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Abstract
This study presents an innovative approach to analyzing finite-time stability (FTS) and
synchronization (FTSYN) in integer-order reaction-diffusion systems (RDs), particularly in
the context of epidemiological modeling. By integrating Gronwall’s inequality, Lyapunov
functionals (LFs), and linear control strategies, a comprehensive framework is devel-
oped to address transient dynamics within finite time frames. The proposed methodology
advances the theoretical understanding of FTS and FTSYN by addressing the relatively
unexplored dynamics of spatially extended systems. MATLAB simulations validate the
theoretical findings, demonstrating the effectiveness of the control schemes and their
practical applicability in modeling real-world disease transmission. Integrating spatial dif-
fusion and disease dynamics provides critical insights into the influence of parameters
such as diffusion rates and mortality on system behavior. This work contributes a robust
framework for enhancing the analysis and management of nonlinear systems, with sig-
nificant implications for epidemiology and other fields requiring rapid convergence and
synchronization.

Introduction
The study of infectious diseases has garnered considerable attention, with significant efforts
directed toward advancing their understanding and management. This interest arises from the
need to predict and mitigate disease transmission patterns to reduce mortality rates. Recent
progress in mathematical modeling, particularly using the susceptible-infected-susceptible
(SIS) epidemic RDs, demonstrates the potential for substantial reductions in disease-related
fatalities [1–4]. De Jong et al. [5] introduced the standard incidence term 𝛽SI/N, diverging
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from the mass action principle and inspiring further investigations by Allen et al. into its
broader applicability. Another study [6] proposed a frequency-dependent SIS RDs for con-
tinuous spatial domains, offering a refined approach to disease transmission by integrating
spatial dynamics and interaction frequency. Peng and Liu [7] rigorously analyzed the endemic
equilibrium in Allen et al.’s framework, elucidating its stability conditions and advancing the
understanding of disease persistence and transmission. These findings form a robust foun-
dation for designing effective intervention strategies, with implications for improving public
health outcomes.

This study analyzes a RDs (1) described by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕S1 (x, t)
𝜕t = d1ΔS1 +Λ – 𝛽S1𝜑 (I1)

S1 + I1
– 𝜇S1, x∈Ω, t > 0,

𝜕I1 (x, t)
𝜕t = d2ΔI1 + 𝛽

S1𝜑 (I1)
S1 + I1

– (𝜇 + 𝜎)I1, x∈Ω, t > 0,
𝜕S1

𝜕𝜏 =
𝜕I1

𝜕𝜏 = 0, x∈ 𝜕Ω,

S1 (x, 0) = S1,0 (x) > 0, I1 (x, 0) = I1,0 (x) > 0, x∈Ω.

(1)

The function 𝜑 (I1) is a continuously differentiable function that is positive on the interval
ℝ∗+, satisfying:

𝜑 (0) = 0, and 0 < I1𝜑′ (I1)≤ 𝜑 (I1) for all I1 > 0. (2)

The terms and variables in the studied models significantly influence the system’s dynam-
ics, as discussed in [8,9]. Key parameters include the following:

• The diffusion coefficients d1 and d2 represent the diffusion rates of susceptible and infected
individuals across a spatial domain. These coefficients are influenced by real-world factors
such as population mobility, migration, and travel patterns. Specifically, d1 denotes the rate
at which susceptible individuals (e.g., uninfected people) move or are exposed to different
areas, while d2 captures the rate at which infected individuals spread the disease spatially.
For instance, d2 may be affected by the mobility of sick individuals traveling to hospitals or
areas of high foot traffic, where disease transmission can occur more rapidly.

• The rate of new exposures (Λ) represents the frequency at which susceptible individuals
come into contact with sources of infection, becoming exposed. This rate is influenced by
social behavior, population density, and the effectiveness of public health interventions.
For example, during a flu outbreak, Λmight be particularly high in crowded areas such
as public transportation or schools, where encounters with infected individuals are more
frequent.

• The disease spread frequency (𝛽) governs the speed at which the infection spreads between
individuals, making it a critical factor in understanding the growth of an epidemic. A
higher 𝛽 indicates faster disease transmission. This parameter is closely related to the trans-
mission rate, which depends on factors such as the contagion level of the virus, its mode of
transmission (e.g., airborne or surface contact), and protective measures like masks. Public
health interventions, such as quarantine measures, vaccination campaigns, or isolation, can
reduce 𝛽 by limiting contact between susceptible and infected individuals.

• The mortality rate (𝜇) quantifies the rate at which infected individuals succumb to the dis-
ease. This rate reflects the disease’s lethality, depending on regional, population-specific, or
healthcare-related contexts. For example, a more developed healthcare system may exhibit
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lower mortality rates due to better access to treatment. Additionally, factors such as the
availability of medical resources, the severity of the disease, and population demographics
(e.g., the higher vulnerability of older individuals) can significantly impact 𝜇.

• The average disease duration (𝜎) describes the typical length of time an individual remains
infectious and symptomatic. This duration is influenced by the progression of the disease
and the availability of medical treatments. For example, individuals infected with influenza
may be infectious for 5–7 days, whereas diseases like Ebola often involve longer contagious
periods. Advances in medical treatments can shorten 𝜎, while chronic illnesses or limited
access to healthcare can prolong it, see Fig 1.

