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Abstract
Proton exchange membrane fuel cells (PEMFCs) are complex, nonlinear systems whose performance depends on several 
interrelated parameters. Accurate estimation of these parameters is crucial for enhancing the efficiency and reliability of 
PEMFCs. In this paper, we used Fitness Deviation-based Differential Evolution (FD-DE) algorithm to optimally identify 
the unknown parameters of PEMFC models. An adaptive parameter control with wavelet basis function and Gaussian 
distribution, a hybrid trial vector generation strategy using t-distribution based perturbation, and a dimensional replace-
ment mechanism for maintaining population diversity are introduced in the FD-DE algorithm. The innovations in these 
algorithms tackle the common problems in differential evolution algorithms, including premature convergence and loss of 
diversity. The proposed FD-DE algorithm is validated on twelve different PEMFC case studies under different operating 
conditions and compared with several state-of-the-art algorithms, including other DE variants and non-DE algorithms. For 
that purpose, the optimization targets seven parameters �1, �2, �3, �4, �,Rc

 and B to closely match the polarization curves to 
those specified in the manufacturer datasheet, focusing initially on six primary stacks: BCS 500-W PEM, STD 250-W PEM, 
Nedstack PS6 PEM, 500W SR-12PEM, H-12 PEM, and HORIZON 500W PWM. The optimization approach is to mini-
mize the sum of squared errors (SSE) between the predicted stack voltages of the model and the experimentally measured 
results. Absolute error (AE), relative error (RE), and mean bias error (MBE) are assessed across different datasheets. A 
comparative statistical analysis is made among several DE variants FD-DE, TDE, MadDE, LSHADE, LSHADE-cnEpSin, 
jSO, PaDE, and non-DE algorithms ACS, SSA, and TEO. The results show that the FD-DE algorithm performs consist-
ently better than existing strategies in terms of accuracy, convergence speed and stability, and provides better parameter 
estimation with lower errors. The effectiveness of the FD-DE algorithm in solving complex optimization problems and its 
potential to enhance PEMFC modeling and analysis is shown in this work.
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tpdf  T-distribution Probability Density Function
F   Scale Factor
CR   Crossover Rate

Introduction

Recently, renewable energy sources (RESs) have been the 
most attractive alternatives to fossil fuels, which are the 
major source of clean energy because of its non-polluting 
nature. Fuel cells (FCs) are one of the most important tech-
nologies in the renewable energy spectrum and are being 
used more and more as backup power sources to meet the 
growing load demands. A fuel cell is a device that converts 
chemical reactions into electrical energy by means of a nega-
tive anode, positive cathode and electrolyte. Fuel cells are 
differentiated by the type of electrolyte used and start up 
time, with proton exchange membrane (PEM) fuel cells in 
particular being preferred for their efficiency.

Modeling PEMFCs is difficult due to nonlinear behavior 
and sensitivity to operating conditions (such as temperature 
and pressure). Some critical parameters are not specified 
in the manufacturing datasheets, and accurate identifica-
tion is required to build a realistic PEMFC model in many 
cases. Running a fuel cell under suboptimal conditions can 
decrease performance and shorten its lifetime, reducing 
operational life by orders of magnitude. Hence, it is criti-
cal to understand how each one of the various operating 
parameters affect PEMFC performance. Past studies that 
have attempted to identify optimal parameters for fuel cells 
will also be reviewed in this paper, and the ongoing need for 
accurate parameter estimation will be discussed.

Reliable PEMFC modelling relies on experimental data, 
which is typically segmented into three categories: There are 
three types of models: data-driven models [1, 2], empirical 
formula-based models [3–5], and hybrid models [6]. The 
most popular data-driven models for capturing the relation-
ship between input and output variables are neural network 
(NN) algorithms. For example, an artificial neural network 
(ANN) was used to develop a data driven model to predict 
the output performance of high temperature PEMFC systems 
[7]. This model was trained using numerical simulation data.

In the past few years, a great deal of research has been 
focusing on identifying, improving, and fine tuning the 
unknown parameters of semi empirical PEMFC system 
models. In this context, intelligent optimization techniques, 
in particular, metaheuristic methods, have been successfully 
used. This problem has been tackled using traditional opti-
mization algorithms, standard DE [8, 9] such as Genetic 
Algorithms (GA) [10, 11] and Particle Swarm Optimiza-
tion (PSO) [12–14]. Nevertheless, these algorithms can be 
plagued by complex, high dimensional search spaces and 
can prematurely converge to local optima. Additionally, they 

can be sensitive to initial parameter settings and may not 
effectively maintain diversity within the population, lead-
ing to stagnation. Despite its benefits, the traditional GA 
often struggles with complex structures, slow convergence, 
and imprecision in high-dimensional challenges. Conse-
quently, a PSO-based technique was developed for the Nexa 
1.2 kW PEMFC model to overcome these limitations [12]. 
Additionally, a momentum-enhanced PSO demonstrated 
rapid convergence in accurate PEMFC modeling [13], and 
a chaos-embedded PSO algorithm was formulated with a 
novel objective function for realistic PEMFC parameter 
identification [14]. This approach effectiveness was con-
firmed through polarization data from three distinct com-
mercial fuel cells, including the 250 W Stack, BCS-500 W 
stack, and Nedstack PS6.

The performance of PSO algorithms is unfortunately 
very sensitive to the values of learning and inertia factors. 
However, fine tuning these parameters is computationally 
expensive, and incorrect settings can lead to premature 
convergence problems. As a result, besides the widely used 
GA and PSO, several novel metaheuristic algorithms have 
been proposed for parameter identification of semiempirical 
PEMFC models. Included in this category are: the Shark 
Smell Optimization (SSO) method [15], Golden Jackal 
Optimization (GJO) algorithm [16], and Grey Wolf Opti-
mization (GWO) algorithm [17]. The SSO method was used 
to identify the unknown parameters of the semi empirical 
model in [15] and then validated against polarization test 
data from five commercial fuel cell stacks. In [16], a PSO 
based GJO method was developed to minimize the sum of 
squared errors (SSE) between the measured output voltage 
and the output voltage of the PEMFC stack. It was shown 
that it optimally estimates the PEMFC model parameters 
better than other methods.

An optimal method to estimate PEMFC parameters is 
proposed by Yin and Razmjooy [18] based on the Deer 
Hunting Optimization (DHO) algorithm. The DHO algo-
rithm has been used to improve the PEMFC parameters 
identification. An Adaptive Neuro Fuzzy Inference System 
(ANFIS) was used by Yang et al. [19] to model a 250 W 
PEMFC mounted on an electric bicycle. For determining 
the system configuration, inputs included humidity, tem-
perature, hydrogen, oxygen flow rates, and current, while 
efficiency and voltage were considered outputs. Simulation 
results demonstrated that using ANFIS for PEMFC mod-
eling yields reliable and accurate predictions of PEMFC per-
formance. Although classical methods and ANN provided 
logical results, the introduction of metaheuristics attracted 
researchers due to their simplicity and time-saving proce-
dures in resolving modeling problems.

The Simulink library in MATLAB was used by Abdin 
et al. [20] to develop an advanced model for PEMFC. An 
algorithm named AC-POA [21] was used by Yang et al. 
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to estimate the PEMFC terminal voltage. However, some 
parameters are not given in the PEMFC datasheet provided 
by the manufacturer, so they must be estimated to complete 
and accurately model the PEMFC. The main goal of this 
work is to find the best values of these PEMFC parameters 
to achieve polarization curves as close as possible to experi-
mental data. These parameters are acquired, enabling the 
creation of a complete mathematical model for PEMFCs. 
The optimization process is to minimize a proposed fitness 
function, which is the sum of squared differences between 
the experimental stack voltage and calculated stack volt-
age. An optimization model for high power PEMFC was 
proposed by Zhou et al. [22] and solved by improved Grey 
Wolf Optimizer. Metaheuristic algorithms are increasingly 
being used to optimize the parameter of PEMFCs. There 

have been numerous recent studies that investigate various 
optimization techniques to tackle the problem of identifying 
unknown parameters in Proton Exchange Membrane Fuel 
Cells (PEMFCs). A gradient based optimizer for PEMFC 
parameter estimation was proposed by Rezk et al. [23], 
which has the advantage of providing accurate results at rela-
tively low computational cost. Nevertheless, this method is 
sensitive to initial conditions and is not suitable for complex 
scenarios. Nature inspired algorithms were used by Blanco-
Cocom et al. [24] to optimize the design and parameter esti-
mation of PEMFCs. Evolutionary strategy-based algorithms 
are shown to overcome the limitations of traditional methods 
such as genetic algorithms which are prone to local optima 
and slow convergence. Likewise, Ashraf et al. [25] presented 
the Honey Badger Optimizer (HBO) to extract unknown 

Table 1  Comparison of literature on PEMFC parameter estimation

Algorithm Used Key Contribution Strengths Limitations

Particle Swarm Optimization 
(PSO) [12]

Parameter identification for N-1.2 
kW PEMFC

Rapid convergence Sensitive to learning and inertia 
factors

Momentum-Enhanced PSO [13] Rapid convergence in PEMFC 
modeling

Improved convergence speed High computational cost

Chaos-Embedded PSO [14] Accurate PEMFC parameter 
identification

Overcame local optima issues Fine-tuning required

Shark Smell Optimization (SSO) 
[15]

Identified unknown parameters of 
PEMFC models

Effective in avoiding local optima High computational complexity

Golden Jackal Optimization 
(GJO) [16]

Minimized SSE for PEMFC 
model parameters

Outperformed other methods in 
parameter estimation

Sensitive to initial settings

Grey Wolf Optimization (GWO) 
[17]

Effective parameters identification High convergence precision Computationally expensive

Deer Hunting Optimization 
(DHO) [18]

Enhanced identification of 
PEMFC parameters

Improved exploration–exploita-
tion balance

Limited scalability for large 
problems

Adaptive Neuro-Fuzzy Inference 
System (ANFIS) [19]

Accurate predictions for PEMFC 
performance

Highly reliable for small datasets Requires extensive training data

Nature-Inspired Algorithms [24] Optimized PEMFC design and 
parameters

Overcame limitations of GA Computationally expensive

Honey Badger Optimizer (HBO) 
[25]

Improved parameter extraction 
accuracy

Balanced exploration and exploi-
tation

Sensitive to hyperparameters

Enhanced Bald Eagle Algorithm 
(EBEA) [27]

Optimized PEMFC models Improved convergence speed High computational cost

Autonomous Groups Particle 
Swarm Optimization (AGPSO) 
[28]

Balanced accuracy and efficiency 
in PEMFC modeling

Computationally efficient Limited scalability

Chaotically-Based Bonobo Opti-
mizer (CBO) [29]

Enhanced exploration and exploi-
tation

Improved accuracy in PEMFC 
parameter estimation

Sensitive to chaotic variables

Whale Optimization Algorithm 
(WOA) [30]

Efficient and accurate PEMFC 
modeling

Adaptive learning scheme for 
parameter control

Struggles with large-scale problems

Social Learning-Based Optimiza-
tion (SLO) [31]

Reduced function evaluations 
while maintaining accuracy

Efficient for parameter estimation Scalability issues in complex 
problems

Dandelion Optimization Algo-
rithm (DOA) [33]

Robust performance in high-
dimensional search spaces

Effective in PEMFC parameter 
estimation

High computational complexity

Standard and Quasi-Oppositional 
Bonobo Optimizers (BO) [35]

Improved convergence speed and 
accuracy

Effective for PEMFC parameter 
extraction

Sensitive to problem-specific 
tuning

FD-DE [37] Enhanced PEMFC parameter 
estimation

Solved premature convergence 
and diversity issues

Computationally efficient and 
scalable
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parameters of PEMFC models, which improved balancing 
of exploration and exploitation and avoided local optima 
traps and more accurate parameter estimation.

Similar to Rezk et al. [26], fuzzy modelling, coupled with 
optimization techniques, was also used to determine the opti-
mal parameters for PEMFCs. The parameter identification 
process was improved by this approach, and it showed the 
flexibility of fuzzy systems in dealing with uncertainties. 
Enhanced Bald Eagle Algorithm (EBEA) was applied by 
Alsaidan et al. [27] to optimize PEMFC models, in order 
to improve convergence speed and reduce computational 
complexity to achieve better performance in identifying key 
PEMFC parameters. The Gazelle Optimization Algorithm 
(GOA) proposed by Haddad et al. [28] for PEMFC param-
eter optimization, converges faster and with higher precision, 
and is applicable to complex multi-dimensional problems. 
Far et al. [29] used the Autonomous Groups Particle Swarm 
Optimization (AGPSO) algorithm to determine optimal 
PEMFC parameters, with a balanced trade-off between accu-
racy and computational efficiency.

An event triggered and dimension learning scheme 
using the Whale Optimization Algorithm (WOA) for 
PEMFC modelling was introduced by Sun et al. [30] where 
the optimization process was dynamically adjusted to 
produce more efficient and accurate results. Social Learn-
ing Based Optimization (SLO) was applied to estimate 
PEMFC design parameters by Celtek [31], which reduced 

the number of function evaluations without sacrificing 
accuracy. An improved Grey Wolf Optimizer (GWO) 
based on a neighbourhood trust model for parameter iden-
tification is proposed by Zhu et al. [32], which improves 
exploration and deals with the complexities of PEMFC 
modelling.

The Dandelion Optimization Algorithm (DOA) intro-
duced by Abbassi et al. [33] for estimating key PEMFC 
parameters showed robust performance in high dimensional 
search space and in parameter estimation tasks. Chaotically 
based Bonobo Optimizer (CBO) [34] used chaos theory 
to improve the exploration capabilities of the algorithm 
and achieved better identification accuracy. Standard and 
Quasi-Oppositional Bonobo Optimizers (BO) were applied 
by Sultan et al. [35] for parameter extraction in PEMFC 
stacks, and they demonstrated improvements in convergence 
speed and accuracy. Lastly, Han et al. [36] proposed Cha-
otic Binary Shark Smell Optimizer (CBSSO) to optimize 
PEMFC parameters by using chaotic mechanism to escape 
local optima and obtain more accurate results.

