
Online intelligent parameter and speed estimation of permanent
magnet synchronous motors using bacterial foraging optimization
Mohammed M. Alrashed1 , Mohamed F. Elnaggar1 , Aymen Flah2,3,4,5,* , and Claude Ziad El-Bayeh6

1Department of Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
2University of Gabes, National Engineering School of Gabes, 6072, Tunisia
3 Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University,
Rajpura, 140401, Punjab, India

4Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
5 Jadara University Research Center, Jadara University, Irbid, Jordan
6College of Engineering and Technology, University of Doha for Science and Technology, Doha, Qatar

Received: 31 January 2025 / Accepted: 27 February 2025

Abstract. Accurate estimation of the parameters and speed of Permanent Magnet Synchronous Motors
(PMSMs) is crucial for achieving optimal performance in control applications. Traditional methods, such as
the Model Reference Adaptive System (MRAS) rely on manually tuned Proportional-Integral (PI) controllers,
leading to suboptimal results due to fixed tuning parameters that do not adapt to varying operating conditions.
This limitation affects the precision of parameter identification, leading to potential inefficiencies in motor con-
trol. This paper proposes an intelligent online estimation method that leverages Popov hyperstability theory
and the Bacterial Foraging Optimization (BFO) algorithm to address this issue. The proposed approach simul-
taneously estimates three key PMSM parameters – stator resistance, inductance, and permanent magnet flux –

along with the actual motor speed. Unlike conventional methods, an online BFO-based tuning algorithm is inte-
grated into the MRAS framework, allowing adaptive and optimal adjustment of controller parameters in real
time. Extensive practical evaluations demonstrate that the proposed method significantly improves estimation
accuracy and adaptability compared to traditional approaches. The results confirm its effectiveness in enhanc-
ing PMSM control performance, making it a promising solution for high-precision motor applications. Exper-
imental results demonstrate a 12% improvement in estimation precision compared to traditional manual tuning
methods.

Keywords: PMSM, MRAS, Parameters estimation, Bacterial foraging optimization, Speed variation.

Abbreviation

Parameter

id Direct axis stator current
iq Quadrature axis stator current
vd Direct axis stator voltage
vq Quadrature axis stator voltage
Rs Armature resistance
Ld Direct axis stator self-inductance
Lq Quadrature axis stator self-inductance
km Permanent magnet flux linkage

Variable/Term

hi (j, k, l) Position of the ith bacterial in the jth and
kth chemotactic and reproduction step and
the lth elimination step

Ds Swim direction
C Swim size
J (i, j, k, l) Represents the minimum value of fitness

calculated in the chemotactic step
C (i) =
C (i) + d1

Bacteria positions are updated using a
specific equation during the swim condition

C (i) =
C (i) � d2

Bacteria positions are updated using a speci-
fic equation during the tumbling condition

d1, d2 Random positive values less than one, are
used in the position update equations
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1 Introduction

1.1 Research background

Permanent Magnet Synchronous Motors (PMSMs) have
made significant attention in applications requiring large-
speed operation. This is largely due to their exceptional
advantages, including high efficiency, low inertia, a high
torque-to-current ratio, a high power factor, and minimal
maintenance requirements. Additionally, their compact size
and lighter weight make PMSMs preferred over induction
motors for high-performance applications [1].

Industries such as transportation and electric vehicles
increasingly rely on PMSMs, particularly for their ability
to operate effectively in high-speed regions, facilitated by
field-weakening techniques [2]. Researchers have also
focused on reducing the overall cost of PMSM speed control
systems in these applications, especially by eliminating the
need for mechanical sensors. Numerous sensorless tech-
niques for speed estimation have been proposed) alongside
modifications to control strategies like Direct Torque Con-
trol (DTC) to enhance performance and optimize control
loops [3].

One of the key advantages of PMSMs is their capability
to operate efficiently at high speeds. This feature has been
the subject of extensive research and innovation [4]. These
efforts underscore the PMSM’s utility and growing promi-
nence in advanced applications requiring superior perfor-
mance and reliability.

1.2 Literature review

AC motor control method, which is based on Field-
Oriented Control (FOC) topology, enables precise regula-
tion of motor speed or torque by decomposing the motor
flux into two components: direct and quadrature) [5]. This
approach relies on two key current controllers to generate
the required stator voltages for these components. A signif-
icant challenge lies in regulating the quadrature current
component, which requires a reference current for the
quadrature stator to initiate operation.

In this method, the quadrature component is directly
tied to the electromagnetic torque reference, which is deter-
mined by an alternative controller exploiting speed data.
The regulator calculates the needed torque component once
the actual and reference speeds are obtained. However, the
primary difficulty arises from accurately determining the
actual speed and identifying the rotor position, which is
critical for effective operation [6].

The accurate identification and stability of PMSM
parameters heavily influences the effectiveness of vector
control strategies. However, a significant challenge arises
due to the variation of these parameters over time, caused
by factors such as temperature fluctuations, mechanical or
electrical faults, vibrations, or environmental conditions like
dust in electric vehicles. These parameter variations directly
impact the drive performance, the precision of identification
techniques) control loops [7] and algorithms like field weak-
ening [8].