The study of stability theory remains a cornerstone in system analysis, with FTS gain-
ing prominence due to its rapid convergence and enhanced robustness [10,11]. In [12],
FTS for linear time-invariant fractional-order systems was introduced using the Lyapunov–
Razumikhin technique [13]. In contrast, a novel criterion for FTS in integer-order nonlin-
ear systems was proposed based on the generalized Gronwall inequality [14]. However, the

Fig 1. Flowchart illustrating transitions between S1 and I1 with parameter dependencies.

https://doi.org/10.1371/journal.pone.0321132.g001
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absence of FTS equilibrium points (EPs) in most nonlinear systems underscores the inher-
ent challenges in their stability analysis, emphasizing the need for innovative analytical tech-
niques [15–23]. Synchronization of nonlinear systems has garnered significant attention over
recent decades [24–31], with FTSYN emerging as a compelling research area [32]. Despite
these advancements, the FTSYN of spatially extended systems, particularly RDs, remains
under explored. This gap highlights an important avenue for future investigation into the
dynamics and synchronization of such systems, with the potential to advance nonlinear
dynamics and synchronization theory [33,34]. Recent developments underscore the role of
finite-time control in managing nonlinear systems influenced by complex dynamics, such as
event-triggered outputs [35]. This approach ensures that system states achieve desired behav-
iors or synchronization within a prescribed time, making it critical for applications requiring
precision and rapid responses. Integer and fractional-order systems have also gained attention
for their ability to model memory and hereditary effects prevalent in RD processes [36,37].
Event-triggered control reduces communication and computation overheads by activat-
ing control actions based on specific conditions, proving vital for large-scale networks like
those in epidemiology and biology. Synchronization across integer and fractional-order RD
nodes is crucial for maintaining coherence and stability in such systems [38,39]. Although
advancements in synchronization techniques for nonlinear systems are notable, the FTSYN
of integer-order RD networks remains relatively underexplored. This study addresses this gap
by integrating finite-time control with integer-order dynamics to achieve synchronization
in complex RD systems. The proposed approach provides valuable insights into the inter-
play between dynamics, synchronization, and FTS, with applications spanning epidemiology,
physics, and engineering.

The paper is structured as follows: Mathematical background discusses the foundational
mathematical framework and key theoretical tools required for the study. Finite time stability
result focuses on analyzing the stability of EPs within a finite period, utilizing LF and related
techniques. Finite-time synchronization scheme explores the synchronization dynamics of
master-slave systems, emphasizing FTSYN with control strategies. Numerical simulations
presents practical examples to validate theoretical results, showcasing the applicability of the
proposed methods in real-world scenarios using MATLAB.

Mathematical background
This section establishes the foundational mathematical framework and theoretical tools for
analyzing FTS and FTSYN in RDss. Key concepts, such as LF, eigenvalue properties, and
Gronwall’s inequality, are introduced to derivate stability conditions and synchronization cri-
teria. Additionally, lemmas and definitions pertinent to the boundedness and convergence of
solutions are presented to build a comprehensive theoretical basis for the subsequent sections.

Lemma 1. [40,41] Assume that function S (t) satisfies:

S (t)≤ p (t) +∫
t

0
S (s)q (s)ds, t∈ [0, t∗] , (3)

where S (t) ,p (t) ,q (t)∈ C [0, t∗] , and p (t)≥ 0. If q (t) is non-decreasing, then

S (t) < p (t) e∫
t

0
q (s)ds

. (4)
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Lemma 2. [42] Let S(x)∈H1
0(Ω) satisfying the boundary condition

𝜕S(x)
𝜕𝜂 ∣

𝜕Ω
= 0. Then,

for the eigenvalue 𝜈1 > 0 associated with the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜈1S (x) = –ΔS (x), x∈Ω,
𝜕S (x)
𝜕𝜂 = 0, x∈ 𝜕Ω.

(5)

the following inequality holds:

∫Ω
∣∇S (x)∣2 dx≥ 𝜈1 ∫Ω ∣S (x)∣

2 dx. (6)

Lemma 3. If the subsequent conditions hold:

• There exist constant C1 > 0 such that the function 𝜑 satisfies the Lipschitz condition:

∣𝜑 (I1) – 𝜑 (I2)∣≤ C1 ∣I1 – I2∣ . (7)

• There exist constant C2 > 0 such that the function 𝜑 is uniformly bounded:

∣𝜑 (I1)∣≤ C2. (8)

Then, the inequality (9) holds:

∣S1𝜑 (I1)
S1 + I1

–
S2𝜑 (I2)
S2 + I2

∣≤ C (∣S1 – S2∣ + ∣I1 – I2∣) , (9)

where C = C1 + C2.

Proof 1.We estimate the term ∣S1𝜑 (I1)
S1 + I1

–
S∗1𝜑 (I∗1 )
S∗1 + I∗1

∣ as follows:

∣S1𝜑 (I1)
S1 + I1

–
S2𝜑 (I2)
S2 + I2

∣≤ ∣S1∣
∣S1 + I1∣

∣𝜑 (I1) – 𝜑 (I2)∣ + ∣𝜑 (I2)∣ ∣
S1

S1 + I1
–

S2

S2 + I2
∣

≤ ∣𝜑 (I1) – 𝜑 (I2)∣ + ∣𝜑 (I2)∣
∣S1I2 – S2I1∣
∣S1 + I1∣ ∣S2 + I2∣

≤ C1 ∣I1 – I2∣ + C2
∣I2∣ ∣S1 – S2∣ + ∣S2∣ ∣I1 – I2∣
∣S1 + I1∣ ∣S2 + I2∣

≤ (C1 + C2) (∣S1 – S2∣ + ∣I1 – I2∣)

= C (∣S1 – S2∣ + ∣I1 – I2∣) .

(10)

Definition 1. [40]The system given by (1) is FTS with respect to {𝛿, 𝜀,J} ,𝛿 < 𝜀, if ∥L(0)∥ <
𝛿 implies ∥L (t)∥ < 𝜀,∀t∈ J,

where ∥L (0)∥ = max
x∈[0,ℓ]

∣L (0)∣, and ∥L (t)∥ = max
x∈[0,ℓ]

∣L ((x, t))∣.
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Lemma 4. [43]The conditions stated in (2) imply

0 < 𝜑 (I1)
I1

≤ 𝜑′ (0) , for all I1 > 0. (11)

Finite time stability result
In this section, we analyze the FTS of the EPs for the proposed RD epidemic model. FTS
ensures that system trajectories converge to the equilibrium states within a bounded time,
which is critical for applications requiring rapid stabilization of dynamic processes.