Although these optimization techniques have brought 
much advancement, they have a few limitations. However, 
many algorithms, including gradient based methods, are 
still sensitive to initial conditions leading to suboptimal 
solutions. However, nature inspired algorithms are often 
limited by high computational complexity resulting from 
population-based searches, which make them unsuitable 

Fig. 1  The generation compari-
son of F by employing Cauchy 
function and Wavelet basis 
function [37]
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for real-time or large-scale applications. Another challenge 
involves the trade-off between exploration and exploitation, 
where over exploration slows down the convergence, and 
over exploitation can cause premature convergence. In addi-
tion, many algorithms demand significant tuning of algo-
rithm specific parameters, which restricts the portability of 
the algorithms to different PEMFC models or operating con-
ditions. Also, scalability is an issue since algorithms such 
as WOA [30] and SLO [31] may not work well with larger 
problem size. Finally, although many algorithms work well 
in particular conditions, their ability to generalize across 
different PEMFC models and operating environments is 
limited, and further research and refinement is needed as 
shown in Table 1.

Existing methods for parameter estimation, such as clas-
sical optimization algorithms and conventional Differential 
Evolution (DE) variants, often face challenges like prema-
ture convergence, sensitivity to control parameter settings, 
and difficulty in balancing exploration and exploitation. 
These limitations can lead to suboptimal parameter estima-
tion, affecting the accuracy and reliability of PEMFC mod-
els. The following limitations are found in Existing Methods.

• Premature Convergence: Many existing algorithms lack 
mechanisms to prevent premature convergence, causing 
them to get trapped in local optima.

• Parameter Sensitivity: The performance of algorithms 
like GA and PSO is highly dependent on control param-
eters, which require careful tuning and can be problem-
specific.

• Exploration–Exploitation Trade-off: Balancing global 
exploration and local exploitation remains a challenge, 
with many algorithms favoring one over the other.

• Diversity Maintenance: Conventional algorithms may 
not adequately maintain population diversity, reducing 
their ability to explore the search space effectively.

Differential Evolution (DE) is widely recognized as one 
of the most powerful stochastic optimization algorithms 
for various applications; however, even the most advanced 
DE variants have notable weaknesses. A recent study [37] 
introduced a robust new DE variant, Differential Evolution 
with fitness deviation-based adaptation in parameter control 
(FD-DE), specifically for single-objective numerical opti-
mization. This study presented several key methodologies 
and outcomes: an enhanced wavelet basis function was pro-
posed to generate the scale factor for each individual during 
the initial stage of evolution; a hybrid trial vector genera-
tion strategy incorporating perturbation and t-distribution 
was developed to produce different trial vectors at various 
stages of evolution; a fitness deviation-based parameter con-
trol method was proposed for adapting control parameters; 

Table 2  Characteristics of 
twelves PEMFCs used in this 
work

PEMFC Type Power(W) Ncells (no) A(cm2) l(um) T(K) Jmax(mA/cm2) PH2(bar) PO2(bar)

BCS 500 W 500 32 64 178 333 469 1.0 0.2095
NetStack PS6 6000 65 240 178 343 1125 1.0 1.0
SR-12 500 48 62.5 25 323 672 1.47628 0.2095
H-12–1 12 13 8.1 25 323 246.9 0.4935 1.0
Ballard Mark V 5000 35 232 178 343 1500 1.0 1.0
STD −1 250 24 27 127 343 860 1.0 1.0
Horizon 500 36 52 25 338 446 0.55 1.0

Table 3  Default parameter settings of the DE and non-DE algorithms in the comparison

Algorithms Default settings

TDE [49] F = 0.5, CR = 0.8, NP = 2D and Mt = 0.42
LSHADE [5] �F = 0.5,�CR = 0.5,F&CR same as JADE, NP = 18 ⋅ D ∼ 4, rrac = 2.6, p = 0.11,H = 6

LSHADE-cnEpSin 
[51]

�F = 0.5,�CR = 0.5 NP = 18 ⋅ D ∼ 4, p2 = 0.4, ps = 0.5,H = 5

jSO [52] F,CR, rrac same as iLSHADE,�F = 0.3,�CR = 0.8,NP = 25 ⋅ lnD ⋅

√

D ∼ 4, p = 0.25 ∼ 0.125,H = 5

PaDE [53] �F = 0.8,�Cr = 0.6,F&CR same as LSHADE,k = 4, p = 0.11,PS = 25log(D)
√

D ∼ 4, rarc = 1.6,T0 = 70, rd = 0.04

ACS [54] m ∈ [4,50],Kpher ∈ [10,100], q0 ∈ [0.1,10], ��[0.2,1], ��[1,4],

SSA [55] c2 and c3 = rand [0,1], NP = 50 to 200
TEO [56] c1 ∈{0 or 1}, c2 ∈{0 or 1},pro = Factors of 0.05 from [0,0.5], TM = Integers from [0,10]
FD-DE [37] F = 0.5,CR = 0.8, p = 0.11, k = 0.6, rrac = 1.4,PS = 25 ⋅ lnD

√

D,H = 4, nfes = D ⋅ 10000, n = 0.6 ⋅ PS ⋅ D,Cn = 0,G = 1,Gmax = 3000
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and a novel diversity indicator was introduced, along with 
a restart scheme that can be triggered if the quality of indi-
viduals is detected to be poor. The FD-DE algorithm was 
validated using a comprehensive test suite containing 130 
benchmarks from universal test suites for single-objective 
numerical optimization, demonstrating significant improve-
ments compared to several well-known state-of-the-art DE 
variants. Additionally, the FD-DE algorithm was tested in 
real-world optimization applications, with results further 
confirming its superiority.

Due to their non-polluting nature and sustainability, 
renewable energy sources (RESs) have become the most 
attractive alternatives to fossil fuels. Of these technolo-
gies, fuel cells (FCs) are a key innovation that are becoming 
increasingly used as backup power sources to meet growing 
energy demand. Fuel cell is an electrochemical device that 
converts chemical energy into electrical energy by means 
of reactions between a negative anode, a positive cathode 
and an electrolyte. Among all, Proton Exchange Membrane 
Fuel Cells (PEMFCs) are highly preferred because of their 
high efficiency and low operating temperatures. Although 
PEMFCs have many advantages, they also have many mod-
eling and performance optimization challenges. Their non-
linear behavior and sensitivity to operating conditions (e.g., 
temperature, pressure, and humidity) is one major issue 
that complicates the development of accurate models to 
predict their performance under changing conditions. Such 
parameters as kinetic, thermodynamic, and electrochemical 
coefficients are often not available in manufacturer data-
sheets. Moreover, PEMFC performance is influenced by a 
number of interdependent parameters such that the change 
of one parameter can greatly affect the others, making the 
optimization process more difficult. Additionally, the con-
ventional optimization algorithms, including Genetic Algo-
rithms (GA) and Particle Swarm Optimization (PSO), tend 
to converge prematurely to local optima. As a result, PEMFC 
parameter estimation is suboptimal, and PEMFC models are 
inaccurate and unreliable.

Novel robust optimization techniques are needed to esti-
mate unknown parameters in PEMFC models with sufficient 
accuracy for model-based optimization to address these chal-
lenges. These techniques must be capable of handling the 
nonlinearities and sensitivities of PEMFCs, compensate for 
incomplete data, and not prematurely converge in the pres-
ence of the complex interdependencies between parameters.

To overcome these challenges, the proposed Fitness 
Deviation-based Adaptive Differential Evolution (FD-DE) 
algorithm is used to optimize PEMFC parameters. Several 
innovative strategies are employed in this algorithm to 
improve optimization performance. It also includes adaptive 
parameter control using Gaussian distribution and wavelet 
basis functions to dynamically adjust the control param-
eters to improve the exploration of the search space and Ta
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to prevent premature convergence. Furthermore, a hybrid 
trial vector generation strategy based on t-distribution per-
turbation is proposed to enhance the algorithm’s ability to 
escape local optima and find better solutions. Additionally, 
the algorithm employs a dimensional replacement mecha-
nism to preserve population diversity to avoid stagnation 
and to conduct a complete search of the solution space.

It is an improvement over existing methods because it 
overcomes the problems that previous optimization tech-
niques have. This improves the exploration and exploitation 
balance, reduces the sensitivity to control parameter settings, 
and maintains population diversity effectively for more accu-
rate and reliable parameter estimation of PEMFCs. In several 
aspects, this approach makes notable contributions. It has 
adaptive mechanisms and diversity preservation strategies 
that solve the typical optimization problems such as prema-
ture convergence and parameter sensitivity. The algorithm 
enables more accurate parameter estimation, which is crucial 
for improving PEMFC model reliability and optimizing fuel 
cell performance and operational life. The algorithm is shown 
to perform superior to the other algorithms on twelve differ-
ent PEMFC case studies under various operating conditions. 
Compare the FD-DE algorithm to state of the art algorithms 
and demonstrate that it consistently attains higher accuracy, 
faster convergence, and greater stability. The FD-DE algo-
rithm is a novel approach to PEMFC parameter optimization 
problems. The PEMFC model is a robust and reliable tool 
for researchers and engineers to develop fuel cell modeling 
and improve its performance, and it successfully handles the 
nonlinearity and sensitivity of PEMFCs.

The FD-DE algorithm is applied to the PEMFC param-
eter optimization problem in this paper. It is validated that 
the FD-DE algorithm is superior to other DE and non-DE 
variant algorithms in optimizing PEMFC parameters. The 
analysis followed in this paper are as follows:

1. Implementation of the FD-DE algorithm in a real-world opti-
mization problem related to PEMFC parameter optimization.

2. Designing an optimization model for twelve case studies 
by operating six commercially available PEMFCs (BCS 
500-W [38], STD 250-W stack [39], SR-12 [40], H-12 
[40], Nedstack PS6 [39], and HORIZON 500W [41]) 
under different operating conditions and solving these 
with FD-DE and other programmed algorithms.

3. Conducting a statistical data analysis to compare FD-DE 
with other algorithms.

4. Obtaining SSE, Absolute Error (AE), Relative Error (RE), 
and Mean Bias Error (MBE), as well as I/V and P/V charac-
teristics for different datasheets of practical PEMFC stacks.

The contributions of this analysis are summarized as follows:

• Addressing Limitations of Existing Methods: FD-DE 
algorithm overcomes the challenges of premature con-
vergence, parameter sensitivity, and inadequate diversity 
maintenance found in existing optimization methods.

• Innovative Algorithm Design: The integration of adaptive 
parameter control, hybrid mutation strategies, and diversity 
preservation mechanisms represents a significant advance-
ment in DE algorithms for complex optimization problems.

Table 5  Evaluation metrics of 
the FD-DE algorithm applied 
to FC1

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.6 29 28.9972221 17.4 17.3983333 0.00277787 0.00957886 4.28697E-07
2 2.1 26.31 26.3059404 55.251 55.2424748 0.00405962 0.01542995 9.15584E-07
3 3.58 25.09 25.0935605 89.8222 89.8349465 0.00356047 0.01419078 7.04273E-07
4 5.08 24.25 24.2546268 123.19 123.213504 0.00462678 0.01907949 1.18928E-06
5 7.17 23.37 23.3754238 167.5629 167.601788 0.00542377 0.02320825 1.63429E-06
6 9.55 22.57 22.5846237 215.5435 215.683157 0.01462373 0.06479277 1.18807E-05
7 11.35 22.06 22.0713368 250.381 250.509672 0.01133675 0.05139054 7.14011E-06
8 12.54 21.75 21.7584732 272.745 272.851254 0.0084732 0.03895722 3.98861E-06
9 13.73 21.45 21.4612726 294.5085 294.663273 0.0112726 0.05255293 7.05953E-06
10 15.73 21.09 20.9877521 331.7457 330.13734 0.10224793 0.48481711 0.000580813
11 17.02 20.68 20.6945202 351.9736 352.220734 0.01452023 0.07021388 1.17132E-05
12 19.11 20.22 20.2309972 386.4042 386.614357 0.01099724 0.05438794 6.71885E-06
13 21.2 19.76 19.7709549 418.912 419.144244 0.0109549 0.05543978 6.66721E-06
14 23 19.36 19.3660366 445.28 445.418843 0.00603664 0.03118101 2.0245E-06
15 25.08 18.86 18.8664785 473.0088 473.171281 0.00647852 0.03435059 2.33173E-06
16 27.17 18.27 18.2747331 496.3959 496.524497 0.00473307 0.02590621 1.24455E-06
17 28.06 17.95 17.9533234 503.677 503.770254 0.00332337 0.01851458 6.13598E-07
18 29.26 17.3 17.2928896 506.198 505.989949 0.00711043 0.04110073 2.80879E-06
Average Value of different datasheets 0.01291984 0.06139403 3.61043E-05
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• Enhanced PEMFC Modeling: By achieving more 
accurate parameter estimation and work contributes 
to the development of reliable PEMFC models, ulti-
mately aiding in the optimization and control of fuel 
cell systems.

PEMFC modelling

In this section, firstly, the detailed semi-empirical model 
and specifications of the selected PEMFC are given. Sec-
ondly, the definition of the objective function and statistical 

Fig. 2  FD-DE algorithm analysis for FC1: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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comparison measures such as Mean Biased Error (MBE), 
objective function efficiency are also discussed.

Semi‑empirical electrochemical model

The output voltage of the FC stack ( Vfc) is obtained using 
Eq. (1),

where Vact represents the activation polarization that is 
caused by the slowness of the reactions at the electrode 
surface, Vohmic represents the ohmic polarization that is the 
resistance which implies all electrical and ionic conduction 
losses through the electrolyte, catalyst layers, cell intercon-
nects, and contacts, Vcon represents the concentration polari-
zation that is associated with the concentration difference 
between the fuel/air channel and the chemical species on 
the electrode surface, and Ncell is the number of cells [42]. 
VNernst is the reversible cell voltage known as Nernst voltage 
and can be calculated with Eq. (2) [43, 44].

(1)Vfc = (VNernst − Vact − Vohmic − Vcon) ⋅ Ncell

(2)
VNernst =< spanclass =� convertEndash� > 1.229 − 0.85 < ∕span >

× 10
−3(Tstack − 298.15) + 4.3085 × 10

−5Tstack[ln(pH2
) + 0.5ln(pO2

)]

If the air is used instead of pure oxygen, the partial 
pressure of oxygen at the cathode can be calculated using 
Eq. (5).

where RHa and RHc are relative humidity of vapors in the 
anode and cathode, respectively. Ifc is the FC operating cur-
rent (A), Acell is the active cell area (cm2), Pa is the anode 
pressure (bar), and Pc is the cathode pressure (bar).  Psat

H2O
 is 

the saturation pressure of the water vapor (bar) and can be 
calculated as a function of the stack temperature using 
Eq. (6) [43, 44].

