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This article introduces the Modified Al-Biruni Earth Radius (MBER) algorithm, which seeks to improve 
the precision of categorizing eye states as either open (0) or closed (1). The evaluation of the proposed 
algorithm was assessed using an available EEG dataset that applied preprocessing techniques, 
including scaling, normalization, and elimination of null values. The MBER algorithm’s binary format 
is specifically designed to select features that can significantly enhance the accuracy of classification. 
The proposed algorithm and competing ones, namely, Al-Biruni Earth Radius (BER), Particle Swarm 
Optimization (PSO), Whale Optimization Algorithm (WAO), Grey Wolf Optimizer (GWO) and Genetic 
Algorithm (GA) were evaluated using predefined sets of assessment criteria. The statistical analysis 
employed the ANOVA and Wilcoxon signed-rank tests and assessed the effectiveness and significance 
of the proposed algorithm compared to the other five algorithms. Furthermore, A series of visual 
depictions were presented to validate the effectiveness and robustness of the proposed algorithm. 
Thus, the MBER algorithm outperformed the other optimizers on the majority of the unimodal 
benchmark functions due to these considerations. Different ML models were used for classification, 
e.g., DT, RF, KNN, SGD, GNB, SVC, and LR. The KNN model achieved the highest values of Precision 
(PPV) (0.959425), Negative Predictive Value (NPV) (0.964969), FScore (0.963431), accuracy (0.9612), 
Sensitivity (0.970578) and Specificity (0.949711). Thus, KNN serves as a fitness function and is 
optimized by the utilization of Modified Al-Biruni earth radius (MBER). Finally, the accuracy of eye 
state classification achieved 96.12% using the proposed algorithm.

Keywords  Al-Biruni Earth radius optimization, Feature selection, Eye state, Classification, Meta-heuristic 
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Brain–Computer Interface (BCI) stands at the forefront of advanced technologies, ushering in a new era where 
the computational prowess of the human brain can be harnessed for various applications1. In the not-so-distant 
past, the idea of developing BCIs seemed confined to the realms of science fiction. However, a transformative 
breakthrough emerged with the discovery of electroencephalography (EEG), altering the landscape of 
possibilities2. EEG, a revolutionary technique, enabled researchers to capture and interpret electrical signals 
directly from the brain. This pivotal development shattered preconceived notions and ignited a fervor among 
scientists and innovators to delve into the intricate realm of decoding these EEG signals3. The realization that the 
human brain could communicate its intricate patterns through measurable electrical activity opened doors to a 
multitude of research avenues. Fueling the pursuit of understanding and harnessing the potential of EEG signals, 
researchers embarked on a journey to unlock the secrets of the brain’s computational power4. This newfound 
capability not only transcended the boundaries of imagination but also fueled a wave of collaborative efforts to 
bridge the gap between neuroscience and technology. The once fantastical concept of BCI began to materialize, 

1Department of Computer Science, Faculty of Computers and Information, Suez University, P.O.Box: 
43221, Suez, Egypt. 2Department of Computer Sciences, College of Computer and Information Sciences, 
Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia. 3Department of 
Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, 
Egypt. 4MEU Research Unit, Middle East University, Amman 11831, Jordan. 5Department of Computer Sciences, 
Faculty of Computers and Information, Mansoura University, Mansoura 35561, Egypt. 6School of ICT, Faculty 
of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic, PO 
Box 33349,  Isa Town, Bahrain. 7Jadara University Research Center, Jadara University, Jordan, Jordan. email:  
ahmed.elshewey@fci.suezuni.edu.eg

OPEN

Scientific Reports |        (2024) 14:24489 1| https://doi.org/10.1038/s41598-024-74475-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


offering a glimpse into a future where the synergy between the human brain and computational systems could 
revolutionize how we interact with and manipulate technology5.