Two key EPs are considered:

• The disease-free EP E∗0 = (
Λ
𝜇 , 0) , representing a scenario where the infection is eradicated

from the population.

• The endemic EP E∗1 = (
Λ – (𝜇 + 𝜎)V∗1

𝜇 ,V∗1) , which characterizes the persistence of the

infection in the population under certain conditions.

We employ LF, Gronwall’s inequality, and eigenvalue analysis to derive sufficient conditions
for FTS at these EPs. The analysis focuses on the role of model parameters, such as diffusion
rates, mortality, and recovery rates, in determining the EPs between the absence of the disease
and its persistent presence in the population. Furthermore, explicit formulas for the settling
time are presented, offering insights into the temporal dynamics of the system under different
parameter settings.

Theorem 1.The EP E0 of the system (1) is FTS, if the following conditions are satisfied:

max{Ξ} > 0, (12)

where Ξ = 𝛽𝜑′ (0) – 𝜈1𝜈2 (q1 + q2) – 2𝜇 –𝜎, 𝜇 + 𝜎
2𝜇 (𝛽𝜑′ (0)((d1 + d2)

2

2d1d2
+ 2𝜇
𝜇 + 𝜎) – 𝜇) . Addi-

tionally, t∗1 is defined as:

t1∗ =
1

max{Ξ} ln(
𝜀
𝛿) . (13)

where 𝜈1 and 𝜈2 are positive eigenvalues.

Proof 2.We utilize a positive LF defined as:

L1(t) =∫Ω
S1I1 +

(d1 + d2)2

4d1d2
(S1 –

Λ
𝜇 )

2

+ 1
2
I2
1 +

2Λ
𝜇 + 𝜎I1 dx. (14)

Then,

𝜕L1(t)
𝜕t =∫Ω

S1I1 +
(d1 + d2)2

4d1d2
(S1 –

Λ
𝜇 )

2

+ 1
2
I2
1 +

2Λ
𝜇 + 𝜎I1 dx

=∫Ω
[I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )]

𝜕S1(x, t)
𝜕t dx
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+∫Ω
[S1 + I1 +

2Λ
𝜇 + 𝜎 ]

𝜕I1(x, t)
𝜕t dx

=∫Ω
[I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )](d1ΔS1 +Λ – 𝛽S1𝜑 (I1)

S1 + I1
– 𝜇S1) dx

+∫Ω
[S1 + I1 +

2Λ
𝜇 + 𝜎 ](d2ΔI1 + 𝛽

S1𝜑 (I1)
S1 + I1

– (𝜇 + 𝜎)I1) dx

= L1(t) +L2(t). (15)

Next, we express the functions as:

L1(t) = M1(t) + M2(t), L2(t) = W1(t) + W2(t), (16)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(t) = d1 ∫Ω
[I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )]ΔS1 dx

M2(t) =∫Ω
[I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )](Λ – 𝛽S1𝜑 (I1)

S1 + I1
– 𝜇S1) dx

W1(t) = d2 ∫Ω
[S1 + I1 +

2Λ
𝜇 + 𝜎 ]ΔI1 dx

W2(t) =∫Ω
[S1 + I1 +

2Λ
𝜇 + 𝜎 ](𝛽

S1𝜑 (I1)
S1 + I1

– (𝜇 + 𝜎)I1) dx.

(17)

By applying Green’s formula, we simplify each term as follows:

M1(t) = d1 ∫Ω
[I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )]ΔS1 dx

= –d1 ∫Ω
∇ [I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )]∇S1 dx

= –d1 ∫Ω
∇I1∇S1 dx –

(d1 + d2)2

2d2
∫Ω
(∇S1)2 dx,

M2(t) =∫Ω
[I1 +

(d1 + d2)2

2d1d2
(S1 –

Λ
𝜇 )](Λ – 𝛽S1𝜑 (I1)

S1 + I1
– 𝜇S1) dx

= –𝜇 (d1 + d2)
2

2d2
∫Ω
(S1 –

Λ
𝜇 )

2

dx

– 𝜇∫Ω S1I1 dx +Λ∫Ω I1 dx – 𝛽∫Ω
S1I1𝜑 (I1)
S1 + I1

dx

– 𝛽 (d1 + d2)
2

2d1d2
∫Ω

S2
1𝜑 (I1)
S1 + I1

dx + 𝛽 (d1 + d2)
2

2d1d2
Λ
𝜇 ∫Ω

S1𝜑 (I1)
S1 + I1

dx,

W1(t) = d2 ∫Ω
[S1 + I1 +

2Λ
𝜇 + 𝜎 ]ΔI1 dx

– d2 ∫Ω
∇ [S1 + I1 +

2Λ
𝜇 + 𝜎 ]∇I1 dx

= –d2 ∫Ω
∇S1∇I1 dx – d2 ∫Ω

∣∇I1∣2 dx,
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W2(t) =∫Ω
[S1 + I1 +

2Λ
𝜇 + 𝜎 ](𝛽

S1𝜑 (I1)
S1 + I1

– (𝜇 + 𝜎)I1) dx

= – (𝜇 + 𝜎)∫Ω I
2
1 dx – (𝜇 + 𝜎)∫Ω S1I1 dx – 2Λ∫Ω I1 dx

+ 𝛽∫Ω
S2
1𝜑 (I1)
S1 + I1

dx + 𝛽∫Ω
S1I1𝜑 (I1)
S1 + I1

dx + 2𝛽Λ
𝜇 + 𝜎 ∫Ω

S1𝜑 (I1)
S1 + I1

dx.