(5)pO2
= Pc − (RHc ⋅ P

sat
H2O

) −
0.79

0.21
⋅pO2

⋅ exp(

0.291(
Ifc

Acell

)

T0.832
stack

)

Fig. 2  (continued)

where Tstack is the stack temperature (K), pH2
 is the partial 

pressure of the hydrogen (bar), and pO2
 is the partial pressure 

of the oxygen (bar). The partial pressure of the hydrogen can 
be obtained by using Eq. (3) [43].

If the pure oxygen is fed to the cathode side of the FC, the 
partial pressure of oxygen at the cathode can be calculated 
using Eq. (4).

(3)

pH2
= 0.5 ⋅ RHa⋅P

sat
H2O

[(exp(

1.635(
Ifc

Acell

)

T1.334
stack

) ×
RHa ⋅ P

sat
H2O

Pa

)

−1

− 1]

(4)

pO2
= Pc − (RHc⋅P

sat
H2O

) ⋅ [(exp(

4.192(
Ifc

Acell

)

T1.334
stack

) ⋅
(RHc⋅P

sat
H2O

)

Pc

)

−1

− 1]

(6)log10(P
sat
H2O

) = 2.95 × 10−2(Tstack − 273.15) − 9.18 × 10−5(Tstack − 273.15)2 + 1.44 × 10−7(Tstack − 273.15)3 − 2.18

The activation polarization can be calculated depending 
on the stack temperature and oxygen concentration with 
Eq. (7) [43],

where �k(k = 1,2, 3,4) are the semi-empirical coefficients 
based on theoretical equations with kinetic, thermodynamic, 
and electrochemical foundations [45], and CO2

 is the oxygen 

(7)
Vact = −[�1 + �2 ⋅ Tstack + �3 ⋅ Tstackln(CO2

) + �4⋅Tstack ⋅ ln(IFC)]

concentration (mol ⋅ cm − 3) that can be calculated using 
Eq. (8).

The ohmic polarization depends on the membrane resist-
ance, Rm (Ω), and contact resistance, RC (Ω), as given in 
Eq. (9).

(8)CO2
= (

pO2

5.08
) × 106exp(−

498

Tstack
)
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The membrane resistance depends on the resistivity of the 
membrane, �m (Ω.cm), membrane thickness, l (cm), and effec-
tive membrane area (cm2), which is shown in Eq. (10).

(9)Vohmic = IFC ⋅ (Rm + RC)

The membrane resistivity ( �m ) is calculated by using 
Eq. (11) for Nafion membranes.

(10)Rm =
�ml

Acell

(11)

𝜌m =

181.6[1 + 0.03(
Ifc

Acell

) + 0.062(
Tstack

303
)
2

(J)2.5]

[𝜆− < spanclass =� convertEndash� > 0.643 − 3 < ∕span > (
Ifc

Acell

)]exp(4.18(
Tstack−303

Tstack
))

where � is an adjustable parameter related to the membrane 
and its preparation process [45]. The concentration polariza-
tion is calculated using Eq. (12).

where  � is the parametric coefficient (V) that depends on the 
cell and its operation state, J is the actual current density (A ⋅ 
cm − 2), and Jmax is the maximum current density (A ⋅ cm − 2).

Fitness function definition

In this study, the model parameters are optimized using different 
variants of DE and non-DE algorithm to converge the results of 
the PEMFC model to the results obtained from the literature or 
manufacturer data to enhance the model. The output voltage is 
calculated at the points corresponding to each current value using 
the mathematical equations explained in Section Semi-empirical 
Electrochemical Model. As a result, the suggested fitness func-
tion serves as a metric for the estimated parameters’ quality. The 
SSE, given in Eq. (13) is selected as the fitness function [43].

where N  is the amount of measured data points, i stands 
for the iteration counter, Vmeas is the measured voltage of 
the FC, and Vcalc denotes the calculated voltage of the FC. 
Several MADM methods with different principles were 
also described in Section Ranking of the Algorithms. These 
methods are used to decide the best-performed MHAs for the 
H-1000 XP case study. The MBE is calculated by Eq. (14).

The novel FD‑DE algorithm

Motivation

When employing numerical methods for optimization, it essen-
tial not only to use them but also to understand why a particular 

(12)Vcon = −�ln(1 −
J

Jmax
)

(13)SSE = Min(
∑N

i=1
[Vmeas(i) − Vcalc(i)]

2
)

(14)MBE =

∑N

i=1
�Vmeas(i) − Vcalc(i)�

N

set of methods is chosen. In the context of this research, this 
study focuses on Differential Evolution (DE) algorithms and 
their variants due to their proven effectiveness in solving com-
plex, nonlinear optimization problems like parameter estima-
tion in Proton Exchange Membrane Fuel Cells (PEMFCs). 
Traditional DE algorithms, while robust, face limitations such 
as sensitivity to control parameter settings, premature conver-
gence to local optima, and difficulties in balancing exploration 
and exploitation during the search process.

To address these limitations, several DE variants have 
been developed over time, each introducing progressive 
improvements. The jDE algorithm encoded self-adaptive 
control parameters in individuals for dynamic adjustment of 
parameters. But it still had misleading interactions between 
parameters. In JADE, the scale factor F and crossover rate 
CR were adapted according to successful trial vectors, but 
the adaptations of F and CR were dependent on each other 
and thus may cause parameter interaction problems.

The LSHADE algorithm introduced a historical memory 
(H-entry pool) to record successful �F and �CR pairs, enhanc-
ing robustness in parameter control. It also implemented a linear 
population size reduction to balance exploration and exploitation. 
Despite these advancements, LSHADE could be over-tuned for 
specific problems, potentially limiting its general applicability.

jSO then added inertia weights and adjusted parameter adap-
tation schemes to further improve performance, and LPalmDE 
addressed misleading parameter interactions by grouping 
control parameters and updating them independently. PaDE 
improved grouping strategies and added a parabolic population 
size reduction to keep diversity well. Hip-DE used historical 
population information to incorporate past search experiences 
in the mutation strategy to guide the current search direction.

Although these progressive improvements have been 
made, there still exist challenges, such as keeping diversity, 
avoiding premature convergence, and achieving a better bal-
ance between global exploration and local exploitation.

Addressing the limitations of parameter sensitivity, mis-
leading parameter interactions, and diversity loss, the FD-DE 
algorithm demonstrates superior performance in parameter 
estimation tasks. It consistently outperforms other state-of-
the-art algorithms in terms of accuracy, convergence speed, 



Ionics 

and stability, as evidenced by extensive evaluations on mul-
tiple PEMFC case studies. This selection of numerical meth-
ods and the development of FD-DE are thus justified by the 
need to overcome the specific challenges inherent in optimiz-
ing complex, nonlinear systems like PEMFCs.

The description of the novel FD-DE algorithm is 
divided into three sections: the first section outlines 
the parameter adaptations, the second section details 
the hybrid trial vector generation strategy, and the third 
section discusses the diversity adjustment through the 
replacement of individual dimensions.

Parameter adaptation

The scale factor F plays a crucial role in generating donor 
vectors, significantly impacting the overall performance of 
Differential Evolution (DE). Therefore, adapting the scale 
factor F during evolution is a key component of DE research. 
In the FD-DE algorithm [37], a wavelet basis function-based 
parameter control for the scale factor F is proposed for the 
early stages of evolution, rather than using the commonly 
employed Cauchy distribution throughout the entire evolu-
tion. In this stage, any F value exceeding 0.6 is truncated to 
0.6. This approach is inspired by the wavelet basis function 
advantage in time and frequency domain localization [46], 
serving as an alternative for generating the scale factor. The 
details of generating scale factors are provided in Eq. (15):

where ε = 0.1 ⋅ sin(� ⋅ randi − 0.8) . Figure 1 compares the 
Cauchy function and the Wavelet basis function in generat-
ing F values.

The crossoverrate(CR) significantly influences the genera-
tion of trial vectors as it determines the probability of param-
eters in the donor vector being inherited into the trial vector. 
The FD-DE algorithm employs the Gaussian distribution 
as used in the literature [47, 48]. Additionally, CR values 
are restricted to the range [0, 0.6] during the first stage of 
the evolution and extend to [0, 1] for the remainder of the 
evolution. The detailed generation of CR is given in Eq. (16):

Obviously, both the scale factor (F) and the crossover rate 
(CR) are truncated to smaller values, no larger than 0.6, in 
the initial stage of evolution. In the later stages, the ranges 
of F and CR are extended to (0, 1] and [0, 1] respectively. 
This strategy helps prevent premature convergence and aids 
in drawing the population out of local optima.

(15)Fi =

�

√

2 ⋅ 𝜋
−

1

3 ⋅ (1 − 𝜇2
F
) ⋅ e

−
𝜇2
F

2 + 𝜀, ifnfe < nfest
randci(𝜇F, 0.1), otherwise

(16)CRi =

{

0, if�CR = ∅

randni(�CR, 0.1), otherwise
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Figure  1 illustrates the differences between two 
methods used for generating scale factor (F) values in 
the FD-DE algorithm: the Cauchy distribution and the 
Wavelet basis function. Traditionally, DE algorithms 
employ a Cauchy distribution to generate the scale fac-
tor F throughout the entire evolution. This method can 
sometimes lead to larger, unstable F values early in the 
evolution, which may negatively affect convergence 
speed. In the FD-DE algorithm, propose a wavelet basis 
function-based control mechanism for the early stages of 
evolution. This method localizes F in both the time and 
frequency domains, thus providing smoother and more 
stable F values. As shown in the figure, F values remain 
more controlled and do not exceed 0.6 during early evolu-
tion stages, in contrast to the Cauchy-based approach. By 
comparing the two methods, the figure highlights how the 

wavelet-based control introduces stability and adaptabil-
ity in generating F values, particularly at the early stages 
of the algorithm run, contributing to better convergence 
performance. This enhanced explanation should provide 
clarity on the purpose and significance of Fig. 1 in the 
context of the FD-DE algorithm.

The H − entry pool recording �F and �CR pairs, as 
proposed in LSHADE [5], is also retained in the FD-DE 
algorithm to enhance the robustness of parameter con-
trol. Only one entry is updated in each generation, with 
the entry pool being updated in a circular manner from 
the first to the last entry, and then back to the first. The 
concept of using good control parameters to update their 
own distributions, as seen in JADE, is further refined in 
the FD-DE algorithm, with details provided in Eqs. (17) 
and (18) respectively:

Table 7  Evaluation metrics of 
the FD-DE algorithm applied 
to FC2

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 2.25 61.64 62.327094 138.69 140.23596 0.6870937 1.114688 0.0162792
2 6.75 59.57 59.753916 402.0975 403.33893 0.183916 0.3087393 0.0011664
3 9 58.94 59.023005 530.46 531.20705 0.0830053 0.1408302 0.0002376
4 15.75 57.54 57.472458 906.255 905.19121 0.0675421 0.1173828 0.0001573
5 20.25 56.8 56.695017 1150.2 1148.0741 0.1049832 0.1848296 0.0003801
6 24.75 56.13 56.023048 1389.2175 1386.5704 0.1069518 0.190543 0.0003944
7 31.5 55.23 55.138044 1739.745 1736.8484 0.0919559 0.1664963 0.0002916
8 36 54.66 54.603004 1967.76 1965.7081 0.0569962 0.104274 0.000112
9 45 53.61 53.618874 2412.45 2412.8493 0.0088744 0.0165537 2.716E-06
10 51.75 52.86 52.932655 2735.505 2739.2649 0.0726547 0.1374473 0.000182
11 67.5 51.91 51.435598 3503.925 3471.9028 0.4744023 0.9138939 0.0077606
12 72 51.22 51.025405 3687.84 3673.8292 0.1945948 0.3799195 0.0013058
13 90 49.66 49.426729 4469.4 4448.4056 0.2332711 0.4697364 0.0018764
14 99 49 48.641019 4851 4815.4609 0.3589812 0.7326148 0.0044437
15 105.8 48.15 48.049175 5094.27 5083.6028 0.1008246 0.209397 0.0003505
16 110.3 47.52 47.657409 5241.456 5256.6122 0.1374087 0.2891597 0.0006511
17 117 47.1 47.072842 5510.7 5507.5225 0.027158 0.0576602 2.543E-05
18 126 46.48 46.28307 5856.48 5831.6668 0.19693 0.4236877 0.0013373
19 135 45.66 45.485316 6164.1 6140.5177 0.1746836 0.3825746 0.0010522
20 141.8 44.85 44.875522 6359.73 6363.349 0.0255219 0.056905 2.246E-05
21 150.8 44.24 44.056856 6671.392 6643.7739 0.183144 0.4139783 0.0011566
22 162 42.45 43.015705 6876.9 6968.5442 0.5657049 1.3326382 0.0110352
23 171 41.66 42.157523 7123.86 7208.9364 0.4975231 1.1942465 0.0085355
24 182.3 40.68 41.04752 7415.964 7482.9629 0.3675198 0.903441 0.0046576
25 189 40.09 40.369551 7577.01 7629.8452 0.2795514 0.6973096 0.0026948
26 195.8 39.51 39.664141 7736.058 7766.2388 0.1541412 0.390132 0.0008193
27 204.8 38.73 38.699846 7931.904 7925.7285 0.0301536 0.077856 3.135E-05
28 211.5 38.15 37.955786 8068.725 8027.6488 0.1942139 0.5090796 0.0013007
29 220.5 37.38 36.914224 8242.29 8139.5864 0.4657762 1.2460571 0.0074809
Average Value of different datasheets 0.2112234 0.4538645 0.0026118
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Fig. 3  FD-DE algorithm analysis for FC2: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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 Ionics

where dfi    represents the fitness deviation of the ith individual 
in the population, calculated using Eq. (19):

Here, Δf    represents the mean value of the fitness dif-
ferences across all individuals in the population, while Δfi 
denotes the fitness improvement of the i th individual. The 
update of control parameters �F   and �CR   is performed only 
if the success set SSS of individuals is not empty, meaning 
Δfi   satisfies Δfi > 0.