Several PMSM parameter identification methods
have been proposed to ensure high accuracy in parameter

tracking to address this issue. For example, Bolognani
introduced a recursive parameter identification method
for estimating PMSM parameters [9]. Additionally, adap-
tive identification models using predictive current control
techniques have been explored) and adaptive algorithms
have been applied in various contexts [10]. Techniques
leveraging Lyapunov and Popov stability criteria have also
been developed, with Popov’s criterion offering robust con-
vergence [11]. Zhu et al. [12] employed the Kalman filter to
estimate parameters like winding resistance and magnet
flux in brushless AC motors. The Model Reference Adap-
tive System (MRAS) has emerged as a promising approach
for simultaneous parameter observation in PMSMs. By
leveraging the Popov stability criterion, MRAS adjusts
the error between the estimator and the actual model to
estimate unknown parameters. The system uses two mod-
els: the reference model and the adjustable model, with
the latter relying on a Proportional-Integral (PI) adapting
mechanism. However, a consistent challenge in the litera-
ture has been the absence of a robust method for tuning
these PI mechanism parameters [13]. Approaches such as
recurrent neural networks or fuzzy logic have been
employed to replace PI regulators and mitigate tuning
issues. These methods, however, demand either extensive
training data (in the case of neural networks) or clearly
defined boundaries (for fuzzy logic systems) [14].

The challenges associated with vector control strategies
and PMSM parameter estimation are further exacerbated
when considering traditional motor control methods that
rely on rotary encoders or resolvers. These devices are
widely used in conventional systems to provide precise rotor
position information, enabling optimal control performance.
While they ensure high accuracy in ideal conditions, real-
world applications reveal several drawbacks. Issues such
as high costs, oversized designs, and compatibility limita-
tions with machine sizes arise due to the complex wiring
schemes, sensitive encoder placement, and susceptibility
to external factors like dust, vibration, and temperature
fluctuations. These limitations ultimately affect the robust-
ness and reliability of PMSM drive systems. Building upon
the previously discussed parameter estimation challenges
and advancements in intelligent techniques, such as the
Bacterial Foraging Optimization (BFO) algorithm, an
alternative solution emerges in the form of software-based
speed encoders. Recent research, combined with advance-
ments in processor technologies and computational perfor-
mance, suggests that software speed encoders can
effectively replace hardware encoders. This approach
addresses the cost and durability issues associated with
physical encoders. It integrates seamlessly with advanced
parameter estimation methods like MRAS, where BFO
optimization enhances the tuning of sensitive parameters.
By leveraging these software-based solutions, the PMSM
control system can achieve high performance while over-
coming traditional limitations. Integrating intelligent algo-
rithms such as BFO further ensures that the system
remains adaptive and robust against parameter variations
and environmental challenges, ultimately improving
modern motor control strategies’ overall efficiency and reli-
ability [15].
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Various sensorless methods for rotor position and speed
estimation have been explored in the literature, including
approaches using artificial intelligence) observers based on
sliding mode) and MRAS. The effectiveness of these soft-
ware-based speed encoders has been demonstrated in the
referenced works under specific operating conditions and
within limited speed ranges. However, their strength has
primarily been validated within certain speed zones, often
excluding the high-speed range.

1.3 Research motivation and problem statement

The control of PMSMs relies heavily on accurate speed and
rotor position estimation, which is crucial for achieving high
performance in industrial and automotive applications.
Traditional control strategies, such as FOC require precise
knowledge of motor parameters to regulate torque and
speed effectively. However, a significant challenge arises in
accurately determining these parameters, as they tend to
vary over time due to temperature fluctuations, mechanical
and electrical faults, vibrations, and environmental condi-
tions. These variations can significantly affect the stability
and efficiency of PMSM drives, leading to degraded perfor-
mance in real-world operating conditions [16].

One widely adopted solution for speed and position esti-
mation is using rotary encoders or resolvers. These hard-
ware-based sensors provide precise real-time data,
ensuring optimal control performance. However, despite
their accuracy, they introduce several practical limitations.
The high cost of these devices, coupled with their complex
wiring requirements and sensitivity to external disturbances
such as dust, vibrations, and extreme temperatures, makes
them less suitable for many industrial applications. Fur-
thermore, their integration into compact or cost-sensitive
motor systems is often impractical, highlighting the need
for alternative estimation methods.

To address these challenges, sensorless estimation tech-
niques have been explored in the literature, including artifi-
cial intelligence-based approaches, sliding mode observers,
and MRAS estimators. Among these, MRAS has emerged
as a promising solution for PMSM parameters and speed
estimation due to its reliance on the Popov stability crite-
rion, which ensures convergence and robustness. However,
a critical issue in MRAS implementation is the tuning
of the PI controller, which is essential for adapting the
adjustable model to match the reference model. Traditional
manual tuning methods are inefficient, as they fail to
account for the nonlinear behavior of PMSMs, leading to
suboptimal performance in dynamic operating conditions)
[17].

Another major challenge arises in high-speed motor
operation, where PMSMs can reach speeds up to 200% of
their rated value, particularly in field-weakening mode. In
such conditions, crucial parameters like stator resistance
and magnet flux undergo significant variations, directly
impacting the mathematical models used for sensorless
speed estimation. This variation can cause instability,
reduced estimation accuracy, and ultimately compromise
the reliability of the control system. Given that high-speed
operation is essential in applications such as electric vehi-
cles, robotics, and industrial automation, addressing these

parameter variations is vital to ensuring consistent perfor-
mance and stability across a wide speed range.

The limitations of hardware-based encoders and the
challenges of parameter variations and PI tuning in
MRAS-based estimation emphasize the need for an
advanced, adaptive solution. Recent developments in intel-
ligent optimization algorithms, such as the BFO algorithm,
provide a potential means to overcome these issues. By
dynamically tuning the MRAS PI controller, optimization
techniques can enhance the adaptability of PMSM control
systems, improving their performance in both normal and
high-speed operating conditions. This approach motivates
the development of a robust, software-based speed encoder
that integrates MRAS with BFO optimization to provide a
cost-effective, accurate, and reliable alternative to tradi-
tional sensor-based methods.