Combining the simplified expressions and applying Lemmas 1–4, we estimate:

M1(t) + W1(t) = –
(d1 + d2)2

2d2
∫Ω
∣∇S1∣2 dx – (d1 + d2)∫Ω∇S1∇I1 dx – d2 ∫Ω ∣∇I1∣

2 dx

≤ –
𝜈1 (d1 + d2)2

2d2
∫Ω

S21 dx – 𝜈1𝜈2 (d1 + d2)∫Ω S1I1 dx – 𝜈2 ∫Ω I21 dx,

≤ –𝜈1𝜈2 (d1 + d2)∫Ω S1I1 dx – 𝜈2 ∫Ω I21 dx

M2(t) + W2(t) = –𝜇
(d1 + d2)2

2d2
∫Ω
(S1 –

Λ
𝜇 )

2

dx – (𝜇 + 𝜎)∫Ω I21 dx

– (2𝜇 + 𝜎)∫Ω S1I1 dx –Λ∫Ω I1 dx – 𝛽
d21 + d22
2d1d2

∫Ω
S21𝜑 (I1)
S1 + I1

dx

+ 𝛽Λ𝜇 (
(d1 + d2)2

2d1d2
+ 2𝜇
𝜇 + 𝜎)∫Ω

S1𝜑 (I1)
S1 + I1

dx

≤ –𝜇 (d1 + d2)
2

2d2
∫Ω
(S1 –

Λ
𝜇 )

2

dx – (𝜇 + 𝜎)∫Ω I21 dx

+ (𝛽𝜑′ (0) – 2𝜇 – 𝜎)∫Ω S1I1 dx +
Λ
𝜇 (𝛽𝜑

′ (0)((d1 + d2)
2

2d1d2
+ 2𝜇
𝜇 + 𝜎) – 𝜇)

× ∫Ω I1 dx.
(18)

Therefore, we have

L1(t) +L2(t)≤ –𝜇 (d1 + d2)
2

2d2
∫Ω
(S1 –

Λ
𝜇 )

2

dx – (𝜈2 + 𝜇 + 𝜎)∫Ω I21 dx

+ (𝛽𝜑′ (0) – 𝜈1𝜈2 (d1 + d2) – 2𝜇 – 𝜎)∫Ω S1I1 dx

+ Λ𝜇 (𝛽𝜑
′ (0)((d1 + d2)

2

2d1d2
+ 2𝜇
𝜇 + 𝜎) – 𝜇)∫Ω I1 dx

≤ 𝜍L1(t), (19)

where 𝜍 is a non-negative constant defined as:

𝜍 =max
⎧⎪⎪⎨⎪⎪⎩
𝛽𝜑′ (0) – 𝜈1𝜈2 (d1 + d2) – 2𝜇 – 𝜎,

𝜇 + 𝜎
2𝜇 (𝛽𝜑′ (0)((d1 + d2)

2

2d1d2
+ 2𝜇
𝜇 + 𝜎) – 𝜇)

⎫⎪⎪⎬⎪⎪⎭
.
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By Lemma 1 and Definition 1,we can conclude that:

∥L1(t)∥≤ ∥L1(0)∥ + 𝜍∫
t

0
∥L1(s)∥ ds≤ 𝛿 + 𝜍∫

t

0
∥L1(s)∥ ds, (20)

which implies

∥L1(t)∥≤ F (t) = 𝛿e𝜍t. (21)

Hence, the settling time can be expressed as:

t1∗ =
1
𝜍 ln(

𝜀
𝛿) . (22)

This completes the proof.

Theorem 2.The EP E∗1 of system (1) is FTS if :

S1 ≥ S∗1 , I1 ≥ I∗1 , (23)

and

max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)} > 0. (24)

The settling time for FTS is defined as:

t∗2 =
1

2max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)}

ln( 𝜀𝛿) . (25)

C is as defined in Lemma 3.

Proof 3. Consider the following positive definite function:

L2 (t) = t – 1 – ln (t) , ∀t>0. (26)

Let be a LF defined by:

L2(t) =∫Ω
S∗1L2 (

S1

S∗1
) + I∗1L2 (

I1

I∗1
) dx. (27)

Using Lemmas 2 and 3, we obtain:

𝜕L2(t)
𝜕t =∫Ω

S∗1
𝜕
𝜕tL1 (

S1

S∗1
) dx +∫Ω

I∗1
𝜕
𝜕tL2 (

I1

I∗1
) dx

=∫Ω
(1 – S

∗
1
S1
) 𝜕S1(x, t)

𝜕t dx +∫Ω
(1 – I

∗
1
I1
) 𝜕I1(x, t)

𝜕t dx

=∫Ω
(1 – S

∗
1
S1
)(

𝜕S(x, t)1
𝜕t –

𝜕S∗1
𝜕t ) dx +∫Ω (1 –

I∗1
I1
)(𝜕I1(x, t)

𝜕t –
𝜕I∗1
𝜕t ) dx
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=∫Ω
(1 – S

∗
1
S1
)[d1Δ (S1 – S∗1 ) – 𝛽 (

S1𝜑 (I1)
S1 + I1

–
S∗1𝜑 (I∗1 )
S∗1 + I∗1

) – 𝜇 (S1 – S∗1 )] dx

+∫Ω
(1 – I

∗
1
I1
)[d2Δ (I1 – I∗1 ) + 𝛽 (

S1𝜑 (I1)
S1 + I1

–
S∗1𝜑 (I∗1 )
S∗1 + I∗1

) – (𝜇 + 𝜎) (I1 – I∗1 )] dx

≤ –d1S∗1 ∫Ω
∣∇S1∣2

S2
1

dx – d2I∗1 ∫Ω
∣∇I1∣2

I2
1

dx + 𝜇S∗1 ∫Ω (1 –
S∗1
S1
)(1 – S1

S∗1
) dx

+ (𝜇 + 𝜎)I∗1 ∫Ω (1 –
I∗1
I1
)(1 – I1

I∗1
) dx

× 𝛽∫Ω (∣1 –
S∗1
S1
∣ + ∣1 – I

∗
1
I1
∣) ∣S1𝜑 (I1)