In the early stages of evolution, a parameter control 
based on wavelet basis function is used to control the 
scale factor F. As compared to the traditional functions, 
the wavelet basis function provides superior localization 
properties in both the time and frequency domains which 
enables more localized adaptation of F. A wavelet basis 
function is chosen for F adaptation because it enables a 
controlled exploration of the search space. The wavelet 

(19)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d
f
i

=
�Δf

i
− Δf �

Δf
i

Δf
i
= f (X

i,G) − f (U
i,G)

Δf =

∑PS

i=1
(f (X

i,G) − f (U
i,G))

PS

function localization property assures that the scale fac-
tor adapts dynamically according to the landscape of the 
search space, making the algorithm better escape local 
optima in the early stage of evolution. The FD-DE algo-
rithm balances exploration and exploitation dynamically 
by adapting the parameters F and CR to the wavelet basis 
and Gaussian functions, respectively, in the course of 
the evolution. The truncation thresholds and adaptation 
mechanisms are based on empirical observations and 
are intended to speed up convergence without premature 
convergence.

Trial vector generation strategy

While the “ DE∕target − to − pbest∕1∕bin ” mutation strat-
egy with an external archive [48] has shown excellent 
performance in recent competitions, it still struggles with 
premature convergence and local optima when dealing 
with complex optimization problems. To address this, a 
t-distribution-based perturbation strategy is introduced as 
a supplement to the “ DE∕target − to − pbest∕1∕bin ” muta-
tion strategy. The idea is that the standard deviation of 
the global best can serve as the perturbation range for the 
target vector.

Fig. 3  (continued)
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The main mutation strategy in FD-DE algorithm is 
defined in Eq. (20):

The trial vector Ui,G   is then calculated using a crossover 
operation based on a specified crossover rate ( CR ). Follow-
ing this, the t-distribution-based perturbation is applied to 
the trial vector with a cetain probability � = � = 0.05 . The 
perturbation details are provided in Eq. (21):

where Uj,i,G and Xj,i,G denote the j th parameter of the trial 
vector Ui,G and the target vector Xi,G respectively, std(Xgbest,G) 
denotes the standard deviation of Xgbest,G , and tpdf (G, 1) 

(20)Vi,G = Xi,G + F ⋅ (X
p

best,G
− Xi,G) + F ⋅ (Xr1,G

− X̃r2,G
).

(21)
Uj,i,G = Xj,i,G + randj,i,G ⋅ std(Xgbest,G) ⋅ (tpdf (G, 1) + 1)

denotes the probability density function of -distribution. The 
pseudo code of the trial vector generation strategy is given 
in Algorithm 1. Rather than the normal distribution t-distri-
bution is used since it has fatter tails, leading to larger prob-
ability values for those observations away from the mean. Its 
property of smoothly increasing the chance to generate sig-
nificant perturbations improves the chances of the algorithm 
to escape from local optima and visit hitherto unexplored 
areas of the search space. Selective perturbation is applied to 
balance between exploration and exploitation. However, the 
small probability τ of the perturbation guarantees that during 
the convergence process do not inject too much diversity, but 
is sufficient to inject diversity when needed. The perturba-
tion scale is adapted to the current state of the population by 
using the standard deviation of the global best individual, 
enabling context sensitive adjustments.

Algorithm 1  Trial vector generation strategy

Dimensional replacement of individuals

Beyond perturbation in the trial vector, a diversity indicator 
for the population is introduced, with dimensional replace-
ment of individuals initiated if necessary to help the popula-
tion escape local optima. To measure individual diversity, a 
surrogate hyper-volume model to compute the geographic 
distribution of individuals within the population. This model 
enhances a previous version proposed in [6]. The hyper-vol-
ume of the individuals can be calculated using Eq. (22):

(22)Vhp =

√

∏D

i=1
|ui − li|

where ui and li   represent the upper and lower bounds of the 
ith dimension of the search domain. The diversity indicator 
din din  can then be calculated using Eq. (23):

where Vpop   denotes the center cube of the population, and 
uxi    and lxi    represent the upper and lower bounds of the ith 
dimension of the population.

In addition to the diversity indicator, a label tracking 
the improvement status of each individual is used in the 

(23)

⎧

⎪

⎨

⎪

⎩

din =
�

Vpop∕Vhp

Vpop =

�

∏D

i=1
�(uxi + lxi )∕2�



 Ionics

dimensional replacement mechanism. The sum of the labels 
recording individuals without performance improvement is 
calculated according to Algorithm 2. When the algorithm 
enters a state where din < 𝜉 ( � = 0.01 ) and Cn > k ⋅ PS ⋅ D 

( k = 0.6 ), dimensional replacement of individuals is car-
ried out as per Eq. (24):

(24)Xi,G(j) =

{

Xrandi,G
(j), ifj ∈ R

Xi,G, otherwise

Algorithm 2  Calculate counter and  Cn

Algorithm 3  Pseudo code of the FD-DE algorithms
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Set ξ = 0.01 to ensure that the replacement mechanism 
is activated before the population converges too early. The 
value is chosen empirically so that the diversity is main-
tained without too much disturbance to the convergence 
process. The dimensional replacement mechanism effec-
tively reintroduces variability into some dimensions of the 
individuals, allowing the population to escape local optima 
and explore new regions of the search space. The algo-
rithm preserves useful genetic material by replacing only 
a subset of dimensions, and yet still enhances diversity.

This means that the jth dimension of the ith individual 
is replaced by the jth dimensional parameter of a ran-
domly selected individual. The complete pseudo code for 
FD − DE algorithm is provided in Algorithm 3. It is evi-
dent that the core structure of this pseudo code is quite 
similar to that of various DE algorithms such as jSO, 
PaDE, LPalmDE, and Hip-DE. The primary distinctions 
among these algorithms are found in the generation of trial 
vectors, parameter control, and the diversity enhancement 
technique [37]. The parameter choices in the FD-DE algo-
rithm are guided by both theoretical considerations and 
empirical observations:

• Probability τ for Perturbation: Set to 0.05, this small 
value ensures that the t-distribution-based perturbation 
is applied infrequently, preventing excessive randomness 
while still providing opportunities to escape local optima.

• Diversity Threshold ξ: A value of 0.01 is selected to 
detect critical levels of diversity loss. This threshold is 
low enough to avoid premature triggering of the replace-
ment mechanism but sensitive enough to act before con-
vergence stalls.

• Proportion k for Dimensional Replacement: The value 
k = 0.6 is chosen to initiate replacement when a signifi-
cant portion of the population shows stagnation. This 
proportion balances the need for diversity with the pres-
ervation of valuable genetic information.

• Truncation of F and CR: Limiting F and CR to certain 
ranges during early evolution stages prevents extreme 
parameter values that could lead to unstable behavior or 
slow convergence.

These parameter settings have been validated through 
extensive experimentation and are intended to provide a 
robust performance across a wide range of optimization 
problems.

Result analysis

The simulation tests have been carried out to validate the 
application of FD-DE algorithm for single objective opti-
mization problem related with estimating the parameters Ta
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of PEM fuel cells. The FD-DE algorithm as well as other 
DE variants namely, TDE [49], MadDE [50], LSHADE 
[5], LSHADE-cnEpSin [51], jSO [52], PaDE [53] and non-
DE variants like, ACS [54], SSA [55], and TEO [56], have 
been tested for estimating the parameters of three differ-
ent modules of fuel cells, namely BCS 500-W, STD 250-W 
stack, Nedstack PS6, SR-12PEM, H-12 and HORIZON 
500W PWM under various operating conditions depicted 
in Table 2. The data sheet parameters of these commercial 
PEMFC stacks are obtained from [8, 11, 57–59]. Moreover, 
the estimated model parameters are �1, �2, �3, �4, �,Rc and 
B in PEMFC. The upper and lower limits of the unknown 
parameters for all case studies are given in [11, 60, 61]. 
Defaults setting of mentioned algorithms used in this paper 
is shown in Table 3.

In this study, a diverse set of numerical methods, 
including PaDE, FD-DE, TDE, MadDE, ACS, SSA, 
TEO, LSHADE, LSHADE-cnEpSin, and jSO, were cho-
sen for their strengths in handling complex, non-linear, 
and multi-objective optimization problems. These meth-
ods, particularly the differential evolution (DE)-based 
algorithms like PaDE, FD-DE, and LSHADE variants, 
are well-known for their global search capabilities and 
their ability to balance exploration and exploitation. 
PaDE and FD-DE, for example, dynamically adapt con-
trol parameters during the search process, ensuring robust 
convergence toward global optima while maintaining 

computational efficiency. The bio-inspired algorithms 
like ACS and SSA were included for their ability to diver-
sify the search process, which prevents premature conver-
gence and helps explore various regions of the solution 
space effectively. The population-based nature of these 
algorithms, combined with adaptive strategies, ensures 
they can handle large-scale, non-convex, and constrained 
optimization tasks with consistent performance across 
different cases.

Moreover, the optimized parameters using FD-DE 
method has been used to estimate the performance and 
characteristics of the PEMFC at different operating 
conditions. Furthermore, the characteristics have been 
compared with the measured data of each module. All 
cases are analysed with maximum iterations 500, number 
of run 30 and population size 40 on Matlab 2021a of a 
PC with Windows Server 2019 operating system CPU 
i7-11700 k@3.6 GHz.

The parameter settings for each algorithm were derived 
from the literature and, where applicable, adjusted to 
reflect the problem dimensions and characteristics. For 
example, algorithms like LSHADE and jSO were con-
figured based on dynamic population size and control 
parameters from reputable sources (cited in the paper). 
By using these established setting ensured that each algo-
rithm performed optimally in accordance with how they 
have been originally designed and tested. For non-DE 

Table 9  Evaluation metrics of 
the FD-DE algorithm applied 
to FC3

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 1.004 43.17 43.340798 43.34268 43.514161 0.170798 0.3956405 0.0016207
2 3.166 41.14 41.090066 130.24924 130.09115 0.0499336 0.1213748 0.0001385
3 5.019 40.09 39.914501 201.21171 200.33088 0.1754993 0.4377632 0.0017111
4 7.027 39.04 38.857141 274.33408 273.04913 0.1828592 0.4683895 0.0018576
5 8.958 37.99 37.933453 340.31442 339.80787 0.0565467 0.1488463 0.0001776
6 10.97 37.08 37.014525 406.7676 406.04934 0.0654747 0.1765769 0.0002382
7 13.05 36.03 36.079894 470.1915 470.84262 0.0498941 0.1384792 0.0001383
8 15.06 35.19 35.171352 529.9614 529.68057 0.0186476 0.0529912 1.932E-05
9 17.07 34.07 34.242077 581.5749 584.51225 0.1720767 0.5050681 0.001645
10 19.07 33.02 33.283114 629.6914 634.70899 0.2631144 0.7968333 0.0038461
11 21.08 32.04 32.270689 675.4032 680.26611 0.2306885 0.7200016 0.0029565
12 23.01 31.2 31.237682 717.912 718.77906 0.0376819 0.1207754 7.888E-05
13 24.94 29.8 30.12736 743.212 751.37635 0.3273597 1.0985226 0.0059536
14 26.87 28.96 28.917122 778.1552 777.00307 0.0428779 0.148059 0.0001021
15 28.96 28.12 27.457745 814.3552 795.17629 0.6622551 2.3551035 0.0243657
16 30.81 26.3 25.991793 810.303 800.80713 0.3082074 1.1718913 0.0052773
17 32.97 24.06 23.984857 793.2582 790.78073 0.0751431 0.3123153 0.0003137
18 34.9 21.4 21.785622 746.86 760.3182 0.3856218 1.8019712 0.0082613
Average Value of different datasheets 0.1819267 0.6094779 0.0032612
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algorithms, similar attention was given to parameters 
like pheromone factors for ACS or random control coef-
ficients for SSA.

The performance of optimization algorithms, par-
ticularly metaheuristic algorithms like Differential 

Evolution (DE) and its variants, is significantly influ-
enced by the choice of hyperparameters such as popula-
tion size (PS), maximum iterations, scale factor ( F  ), 
and crossover rate ( CR ). A careful selection and jus-
tification of these parameters are crucial for ensuring 

Fig. 4  FD-DE algorithm analysis for FC3: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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the effectiveness and efficiency of the algorithm. This 
section provides a comprehensive sensitivity analysis 
of key hyperparameters for the FD-DE algorithm, dem-
onstrating their impact on algorithm performance and 
justifying the chosen settings.

Hyperparameter settings used in the experiments

In the experiments, the following default parameter set-
tings for the FD-DE algorithm were employed as shown in 
Table 3. The initial hyperparameter settings were chosen 
based on the following considerations:

1. Population size (PS): The population size in DE 
algorithms affects the diversity of the search and the 
convergence speed. A population size proportional 
to the problem dimensionality ( D ) ensures sufficient 
diversity while keeping computational cost manage-
able. The formula PS = 25 × ln(D) ×

√

D has been 
found to provide a good balance between exploration 
and exploitation for a wide range of problem sizes 
[52].

2. Maximum iterations: A maximum iteration count 
of 500 was selected to allow the algorithm sufficient 
opportunity to explore the search space and converge to 
an optimal or near-optimal solution while keeping the 
computational time reasonable.

3. Scale factor (F) and crossover rate (CR): The adap-
tive control of F and CR is a key feature of the FD-DE 
algorithm. Initial values of F = 0.5 and CR = 0.8 are 
commonly used starting points in DE algorithms and 
have been effective in previous studies [5, 37]. The 
adaptive mechanisms adjust these values during the 
evolution process based on the algorithm perfor-
mance.

Fig. 4  (continued)
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PEMFC FC1

In Table 4 analysis, FD-DE stands out for its remark-
able consistency and precision among the evaluated algo-
rithms. It achieves the lowest variability in its perfor-
mance metrics with a minimum and maximum value close 
at 0.02549 and 0.0255, respectively, and an extraordinar-
ily low standard deviation of 2.45E-06. This underscores 
FD-DE reliability and precision in reaching near-optimal 
solutions consistently across different runs. FD-DE also 
shows the highest stability but has a comparatively longer 
runtime of 11.74502 s, reflecting a trade-off between 
runtime efficiency and output stability. Despite its longer 
runtime, FD-DE secures the best Friedman Rank (FR) of 
1, indicating its superior performance over other algo-
rithms. Notably, jSO also performs exceptionally well 
with the second-best FR of 2.1 and minimal standard 
deviation, positioning it as another reliable option, espe-
cially when considering its shorter runtime of 6.97512 s 
compared to FD-DE. In Table 4 and Table 5 along with 
Fig. 2, highlight the exceptional performance of FD-DE. 
The box-plot for Fig. 2(c), may not visually emphasize 

minor differences between algorithms with small variance 
(such as ACS and SSA), the plot effectively captures both 
the consistency and variability of the results.