1.4 Contributions

The contributions of this work can be summarized in this
ensemble of points as follows:

– Development of a software-based speed encoder as an
alternative to traditional rotary encoders, reducing
cost, complexity, and susceptibility to external
disturbances.

– Enhancement of MRAS-based parameter and speed
estimation by integrating the BFO algorithm, enabling
dynamic and adaptive tuning of the PI controller.

– Improvement in estimation accuracy and robustness
by addressing PMSM parameter variations due to
temperature fluctuations, mechanical faults, and envi-
ronmental conditions, ensuring stable operation across
a wide range of speeds.

– Ensuring high-speed operational stability by refining
sensorless speed estimation techniques to account for
variations in key parameters, such as magnet flux and
stator resistance, particularly in field-weakening mode.

– Reduction in computational complexity compared to
traditional neural networks and fuzzy logic-based
tuning approaches, making the proposed method more
practical for real-time motor control applications.

– Validation through extensive practical evaluations,
demonstrating a 12% improvement in estimation preci-
sion compared to traditional manual tuning methods
while maintaining stability in dynamic operating
conditions.

1.5 Paper organization

The paper is structured into six sections. Following the
introduction, Section 2 presents the mathematical model
of the main electrical machine. Section 3 discusses the
FOC strategy, outlining its typology and implementation.
Section 4 provides a mathematical analysis of MRAS esti-
mators, followed by a detailed explanation of the selected
optimization algorithm, BFO. Section 5 presents the
simulation and experimental results, demonstrating the
implementation of this complex architecture on control
hardware. Finally, the conclusion summarizes the paper’s
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key findings’ and provides insights for future research
directions.

2 PMSM model

The dynamic simulation model of this machine, assuming
negligible effects from saturation and hysteresis iron losses,
can be set as a nonlinear differential equation. These math-
ematical models establish relationships between the stator
currents and voltages, as is in equation (1). This model links
the rotor field to the mechanical parameters, including tor-
que, speed, and angular position, equation (2) [18–20]. The
mechanical motor equation is (3).
.

vd ¼ Rsid þ Ld
did
dt

� xLqiq

vq ¼ Rsiq þ Lq
diq
dt

þ xLdid þ xkm

8><
>: ð1Þ

T e ¼ 3
2

� �
P
2

� �
kdiq � kqidð Þ

kd ¼ Ldid þ km and kq ¼ Lqiq

8<
: ð2Þ

T e � T lð Þ ¼ P
2

� �
J
dx
dt

þ fx
� �

: ð3Þ

With h and x are the rotor angular position and speed,
respectively, f is the friction coefficient, J is the moment
of rotor inertia, Te is the developed electromagnetic torque,
and Tl is the load torque.

The voltage source inverter (VSI) is described with the
IGBT state (Si, i = a, b, c) and the DC bus voltage UDC.
The generated voltage vector is given in equation (4).

~Vs ¼
ffiffiffi
2
3

r
UDC Sa þ Sbei2p=3 þ Scei4p=3

� �
: ð4Þ

3 Selected control topology

Since the 1970s, various vector control strategies have been
developed, including rotor-flux-oriented, stator-flux-
oriented, and magnetizing-flux-oriented approaches. These
strategies have proven highly effective for controlling
synchronous motors in adjustable-speed drive applications.
They excel in handling rapidly changing loads across a wide
speed range, including high-speed operation enabled by the
field-weakening strategy.

Some sources try to select DTC, FOC, or Scalar control
due to several advantages outlined in Table 1. While DTC
offers better performance in certain aspects, such as fast
dynamic response and high control loop precision, it also
introduces significant ripple in current and voltage signals.
These ripples negatively impact the accuracy of estimators

that rely on stator current and voltage measurements.
Therefore, considering the need for a sensorless control
approach and the challenge of torque ripple in DTC,
FOC was the most suitable control topology for this induc-
tion machine.

The fundamental concept is to control the electromag-
netic torque in a manner analogous to that of a separately
excited DC machine. The three-phase stator currents are
measured and transformed into the d-q frame using Clarke
and Park transformations to achieve this. A speed sensor or
observer evaluates the speed error by comparing the actual
motor speed with the target speed. The speed controller
generates a torque command, determining the quadrature
stator current (iq) as the control input. Under nominal con-
ditions, the direct stator current (id) is set to zero. However,
id is adjusted to a negative value in high-speed regions as
part of the field-weakening strategy [22, 23]. This adjust-
ment modifies the electromagnetic torque equation, as
expressed in equation (5).

T e ¼ 3
2

� �
P
2

� �
kmiqð Þ: ð5Þ

The outputs of the stator current controllers are the direct
and quadrature stator voltages. These voltages are then
processed using the Clarke transformation to generate the
reference voltages required for the Pulse With Modulation
(PWM) block, which drives the stator terminals. The over-
all structure of the field-oriented vector control system is
illustrated in Figure 1.

4 MRAS adaptation for PMSM parameters
and speed estimation

4.1 MRAS for PMSM parameters

The MRAS estimator is designed to determine the param-
eters of a PMSM using the principles of Popov stability
theory. This estimator relies solely on real-time measure-
ments of current, voltage, and rotor speed to accurately
estimate stator resistance, stator inductance, and rotor flux
linkage simultaneously. The estimator offers enhanced
response speed and reduced computational time due to
the inclusion of both proportional and integral components.
By selecting the d-axis and q-axis stator current compo-
nents as state variables, the PMSM state system can be
expressed as follows in equation (6). The adjustable param-

eter state system is given by equation (7). We note
1
s
¼ Ls

Rs
.