S1 + I1
–
S∗1𝜑 (I∗1 )
S∗1 + I∗1

∣ dx

This, consequently, yields

𝜕L2(t)
𝜕t ≤ 𝜇S∗1 ∫Ω (1 –

S∗1
S1
)(1 – S1

S∗1
) dx + (𝜇 + 𝜎)I∗1 ∫Ω (1 –

I∗1
I1
)(1 – I1

I∗1
) dx

+ 𝛽C∫Ω (∣1 –
S∗1
S1
∣ + ∣1 – I

∗
1
I1
∣) (∣S∗1 ∣ ∣1 –

S1

S∗1
∣ + ∣I∗1 ∣ ∣1 –

I1

I∗1
∣) dx

= (𝛽C – 𝜇)S∗1 ∫Ω

⎡⎢⎢⎢⎢⎣
L
⎛
⎝
S1

S∗1

⎞
⎠
+ L
⎛
⎝
S∗1
S1

⎞
⎠

⎤⎥⎥⎥⎥⎦
dx

+ (𝛽C – 𝜇 – 𝜎)I∗1 ∫Ω

⎡⎢⎢⎢⎢⎣
L
⎛
⎝
I1

I∗1

⎞
⎠
+ L
⎛
⎝
I∗1
I1

⎞
⎠

⎤⎥⎥⎥⎥⎦
dx

+ 𝛽CI∗1 ∫Ω

RRRRRRRRRRR
L
⎛
⎝
S∗1
S1

⎞
⎠
+ L
⎛
⎝
I1

I∗1

⎞
⎠
– L
⎛
⎝
I1S

∗
1

S1I∗1

⎞
⎠

RRRRRRRRRRR
dx

+ 𝛽CS∗1 ∫Ω

RRRRRRRRRRR
L
⎛
⎝
S1

S∗1

⎞
⎠
+ L
⎛
⎝
I∗1
I1

⎞
⎠
– L
⎛
⎝
S1I

∗
1

I1S∗1

⎞
⎠

RRRRRRRRRRR
dx

≤ [𝛽C(I
∗
1
S∗1
+ 2) – 𝜇]∫Ω

⎡⎢⎢⎢⎢⎣
S∗1L
⎛
⎝
S1

S∗1

⎞
⎠
+ S∗1L

⎛
⎝
S∗1
S1

⎞
⎠

⎤⎥⎥⎥⎥⎦
dx

+ [𝛽C(S
∗
1
I∗1
+ 2) – (𝜇 + 𝜎)]∫Ω

⎡⎢⎢⎢⎢⎣
I∗1L
⎛
⎝
I1

I∗1

⎞
⎠
+ I∗1L

⎛
⎝
I∗1
I1

⎞
⎠

⎤⎥⎥⎥⎥⎦
dx

≤ 2 [𝛽C(I
∗
1
S∗1
+ 2) – 𝜇]∫Ω S

∗
1L
⎛
⎝
S1

S∗1

⎞
⎠
dx + 2 [𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)]∫Ω

⎛
⎝
I∗1LI1

I∗1

⎞
⎠
dx

≤ 2max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)}L(t). (28)

Hence, we conclude:

∥L2(t)∥≤ 𝛿 + 2max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)}∫

t

0
∥L(s)∥ ds. (29)
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Utilizing Lemma 1, we obtain:

∥L2(t)∥≤ H (t) = 𝛿e
2max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛽C
⎛
⎜
⎝

I∗1
S∗1
+2
⎞
⎟
⎠
–𝜇,𝛽C

⎛
⎜
⎝

S∗1
I∗1
+2
⎞
⎟
⎠
–(𝜇+𝜎)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
t

≤ 𝜀. (30)

Thus, the setting time is given by:

t2∗ =
1

2max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)}

ln( 𝜀𝛿) .

Therefore, by Definition 1, it can be concluded that system (1) achieves stability within a
finite duration, provided t≥ t∗.

Finite-time synchronization scheme
This section presents a synchronization framework for master-slave RDs, focusing on achiev-
ing FTSYN.The proposed scheme ensures rapid convergence of the slave system’s states
to those of the master system within a finite time. By employing LFs and designing state-
dependent control laws, the approach addresses synchronization discrepancies robustly,
suitable for complex nonlinear systems.

We delve into the FTSYN dynamics of the master-slave systems (1) and (31), where the
slave system (31) is described by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕S2(x, t)
𝜕t = d1ΔS2 +Λ – 𝛽S2𝜑 (I2)

S2 + I2
– 𝜇S2 +ℭ1(x, t), x∈Ω, t > 0,

𝜕I2(x, t)
𝜕t = d2ΔI2 + 𝛽

S2𝜑 (I2)
S2 + I2

– (𝜇 + 𝜎)I2 +ℭ2(x, t), x∈Ω, t > 0,
𝜕S2

𝜕𝜏 =
𝜕I2

𝜕𝜏 = 0, x∈ 𝜕Ω,

S2 (x, 0) = S2,0 (x) > 0, I2 (x, 0) = I2,0 (x) > 0, x∈Ω.

(31)

The control systems ℭ1(x, t) and ℭ2(x, t) play a vital role in achieving FTSYN in the
master-slave RDs. Specifically, they are designed to ensure that the states of the slave system
synchronize with those of the master system within a finite time. These control functions
are incorporated into the equations governing the slave system to address synchronization
discrepancies.

Their key contributions include:

• By employing feedback mechanisms, the control terms ℭ1(x, t) and ℭ2(x, t) ensure that the
error terms converge to zero, leading to synchronization.

• The controllers are designed based on LF and stability criteria to guarantee that synchro-
nization is achieved within a finite period. This rapid convergence is essential for systems
requiring precise and timely synchronization.

