 
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aerospace structural frames [75-77]. This is accomplished by strengthening both hardness and 

resistance to wear. 

Conversely, FSW has demonstrated outstanding potential in the welding of these advanced 

nano-reinforced Al-alloys without affecting their mechanical characteristics. In comparison to 

conventional fusion welding techniques, FSW facilitates the jointing of AA2014 and AA6061 

alloys that are reinforced with ceramic particulates, resulting in welds that exhibit superior 

strength, resistance to corrosion, and fatigue performance [78-79]. This renders FSW a 

prospective technology for high-performance applications in industries including, construction, 

railway, and marine, where the development of resilient, robust, durable, and reliable welded-

joint connections is essential [80]. The inclusion of nano-particulates further strengthens the 

thermostability and resistance to wear of FSW joints, thereby offering a novel emerging 

opportunities for their implementation in heavy-duty machinery and high-temperature 

environments [81].  

Furthermore, the integration of FSW and stir casting offers a synergistic method for the 

production and joining of advanced Al-composites for critical applications in sectors including, 

energy, where high-efficiency, durable components are required. At the cutting-edge of 

material innovations, these technologies are positioned by their capacity to customize 

mechanical characteristics by precisely controlling the reinforcement-composition, and 

welding-parameters. The applications of WC and Al2O3 reinforced Al-alloys through stir 

casting and FSW represents a paradigm shift toward more resilient, lightweight, and 

environmentally friendly materials, ensuring significant advancements in modern engineering, 

as industries strives for more sustainable and high-performance solutions in Automotive, 

Aerospace, Defense, Marine, and Railway transportation sectors [82]. 

 

 

4. Conclusion 

The mechanical properties, metallurgical studies, wear rate, and corrosion bahavior of 

dissimilar weldments of AAMMCs reinforced with 5% Al₂O₃ and 5% WC particles have been 

extensively investigated in the current research work. AA2014 and AA6061 Al alloys have 

been taken under study that have initially been produced by the stir casting method followed 

by friction stir welding technique. Key results are discussed in the following sections; 

i. The stir casting method was effectively used to produce AAMMCs with a consistent 

dispersion of reinforcement particles in the AA2014 and AA6061 matrices.  

ii. The stir-cast composites showed tensile strengths of 155 MPa in AAMMC1 and micro-

hardness of 116 HV due to the good integration of Al₂O₃ and WC particles in the 

reinforced composites. 
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iii. The tensile strength of the AAMMCs joined through the FSW technique is found to be 

156 MPa, showing reasonable weld strength along with enhanced hardness values at 

the TMAZ, which has been attributed to proper mechanical mixing assisted by the 

square tool pin profile. 

iv. The corrosion test shows that FSW joints obtained from stir casting possessed good 

resistance against corrosion; its rate stood at 0.0131563 mm/yr. From the wear test, it 

proved that the even dispersion of particles with reinforcement and proper 

microstructural integrity considerably improved both resistance against wear as well as 

against corrosion. 

v. The considerable strengthening of the composite structures was proven with the help of 

the addition of reinforcement particles into the Al matrix, further processed by the FSW 

method. SEM and EDS analysis showed defect-free AAMMC samples with uniformly 

distributed reinforcement within the TMAZ and nugget zone. 

 

4.1 Limitations and Future Scope: 

The study focuses on evaluation of corrosion resistance, wear rate, micro-hardness, welding 

strength, and changes in the microstructures & elemental analysis; however, the grain size 

distribution across different zones, essential for the detailed understanding of local mechanical 

properties, is not examined. The material also has not been tested under any fatigue loading 

condition. Future work will focus on analysing grain size in the weld zone and evaluating the 

fatigue behavior under cyclic loads to further enhance the understanding and applicability of 

these composites in practical conditions. In addition, the fractography analysis for the HAZ of 

Al6061 will be included in the future work. 
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