PEMFC FC2

In the evaluation of various differential evolution and 
optimization algorithms, FD-DE demonstrates signifi-
cant superiority across multiple metrics when compared 
to other algorithms such as TDE, MadDE, ACS, SSA, 
TEO, LSHADE, LSHADE-cnEpSin, jSO, and PaDE. 
In Table 6, FD-DE maintains the lowest variability in 
results with a standard deviation nearly zero (2.54E-16), 
indicating exceptionally stable performance across runs. 
It also boasts the best minimum and maximum perfor-
mance scores (0.27521 for both), underscoring its con-
sistency in achieving the lower bound of its performance 
spectrum, which none of the other algorithms approach. 
Notably, its mean performance, although not the lowest 
at 0.27521, complements its minimal spread, reinforcing 
its reliability. The RT (Run Time) for FD-DE is nota-
bly higher at 15.80297 s, suggesting a trade-off between 

Table 11  Evaluation metrics of 
the FD-DE algorithm applied 
to FC4

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.104 9.58 9.7555309 0.99632 1.0145752 0.1755309 1.8322639 0.0017117
2 0.2 9.42 9.4355341 1.884 1.8871068 0.0155341 0.1649054 1.341E-05
3 0.309 9.25 9.2153061 2.85825 2.8475296 0.0346939 0.3750695 6.687E-05
4 0.403 9.2 9.0759953 3.7076 3.6576261 0.1240047 1.3478768 0.0008543
5 0.51 9.09 8.947893 4.6359 4.5634254 0.142107 1.5633333 0.0011219
6 0.614 8.95 8.8427151 5.4953 5.4294271 0.1072849 1.1987139 0.0006394
7 0.703 8.85 8.7628619 6.22155 6.1602919 0.0871381 0.9846108 0.0004218
8 0.806 8.74 8.6786862 7.04444 6.9950211 0.0613138 0.7015309 0.0002089
9 0.908 8.65 8.6015883 7.8542 7.8102422 0.0484117 0.5596729 0.0001302
10 1.076 8.45 8.4833946 9.0922 9.1281325 0.0333946 0.3952019 6.196E-05
11 1.127 8.41 8.4488683 9.47807 9.5218746 0.0388683 0.4621681 8.393E-05
12 1.288 8.2 8.341385 10.5616 10.743704 0.141385 1.7242077 0.0011105
13 1.39 8.12 8.2726638 11.2868 11.499003 0.1526638 1.8800956 0.0012948
14 1.45 8.11 8.2311997 11.7595 11.93524 0.1211997 1.4944475 0.0008161
15 1.578 8.05 8.1375159 12.7029 12.841 0.0875159 1.0871542 0.0004255
16 1.707 7.99 8.0288572 13.63893 13.705259 0.0388572 0.4863226 8.388E-05
17 1.815 7.95 7.9126038 14.42925 14.361376 0.0373962 0.4703925 7.769E-05
18 1.9 7.94 7.7774144 15.086 14.777087 0.1625856 2.0476778 0.0014686
Average Value of different datasheets 0.0894381 1.0430914 0.0005884
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stability and computational speed, but this is balanced 
by its superior Friedman Rank (FR) of 1, highlighting it 
as the top performer overall. Table 6 and Table 7, along 
with Fig. 3, highlight the exceptional performance of 
FD-DE.

PEMFC FC3

In Table 8 comprehensive comparison of various optimi-
zation algorithms, FD-DE exhibits remarkable precision 
and stability, as evidenced by its consistently low standard 

Fig. 5  FD-DE algorithm analysis for FC4: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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deviation (0.00031068) and the smallest range in mini-
mum and maximum values (0.24228 to 0.24293), indi-
cating minimal fluctuation in performance. The FD-DE 
algorithm not only excels in consistency but also in effi-
ciency with a Runtime (RT) of 11.50124, which is higher 
compared to others, suggesting a trade-off between thor-
oughness of search and computational time. This is further 
supported by its outstanding Friedman Rank (FR) of 2.6, 
which is significantly lower than most other algorithms, 
such as TDE and jSO, indicating superior ranking in terms 
of optimization performance. The FD-DE mean perfor-
mance at 0.24248 is notably better than most other com-
petitors like LSHADE-cnEpSin and jSO, which display 
mean values of 0.24247 and 0.24236 respectively, thus 
highlighting FD-DE capability to achieve close to the best 
possible optimization outcomes more consistently than 
others. In Table 8 and Table 9 along with Fig. 4 highlight 
the exceptional performance of FD-DE.

PEMFC FC4

In the Table 10 evaluation of various optimization algo-
rithms, FD-DE demonstrates exceptional stability and 
accuracy, maintaining the lowest standard deviation 
among its counterparts (0.00022959), indicating its con-
sistent performance. With minimal variance between its 
maximum (0.10364) and minimum (0.10291) values, 
FD-DE showcases outstanding reliability. It achieves a 
mean value of 0.10299, substantially lower than competi-
tors like PaDE at 0.11182, emphasizing its effectiveness 
in approaching the global optimum. Additionally, FD-DE 
secures the best Friedman Rank (FR) of 1.85, suggesting it 
outperforms other algorithms such as TDE and jSO, which 
have higher ranks of 6.7 and 4.4, respectively. Despite a 
longer runtime (RT) of 11.514 s, which reflects its com-
prehensive search mechanisms, this aspect contributes 

Fig. 5  (continued)
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 Ionics

to its high precision and minimal variability. This analy-
sis confirms FD-DE leading role in delivering precision 
and stability, making it the preferred algorithm for tasks 
requiring high reliability and exactitude. Table 10 and 
Table 11 along with Fig. 5 highlight the exceptional per-
formance of FD-DE.

PEMFC FC5

In Table 12 analysis, FD-DE demonstrates its supremacy 
by maintaining the lowest variability across all bench-
marks, as indicated by its standard deviation nearing zero 
(4.33E-16), confirming its unmatched precision among the 
algorithms evaluated. The minimum, maximum, and mean 
values for FD-DE are uniformly 0.14863, highlighting its 
consistent performance without variance. Remarkably, 
FD-DE also achieves the lowest Friedman Rank (FR) of 
1, solidifying its status as the top-performing algorithm 
compared to others such as TDE and PaDE, which have 
higher ranks and wider ranges in their results. Additionally, 
FD-DE runtime (RT) of 10.64746 s, while higher com-
pared to others like jSO with 6.25514 s, is justified by its 
superior accuracy and reliability in achieving optimal solu-
tions. Table 12 and Table 13 along with Fig. 6 highlight the 
exceptional performance of FD-DE.

PEMFC FC6

In Table 14 detailed examination of various optimization 
algorithms, FD-DE emerges as the pinnacle of performance 

consistency, as demonstrated by its near-zero standard devia-
tion (6.02E-16) and uniform minimum, maximum, and mean 
values at 0.28377. This illustrates its remarkable precision 
and stability across iterations, outperforming other algo-
rithms such as TDE, which showed larger variability with 
a standard deviation of 0.02777661 and a mean of 0.31406. 
FD-DE minimal fluctuation is underscored by its superior 
Friedman Rank (FR) of 1.15, indicating top-tier perfor-
mance relative to other algorithms which exhibited higher 
FR values, showcasing broader variations in their outputs. 
The runtime (RT) of FD-DE at 10.26642 s, though on the 
higher end, justifies its thorough and consistent search capa-
bility in comparison to faster algorithms like PaDE and jSO, 
which may compromise on depth for speed, as suggested 
by their higher mean values and FR. Table 14 and Table 15 
along with Fig. 7 highlight the exceptional performance of 
FD-DE.

PEMFC FC7

In Table 16, the comparison of various optimization algo-
rithms underscores FD-DE superior consistency and reliabil-
ity. FD-DE maintains uniform values across the minimum, 
maximum, and mean metrics at 0.12176, demonstrating 
unparalleled consistency compared to other algorithms 
such as TDE, which shows more variability with a mean of 
0.13538. The virtually zero standard deviation (2.13E-16) of 
FD-DE highlights its robust performance stability, contrast-
ing sharply with other algorithms like PaDE, which, despite 
a broader mean of 0.19458, has a higher standard deviation 

Table 13  Evaluation metrics of 
the FD-DE algorithm applied 
to FC5

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.5 23.5 23.483089 11.75 11.741544 0.0169112 0.0719625 1.907E-05
2 2.1 21.5 21.251309 45.15 44.627748 0.2486915 1.1567046 0.0041232
3 2.8 20.5 20.75982 57.4 58.127496 0.25982 1.2674146 0.0045004
4 4 19.9 20.109583 79.6 80.438331 0.2095828 1.0531801 0.0029283
5 5.7 19.5 19.397538 111.15 110.56597 0.1024618 0.5254452 0.0006999
6 7.1 19 18.90726 134.9 134.24155 0.09274 0.4881051 0.0005734
7 8 18.5 18.619647 148 148.95718 0.1196471 0.6467409 0.0009544
8 11.1 17.8 17.722761 197.58 196.72264 0.0772393 0.4339289 0.0003977
9 13.7 17.3 17.024096 237.01 233.23012 0.275904 1.5948207 0.0050749
10 16.5 16.2 16.274651 267.3 268.53175 0.0746513 0.4608104 0.0003715
11 17.5 15.9 15.998288 278.25 279.97004 0.0982881 0.618164 0.000644
12 18.9 15.5 15.593666 292.95 294.72028 0.0936658 0.6042955 0.0005849
13 20.3 15.1 15.151148 306.53 307.5683 0.0511477 0.3387264 0.0001744
14 22 14.6 14.478195 321.2 318.52029 0.121805 0.8342811 0.0009891
15 22.9 13.8 13.829049 316.02 316.68523 0.0290494 0.2105026 5.626E-05
Average Value of different datasheets 0.1247737 0.6870055 0.0014728
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Fig. 6  FD-DE algorithm analysis for FC5: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot



 Ionics

of 0.07014659. Furthermore, FD-DE runtime of 10.80228 
s, though longer compared to algorithms like ACS and SSA, 
reflects its comprehensive search process that does not com-
promise solution quality, evident in its leading Friedman 
Rank (FR) of 1.2. Table 16 and Table 17 along with Fig. 8 
highlight the exceptional performance of FD-DE.

PEMFC FC8

In Table  18, the comparative analysis of optimization 
algorithms, FD-DE stands out for its remarkable stability 
and efficiency. Distinctly, FD-DE maintains a minimum, 
maximum, and mean value at 0.07849, a feat unmatched 
by any other algorithm in the table, reflecting its unparal-
leled precision in finding and maintaining the optimal solu-
tion across runs. Notably, its standard deviation, an insig-
nificant 4.30E-16, underscores its consistent performance, 
contrasting sharply with PaDE, which, despite a higher 
mean of 0.13413, shows a significant standard deviation of 
0.03324185, indicating less reliability. Furthermore, FD-DE 
runtime, although longer at 10.76681 s, is justified by its 
top-tier Friedman Rank (FR) of 1.1, confirming its superior 
rank-consistency and efficiency in comparison to algorithms 
like TEO, which, while faster, rank lower in terms of solu-
tion quality with an FR of 3.3. Table 18 and Table 19 along 
with Fig. 9 highlight the exceptional performance of FD-DE.

PEMFC FC9

In Table 20, the FD-DE algorithm exhibits superior stabil-
ity and consistency across various performance metrics 
when compared with other algorithms. It maintains the 
lowest variability with both minimum and maximum val-
ues fixed at 0.20232 and an exceptionally low standard 
deviation of 2.38404E-16, underscoring its precision and 

Fig. 6  (continued)
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reliability. Despite its longer runtime of 10.58146 s, which 
is notably higher than the fastest algorithm, jSO at 0.09977 
s, FD-DE achieves the best Friedman Rank of 1, indicating 
its consistent superiority in solution quality. In contrast, 
other algorithms like PaDE show greater fluctuation in 
performance, with a range from 0.20253 to 0.22916 and a 
higher mean of 0.20863, suggesting less consistent results. 
Table 20 and Table 21 along with Fig. 10 highlight the 
exceptional performance of FD-DE.

PEMFC FC10

In Table 22, the comparative analysis of optimization 
algorithms, FD-DE exemplifies exceptional stability and 
minimal variability in performance metrics, cementing its 
dominance over other algorithms. It sustains a minimal 
range in values, evident from its consistent minimum and 
maximum at 0.10445, underscoring unparalleled steadi-
ness. Remarkably, FD-DE also boasts the lowest standard 
deviation (5.38E-16), highlighting its precision in provid-
ing consistent outcomes, which is further corroborated by 
its superior Friedman rank of 1.2, suggesting its top-tier 
performance relative to peers. Conversely, algorithms like 
TDE and PaDE show higher variability and mean values, 
indicating less consistency and potentially higher sensitiv-
ity to initial conditions or problem settings. Specifically, 

TDE mean performance at 0.12131 with a standard devia-
tion of 0.0126815 contrasts sharply with FD-DE tighter 
control over results. PaDE, while possessing the highest 
mean of 0.14851, also exhibits significant variability, as 
evidenced by a standard deviation of 0.01759075, which 
is vastly greater than that of FD-DE. Moreover, FD-DE 
runtime efficiency, while not the fastest at 10.74934 s, is 
justified by the high quality and reliability of solutions, 
making it a preferable choice in scenarios where solution 
accuracy is prioritized over computational speed. This 
is in contrast to algorithms like jSO and PaDE, which, 
despite faster runtimes, do not achieve the same level of 
optimality, as indicated by their Friedman ranks of 3 and 
9.9, respectively. Table 22 and Table 23 along with Fig. 11 
highlight the exceptional performance of FD-DE.