• The control strategies are adaptable to the nonlinear and spatially extended nature of RDs,
addressing the complexities of these models.

The choice and formulation of ℭ1 and ℭ2 are critical, as highlighted in the provided equa-
tions and proofs, where specific conditions and feedback laws are derived to achieve FTSYN
efficiently.
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We address the synchronization discrepancies present in Eqs (1) and (31):

e(x, t) = (e1

e2
) = (S2 – S1

I2 – I1
) . (32)

We aim to demonstrate that the discrepancy tends to zero as time approaches t*. This is
accomplished by substituting the expression derived from Eq (1) into the error system delin-
eated in Eq (33):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕e1(x, t)
𝜕t = d1Δe1 – 𝛽 (

S2𝜑 (I2)
S2 + I2

–
S1𝜑 (I1)
S1 + I1

) – 𝜇e1 +ℭ1(x, t), x∈Ω, t > 0,

𝜕e2(x, t)
𝜕t = d2Δe2 + 𝛽 (

S2𝜑 (I2)
S2 + I2

–
S1𝜑 (I1)
S1 + I1

) – (𝜇 + 𝜎)e2 +ℭ2(x, t), x∈Ω, t > 0,

𝜕e1

𝜕𝜏 =
𝜕e2

𝜕𝜏 = 0, x∈ 𝜕Ω,

e1 (x, 0) = S2,0 (x) – S1,0 (x) , e2 (x, 0) = I2,0 (x) – I1,0 (x) , x∈Ω.

(33)

Theorem 3. [44] (e∗1 ,e∗2 ) is a FTS EP of the nonlinear system (31) if there exists a positive
definite LF L3 ∶ [0,+∞)×Ω→ℝ+, three classM functions 𝜁1, 𝜁2,𝜅, and 𝛿 > 0 such that:

1. 𝜁1 ∥e (t)∥≤ L (t,e (t))≤ 𝜁2 ∥e (t)∥ .
2.

𝜕L3(t)
𝜕t < –𝜅L3 (t,e (t)) .

3. ∫
𝜀

0

de
𝜅 (e) < +∞, (∀𝜀 ∶ 0 < 𝜀 ≤ 𝛿).

Definition 2. [45,46]The systems (1) and (31) are said to be FTSYN if there exists a settling
time t*>0 such that:

lim
t→t∗
(∥e1 (t) ∥ + ∥e2 (t) ∥) = 0, (34)

and for all t≥ t∗,

∥e1 (t) ∥ + ∥e2 (t) ∥≡ 0. (35)

Theorem 4.The systems described by Eqs (1) and (31) achieve FTSYN by implementing the
following linear feedback controller:

⎧⎪⎪⎨⎪⎪⎩

ℭ1(x, t) = –C𝛽 (e1 + e2) ,
ℭ2(x, t) = –C𝛽 (e1 + e2) ,

(36)

where C is as defined in Lemma 3. The settling time of FTSYN is given by:

t∗3 =
1

2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}
ln( 𝜀𝛿) . (37)
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Proof 4.We have chosen a LF represented by:

L3 (t) =
1
2 ∫Ω

e2
1 + e2

2 dx. (38)

Using Lemmas 2–3 and Green’s formula, we can calculate
𝜕L3 (t)
𝜕t , leading us to conclude:

𝜕L3(t)
𝜕t =∫Ω

e1
𝜕e1(x, t)

𝜕t dx +∫Ω
e2
𝜕e2(x, t)

𝜕t dx

=∫Ω
e1 [d1Δe1 – 𝛽 (

S2𝜑 (I2)
S2 + I2

–
S1𝜑 (I1)
S1 + I1

) – 𝜇e1 – C𝛽 (e1 + e2)] dx

+∫Ω
e2 [d2Δe2 + 𝛽 (

S2𝜑 (I2)
S2 + I2

– 𝛽S1𝜑 (I1)
S1 + I1

) – (𝜇 + 𝜎)e2 – C𝛽 (e1 + e2)] dx

≤ ∫Ω e1 [d1Δe1 – 𝛽 ∣
S2𝜑 (I2)
S2 + I2

–
S1𝜑 (I1)
S1 + I1

∣ – 𝜇e1 – C𝛽 (e1 + e2)] dx

+∫Ω
e2 [d2Δe2 + 𝛽 ∣

S2𝜑 (I2)
S2 + I2

– 𝛽S1𝜑 (I1)
S1 + I1

∣ – (𝜇 + 𝜎)e2 – C𝛽 (e1 + e2)] dx

≤ ∫Ω e1 [d1Δe1 + C𝛽 (e1 + e2) – 𝜇e1 – C𝛽 (e1 + e2)] dx

+∫Ω
e2 [d2Δe2 + C𝛽 (e1 + e2) – (𝜇 + 𝜎)e2 – C𝛽 (e1 + e2)] dx

=∫Ω
e1 [d1Δe1 – 𝜇e1] dx +

1
2 ∫Ω

e2 [d2Δe2 – (𝜇 + 𝜎)e2] dx

≤ –d1 ∫Ω
∣∇e1∣2 dx – d2 ∫Ω

∣∇e2∣2 dx – 𝜇∫Ω e
2
1 dx – 𝜇∫Ω e

2
2 dx

≤ –2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}L3 (t) . (39)

By defining 𝜅 (e) = 2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}, we obtain :

∫
𝜀

0

de
𝜅 (e) =

𝜀
2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}

< +∞, (40)

UsingTheorem 1, we establish that the zero solution of the error system (33) signifies the
FTS of the EP (e∗1 ,e∗2 ) = (0, 0). Thus, we have:

L3(t)≤ L3(0) – 2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}∫
t

0
L3(s)ds. (41)

This implies

∥L3(t)∥≤ 𝛿 + 2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}∫
t

0
∥L3(s)∥ ds. (42)

Applying Lemma 1, we deduce the following inequality:

∥L3(t)∥≤ G (t) = 𝛿e2min{d1𝜈1+𝜇,d2𝜈2+𝜇}t. (43)
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Finally, the synchronization time is estimated as :

t∗3 =
1

2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}
ln( 𝜀𝛿) . (44)

Consequently, according to the criteria specified in Definition 2, the systems described by
(Eqs 1) and (31) achieve synchronization within a finite time t∗3 .