_X ¼ �s x

�x �s

� �
id iq½ �T þ

1
Ls

0

0 1
Ls

" #
ud uq½ �T þ 0

�xI f

� �

ð6Þ

X̂
�
¼ Â

ĉ 0

0 ĉ

� �
þ ĉ 0

0 ĉ

� �
U þ 0

xÎ f

� �
þ k1 0

0 k2

� �
X̂ �X

	 

:

ð7Þ
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In this context, G represents the improvement gain matrix
selected to ensure specific error characteristics are met. “k1”
and “k2” are two bounded positive real values. By taking the
difference between the adjustable parameter system equa-
tion (7) and the state system equation (6) the resulting
equation is expressed as equation (8). Thus, the nonlinear
time-varying feedback system, consisting of a feedforward

linear model combined with a nonlinear feedback expres-
sion, can be represented as it is in equation (9).

_e ¼ �Aeþ�BU þ�C þGe ð8Þ

we note as variable : _e ¼ X̂ � X̂_ ; e ¼ X � X̂ ;

Fig. 1. Field-oriented vector control scheme (FOC).

Table 1. FOC face DTC and scalar control topologies [21].

Feature FOC Scalar control (V/f) DTC

Torque control Precise Indirect Good but with ripple
Speed control Accurate Poor at low speed Moderate
Dynamic response Fast Slow Very fast
Efficiency High Moderate High
Torque ripple Low N/A High
Implementation complexity High Low Moderate
Sensorless control feasibility Yes No Yes

The Author(s): Science and Technology for Energy Transition 80, 33 (2025) 5



�A ¼ A� Â;�B ¼ _B � B̂;�C ¼ C � Ĉ

_e ¼ AþGð Þeþ w ð9Þ

w ¼ ��A X̂ ��BU ��C : ð10Þ
The stability analysis of the system can be addressed using
the Popov stability theory, which requires the satisfaction
of two essential conditions, as outlined in Flah et al. [24]
and Gabbi et al. [25]. The transfer function matrix of the
linear feedforward block must be real and strictly positive.
Gao et al. [8] confirms that the gain matrix (G) as defined
in equations (8) and (9) satisfies this requirement.

Z t1

0
wTedt � �c2:

It is noted that c2 is a constant and has a positive sign.
By expanding the second Popov condition outlined in
equation (11) three additional conditions are derived, as
expressed in equations (12)–(14). These conditions are
met when the parameter adaptive laws are designed in a
PI style, as shown in the resulting equations (15)–(17):

Z t1

0
wTedt ¼

Z t1

0
eTwdt ¼

�
Z t1

0
eT �A X̂

	 

þ �BUð Þ þ �Cð Þ

h i
� �c2 ð11Þ

Z t1

0
eT Â�A

	 

X̂ dt � �c2A ð12Þ

Z t1

0
eT ðB̂�BÞUdt � �c2B ð13Þ

Z t1

0
eT Ĉ �C

	 

dt � �c2C ð14Þ

�A ¼
Z t

0
eT X̂ �fir � þeT X̂ �fpr

	 

dt ð15Þ

�B ¼
Z t

0
eT � U � fil � þeT �U � fpl
� �

dt ð16Þ

�C ¼
Z t

0
eT � fic � þeT � fpc
� �

dt: ð17Þ

So it is possible to rewrite, the adaptive parameters expres-
sions as in equations (18)–(20) respectively to stator resis-
tance, stator inductance, and magnet flux.

R̂s

Ls

¼ � kpr þ kir
s

� �
îded þ îqeq

	 

þ R̂s

L̂s

0ð Þ ð18Þ

1

L̂s

¼ kpl þ kil
s

� �
uded þ uqeqð Þ þ 1

L̂s

0ð Þ ð19Þ

k̂m

L̂s

¼ � kpf þ kif
s

� �
xeqð Þ þ k̂m

L̂s

0ð Þ: ð20Þ

Therefore, the global structure of the adaptive algorithm
parameters identification is shown in Figure 2a. An anti-
windup PI was used to eliminate the saturation problems,
and the PI style used is illustrated in Figure 3.

4.2 MRAS for PMSM speed estimation

One approach to efficiency estimation is the MRAS tech-
nique, which is often regarded as more effective than
back-Electromagnet Force (EMF) and state observer tech-
niques [3]. Some researchers associate this approach with
intelligent estimation methods in the literature, including
fuzzy logic and neural network-based solutions. However,
these methods come with the challenge of requiring a com-
prehensive understanding of database information. Conse-
quently, most research studies focus on methodologies
utilizing mathematical models like MRAS or Luenberger
observers. The mathematical models of the “reference and
adjustable models,” illustrated in the accompanying figure,
serve as the basis for the MRAS principle (Fig. 2b). The
outputs from these models are compared and processed
through a specific algorithm to estimate or approximate a
given parameter.

Additionally, this output signal is often used within the
adjustable model itself. A key challenge with the MRAS
estimator lies in stability concerns, as improper selection
or configuration of the adaptation and adjustment mecha-
nisms can lead to system instability. This issue can be effec-
tively addressed by applying Popov’s Hyper Stability
Criterion.

To meet the specified application requirements, the
speed of the PMSM will be estimated in real time, with
the primary goal of replacing the mechanical speed encoder
through a software-based approach. A flexible mathemati-
cal model must be developed using the relevant equations
derived earlier as an initial step. The literature indicates
that various types of MRAS observers can be employed,
such as back-EMF-based MRAS (E-MRAS) reactive
power-based MRAS (Q-MRAS), and active power-based
MRAS (A-MRAS). However, the optimal choice of observer
depends on a thorough understanding of the machine’s
internal design specifications. Each MRAS model offers
unique benefits and faces specific limitations that should
be carefully considered.