The BCI domain has a clear and intertwined division into four major stages, all vital for practically 
interpreting the brain’s language. These phases, namely, signal acquirement, signal processing, feature extraction 
and classification from an empirical perspective, form the framework that defines how the human brain interacts 
with computational systems efficiently6. In the first step of Signal Acquisition, the process is carried out by 
recording EEG currents directly on the scalp without necessarily having to penetrate the head. This is done via 
the positioning of electrodes; these are instruments that receive signals of an electrical nature produced by the 
brain. Following this, the acquired signals are amplified through signal amplifiers, which aim to increase the 
signal’s power and improve the process’s quality. After amplification, the signals are converted into digital form, 
which involves converting them into a more computational format. In signal processing, attention is turned 
to improving the obtained data and its preparation for more stages. It is a process that entails using strategies 
that seek to eliminate noise and other artifacts7. Any external acoustic interferences are the natural source of 
noise, while the movements of muscles or blinks of eyes are the artifacts forming the additional interference. 
Signal processing has a central role in handling these problems to achieve the signal’s cleanliness before further 
analysis8. These then become defined in forms likely to be quickly processed in the following stage. Thus, by 
carefully passing through these preliminary phases, the BCI system prepares for extracting valuable signals 
from the complex neural topologies of the brain. The Signal Processing stage, which in particular plays a filter 
role—arranges the raw data and transforms it into suitable input for the subsequent stages of the BCI procedure, 
making way for the successful integration of the human brain with the state-of-the-art computational systems9. 
Augmenting the ever-famous optimizer and ensemble regression models based on machine learning can 
produce promising results for classification and regression issues10.

In the realm of EEG-based classification, researchers often integrate machine learning (ML) techniques to 
establish a mapping between EEG input signals from the brain and desired outputs, such as classes, commands, 
or targets, within BCI systems11. However, a notable challenge in the application of deep learning to EEG lies 
in the tendency of researchers to devise task-specific data processing and ML classification pipelines. These 
pipelines are designed to address challenges like noisy and non-stationary EEG signals, the need for feature 
engineering, and the inherent variability in EEG data. Moreover, the current landscape reveals a common 
practice where researchers create bespoke data processing pipelines, intertwined with ML hyperparameter 
tuning, to navigate the intricacies of EEG data12. This includes addressing challenges like non-stationarity, 
conducting feature engineering, and managing variability in EEG signals. Additionally, this process often 
involves a manual element, with researchers inspecting and fine-tuning the system based on their insights 
and domain knowledge13. In essence, the convergence of EEG-based neural classification, machine learning 
techniques, and deep learning methodologies holds immense promise for transforming the lives of individuals 
with disabilities, offering novel means of communication, device control, and capability enhancement. However, 
the challenges posed by noisy and dynamic EEG data necessitate ongoing research and innovation in developing 
adaptable and robust data processing and classification pipelines14. Consequently, researchers typically opt to 
collect and select only a fraction of the available information, engaging in the visual inspection of data to identify 
and discard artifacts. Manual parameter tuning is then applied, adding complexity to the processing pipeline. 
This approach introduces a multitude of possible combinations and demands a substantial depth of task-specific 
domain expertise15.

Today, the employed models that utilize deep learning and machine learning approaches reveal excellent 
performance in numerous domains, especially in computer vision and medicine. This has opened the stage 
for much progress once these advanced models are mingled with modern technology. Furthermore, numerous 
articles and research papers have been systematically reviewed in the literature, which aim to improve the 
outcomes of both deep learning and machine learning methods16. This upswing of investigation shows an 
interest in fine-tuning these models to fit the current difficulties and complexities in the actual applications. These 
models also reveal effectiveness in tasks of image recognition, object detection, scene classification, etc., and 
tasks in computer vision as a step towards creating novel intelligent systems that can read visual references with 
immense accuracy17. Likewise, in the competency of medicine, the use of deep learning and machine learning 
models has shaped the new generation of diagnostic and prognostic measurements and how treatments can be 
planned. From identifying tumors in an image to assessing a patient’s prognosis from copious and detailed data 
generated, these models have begun to illustrate their ability to revolutionize healthcare18. The list of current and 
future studies indicates that this line of work is indeed active and progressive, and, thus, it requires consistent 
development and furthering. These combined efforts help develop and sustain the continuous advancement of 
deep learning and machine learning models, determining their relevance to addressing the complex problems of 
modern computer vision and medicine19.