Numerical simulations
To validate the theoretical findings, this section presents numerical simulations of the pro-
posed stability and synchronization methods. Examples illustrating the dynamic behavior
of RDs are provided, with parameters tailored to demonstrate finite-time convergence. The
results are visualized through spatiotemporal plots and LF trajectories, showcasing the prac-
tical applicability and accuracy of the developed methodologies.

Example 1. In the specified domain x∈ [0, 10] and t∈ [0, 5], the parameter values are set as
follows:

(d1,d2,Λ,𝛽,𝜇,𝜎,𝜈1,𝜈2,ℕ) = (1.5, 1.5, 5, 0.75, 2, 3.891, 0.01, 0.01,100) (45)

The initial conditions are defined as :

S1,0 (x) = 1, I1,0 (x) = 2. (46)

The function 𝜑(I1) is given by:

𝜑(I1) =
I1

1 + I1
, (47)

with satisfies the Lipschitz condition:

∣𝜑(I1) – 𝜑(I2)∣≤ ∣I1 – I2∣ , (48)

and remains uniformly bounded :

∣𝜑 (I1)∣ = ∣
I1

1 + I1
∣≤ 1, (49)

From the setup, the parameters 𝛿 and 𝜀 are determined as:

𝛿 = 9.712009336275674, 𝜀 = 10.395009336275674. (50)

The stability condition of Theorem 1 is satisfied:

max{Ξ∗} = 0.013625 > 0, (51)

where

Ξ∗ = 𝛽𝜑′ (0) – 𝜈1𝜈2 (d1 + d2) – 2𝜇 – 𝜎, 𝜇 + 𝜎
2𝜇 (𝛽𝜑′ (0)((d1 + d2)

2

2d1d2
+ 2𝜇
𝜇 + 𝜎) – 𝜇) .
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The settling time is calculated as:

t1
∗ = 1

max{Ξ∗} ln(
𝜀
𝛿) = 4.988082482944463s. (52)

Figs 2 and 3 present, respectively, the solutions S1(x, t) and I1(x, t) over space and time,
demonstrating the dynamics under homogeneous Neumann boundary conditions. The EP
(S∗1 ,I∗1 ) = (2.5, 0) is determined based onTheorem 1, confirming the system’s FTS.

Figs 4, 5, 6, and 7 depict numerical validation, showing that errors and LF converge to zero as
t approaches t∗1 = 4.988082482944463s.

Fig 2. Spatial dynamics of solution S1(x, t).

https://doi.org/10.1371/journal.pone.0321132.g002

Fig 3. Temporal dynamics of solutions I1(x, t).

https://doi.org/10.1371/journal.pone.0321132.g003
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Fig 4. State trajectories of solutions S1 (100, t) and I1 (100, t).

https://doi.org/10.1371/journal.pone.0321132.g004

Fig 5. Error dynamics of solutions S1 (100, t) and I1 (100, t).

https://doi.org/10.1371/journal.pone.0321132.g005

Example 2. Consider the intervals x∈ [0, 10] and t∈ [0, 10]. The parameters for this exam-
ple are chosen as

(d1,d2,Λ,𝛽,𝜇,𝜎,C,ℕ) = (0.1, 0.1, 1.5, 0.1092, 3, 0.149775, 2, 100) . (53)

The initial conditions are given by:

S1,0 (x) = 3, I1,0 (x) = 4.5. (54)

The function 𝜑(I1) is redefined for this scenario as:

𝜑 (I1) =
I1

I1 + S1
(55)
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Fig 6. Estimation of the LF L1(t).

https://doi.org/10.1371/journal.pone.0321132.g006

Fig 7. Estimation of the LF F (t).

https://doi.org/10.1371/journal.pone.0321132.g007

This function satisfies the Lipschitz condition:

∣𝜑 (I1) – 𝜑 (I2)∣ = ∣
I1

I1 + S1
–

I2

I2 + S1
∣≤ ∣I1 – I2∣ , (56)

and is uniformly bounded as:

∣𝜑 (I1)∣ = ∣
I1

I1 + S1
∣≤ 1, (57)

For this configuration, the computed values of 𝛿 and 𝜀 are:

𝛿 = 5.895588996582122, 𝜀 = 6.828588996582122, (58)
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The stability condition outlined in Theorem 2 is verified with

S1 ≥ 0.5197, I1 ≥ 0.0436, (59)

and

max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)} = 0.007352292360051.

The settling time for FTS is computed as:

t∗2 =
1

2max{𝛽C(I
∗
1
S∗1
+ 2) – 𝜇,𝛽C(S

∗
1
I∗1
+ 2) – (𝜇 + 𝜎)}

ln( 𝜀𝛿) (60)

= 9.991007726890397s. (61)

Figs 8, 9, 10, and 11 illustrate the spatiotemporal dynamics of the solutions S1 and I1, high-
lighting the system’s behavior under the homogeneous Neumann boundary conditions. An EP
(S∗1 ,I∗1 ) = (0.521389399120644, 0.041859464884153) is identified, demonstrating the system’s
FTS as per Theorem 2.

Numerical simulations verify the theoretical findings, showing that the LF L2(t) converges
to zero as time approaches t∗2 = 9.991007726890397 s in Figs 12 and 13. The convergence of the
error terms further corroborates the system’s FTS.