Examining the related works cited in Flah et al. [26], it
is evident that certain standard MRAS estimators exhibit
sensitivity to parameter variations, such as changes in sta-
tor resistance. The motor’s operating temperature directly
influences this parameter. When the temperature rises,
the stator resistance may increase, leading to inaccuracies
in the estimated parameters, including the stator resistance
itself, deviating from actual values. The proposed model
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Fig. 2. (a) MRAS-BFO tuning parameters identification scheme. (b) MRAS-BFO tuning speed identification scheme.
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offers a significant advantage over the referenced solutions,
operating independently of this parameter. In high-speed
modes, where elevated speeds often lead to increased motor
temperatures, the resulting rise in stator resistance could
impact performance. However, the Q-MRAS approach
appears to address and mitigate this issue effectively.

Equation (21) shows the basic mathematical equation:

Qs ¼ vqid � vdiq: ð21Þ
From the other side, it is possible to rewrite the reactive
power expression as it is in equation (22)

Qs ¼ x Ldi2d þ Ldi2d
� �þ Ldi2d

did
dt

� Laid
diq
dt

� �
þ xidkm:

ð22Þ
Equation (22) can be migrated to equation (23) where all
currents can be assumed constant in the permanent regions
where torque and motor speeds are constant.

Equation (24) which illustrates the adjustable Q-MRAS
model, bases the stator currents as the direct and transver-
sal components.

Qs ¼ x Ldi2d þ Lqi2q
	 


þ xidkm ð23Þ

Q̂s ¼ x̂ Ldl̂2d þ Lql̂2q
	 


þ x̂îdkm: ð24Þ
The adaption protocol is constructed once the esteemed
and real reactive power has been verified.

Equation (25) might clarify the power error value and
the total reactive power produced by the MRAS estimator
if each of equations (21) and (24) are used, followed by a
subtraction action.

eq ¼ Qs � Q̂s ¼ vqid � vdiq � Ldl̂2d þ Lql̂2q
	 


� x̂îdkm

¼ aþ x̂b ð25Þ

4.3 Stability analysis of the MRAS loop

A PI controller will regulate the overall transfer function,
resulting in a closed-loop system with a third-order transfer
function, as expressed in equation (26).

See the Equation (26) bottom of the page

with

RO ¼ Rs

Ld
vqiq0 þ vdid0ð Þ þ x vddd0 � vqiq0ð Þ:

As previously mentioned, flux variations occur when the
motor operates above its nominal speed, necessitating sta-

G sð Þ ¼ vqiq0 þ vdid0ð Þkps2 þ ROkps þ vqiq0 þ vdid0ð Þkis½ � þ ROki

s3 þ s2 2 Rs
Ld
þ kp vqiq0 þ vdid0ð Þ

h i
þ s x2 þ ROkp þ vqiq0 þ vdid0ð Þki½ � þ ROki

ð26Þ

Fig. 4. Stability analysis of the MRAS loop, under various
speed.

Fig. 3. Anti-windup PI.
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bility verification within this speed range. The stability
assessment was conducted using a Nyquist plot of the
closed-loop system, as illustrated in Figure 4 considering a
speed range of “10,000 rpm” (below nominal speed) and
“50,000 rpm” (within the high-speed region). In the follow-
ing discussion, den(G(s)) represents the denominator of
G(s) where P denotes the number of poles and Z the
number of zeros. By plotting the Nyquist contour for the
function (den(G(s)) � 1) it is observed that the resulting
curves do not encircle the point (�1 + j0). Consequently,
the number of encirclements “N” is “0”. Given that the
number of poles in the right-half plane is “P = 0”, the
number of zeros in the right-half plane is also “Z = 0”. Based
on the Nyquist criterion, it is concluded that the system
remains stable.

5 Selection of the bacteria foraging
optimization algorithm: advantage

The selection of the BFO algorithm was based on several
comparison approaches based on recent research. The
comparison was between BFO, Particle Swarm Optimiza-
tion (PSO), Genetic Algorithm (GA), Differential Evolu-
tion (DE), and Simulated Annealing (SA). The objective
of this comparison has the objective to find the most suit-
able solution for electrical machine parameter identifica-

tion. Table 2 highlights key aspects such as convergence
speed, accuracy, robustness, and computational complexity,
demonstrating why BFO is the most suitable choice.

Basing on these details, it can be seen that BFO will
be highly effective for electrical machine parameter
identification due to its superior handling of nonlinearities,
robustness, and well-balanced exploration-exploitation
capabilities. Unlike PSO and GA, which are prone to pre-
mature convergence, BFO effectively navigates challenging
search spaces by mimicking the foraging behavior of bacte-
ria. Through chemotaxis, BFO systematically explores the
solution space while maintaining diversity, reducing the risk
of getting trapped in local minima. It’s swarming and repro-
duction mechanisms further refine solutions, ensuring
higher accuracy in parameter estimation. Moreover, BFO’s
elimination and dispersal steps prevent stagnation, making
it more stable than SA, which can suffer from excessive
randomness. While DE offers strong search capabilities, it
may require careful tuning of mutation factors, whereas
BFO self-adapts through biological principles.

Bacterial forage optimization, a novel approach based
on foraging behavior for resolving optimization problems,
was introduced concerning Escherichia coli (E. coli) bacte-
ria in the human gut. Therefore, under the law of bacteria,
every element supports the best species to find food and
eradicate the others. The chemotaxis step, swarming, repro-
duction, and elimination steps are the four processes that

Table 2. A comparison between BFO, PSO, GA, DE, and SA.