In the domain of EEG classification, metaheuristics play a crucial role in optimizing the performance of 
classification algorithms for EEG data. EEG signals are complex and dynamic, often containing noise and 
artifacts that can pose challenges for accurate classification. Metaheuristic approaches are employed to 
enhance the efficiency and effectiveness of traditional EEG classification algorithms by optimizing parameters, 
configurations, and decision boundaries20. The significance of metaheuristics becomes particularly pronounced 
when grappling with intricate or high-dimensional datasets, where conventional algorithms may encounter 
limitations. In such scenarios, metaheuristics offer a dynamic and adaptive approach to refining and fine-tuning 
classification processes21. Illustrative examples of metaheuristics tailored for classification purposes encompass 
genetic algorithms, simulated annealing, particle swarm optimization, ant colony optimization, and evolutionary 
algorithms. These metaheuristic methods introduce a level of sophistication by navigating through the solution 
space more efficiently. Consequently, this often leads to superior outcomes in terms of classification accuracy, 
processing speed, and overall robustness22. The utilization of metaheuristics in classification tasks reflects 
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a strategic and versatile problem-solving approach. By embracing a diversity of solutions and surmounting 
the constraints encountered by traditional algorithms, metaheuristics empower machine learning systems to 
navigate the intricacies of complex data patterns with increased adaptability and efficacy.

Literature review
Electroencephalography (EEG) has become a cornerstone technology in the study and diagnosis of neurological 
conditions, as well as in the development of Brain-Computer Interfaces (BCIs). The ability to classify and 
interpret EEG signals accurately is essential for various applications, ranging from epilepsy detection to lie 
detection and mental state recognition23. Recent advancements in machine learning and signal processing have 
significantly enhanced the precision and reliability of EEG-based classification systems24,25.

Polat et al.26 identified epileptic seizures in EEG signals by employing a hybrid system that incorporates 
a decision tree classifier and fast Fourier transform, achieving a notable classification accuracy of 98.72%. 
Chandaka et al.27 presented a classifier based on support vector machines (SVM) assisted by cross-correlation. 
Their approach resulted in a classification accuracy of 95.96% when distinguishing between normal and epileptic 
EEG data. Farwell et al.28 conducted a “Guilty Knowledge Test” using Event-Related Brain Potentials (ERPs) to 
determine the culpability or innocence of individuals. This examination involved three stimulus types: probe 
stimuli, target stimuli, and irrelevant stimuli. The occurrence of a P300 response is notable when an individual 
encounters a familiar object, such as the target stimuli. Even when an individual possesses “guilty information” 
but provides false information, a P300 response is still triggered, indicating awareness of specific details about the 
displayed object. The system’s performance was assessed through Bootstrapped analysis, revealing no instances 
of false positives or negatives in the experiment. However, in 12.5% of cases, intermediate results were observed.

Haider et al.29 presented a lie detection technique using Linear Discriminant Analysis (LDA) to differentiate 
between positive and negative samples. Sixteen channels were employed, and signal extraction utilized diverse 
methods. The methodology was implemented using MATLAB and the Xilinx tool, with the complete system 
deployed on an FPGA for efficiency evaluation. The proposed approach achieved an accuracy of 85% and was 
highlighted as a straightforward and more user-friendly alternative compared to previously proposed methods. 
Simbolon et al.30 presented an approach that utilizes Support Vector Machines (SVM) to discern between guilt 
and innocence, relying on Event-Related Potential (ERP). The entire process was executed using MATLAB. 
Eleven male participants, aged between 20 and 27, were chosen for the experiment. The dataset was divided into 
training and testing sets, and various models were developed. The method demonstrated an accuracy reaching 
up to 70.83%. Feature extraction involved the use of Hjorth parameters, and the classifier employed in this study 
was the k-nearest neighbor.

Bablani et al.31 presented an approach to detect deception by analyzing EEG signals from the brain. Detecting 
deceit is particularly challenging, as it is essential to prevent wrongful convictions of innocent individuals. 
Therefore, the precision and accuracy of the system’s outcomes are paramount. The proposed method integrates 
Hjorth parameters, encompassing activity, mobility, and complexity. Following subject-specific analysis, we 
obtained optimal results, with the mobility parameter demonstrating a performance of up to 96.7% for subject 
6. Khare et al.32 undertook the categorization of EEG recordings associated with four distinct mental states, 
employing a set of five classifiers. Particularly noteworthy is the finding that the most favorable result in this 
study was attained by employing the resilient backpropagation method, achieving an accuracy rate of 95%. 
Bayram et al.33 used planning relax dataset, obtained from the UCI Machine Learning Repository, was subjected 
to classification using Support Vector Machines (SVM). To optimize accuracy and identify key features, four 
distinct feature selection algorithms were employed on the dataset. Various SVMs were trained with the original 
data to ascertain the most appropriate kernel. The highest accuracy achieved with the original data was through 
the Radial Basis Function (RBF) kernel, reaching 71.43%. Following Sequential Forward Selection (SFS) on the 
data, accuracy improved to 72.53%, utilizing only one feature. A particularly noteworthy outcome was observed 
with Sequential Backward Elimination (SBE), yielding an accuracy of 74.73% with eleven features.