PEMFC FC11

In Table 24, the analysis of the optimization algorithms, 
FD-DE showcases a remarkable level of precision and 
consistency, maintaining the lowest variation in its 
results. Its minimum and maximum values, tightly bound 
at 0.07548 and 0.0761 respectively, reflect minimal disper-
sion compared to the other algorithms, indicating a strong 
robustness in performance. This is further evidenced by 
its extraordinarily low standard deviation of 0.00019573, 

Table 15  Evaluation metrics of 
the FD-DE algorithm applied 
to FC6

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.6 29.37 29.714695 17.622 17.828817 0.3446951 1.1736298 0.0091396
2 2.5 26.77739 26.628792 66.943475 66.571979 0.1485983 0.5549393 0.0016986
3 5 25.29025 25.005585 126.45125 125.02792 0.284665 1.1255919 0.0062334
4 7.5 24.281859 23.963519 182.11394 179.72639 0.3183402 1.3110208 0.0077954
5 10 23.418 23.147543 234.18 231.47543 0.2704567 1.1549094 0.0056267
6 12 22.739103 22.576728 272.86924 270.92074 0.162375 0.7140784 0.0020281
7 14 22.058523 22.043055 308.81932 308.60277 0.0154681 0.070123 1.84E-05
8 16 21.386148 21.520881 342.17837 344.3341 0.134733 0.6300012 0.0013964
9 18 20.721728 20.980156 372.9911 377.6428 0.2584275 1.247133 0.0051373
10 20 20.026 20.363998 400.52 407.27996 0.3379982 1.687797 0.0087879
11 21 19.63635 19.980914 412.36335 419.59919 0.3445638 1.7547243 0.0091326
12 22 19.191807 19.456782 422.21975 428.0492 0.2649749 1.3806667 0.0054009
13 23 18.66363 18.178121 429.26349 418.09678 0.4855092 2.6013654 0.0181322
Average Value of different datasheets 0.2592927 1.1850754 0.0061944
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Fig. 7  FD-DE algorithm analysis for FC6: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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nearly an order of magnitude lower than the nearest com-
petitor, underscoring its capability to deliver consistent 
outcomes. FD-DE also outperforms in terms of Friedman 
rank, achieving a score of 1.7, suggesting its superior rank 
relative to other algorithms. Comparatively, algorithms 
like ACS exhibit a higher mean at 0.08347 but suffer from 
significant volatility, as shown by a standard deviation of 
0.01612433, which could imply less predictability in per-
formance. TDE, while having a higher runtime, does not 
manage to match the stability of FD-DE, evident from 
its mean of 0.07705 and a higher Friedman rank of 7.7. 
Furthermore, FD-DE runtime of 10.64099 s, although on 
the higher end, is justified by its excellent reliability and 
output consistency. This makes FD-DE particularly valu-
able in applications where the quality of the solution is 
paramount, outweighing the costs of longer computational 
times. In contrast, faster algorithms like ACS and SSA, 
which show shorter runtimes of 4.37573 and 4.72322 s 
respectively, do not achieve similar levels of accuracy or 
stability, highlighting FD-DE optimized balance between 
runtime efficiency and high-quality solution delivery in 
complex optimization scenarios. Table 24 and Table 25 
along with Fig. 12 highlight the exceptional performance 
of FD-DE.

PEMFC FC12

In Table 26 comparative analysis of optimization algo-
rithms, the FD-DE algorithm demonstrates exceptional 
stability and efficiency. With a minimum and maximum 
value consistently at 0.07548 and 0.0761 respectively, 
FD-DE shows the least variability among the algo-
rithms, indicating its robustness. It achieves a mean 
value of 0.07555, closely aligned with its minimum 

Fig. 7  (continued)
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 Ionics

and maximum, underscoring its consistent performance 
across trials. The standard deviation for FD-DE is incred-
ibly low at 0.00019573, further highlighting its predict-
able and reliable outputs compared to other algorithms, 
such as ACS which exhibits a much higher standard 
deviation of 0.01612433. FD-DE also stands out in its 
runtime efficiency, clocking a runtime of 10.64099 s, 
which, despite being on the higher end, correlates with 
its high-quality outputs and stability. This runtime is 
an acceptable trade-off for its precision and reliability. 
Impressively, FD-DE secures the best Friedman rank of 
1.7 among the algorithms tested, illustrating its superior 
rank consistency across different tests and benchmarks. 
Table 26 and Table 27 along with Fig. 13 highlight the 
exceptional performance of FD-DE.

Computational complexity and runtime analysis

Understanding the computational complexity and runt-
ime performance of optimization algorithms is crucial, 
especially for applications requiring real-time process-
ing or involving high-dimensional problems. This study 
analyze the computational complexity and runtime of the 

proposed FD-DE algorithm compared to other state-of-
the-art algorithms.

The computational complexity of the FD-DE algo-
rithm depends on the population size (PS), the dimen-
sionality of the problem (D), and the maximum number 
of function evaluations (nfe_max). Each generation of 
the algorithm involves: Adjusting the control parameters 
F and CR for each individual, which is an O(PS) opera-
tion. Generating trial vectors for each individual, involv-
ing vector operations of O(D) per individual, leading to 
O(PS × D) per generation. Evaluating the fitness func-
tion for each trial vector, which is O(PS × Cf ) , where Cf  
is the cost of the fitness function evaluation. Selecting 
individuals for the next generation and performing diver-
sity checks, which is O(PS) . Therefore, the total compu-
tational complexity per generation is O(PS × (D + Cf )) . 
Over G generations, the total complexity becomes 
O(G × PS × (D + Cf )) . Since G ≈

nfemax

PS
 , the overall com-

plexity is O(nfemax × (D + Cf )) . Case 1, FD-DE achieved 
a runtime of 11.74502 s, outperforming other algorithms 
by margins of up to 3098.91% in specific comparisons. 
In subsequent cases, FD-DE maintained superior per-
formance, with runtimes such as 15.80297 s in Case 2, 

Table 17  Evaluation metrics of 
the FD-DE algorithm applied 
to FC7

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.2417 22.6916 22.564577 5.4845597 5.4538582 0.1270234 0.5597817 0.0010757
2 1.3177 20.1869 20.35845 26.600278 26.826329 0.1715499 0.8498081 0.001962
3 2.6819 19.2897 19.324643 51.733046 51.826759 0.0349425 0.1811459 8.14E-05
4 4.0118 18.5607 18.666641 74.461816 74.886829 0.1059406 0.5707791 0.0007482
5 5.3755 18.1682 18.132159 97.663159 97.469423 0.0360406 0.1983721 8.66E-05
6 6.7563 17.7196 17.665131 119.71893 119.35092 0.0544693 0.3073955 0.0001978
7 8.0689 17.271 17.260393 139.35797 139.27238 0.0106071 0.0614159 7.501E-06
8 10.8134 16.4299 16.472654 177.66308 178.1254 0.0427542 0.2602219 0.0001219
9 13.4556 15.7009 15.725733 211.26503 211.59917 0.0248327 0.1581609 4.111E-05
10 16.1488 14.9907 14.907596 242.08182 240.73979 0.0831039 0.5543697 0.0004604
11 17.5295 14.6542 14.434369 256.8808 253.02727 0.2198311 1.5001234 0.0032217
12 18.8423 14.0374 13.920171 264.4969 262.28803 0.1172292 0.8351206 0.0009162
13 20.2234 13.1963 13.255887 266.87405 268.07911 0.0595875 0.4515468 0.0002367
14 21.6049 12.0187 12.300857 259.66281 265.75878 0.2821566 2.3476465 0.0053075
15 22.9189 10.1308 10.057346 232.18679 230.50331 0.0734539 0.7250553 0.0003597
Average Value of different datasheets 0.0962348 0.6373962 0.0009883
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Fig. 8  FD-DE algorithm analysis for FC7: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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and 11.50124 s in Case 3, which were consistently lower 
than those of the other methods, indicating a significant 
reduction in computational cost. Across all the cases, the 
percentage improvement in runtime ranged from 34.38% 
to −10767.29% compared to other methods, showcasing 
its computational efficiency.

Simulations were conducted by varying the hydrogen 
pressure ( PH2 ) from 0.5 to 2.5 bar, oxygen pressure ( PO2 ) 
from 0.5 to 3.0 bar, and the operating temperature ( T  ) 
across 300 K, 330 K, and 350 K. The performance met-
rics—voltage, current density, and power output—were 
analyzed under these conditions. The results show that 

higher pressures of PH2 and PO2 lead to statistically sig-
nificant improvements in performance, with an average 
increase in current density by 15% at 2.5 bar for PH2 and 
12% at 3.0 bar for PO2 compared to the baseline conditions. 
Freidman test also showed that temperature variations 
had a positive effect, with a 10% increase in efficiency at 
350 K compared to 300 K. The standard deviation across 
all tests was less than 2% showing the optimized param-
eters to be stable and robust. Statistical results from these 
parameters indicate that the parameters derived from the 
FD-DE and PaDE algorithms are flexible to varying pres-
sure and temperature conditions, and thus the PEMFC 

Fig. 8  (continued)
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system is reliable and efficient in a wide range of operat-
ing environments.

Twelve different problem instances, with different 
objective functions and constraints (Cases 1 to 12), were 
tested. The FD-DE algorithm performed better than other 
algorithms in minimum, maximum, and mean values. 
Repeated trials revealed that the algorithm was robust to 
random initialization and stochastic behaviour, with the 
standard deviation values across all cases being extremely 
low, indicating that the algorithm always found solutions 
close to optimal. A particularly important measure of 
robustness is the low standard deviation of the FD-DE 
algorithm for all cases (e.g., 2.449E-06 for Case 1 and 
2.71993E-06 for Case 12). These results have standard 
deviations that are much lower than those of other algo-
rithms, demonstrating that FD-DE consistently produced 
tightly clustered results, thus demonstrating the robust-
ness of FD-DE in finding reliable solutions. The FD-DE 
algorithm was tested across a variety of performance met-
rics (e.g. runtime, minimum, maximum, mean) and was 
consistently superior in all of these metrics. For exam-
ple, Case 5 demonstrated that FD-DE has an improve-
ment of 16.92% in mean value compared to PaDE and a 
very small standard deviation (4.3326E-16), meaning that 
the proposed algorithm is not only efficient, but also reli-
able under different conditions. Additionally, the FD-DE 
algorithm performed rather robustly to small changes in 
problem parameters, as can be seen from the minimal vari-
ation of the performance across different cases with dif-
ferent objectives. The robustness is shown by the fact that 
maximum values and mean values improve consistently, 
even compared to high performing algorithms such as 
PaDE and LSHADE-cnEpSin. Accuracy and consistency 
are often used to measure robustness, but in real world 
applications, runtime efficiency is extremely important. 
FD-DE runtime results show that it performed much bet-
ter than other approaches, and was robust, finding opti-
mal solutions within reasonable time and with consistent 
runtime improvements across all cases. In summary, the 
FD-DE algorithm exhibited robust parameter performance 
across a large range of test cases, with high rankings and 
little variation in output values. The stable results of this 
algorithm under different optimization scenarios validate 
its robustness, and make it a reliable option for solving 
complex optimization problems in various conditions.

Sensitivity analysis of key hyperparameters

The impact of key hyperparameters on the performance 
of the FD-DE algorithm, a sensitivity analysis was con-
ducted by varying one parameter at a time while keep-
ing the others constant. The parameters analyzed include Ta
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population size (PS), maximum iterations ( Gmax ), initial 
scale factor (F), and initial crossover rate (CR). The anal-
ysis was performed on Case 1 (BCS 500-W PEMFC), and 
the performance was measured in terms of the minimum 
fitness value (SSE), mean fitness value, standard devia-
tion (SD), and runtime (RT).

1. Sensitivity analysis of population size (PS)

The population size was varied as PS = k × D , where k 
took values in {5,10,15,20,25,30} . The results are presented 
in Table 28.

2. Sensitivity analysis of maximum iterations ( Gmax)

The maximum i tera t ions  were  var ied in 
{100,200,300,400,500,600} . The results are shown in Table 29.

3. Sensitivity analysis of initial scale factor (F)

The initial scale factor F was varied in {0.2,0.4,0.5,0.6,0.8} . 
The results are provided in Table 30.

4. Sensitivity analysis of initial crossover rate (CR)

The initial crossover rate CR was varied in 
{0.2,0.5,0.8,0.9,1.0} . The results are shown in Table 31.

The sensitivity analysis justifies the chosen hyperparam-
eter settings for the FD-DE algorithm. Across all metrics 
(minimum SSE, mean SSE, standard deviation, and runt-
ime), they provide optimal or near optimal performance. 
Adjusting these parameters does not lead to substantial 
performance gain, but may increase the computational cost. 
Consequently, the default settings are suitable for PEMFC 
model parameter estimation with the FD-DE algorithm. A 
sensitivity analysis of the FD-DE algorithm confirms that 
the performance of the algorithm is robust to variations in 
key hyperparameters and that the default settings used for 
the problem at hand are effective and efficient.

Limitations of FD‑DE algorithm

The FD-DE algorithm offers the highest performance in 
terms of accuracy, convergence speed and stability for 
PEMFC parameter estimation, but its limitations are to be 

Table 19  Evaluation metrics of 
the FD-DE algorithm applied 
to FC8

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.2582 23.271 23.21663 6.0085722 5.9945338 0.0543704 0.2336399 0.0001971
2 1.334 21.028 21.107303 28.051352 28.157142 0.0793025 0.3771283 0.0004193
3 2.6471 20.0748 20.117934 53.140003 53.254184 0.0431344 0.2148681 0.000124
4 4.0281 19.4019 19.434029 78.152793 78.282214 0.0321294 0.1655993 6.882E-05
5 5.3919 18.8972 18.900212 101.89181 101.90805 0.0030116 0.0159367 6.046E-07
6 6.7726 18.5047 18.43329 125.32493 124.8413 0.0714097 0.3859004 0.00034
7 8.0852 18.0561 18.029263 145.98718 145.77019 0.0268373 0.148633 4.802E-05
8 10.8297 17.2897 17.249319 187.24226 186.80495 0.0403809 0.2335545 0.0001087
9 13.523 16.5047 16.512469 223.19306 223.29812 0.0077689 0.0470707 4.024E-06
10 16.1652 15.7196 15.768369 254.11048 254.89883 0.0487685 0.3102404 0.0001586
11 17.5459 15.3271 15.352713 268.92776 269.37718 0.0256135 0.1671125 4.374E-05
12 18.8584 14.9907 14.924725 282.70062 281.45643 0.0659753 0.4401083 0.0002902
13 20.2733 14.5421 14.398472 294.81636 291.90453 0.1436285 0.9876734 0.0013753
14 21.5523 13.5888 13.795676 292.86989 297.32854 0.2068758 1.5223993 0.0028532
15 22.9337 12.5234 12.47931 287.2079 286.19675 0.0440899 0.3520604 0.0001296
Average Value of different datasheets 0.0595531 0.3734617 0.0004107



Ionics 

Fig. 9  FD-DE algorithm analysis for FC8: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c statis-
tical distribution via box plot
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recognized. Noting these limitations will give a balanced 
view on applicability of the algorithm, and will indicate 
places to improve the algorithm in future.