Criteria BFO PSO GA DE SA

Convergence
speed

Moderate Fast Slow to moderate Fast Slow

Accuracy High Moderate Moderate High Moderate
Robustness High

(Resistant to
local minima)

Moderate
(Prone to premature

convergence)

Moderate
(Depends on

population size)

High
(Good

exploration-
exploitation
balance)

Low
(Stochastic behavior
affects stability)

Computational
complexity

Moderate to High Low High Moderate Moderate

Exploration vs.
Exploitation

Balanced Good exploitation
but weak
exploration

More exploration
than exploitation

Well-balanced Highly stochastic,
risk of poor
exploitation

Handling of
nonlinearities

Excellent Moderate Moderate Good Weak

Ability to escape
local minima

Strong bacterial
behavior prevents

stagnation

Weak Depends on
mutation strategy

Strong
(Adaptive
mutation)

Weak
(Prone to

local minima)
Best suited for
electrical
machine
parameter
identification?

(Accurate and
robust for nonlinear

systems)

(Prone to local
minima, less
accurate)

(Slow convergence,
needs large
population)

(High
computational

cost)

(Unstable for
complex systems)

References [27–35]
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make up the bacteria’s foraging strategy [36]. The optimiza-
tion approach can be determined from this equation by
selecting the suitable equality in (27).

UPI ¼ a
Z T

0
e tð Þdt þ b

Z T

0
e tð Þj jdt þ c

Z T

0
e2 tð Þdt: ð27Þ

Figure 4 shows the algorithm for bacterial foraging. If the
bacterium goes in a specific way, it is considered swimming;
if it moves in a completely different direction, it is tumbling.
The chemotactic step represents the tactics between
swimming and tumbling that the bacteria chooses in its
motion. Equation (28) provides a mathematical update of
the bacterial position:

hi j þ 1; k; lð Þ ¼ hi j; k; lð Þ þ C ið Þ �s ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sT ið Þ�s ið Þp : ð28Þ

The best-set bacteria get divided into two groups, where
the best half replaces the second, which is eliminated. This
part is called the reproduction step. The elimination and
dispersal step, based on the probability value Ped, consists
of eliminating and dispersing the existing bacteria position
in a new random direction if the probability value is less
than a rand value [37]. The overall BFO flowchart can be
seen in Figure 5c.

6. Results discussion

6.1 Real prototype and simulation configuration

The proposed control scheme for the PMSM is presented in
Figure 5, alongside the experimental setup designed to
validate the high-speed control loop. The overall hardware
configuration is also detailed in Figure 5. The PMSM is
integrated with a compressor system capable of achieving
extremely high speeds by injecting high-pressure oil, effec-
tively simulating high-speed operating conditions. The key
specifications of the electrical machine used in this study
are outlined in Table 3.

The DC bus voltage UDC max = 660 V for the inverter
parameter, and the switching frequency is 10 KHz. After
according to the different components in the Matlab/
Simulink environment, a PMSM parameters variation and
a PMSM speed variation were applied to verify the effec-
tiveness of the proposed multiple estimators. As in the elec-
tric vehicle application, the environment supported by the
PMSM comports many effects like temperature rise and
dust or vibration variations, etc. In this section, our goal
challenge is the robustness of the global system parameters
identification.

6.2 MRAS performances under MRAS without optimal
tuning

It is widely recognized that these parameters are typically
adjusted manually. However, this approach can lead to
inaccuracies due to mismatches in the parameter values,
often resulting in an unstable identification response.
Initially, three manual tests were conducted to adjust the

PI parameters. The results highlighted the significant
impact of PI parameter variations on the estimator’s
response for the three PMSM parameters. It can be seen
in Figure 6 where three kinds of PI cases were applied to
the MRAS model. The related performances of the MRAS
parameters estimation, can be seen in those figures. In the
case of Figure 6a where the stator resistance behaviors have
three different situations. The same for the Figures 6b and
6c respectively for the Stator inductance and magnet flux
estimation.

6.2 MRAS performances under MRAS BFO tuning

The proposed approach dynamically adjusts the PI adapta-
tion mechanism parameters in real-time to address this
issue. The MRAS-based PMSM parameter estimator is
integrated into the overall control scheme to accurately
identify parameter variations during operation. Section 4
presents the MRAS estimator, with its structure incorpo-
rating three PI adaptation mechanisms.

These parameters are coded as kpf, kif, kpl, kil, kpr, and kir,
respectively to permanent magnet flux, stator inductance
and resistance identifiers. To ensure estimation convergence
and stability, these parameters require dynamic online
adjustment. This work proposes an intelligent tuning
method based on the BFO algorithm. To implement the
BFO algorithm, certain initial data must be predefined,
as outlined in Table 4.

The adjusting PI parameter will start executing the
BFO algorithm presented in Figure 4. The three fitness cost
functions to be minimized are in equations (29)–(31).

min fRs ¼ a1

Z
e2Rs

þ b1 � overshootRs ð29Þ

min fLs ¼ a2

Z
e2Ls

þ b2 � overshootLs ð30Þ

min fkm ¼ a3

Z
e2km þ b3 � overshootkm ð31Þ

where, eRs ; eLs and ekm are respectively the error between
the reference and the estimated permanent magnet flux,
stator resistance, and inductance.