Rajaguru et al.34 utilized Logistic Regression (LR) for its ability to facilitate result analysis in both explanatory and 
predictive contexts. These studies focus on signal dimensionality reduction before applying logistic regression. The 
results showcase a remarkable classification accuracy of 97.91% achieved with the Gaussian logistic regression model. 
Guerrero et al.35, the study employed traditional classification methods on frequency data extracted from distinct 
channels containing informative details from EEG examinations. Fourier analysis was utilized for feature extraction 
within specific frequency bands. The implementation of classification techniques was carried out using Python. 
Following a comprehensive comparison of metrics and performance, it was concluded that artificial neural networks 
proved to be the most effective approach for characterizing epileptic patients, attaining an accuracy rate of 86%.

Table  1 provides a comprehensive summary of various methodologies and their corresponding accuracies in 
EEG signal classification. The table encapsulates a range of studies that employ diverse techniques to achieve high 
classification accuracy in different contexts, such as epilepsy detection, lie detection, and mental state recognition.

Each study leverages specific algorithms and methodologies to enhance the precision and reliability of EEG-
based systems. From hybrid systems combining decision trees with fast Fourier transform to support vector 
machines and logistic regression, the table highlights the effectiveness and innovation of these approaches. 
This summary underscores the critical advancements in EEG signal analysis and their potential applications in 
medical and forensic fields.

The proposed methodology
An EEG dataset is used in this context to build an eye state classification model. During the EEG measurement, 
an eye camera identified the eye state and added it to the file manually after analyzing the video frames; a total 
of two classes were created: 1 for eye closure and 0 for eye-opening. Data is then preprocessed, which involves 
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removing empty values, Min-Max scaling, and normalization. After the initialization process, the training 
data is collected in batches and then inputted into a model for iterative analysis. Feature selection is applied 
using different optimization algorithms, e.g., Al-Biruni earth radius (BER), Whale Optimization Algorithm 
(WAO), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). 
These algorithms are converted to binary by applying the sigmoid method to continuous data. Six evaluation 
parameters, average error, average select size and (average, worst, standard deviation, and best) fitness, are used 
to evaluate the binary optimization algorithms. The proposed Al-Biruni earth radius (bBER) algorithm for 
feature selection is shown in Algorithm 1.

Algorithm 1. Pseudo Code of the binary BER

Study Objective Methodology/technique Accuracy Notable details

Polat et al.26 Identify epileptic seizures Decision tree classifier, FFT 98.72% Hybrid system combining decision tree and fast Fourier transform

Chandaka et al.27 Classify normal vs. epileptic 
EEG data SVM, cross-correlation 95.96% Utilized SVM with cross-correlation to distinguish between normal and 

epileptic EEG data

Farwell et al.28 Guilty Knowledge Test ERPs, P300 response, Bootstrapped 
analysis – Used ERPs to determine culpability with no false positives or negatives; 

12.5% intermediate results

Haider et al.29 Lie detection LDA, signal extraction, FPGA 
deployment 85% Technique employed 16 channels and was implemented using MATLAB 

and Xilinx tool, deployed on FPGA for efficiency

Simbolon et al.30 Discern guilt vs. innocence SVM, ERP, Hjorth parameters, KNN 70.83% Experiment involved 11 male participants, aged 20–27, and feature 
extraction using Hjorth parameters

Bablani et al.31 Detect deception Hjorth parameters (activity, mobility, 
complexity) 96.7% Precision in preventing wrongful convictions; mobility parameter 

showed optimal performance for subject 6

Khare et al.32 Categorize four mental 
states

Five classifiers, resilient 
backpropagation 95% Most favorable result obtained using resilient backpropagation method