Example 3. Consider the spatial domain x∈ [0, 6], and temporal domain t∈ [0, 1]. The
parameters are selected as follows:

(d1,d2,Λ,𝛽,𝜇,𝜎,ℕ) = (0.1, 0.1, 6, 0.2, 3.16, 0.1, 100) . (62)

Fig 8. Spatiotemporal dynamics of susceptible populations.

https://doi.org/10.1371/journal.pone.0321132.g008
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Fig 9. Spatiotemporal dynamics of infected populations.

https://doi.org/10.1371/journal.pone.0321132.g009

Fig 10. State trajectories in relation of Example 2.

https://doi.org/10.1371/journal.pone.0321132.g010

The initial conditions are defined as:

S1,0 (x) = 0.025 – 0.0025 cos (3x), I1,0 (x) = 0.02 – 0.002 sin (4x), (63)

and

S2,0 (x) = 0.05 – 0.0075 sin (3x), I2,0 (x) = 0.025 – 0.0037 cos (4x). (64)

The infection rate function 𝜑(I1) is modified to account for spatial variability:

𝜑 (I1) = I1, (65)
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Fig 11. Error evolution in relation of Example 2.

https://doi.org/10.1371/journal.pone.0321132.g011

Fig 12. LF estimation in relation to Example 2.

https://doi.org/10.1371/journal.pone.0321132.g012

Fig 13. F (t) in relation to Example 2.

https://doi.org/10.1371/journal.pone.0321132.g013
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This function satisfies the Lipschitz condition and boundedness. Then, The computed stability
parameters are:

C = 1.0220, 𝛿 = 0.0037, 𝜀 = 2.0012. (66)

Using Theorem 4, the stability condition is verified:

⎧⎪⎪⎨⎪⎪⎩

ℭ1(x, t) = –0.2044 (𝔢1 + 𝔢2) ,
ℭ2(x, t) = –0.2044 (𝔢1 + 𝔢2) .

(67)

The settling time for FTSYN is calculated as:

t∗3 =
1

2min{d1𝜈1 + 𝜇,d2𝜈2 + 𝜇}
ln( 𝜀𝛿) = 0.9973s. (68)

Numerical simulations were conducted to validate the FTS and FTSYN of the proposed
RDs, with results presented in the subsequent figures. These visualizations provide insights
into the system dynamics and synchronization behavior under specified initial conditions and
parameters.

• Figs 14 and 15 illustrate the spatiotemporal evolution of the master system’s state variables,
S1 and I1, over x∈ [0, 6] and t∈ [0, 1], demonstrating stabilization towards the equilibrium
point as predicted by Theorem 4, confirming FTS.

• Figs 16 and 17 show the slave system’s state variables, S2 and I2, synchronizing with the mas-
ter system under control laws, supporting the FTSYN claim fromTheorem 4.

• Figs 18 and 19 display synchronization errors e1 and e2 converging to zero as t→ t∗, verifying
the control scheme’s effectiveness in achieving FTSYN.

Fig 14. Master system dynamics: Evolution of S1(x, t).

https://doi.org/10.1371/journal.pone.0321132.g014
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Fig 15. Master system dynamics: Evolution of I1(x, t).

https://doi.org/10.1371/journal.pone.0321132.g015

Fig 16. Slave system dynamics: Evolution of S2(x, t).

https://doi.org/10.1371/journal.pone.0321132.g016

• Figs 20 and 21 offer a one-dimensional perspective, plotting state trajectories and syn-
chronization errors at x = 100, where rapid error decay validates FTSYN at a fixed spatial
location.

• Fig 22 depicts the LF L3(t), showing monotonic decrease and convergence to zero within t∗3 =
0.9973 s, confirming synchronization error stability and satisfying Theorem 4.

These results collectively confirm the theoretical findings of Example 3, demonstrating the
robustness and practical applicability of the proposed methodology in SIS RDs.
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Fig 17. Slave system dynamics: Evolution of I2(x, t).

https://doi.org/10.1371/journal.pone.0321132.g017

Fig 18. Synchronization error e1(x, t) convergence for master-slave systems.

https://doi.org/10.1371/journal.pone.0321132.g018

Conclusion and future work
This study has comprehensively analyzed FTS and FTSYN in integer-order epidemic RDs,
addressing significant gaps in the existing literature. By integrating LF, Gronwall’s inequality,
and linear control strategies, we derived sufficient conditions for the FTS of EPs and FTSYN
of master-slave systems. Numerical simulations demonstrated the effectiveness of the pro-
posed methodologies, providing valuable insights into the dynamic behavior and control of
epidemic models. The results underline the critical role of diffusion rates, interaction fre-
quencies, and control parameters in achieving rapid stabilization and synchronization within
finite time. Practical examples and MATLAB simulations validate the theoretical findings and
highlight the real-world applicability of the proposed framework in modeling and managing
infectious disease transmission.
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Fig 19. Synchronization error e2(x, t) convergence for master-slave systems.

https://doi.org/10.1371/journal.pone.0321132.g019

Fig 20. State trajectories at x = 100.

https://doi.org/10.1371/journal.pone.0321132.g020

Despite the advancements made, several areas remain open for further exploration:

• Extending the current framework to fractional-order RDs to account for memory and
hereditary effects in dynamic processes.

• Investigating more complex control strategies, including nonlinear and time-varying
approaches, to enhance system robustness against uncertainties and external perturbations.

• Applying the proposed methods to larger, more complex networks, including multi-patch
epidemic models and agent-based systems.

• Incorporating stochastic elements into the models to capture the randomness and uncer-
tainty inherent in real-world epidemic scenarios.

• Developing hardware and software implementations of the control strategies to facilitate
their deployment in real-time monitoring and control systems.
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Fig 21. Synchronization errors at x = 100.

https://doi.org/10.1371/journal.pone.0321132.g021

Fig 22. LF L3(t) convergence for FTSYN.

https://doi.org/10.1371/journal.pone.0321132.g022

This work lays a robust foundation for future research into finite-time dynamics and synchro-
nization, with potential applications in epidemiology, ecology, and engineering.
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