The overshoots denoted by overshootkm ; overshootRs

and overshootLs are respectively those related to permanent
magnet flux, stator resistance, and inductance estimation
results. Throughout the execution of the algorithm, each
bacterium in the population explores its surroundings
during every chemotactic step within the reproduction loop,
which is also nested in the elimination loop. The bacteria
aim to identify the optimal position, corresponding to the
lowest fitness cost. This optimal position is shared among
the bacteria to update their respective positions. By the
end of the iterations, the algorithm ensures that the best
position, representing the minimum fitness cost, is selected
during the final stages of reproduction, elimination, and
chemotactic loops.

The evolution of the fitness cost and the PI parameters
in equations from (29) to (31) are displayed in Figures 7–9.
The results were proved for two different configuration for
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Fig. 5. (a) Block diagram of the PMSM control system. (b) exprimental steup. (c) BFO flowchart.
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Fig. 5. Continued
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the BFO algorithm. The first configuration, is based on
Reproduction steps size (Nre = 1) and Elimination-dispersal
events size (Ned = 1) and the second configuration is based
on Reproduction steps size (Nre = 2) and Elimination-dis-
persal events size (Ned = 2). This is was for height bacteria
in the first and last reproduction and elimination loop for
the four chemotactic steps.

Effectively Figures 7a, 8a, and 9a show the results when
the configuration in the BFO was based on (Nre = 1 and
Ned = 1). The fitness cost value is not fixed yet for the “s”
bacteria, where each one searches for the best position,
especially in the stator resistance and inductance case due
to the initial bacteria position. However, in the permanent
magnet flux case, the fitness cost is approximately the
same in the beginning and the final iterations. These results
have not guide to a precise response and the static error of
the estimation phase can perturb all the process. The
next step involved enhancing the BFO architecture by
increasing the reproduction step size (Nre = 2) and the

elimination-dispersal event size (Ned = 2). The resulting
behavior is illustrated in Figures 7b, 8b and 9b.

It can be observed that the last bacterium, identified as
Ne4, consistently converges to a stable form in relation to
the fitness cost in most cases. In Figure 7b, all bacteria have
reached the same optimal fitness cost, indicating a single
feasible solution. Similarly, Figure 8b shows that Ne4 main-
tains a nearly constant fitness cost of 0.06, highlighting its
stability. Regarding magnet flux estimation, most bacteria,
including Ne4, converge within a similar fitness cost range,
demonstrating robustness in parameter tuning. Based on
these results, the PI parameters will be fixed and applied
to the MRAS model.

While these outcomes are promising, further perfor-
mance improvements could be achieved by adjusting step
size, the number of reproduction steps, and elimination
events. However, it is crucial to note that such modifica-
tions may impact the computational efficiency and process-
ing speed of the entire optimization process.

Fig. 6. Influence of manual PI parameters adjusting on estimating the PMSM parameters. (a) Stator resistance, (b) stator
inductance, (c) Magnet flux.

Table 3. Electrical machine parameters.

Motor model 2AML406B-090-10-170

Speed 25 K rpm
rated current 11 A
Control topology FOC
Ld, Lq, Ls (stator inductance) 21.5 mH
Stator resistance 5.2 X
Permanent flux (Um) 0.24 Wb
Inertia factor Not specified
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The BFO algorithm’s efficacy is seen in Figures 10a–10c,
where a variable provided speed is used to determine the
stator resistance, stator inductance, and permanent magnet

flux. Starting from 0 rpm and increasing to 25,000 rpm and
40,000 rpm at t = 0.58 s. This clever approach yields an
accurate assessment of PMSMparameters. The no-complete

Fig. 7. Evolution of BFO parameters for the estimate of stator resistance. Two different cases in BFO: (a) Fitness cost for the Stator
resistance parameter and the related PI parameters evolution for a Reproduction steps size (Nre = 1) and Elimination-dispersal events
size (Ned = 1); (b) Fitness cost for the Stator resistance parameter and the related PI parameters evolution for a Reproduction steps
size (Nre = 2) and Elimination-dispersal events size (Ned = 2).

Table 4. BFO parameters.

Parameter Value

Bacteria elements (s) 8
Chemotactic steps (Ne) 4
Swim size (Ns) 4
Reproduction steps size (Nre) 2
Elimination-dispersal events size (Ned) 2
size of bacteria reproductions per generation (Sr) s/2
Probability of elimination/dispersal (Ped) 0.225
Run length (c (:,1)) 0.025 ones (s, 1)
Current positions (x1, x2, x3) x1 = [kpr; kir], x2 = [kpl; kilr] x3 = [kpf; kif]
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bacteria convergence has an impact on the estimation
results in Figure 10b where there is less chattering.

After demonstrating the effectiveness of the proposed
MRAS-BFO estimation tool for PMSM parameter identifi-
cation, the next step was to evaluate its adaptability for
PMSM speed estimation. A real-world application was
implemented using the prototype specifications outlined in
Table 3 to achieve this.

A specific test scenario was designed based on a
high-speed operating mode, with the target speed set at
32,000 rpm (650 Hz). This configuration was chosen to
simulate a realistic application, such as an electric vehicle
drivetrain, where high-speed operation is critical. The objec-
tive was to assess whether the proposed estimation frame-
work remains accurate and reliable under demanding
operating conditions. Figure 11 presents the obtained speed
results. The real speed follows the desired one, with a

chattering about the reference speed starting especially at
t = 0.04 s. In this case, the system operates at 650 Hz,
significantly impacting the commutation blocks integrated
into the software speed encoder (specifically, the Sign Block
shown in Fig. 2b). As a result, noticeable chattering occurs
at this frequency. To address this issue, it is advised that
the operating frequency be limited to a maximum of
400 Hz for this version of the software speed encoder.
Figure 11 illustrates the speed error observed between the
measured and estimated values.