Bayram et al.33 Classify planning relax 
dataset SVM, feature selection (SFS, SBE) 74.73% Highest accuracy with SBE using 11 features; original data accuracy 

71.43% with RBF kernel, improved to 72.53% with SFS using one feature

Rajaguru et al.34 EEG signal classification Logistic Regression (Gaussian model) 97.91% Focused on signal dimensionality reduction before applying logistic 
regression

Guerrero et al.35 Characterize epileptic 
patients Fourier analysis, ANN 86% Traditional classification methods on frequency data from EEG; 

artificial neural networks were most effective

Table 1.  Summary of EEG signal classification studies.
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The dataset is partitioned into two distinct groups: 80% is allocated for the training set, while the remaining 
20% is designated for the testing set. Some traditional machine learning algorithms as reference models are 
used to classify eye states using the embedded dataset. These algorithms are Stochastic Gradient Descent (SGD), 
Support Vector Classifier (SVC), Gaussian Naive Bayes (GNB), Random Forest (RF), K Nearest Neighbors 
(KNN), Decision Tree (DT), and Logistic Regression (LR). The evaluation metrics, Precision (PPV), Negative 
Predictive Value (NPV), F-score, accuracy, sensitivity, and specificity, are used in comparison between the 
reference models. KNN, one of the reference models, is used as a fitness function and optimized using Modified 
BER. The performance of the proposed optimized KNN by MBER is compared by state-of-the-art continuous 
algorithms, BER, PSO, GWO, WAO, and GA. The stages depicted in Fig. 1 are used in the proposed methodology 
for classifying eye states.

k-Nearest neighbor algorithm )KNN(
An effective and straightforward supervised ML technique utilized in regression and classification issues is 
the KNN algorithm. This method carries out the classification process using similarity criteria while taking 
the distance into account. A class is selected by tallying the majority of votes from neighboring positions that 
correspond to the nearest class36. First, the points are grouped according to their shared characteristics in an 
n-dimensional area, as n is the total no. of input parameters. After that, for each new position, the k closest 
positions are chosen and examined to see which class has the most points nearby. Since k is usually a small 
number, it may be expected that a hypercube would form, with its center at the new point and expanding until 
k points fall within of it. The points of the hypercube are then tallied, and it is established from which cluster 
more points are present. As a result, a new point is added to that cluster, and the cluster prediction technique 
is used to forecast the output of that cluster. The performance of the KNN is greatly influenced by the value of 
k, particularly when there are noisy individuals present. Using heuristic techniques to choose the ideal k is a 
successful strategy for creating a powerful machine-learning model37,38. Figure 2 presents the KNN algorithm 
and illustrates how the choice of K value has a significant impact on the outcome.

After classifying the data points, an output estimate is carried out. The weighted average approach is one way 
to do it. In this method, the output of the new point is more strongly influenced by the points that are nearby. 
The weight in this situation is the inverse of the distance. The neighbors are assigned weights, with the closest 
neighbor having a greater weight contribution to the average compared to the neighbor who resides farther away. 
Neighbors are assigned weights according to their Euclidean distance, or Manhattan, or Minkowski as shown in 
the following equations:

	 d =
√∑

(zi − yi)
2� (1)

	 d =
∑

(zi − yi)� (2)

	 d = (
∑

(zi − yi
p))

1
p � (3)

where zi and yi are the parameters of the two locations, and p is a real number within 1 and 2.

Fig. 1.  The proposed framework for eye state classification.
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Al-Biruni earth radius optimization algorithm
An optimization technique called the Al-Biruni Earth Radius (BER) technique first chooses a population at 
random and then divides it into exploration and exploitation groups. To improve the ability of balancing between 
the exploitation and exploration processes, agents are divided into Subcategories and dynamically altered within 
each subgroup. In comparison to the exploitation group, which makes up 30% of the population, the exploration 
group constitutes 70%39,40. One individual from the total population may be represented as the S vector which 
is presented as S→ = {S1, S2, S3, . . . . . . , Sd} ∈ Rd, where Si indicates the space size of search, and d is the 
feature in the optimization issue. Prior to BER initiating the optimization procedure, it needs the population 
size, the dimension, the fitness function, and the upper and lower bounds for every solution. The exploitation 
and exploration groups’ members are modified to accommodate a more significant rise in the global average 
fitness of individuals in order to boost the fitness levels of the individuals in each group. Mathematically, the 
agents of the exploration group examine the search space for possible locations surrounding its present location. 
Searching individuals for an ideal vector that optimizes fitness function is done using these phases of the 
optimization approach. This is achieved by continuously looking over the surrounding feasible possibilities for 
a higher alternative in terms of fitness value41. Figure 3 describes the steps and equations of the BER algorithm.