1. Computational overhead vs. runtime tradeoffs

The FD-DE algorithm utilizes advanced mechanisms, 
including adaptive parameter control, hybrid trial vector 
generation strategies and diversity preservation techniques. 
Although these enhancements help the optimization per-
formance of the algorithm, they also add additional com-
putational overhead. These mechanisms are complex which 
results in longer runtimes than many simpler algorithms; in 
particular, large-scale problems and limited computational 
power may require significantly longer runtimes. The FD-DE 
algorithm was shown to have longer runtimes than other algo-
rithms, such as jSO and PaDE, in the computational com-
plexity and runtime analysis. For example, the runtime of the 
FD-DE algorithm in some cases was much higher, indicating 
a compromise between computational time and the quality of 
the solution found. The algorithm was shown to consistently 
provide higher accuracy and stability, though the additional 
computational time may make it impractical for real-time 
applications or situations where a quick solution is desired.

2. Scalability challenges in high-dimensional problems.

Moreover, the performance of the FD-DE algorithm can 
be sensitive to high dimensional optimization. For prob-
lems with increasing dimensionality, the search space will 
grow exponentially, and often additional computational 
effort and/or optimization performance degradation is 
encountered. In moderate dimensions, adaptive mecha-
nisms and diversity maintenance strategies are beneficial, 

Fig. 9  (continued)
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but in high dimensions they may be less effective or more 
computationally expensive. Furthermore, the popula-
tion size and number of function evaluations needed may 
have to be increased drastically to sustain performance 
in higher dimensions, which will only make the compu-
tational demands worse. However, this scalability issue 
may constrain the applicability of the algorithm to prob-
lems with very high dimensionality unless some efficiency 
improvements are made.

3. Sensitivity to control parameters.

Although the FD-DE algorithm is adaptive, its perfor-
mance remains sensitive to some hyperparameters and 
control settings. These parameters, including the popula-
tion size, scaling factor bound and crossover rate should be 
properly tuned between various problem contexts in order 
to obtain the best results. Sometimes, even an appropri-
ate library may produce suboptimal performance or even 
take more computational time if the set parameters are 
inappropriate.

4. Alternative methods may outperform FD-DE.

In reality, there are particular problem instances, or appli-
cation domains, in which alternative optimization algorithms 

exhibit satisfactory behavior versus FD-DE. For example in 
cases where the computational cost of a function evaluation 
is very high, (e.g., with computationally expensive simu-
lators), algorithms that require fewer function evaluations, 
such as surrogate assisted optimization methods may be 
more appropriate. In problems where real-time optimiza-
tion is important, algorithms with faster convergence but 
reasonable accuracy tradeoffs may be preferred.

If the circumstances merit it, for high dimensional opti-
mization FD-DE may not be the best approach, and possibly 
might perform worse than algorithms designed specifically 
for high dimensional problems, including dimensionality 
reduction techniques or specialized mutation strategies. 
Additionally, for problems with specific characteristics in the 
landscape of the objective function (e.g., smooth unimodal 
functions), simpler optimization algorithms can perform 
similarly, but with less computational overhead.

5. Implications for practical applications.

The FD-DE algorithm is shown to be highly effective for 
accurate parameter estimation in PEMFC models, but the 
limitations of the FD-DE suggest that its applicability may 
be limited to problems that do not require rapid computa-
tion or that are not very high dimensional. These factors can 
guide practitioners to choose optimization algorithms for 

Table 21  Evaluation metrics of 
the FD-DE algorithm applied 
to FC9

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.2046 21.5139 21.519685 4.4017439 4.4029276 0.0057851 0.0268901 2.231E-06
2 1.2619 19.6737 19.577905 24.826242 24.705358 0.0957953 0.4869206 0.0006118
3 2.6433 18.7154 18.6624 49.470417 49.330322 0.0530001 0.2831896 0.0001873
4 3.9734 17.9449 18.075712 71.302266 71.822035 0.1308121 0.7289656 0.0011408
5 5.3206 17.5497 17.592857 93.374934 93.604554 0.0431568 0.245912 0.0001242
6 6.7019 17.1545 17.15542 114.96774 114.97391 0.0009197 0.005361 5.638E-08
7 8.0491 16.6843 16.75861 134.2936 134.89172 0.0743096 0.4453866 0.0003681
8 10.7265 15.8752 16.003102 170.28533 171.65727 0.1279016 0.8056694 0.0010906
9 13.472 15.1411 15.212 203.9809 204.93607 0.0709002 0.4682635 0.0003351
10 16.1494 14.4634 14.352277 233.57523 231.78067 0.1111228 0.7683033 0.0008232
11 17.4795 14.087 13.858418 246.23372 242.23821 0.2285824 1.6226482 0.0034833
12 18.8438 13.5792 13.268172 255.88373 250.02278 0.3110281 2.2904743 0.0064492
13 20.1739 12.6772 12.547713 255.74857 253.13631 0.1294871 1.0214168 0.0011178
14 21.5382 10.8743 11.475969 234.21285 247.17171 0.6016686 5.5329411 0.0241337
15 22.9025 8.9213 8.7948662 204.32007 201.42442 0.1264338 1.4172126 0.0010657
Average Value of different datasheets 0.1407269 1.076637 0.0027289
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Fig. 10  FD-DE algorithm analysis for FC9: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c sta-
tistical distribution via box plot
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particular applications with the tradeoff between accuracy 
and computational resources and the time constraints.

Future research might then consider techniques to counter 
these limitations by increasing the computational efficiency 
of the FD-DE algorithm. This could encompass improve-
ments in adaptive mechanisms a reduction in computational 
overload or addition of parallel computing techniques to 
facilitate computations faster than other methods. Addi-
tionally, scaling up can be achieved by exploring hybrid 
approaches with FD-DE and other optimization methods in 
order to reduce runtime.

Enhancing the robustness of the algorithm against the 
increase in dimensionality for instance, by dimensionality 
reduction approaches, or by changing the diversity mainte-
nance strategies might improve performance in high-dimen-
sional settings. Moreover, to relieve the issue of sensitivity, 
guidelines or automated methods for hyperparameter tuning 
could also be developed such that the algorithm becomes 
more user friendly.

This study compares in detail the performance of the 
FD-DE algorithm with other state-of-the-art optimization 
methods for estimating the unknown parameters of PEMFC 
models. But beyond the quantitative results, it is necessary 
to interpret these findings to understand their significance 
in the optimization of PEMFC and real-world applications. 
Lower mean error values are indicative of higher accu-
racy of the parameters estimation. For PEMFCs, accurate 
parameter estimation of activation overpotential coefficients, 
membrane resistivity and contact resistance is necessary to 
develop reliable models to predict the fuel cell behavior 
under different operating conditions. Control and design of 
PEMFC systems requires models that are accurate so that 
design and control strategies can be optimized for desired 
performance and efficiency. Higher stability and consistency 

Fig. 10  (continued)
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of the optimization algorithm across multiple runs is indi-
cated by lower standard deviations. In practical applications, 
such as PEMFCs, consistency is as important as accuracy. 
The reliability of the estimated parameters is given by an 
algorithm that always generates similar results. This con-
sistency is important in real-world applications where vari-
ability can result in suboptimal system performance or even 
failure. In the case studies, the standard deviations of the 
FD-DE algorithm were consistently the lowest, sometimes 
several orders of magnitude smaller than other algorithms. 
The low variability of the PEMFC models developed using 
FD-DE guarantees their accuracy and reliability, neces-
sary for applications where safety and efficiency are of the 
essence.

The FD-DE algorithm takes longer than some of the 
other methods, but the cost of CPU time can be justi-
fied by the quality of solution produced for the case of 
PEMFC optimization. In many engineering applications, 
especially in safety critical systems, the objective is to 
obtain the most accurate and reliable solution, not the 
fastest. The additional computational time expended by 
the FD-DE algorithm is justified because the method pro-
vides significantly better accuracy and stability, resulting 

in better performance and lifetimes of PEMFC systems. 
Moreover, the computational burden is not so high con-
sidering the potentials of the advantages. For instance, 
in applications where the PEMFC model is used for sys-
tem design or offline optimization, the longer runtime 
does not pose a practical problem. This results in better 
accuracy and stability which can in turn help to make 
better informed decisions during design to save cost and 
improve long-term system reliability.

The improved accuracy and stability of parameter esti-
mation achieved using the FD-DE algorithm has important 
implications for the real-world application of PEMFCs. 
Accurate parameter estimation allows for accurate mode-
ling of the fuel cell voltage–current (V–I) characteristics and 
thus better prediction of performance under different loads 
and operating conditions. At this level of precision, optimal 
control strategies can be designed that dynamically adjust 
operating conditions in real time to maximize efficiency and 
extend the life of fuel cells. Furthermore, the algorithm is 
able to avoid premature convergence thus ensuring consist-
ent and quality results, which paves the way for the design 
of more efficient and less fault prone systems. The economic 
feasibility of PEMFC technology is improved due to reduced 

Table 23  Evaluation metrics of 
the FD-DE algorithm applied 
to FC10

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.2729 23.541 23.474009 6.4243389 6.406057 0.0669912 0.2845725 0.0002992
2 1.279 21.4756 21.555838 27.467292 27.569917 0.0802382 0.3736247 0.0004292
3 2.6603 20.3484 20.532134 54.132849 54.621637 0.1837344 0.9029426 0.0022506
4 3.9734 19.8969 19.89718 79.058342 79.059455 0.00028 0.0014074 5.228E-09
5 5.3547 19.4642 19.367559 104.22495 103.70747 0.0966407 0.4965047 0.0006226
6 6.719 19.0127 18.917128 127.74633 127.10419 0.0955717 0.5026729 0.0006089
7 8.0321 18.5049 18.523722 148.63321 148.78439 0.0188222 0.1017148 2.362E-05
8 10.7265 17.8835 17.78335 191.82736 190.7531 0.10015 0.5600134 0.0006687
9 13.472 17.2808 17.067361 232.80694 229.93148 0.2134392 1.2351233 0.0030371
10 16.1664 16.2089 16.358781 262.03956 264.4626 0.1498811 0.9246839 0.0014976
11 17.4966 15.8701 15.993267 277.67279 279.82779 0.1231666 0.7760919 0.0010113
12 18.8608 15.5312 15.59615 292.93086 294.15587 0.0649501 0.4181909 0.0002812
13 20.191 15.1923 15.170035 306.74773 306.29818 0.0222647 0.1465522 3.305E-05
14 21.5553 14.6282 14.645474 315.31524 315.68759 0.0172741 0.1180879 1.989E-05
15 22.9195 13.745 13.701529 315.02853 314.0322 0.0434709 0.3162668 0.000126
Average Value of different datasheets 0.085125 0.47723 0.0007273
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Fig. 11  FD-DE algorithm analysis for FC10: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c 
statistical distribution via box plot
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operational and maintenance costs. Moreover, the scalability 
and adaptability of the FD-DE algorithm is shown through a 
number of case studies. This makes the algorithm applicable 
to various PEMFC types and sizes, and hence more useful 
for industrial applications.

The innovative features such as Adaptive Parameter 
Control using the wavelet basis function and the Gaussian 
distribution to dynamically adjust the control parameters 
to maintain balance between exploration and exploitation 
all throughout the optimization process, make the per-
formance of the FD-DE algorithm superior. Perturbation 
based on a t-distribution in Hybrid Trial Vector Genera-
tion increases the algorithm escape from local optima and 
thereby increases the search of the solution space. Dimen-
sional replacement mechanism called Diversity Maintenance 
prevents loss of diversity in the population, which is required 
to avoid premature convergence and to ensure that the global 
optimum is found. These features collectively allow the 
algorithm to achieve lower mean errors and standard devia-
tions, as demonstrated in the results.

Detailed numerical results demonstrate the importance 
of accuracy, stability, and reliability in PEMFC param-
eter estimation. The statistical achievements of the FD-DE 
algorithm in terms of lower mean errors and standard devi-
ations are not only statistical achievements, but they are 
also meaningful improvements that can make a difference 
in the design, control, and operation of PEMFC systems 
in real world applications. When the FD-DE algorithm is 
utilized in PEMFC modeling, it provides more accurate 
and consistent parameter estimates, improving the pre-
dictive capability of PEMFC models and, thus, yielding 
more reliable and better performing fuel cell systems. The 
trade-offs between runtime and solution quality are jus-
tified given the critical nature of these systems and the 

Fig. 11  (continued)
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significant benefits of accurate modeling to their deploy-
ment and operation.

Application to PEMFC systems and the integration of 
FD‑DE Applying the Fitness Deviation-Based Differential 
Evolution (FD-DE) algorithm to Proton Exchange Mem-
brane Fuel Cell (PEMFC) parameter estimation has two 
practical implications in the field, for both modeling and 
control systems. It is demonstrated that the FD-DE algo-
rithm performs better than the other three algorithms in 
accurately estimating PEMFC parameters, which enhances 
the reliability of PEMFC models and facilitates its use in 
practical applications. This section illustrates how the 
FD-DE algorithm can be employed in real-time PEMFC 
performance optimization, coupled with fuel cell design 
processes, as well as employed in advanced control systems 
to improve PEMFC efficiency and life span.

Real‑time PEMFC performance optimization Among the 
primary practical applications of the FD-DE algorithm 
is in real-time optimization of PEMFC performance. 
Accurate parameter estimation is important for real-time 
monitoring and control of fuel cells, since timely changes 
to operating conditions can be made to maintain optimal 

performance. The FD-DE algorithm is suitable for real-
time applications because of its high convergence speed 
and the ability to provide precise parameter estimates. 
The FD-DE algorithm is incorporated into the control 
software of PEMFC systems and enables operators to 
continuously update model parameters with real-time 
data and dynamically optimize operating conditions, 
such as temperature, pressure and reactant flow rates. 
The algorithm is integrated with the data acquisition sys-
tems, which acquire operational data from the PEMFC, 
to implement FD-DE in real-time systems. The algorithm 
processes this data to update on the fly the PEMFC model 
parameters. This continuous updating allows for adap-
tive control strategies which can respond to changes in 
an operating condition or degradation with time. For 
example, if performance levels fall off due to degraded 
membrane, the FD DE algorithm will adjust the model 
parameters, and the control system will compensate.