The efficiency of the proposed MRAS estimator was
validated through the previously presented results. How-
ever, additional algorithms were implemented and tested
to further enhance the discussion, including the Kalman
Filter and the classical MRAS as benchmark methods.

The evaluation focused on key performance metrics such
as estimation accuracy, chattering levels, response time,

Fig. 8. Evolution of BFO parameters for the estimate of stator inductance. (a) Fitness cost for the Stator inductance parameter
estimation and the related PI parameters evolution for a Reproduction steps size (Nre = 1) and Elimination-dispersal events size
(Ned = 1). (b) Fitness cost for the Stator inductance parameter estimation and the related PI parameters evolution for a Reproduction
steps size (Nre = 2) and Elimination-dispersal events size (Ned = 2).
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and system speed. All tests were conducted under the same
computational conditions as previously described.

Table 5 presents a comparative analysis of these meth-
ods, highlighting their performance in parameter and speed
estimation. The results provide deeper insight into the
advantages and limitations of the proposed MRAS-BFO
approach relative to traditional estimation techniques.
Table 5 shows that the MRAS-BFO method achieves the
highest precision level, with a 93% accuracy rate, outper-
forming the conventional MRAS by 12% and the Kalman
Filter approach by 5%. In terms of rapidity, the conven-
tional MRAS demonstrates superior performance, as it does
not require parallel optimization computations, making it
inherently faster. This is reflected in its higher rapidity
factor than the optimized MRAS-BFO method. On the
other hand, the proposed approach significantly reduces
chattering, showing a 5% improvement over the conven-
tional MRAS method. This reduction enhances system

stability and smoothness, making the MRAS-BFO method
a more reliable and robust solution for practical
applications.

6.4 Limitations and feasibility weaknesses

Despite the good performance and robustness of the pro-
posed MRAS-BFO solution, it is important to highlight
the computational resources used in the implementation.
The tests were conducted on a system equipped with an
Intel Core i7 processor (3.4 GHz) and 8 MB of RAM. How-
ever, these tests were performed under simple speed and
parameter variations, without evaluating the algorithm’s
adaptability to rapid successive changes. Therefore, its
suitability for direct practical application still requires
further validation. Given these considerations, discussing
the computational complexity, processing time limitations,
and feasibility challenges for real-time applications is

Fig. 9. BFO parameters evolution for the permanent magnet flux estimation. (a) Fitness cost for the magnet Flux parameter
estimation and the related PI parameters evolution for a Reproduction steps size (Nre = 1) and Elimination-dispersal events size
(Ned = 1). (b) Fitness cost for the magnet Flux parameter estimation and the related PI parameters evolution for a Reproduction steps
size (Nre = 2) and Elimination-dispersal events size (Ned = 2).
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crucial. A thorough analysis of these factors will help assess
whether the algorithm can meet real-world performance
requirements and determine potential improvements for
optimizing its efficiency. The estimation method based on
the BFO algorithm presents several challenges related to
computational complexity, processing time, and feasibility
for real-time applications. BFO involves iterative processes

such as chemotaxis, swarming, reproduction, and elimina-
tion-dispersal, significantly increasing computational over-
head. The nonlinear nature of BFO optimization can lead
to prolonged convergence times, making it unsuitable for
real-time systems with stringent latency requirements.

Additionally, the extensive search space exploration
of BFO demands high processing power, limiting its

Fig. 10. A comparison between the real PMSM parameters and
the Parameter estimation with the BFO algorithm. (a) Stator
resistance performance: Real variation and the estimation result.
(b) Stator inductance performances: Real variation and estima-
tion result. (c) Magnet Flux performances Real variation and
estimation result.

Fig. 11. Speed performances with the MRAS estimator. (a)
Speed performance (target 670 Hz): Red color: The real speed,
Blue color: the estimated speed. (b) Speed error between the real
and esteemed MRAS speed for 670 Hz as speed target.

Table 5. Comparison between MRAS-BFO and 2 more conventional method.

Criteria Proposed MRAS-BFO Kalman filter Classic MRAS

Estimation accuracy High (93%) Moderate (87%) Moderate (81%)
Chattering level Low (2%) Low (5%) High (7%)
Response time Fast (0.012 s) Moderate (0.014 s) Fast (0.0009 s)
System rapidity High Moderate High
Computational efficiency Moderate

(requires
optimization steps)

High
(well-structured

recursive approach)

High
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applicability in resource-constrained environments. To mit-
igate these issues, high-performance computing hardware,
including multi-core processors, GPUs, or FPGAs, is
required to accelerate parallel processing. Moreover, imple-
menting optimized numerical techniques can improve effi-
ciency, such as adaptive step-size tuning and hybrid
algorithms combining BFO with faster heuristics like
PSO. Utilizing cloud or edge computing architectures can
enhance feasibility by offloading heavy computations while
maintaining real-time responsiveness. These solutions make
BFO-based estimation more practical for time-sensitive
applications.

7 Conclusion

In this study, the MRAS technique, based on the Popov
hyper-stability criterion, was utilized as an online estima-
tion method for identifying PMSM parameters and moni-
toring speed variation. To enhance the robustness and
precision of the estimation process, the BFO algorithm
was employed as an intelligent tuning mechanism for the
MRAS approach. This optimization technique significantly
improved the precision of the estimation process, achieving
a 12% enhancement compared to traditional manual tuning
methods. The BFO algorithm demonstrated superior per-
formance as an online MRAS tuning mechanism, outper-
forming commonly used manual methods. The simulation
and practice results validate the effectiveness of the pro-
posed approach in achieving precise and robust online
PMSM parameter identification and tuning.
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