Exploration operation
Exploration is in charge of not only the identification of interesting regions in the search space, but also the 
escaping from local optima stagnancy which is discussed below through moving towards the best solution found 
so far.

Heading towards the best solution  The strategy is employed by the individual in the exploration group to 
find out the potential areas in the search space neighbouring its current position. This is done by continually 
searching for a better solution among the neigboring set of feasible solutions according to the fitness value. The 
following equations are utilized in the BER investigation for this purpose:

	
r = h

cos (x)

1− cos (x)
� (4)

	
−→
D = −→r1 .

(−→
S (t)− 1

)
� (5)

	
−→
S (t + 1) =

−→
S (t) +

−→
D. (2−→r2 − 1) � (6)

where 0 < x ≤ 180, h is a number that is randomly selected from the range [0, 2], −→r1  and −→r2  are coefficient 
vectors whose values are measured by these equations, 

−→
S (t) is the solution vector at iteration t, and 

−→
D  is the 

diameter of the circle in which the search agent will look for promising areas.

Fig. 2.  An example of the KNN model.
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Exploitation operation
The exploitation team is in charge of improving existing solutions. The BER calculates all individuals’ fitness 
values at each cycle and distinguishes the best individual. The BER employs two different approaches to achieve 
exploitation, as detailed in the sections below.

Heading towards the best solution  The following equations are used to move the search agent towards the best 
solution:

	
−→
S (t + 1) = r2

(−→
S (t) +

−→
D
)

� (7)

	
−→
D = −→r3

(−→
L (t)−−→

S (t)
)

� (8)

where −→r3  is a random vector calculated that controls the movement steps towards the best solution, 
−→
S (t) is the 

solution vector at iteration t, 
−→
L  is the best solution vector, and 

−→
D  refers to the distance vector.

Investigating area around best solution  Most promising is the region surrounding the best solution (leader). 
As a result, some individuals hunt in the vicinity of the best solution with the potential of finding a better solu-
tion. To realize this operation, the BER utilizes the following Eq. 

	
−→
S (t + 1) = r

(−→
S∗ (t) +

−→
k
)

� (9)

	
−→
k = z +

2 × t2

N 2
� (10)

where 
−→
S∗ refers to the best solution, z is a random number in the range [0, 1], t is the iteration number, and N 

is the total number of iterations.

Modified-BER optimization algorithm
In the Modified-BER optimization algorithm (MBER), a significant enhancement is introduced by selecting the 
top two leaders that yield the best results. This involves the calculation of the average fitness of these leaders using 
specific equations within the algorithm. Notably, the modification focuses on identifying and utilizing the most 
promising solutions to guide the algorithm’s evolution. By emphasizing the performance of the leaders, MBER 

Fig. 3.  The framework of BER algorithm steps and equations.
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aims to enhance the convergence speed and overall effectiveness of the optimization process. This strategic 
selection process contributes to the algorithm’s ability to adapt and refine its solutions, ultimately leading to 
improved optimization outcomes. The Pseudo Code of the MBER algorithm is demonstrated in Algorithm 2.

Algorithm 2. Pseudo Code of the MBER

Fitness function
In order to achieve peak performance from our classification model, it’s crucial that we optimize it to the fullest 
extent. Only then can we ensure that we’re making the most of our resources and achieving accurate and reliable 
results, the focal point of our research lies in the introduction of an fitness mathematically expressed as

	
Fn = α Error (P ) + β

|S|
|A| � (11)

This meticulously crafted equation encapsulates the essence of our optimization strategy, where the parameters 
α  and β  hold pivotal roles in shaping the fine balance between two fundamental aspects of model performance. 
The significance of the chosen features in the population is reflected by the values of α ∈ [0,1] , β = 1− α .