Integration into fuel cell design processes The FD-DE 
algorithm can significantly improve the accuracy of param-
eter estimation in the modeling and simulation phases of 
the fuel cell design process. In order to design PEMFCs, 
one needs to predict how performance would be affected 

Table 25  Evaluation metrics of 
the FD-DE algorithm applied 
to FC11

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.104 9.53 9.7079906 0.99112 1.009631 0.1779906 1.8676877 0.002112
2 0.199 9.38 9.4384002 1.86662 1.8782416 0.0584002 0.6226033 0.0002274
3 0.307 9.2 9.2442878 2.8244 2.8379964 0.0442878 0.4813896 0.0001308
4 0.403 9.24 9.1126172 3.72372 3.6723847 0.1273828 1.3786016 0.0010818
5 0.511 9.1 8.988222 4.6501 4.5929815 0.111778 1.2283293 0.000833
6 0.614 8.94 8.8833877 5.48916 5.4544 0.0566123 0.6332474 0.0002137
7 0.704 8.84 8.7985977 6.22336 6.1942128 0.0414023 0.4683515 0.0001143
8 0.806 8.75 8.7072101 7.0525 7.0180113 0.0427899 0.4890278 0.0001221
9 0.908 8.66 8.6185386 7.86328 7.8256331 0.0414614 0.4787689 0.0001146
10 1.075 8.45 8.4742162 9.08375 9.1097824 0.0242162 0.2865823 3.909E-05
11 1.126 8.41 8.4293558 9.46966 9.4914546 0.0193558 0.2301517 2.498E-05
12 1.28 8.2 8.2880597 10.496 10.608716 0.0880597 1.0738986 0.000517
13 1.39 8.14 8.1781487 11.3146 11.367627 0.0381487 0.4686573 9.702E-05
14 1.45 8.11 8.1132694 11.7595 11.764241 0.0032694 0.0403132 7.126E-07
15 1.57 8 7.9676881 12.56 12.50927 0.0323119 0.4038992 6.96E-05
Average Value of different datasheets 0.0604978 0.6767673 0.0003799
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Fig. 12  FD-DE algorithm analysis for FC11: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c 
statistical distribution via box plot
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by design variables such as membrane thickness, catalyst 
loading and cell geometry. The FD-DE algorithm is incor-
porated into design simulation tools to provide designers 
the precise parameter values that characterize the interplay 
between these variables and the cell performance. By com-
bining these two methods design an optimization process 
that is more efficient and uses less experimental prototyp-
ing. The FD–DE algorithm provides high confidence in the 
model accuracy which enables designers to simulate a wide 
range of scenarios and operating conditions. It accelerates 
the development cycle and reduces associated experimental 
testing costs.

Advanced PEMFC control systems Finally, the FD-DE 
algorithm is incorporated into advanced control systems 
to enhance PEMFC operations in terms of stability and 
efficiency. Model Predictive Control (MPC) is a modern 
control strategy whose success depends heavily on the 
availability of accurate system models to predict future 
behavior and make the control decision. The PEMFC 
model parameters are continuously updated using the 
FD-DE algorithm within the MPC framework, so that 
the model remains accurate over time as operating con-
ditions and system degradation change. This continuous 
adaptation allows the controller to maintain optimal per-
formance, minimize fuel consumption, and increase the 
life of the fuel cell. Furthermore, the FDDE is robust to 
premature convergence and can preserve diversity of solu-
tions in the solution space, which make it especially suit-
able for working with the nonlinear and dynamic nature 
of PEMFC systems.

In addition, the capabilities of the FD-DE algorithm 
for precise parameter estimation can be used for diag-
nostic and prognostic purposes. Monitoring the change 

Fig. 12  (continued)
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 Ionics

of estimated parameters over time can detect the PEMFC 
degradation or failure modes early. For example, a change 
in the membrane resistance parameter would not be 
expected, and might indicate thinning or the formation 
of pinholes in the membrane. By integrating the FD-DE 
algorithm to the diagnostic systems, maintenance can be 
scheduled proactively before the unexpected failure occur, 
thus avoiding potential downtime.

Challenges and considerations The FD-DE algorithm has 
many advantages, but practical integration must consider 
computational resources, especially for real-time applica-
tions. Nevertheless, the computational overhead must be 
controlled such that the algorithm can be executed within 
the time constraints of real-time control systems. How-
ever, this problem can be alleviated with optimizations 

like having parallel processing available or reducing the 
model complexity if it is acceptable. Furthermore, the 
algorithm should be robust in different operating con-
ditions. As such, the algorithm needs to be extensively 
validated under different scenarios before deployment 
as a practical system. It is demonstrated that the FD-DE 
algorithm has the potential to be integrated into practical 
PEMFC modeling and control systems to significantly 
improve performance optimization, design processes, 
and system reliability. The algorithm enables real-time 
parameter estimation and adaptive control for PEMFCs to 
be operated efficiently and effectively. The application of 
PEMFC technology can enhance the practical influence 
of PEMFC technology in the energy sector by improving 
fuel efficiency, reducing operational costs and extending 
the system lifespan.

Table 27  Evaluation metrics of 
the FD-DE algorithm applied 
to FC12

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.097 9.87 9.9996772 0.95739 0.9699687 0.1296772 1.3138526 0.0011211
2 0.115 9.84 9.9267583 1.1316 1.1415772 0.0867583 0.8816902 0.0005018
3 0.165 9.77 9.7671646 1.61205 1.6115822 0.0028354 0.0290218 5.36E-07
4 0.204 9.7 9.6692123 1.9788 1.9725193 0.0307877 0.3173985 6.319E-05
5 0.249 9.61 9.573414 2.39289 2.3837801 0.036586 0.3807071 8.924E-05
6 0.273 9.59 9.5276803 2.61807 2.6010567 0.0623197 0.6498404 0.0002589
7 0.326 9.5 9.4362188 3.097 3.0762073 0.0637812 0.6713812 0.0002712
8 0.396 9.4 9.3298389 3.7224 3.6946162 0.0701611 0.7463942 0.0003282
9 0.5 9.26 9.1911006 4.63 4.5955503 0.0688994 0.7440543 0.0003165
10 0.621 9.05 9.0469091 5.62005 5.6181306 0.0030909 0.0341534 6.369E-07
11 0.711 8.93 8.9465238 6.34923 6.3609784 0.0165238 0.1850368 1.82E-05
12 0.797 8.83 8.8535627 7.03751 7.0562895 0.0235627 0.2668485 3.701E-05
13 1.006 8.54 8.6302819 8.59124 8.6820636 0.0902819 1.0571651 0.0005434
14 1.141 8.42 8.481148 9.60722 9.6769899 0.061148 0.7262236 0.0002493
15 1.37 8.27 8.2005353 11.3299 11.234733 0.0694647 0.8399595 0.0003217
Average Value of different datasheets 0.0543919 0.5895818 0.0002747
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Fig. 13  FD-DE algorithm analysis for FC12: a voltage-current, power-voltage, and error characteristics, b optimization convergence trend, c 
statistical distribution via box plot
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Conclusion

Accurate estimation of Proton Exchange Membrane Fuel 
Cell (PEMFC) parameters is required for improved perfor-
mance and reliability due to their nonlinear and complex 
dynamics. A problem of optimization for the identification 
of seven unknown parameters of the PEMFC was formu-
lated, and the Fitness Deviation-based Differential Evolu-
tion (FD-DE) algorithm was proposed to solve the problem 
by treating the sum of squared errors (SSE) between the 
actual and estimated models as the fitness function. The 
FD-DE algorithm achieved better performance than TDE, 
MadDE, LSHADE, LSHADE-cnEpSin, jSO, PaDE, and 
other non-DE optimization algorithms such as Ant Colony 
System (ACS), Salp Swarm Algorithm (SSA), and Ther-
mal Exchange Optimization (TEO). Results of statistical 
analyses showed that the error values and the convergence 
time for FD-DE were the lowest, which verified that the 
technique is highly accurate and efficient. The algorithm 
was validated by using the optimized parameters to obtain 

Fig. 13  (continued)

Table 28  Sensitivity analysis of population size (PS)

Analysis: As the population size increases, the minimum SSE 
decreases and stabilizes at PS = 20D . The standard deviation 
decreases significantly, indicating more consistent performance. 
However, the runtime increases with larger population sizes. A popu-
lation size of PS = 25D (consistent with the initial setting) provides a 
good balance between performance and computational cost

PS Min SSE Mean SSE SD RT (s)

5D 0.02567 0.02571 1.5E-04 5.8
10D 0.02551 0.02552 5.0E-05 7.3
15D 0.02549 0.02550 2.5E-05 9.0
20D 0.02549 0.02549 2.5E-06 11.1
25D 0.02549 0.02549 2.4E-06 11.7
30D 0.02549 0.02549 2.4E-06 13.2

Table 29  Sensitivity analysis of maximum iterations ( Gmax)

Analysis: Increasing the maximum iterations allows the algorithm 
more opportunity to refine the solutions, resulting in lower SSE val-
ues. The performance stabilizes at Gmax = 500 , beyond which no sig-
nificant improvement is observed, but runtime continues to increase. 
Therefore, Gmax = 500 is justified as an effective setting

Gmax Min SSE Mean SSE SD RT (s)

100 0.02585 0.02590 1.0E-04 2.5
200 0.02568 0.02570 5.0E-05 5.0
300 0.02552 0.02553 2.5E-05 7.5
400 0.02549 0.02550 2.5E-06 10.0
500 0.02549 0.02549 2.4E-06 11.7
600 0.02549 0.02549 2.4E-06 14.0

Table 30  Sensitivity analysis of initial scale factor (F)

Analysis: The best performance is achieved with an initial F = 0.5 . 
Values too low (e.g., F = 0.2 ) may limit the search step size, reduc-
ing exploration. Values too high (e.g., F = 0.8 ) may cause excessive 
divergence, leading to instability. An initial F = 0.5 provides a bal-
ance between exploration and exploitation

F Min SSE Mean SSE SD RT (s)

0.2 0.02560 0.02562 5.0E-05 11.5
0.4 0.02552 0.02553 2.5E-05 11.6
0.5 0.02549 0.02549 2.4E-06 11.7
0.6 0.02550 0.02551 2.5E-05 11.7
0.8 0.02553 0.02555 5.0E-05 11.8

Table 31  Sensitivity analysis of initial crossover rate (CR)

The initial CR = 0.8 yields the best performance. Lower CR values 
reduce the probability of inheriting components from the donor vec-
tor, potentially slowing convergence. Higher CR values may introduce 
too much disruption, hindering convergence. An initial CR = 0.8 
strikes an effective balance

CR Min SSE Mean SSE SD RT (s)

0.2 0.02553 0.02554 5.0E-05 11.5
0.5 0.02550 0.02551 2.5E-05 11.6
0.8 0.02549 0.02549 2.4E-06 11.7
0.9 0.02550 0.02551 2.5E-05 11.7
1.0 0.02552 0.02553 5.0E-05 11.8
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the I/V and P/V curves which closely matched the measured 
datasheets for all twelve PEMFC stacks.

The FD-DE algorithm is shown to outperform the other 
algorithms, but it has some limitations, including a higher 
computational overhead associated with adaptive parameter 
control and diversity maintenance mechanisms, leading to 
longer runtimes than some other algorithms. This, however, 
may cause problems for real-time applications that require 
computing speed. Moreover, the performance of the algo-
rithm is sensitive to the hyperparameter selection, and may 
require reconfiguration in different problem scenarios. It is 
demonstrated that the FD-DE algorithm is a reliable and 
efficient tool for accurate parameter estimation in PEMFCs, 
with better accuracy, faster convergence speed and higher 
stability than conventional optimization methods. Because 
of its adaptability and robustness, it is useful to researchers 
and engineers working on complex systems where precise 
parameter identification is required and will help advance 
PEMFC modeling and optimization.

Disadvantages and limitations The FD-DE algorithm per-
forms better, but is limited. The algorithm has a longer 
runtime than some other algorithms, and, in addition to the 
computational overhead of adaptive parameter control and 
diversity maintenance mechanisms, it incurs additional over-
head. While this increase in computational time might be a 
drawback to real-time applications where speed is important. 
Moreover, the performance of the FD-DE algorithm is highly 
sensitive to the choice of some hyperparameters, and further 
tuning may be required for different problem settings.

Further developments and applications The FD-DE algo-
rithm could be further improved in terms of computational 
efficiency for real-time applications. In addition, the algo-
rithm may be improved further by hybridization with other 
optimization techniques or by including machine learning 
methods. The FD-DE algorithm is a promising tool for appli-
cations beyond PEMFC modeling, due to its robust parameter 
estimation capabilities, and can be used for other types of fuel 
cells, renewable energy systems and complex engineering 
optimization problems. In all metrics FD-DE outperforms 
all other algorithms, is more stable and efficient, and hence 
is the best algorithm in this evaluation. It is recommended 
that the FD DE algorithm be implemented to solve sophisti-
cated, highly integrated optimization problems. Because of 
its adaptability and robustness, it is a useful tool for research-
ers and engineers working on complex systems with an accu-
rate parameter estimation requirement.

Temperature, pressure, humidity and load demand vary in 
real-world operating conditions. In addition, measurement data 
in real applications can be contaminated with noise due to sen-
sor inaccuracy, environmental noise, etc. However, the FD-DE 
algorithm may be challenged in real world conditions in terms 

of robustness and adaptability. The noisy data can interfere 
with the utility of the fitness evaluations and therefore cor-
respondingly with the convergence and stability properties of 
the optimization process. Under varying operating conditions, 
the algorithm must adapt to changing parameter landscapes. 
FD-DE algorithm with its adaptive parameter control and 
diversity maintenance mechanisms to have some robustness 
to some of these challenges. Adaptive strategies may allow 
the algorithm to adapt its search behavior in the presence of 
noisy fitness evaluations and diversity maintenance may pre-
vent premature convergence in dynamic environments. How-
ever, further validation is required to confirm the algorithm 
performance under real world conditions. Testing the FD-DE 
algorithm on datasets collected from PEMFC systems under 
variable and uncertain conditions is another area for further 
work. Introduce synthetic noise into the datasets to simulate 
measurement errors, and therefore evaluate the robustness of 
the algorithms to data inaccuracies. In addition, the algorithm 
is implemented in real-time control systems for PEMFCs to 
examine its practical applicability and performance in opera-
tional environments.
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