Our goal is to strategically optimize these parameters, guiding the optimization process to identify an optimal 
set of inputs ( P ) and selected features ( |S|) that strike a balance between high accuracy and minimal feature 
complexity. This fitness function serves as the linchpin of our optimization strategy, driving the pursuit of an 
efficient and effective classification model.

The combination of a well-curated dataset, a powerful machine learning algorithm, and an innovative 
optimization approach contributes to the creation of a robust predictive analytics framework. The demonstrated 
success of the Random Forest model, optimized using the BER algorithm, reinforces the effectiveness of this 
methodology in understanding and predicting students’ academic performance.

Evaluation metrics
When evaluating the efficiency of our models, we employed a range of performance criteria tailored for 
classification tasks. These included Accuracy, Precision (PPV), Negative Predictive Value (NPV), FScore, 
Sensitivity and Specificity, specifically for the process of EEG classification42. By leveraging these metrics, we 
could thoroughly assess and quantify the model’s effectiveness across various aspects, encompassing its capability 
to accurately discern True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)43. 
These classification performance metrics are expressed through the below Equations:

	
Accuracy =

TP + TN
TP + FP + FN + TN

� (12)

	
Precision (PPV) =

TP
TP + FP

� (13)
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NegativePredictiveValue (NPV) =

TN
TN + FN

� (14)

	
FScore =

2*TP
2*TP + FP + FN

� (15)

	
Sensitivity =

TP
TP + FN

� (16)

	
Specitivity =

TN
TN + FP

� (17)

Experimental results
This section delineates the assessment of the proposed algorithm across several scenarios in experimental 
settings. The tests utilized conventional mathematical functions as benchmarks to determine their minimal 
values within a specific search space. These functions are commonly employed in literature to assess the 
performance of optimization techniques, and multiple optimization approaches are accessible in the literature. 
This work conducted a comparative analysis between the proposed algorithm, bMBER, and five established 
optimization algorithms in order to showcase its superiority and efficacy. The algorithms MBER, BER, PSO, 
WAO, GWO, and GA were selected because of their widespread recognition and practical value.

The algorithm was implemented and tested in a Jupyter Notebook environment, which provides an interactive 
platform for running and analyzing the code. The implementation was done entirely in Python, leveraging its 
extensive libraries for optimization, machine learning, and data analysis. Python was chosen due to its flexibility, 
ease of use, and the availability of robust libraries such as NumPy, SciPy, and scikit-learn, which were integral to 
the development and evaluation of the proposed algorithm.

Dataset description
The data provided is derived from a continuous EEG reading using the Emotiv EEG Neuroheadset. The reading 
continued for a length of 117 seconds. The dataset consisting of 14 columns and 14,981 rows. During the EEG 
measurement, a camera was used to identify the eye state. After examining the video frames, the eye state was 
manually inserted to the file. A value of ‘1’ indicates that the eyes are closed, whereas a value of ‘0’ indicates 
that the eyes are opened. The values are organized chronologically, starting at the top of the data with the oldest 
measured value. The dataset can be downloaded from the Kaggle platform (https://www.kaggle.com/datasets/
robikscube/eye-state-classification-eeg-dataset), where comprehensive instructions on dataset utilization and 
interpretation are also provided. Figure 4 illustrates the scatter plot of the 14 columns and eye state variables.

The correlation matrix, a useful tool for statistical analysis to examine the relationship between factors in the 
dataset, is shown in Fig. 5. Often, it produces a matrix that shows all the variables’ pairwise correlations. The 
relative intensity and direction of the correlations are shown by the correlation coefficients, which have a range 
of − 1 to + 1. The correlation matrix seeks to identify elements that show positive or negative correlations in 
order to analyze the relationships, patterns, and potential predictors in the data. Predictive modeling benefits 

Fig. 4.  Scatter plot of the input features and output one.
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greatly from this concepts as it assists in selecting relevant features, reducing dimensionality, and identifying 
multicollinearity issues44–46.

Feature selection results
This study used feature selection techniques to implement six optimization strategies in binary format—namely, 
the Modified BER, Al-Biruni earth radius (BER), Particle Swarm Optimizer (PSO), Whale Optimization 
Algorithm (WOA), Genetic Algorithm (GA), and Gray Wolf Optimizer (GWO). Table 2 displays an assessment 
of the outcomes attained by various feature selection algorithms. The table clearly demonstrates that the outcomes 
obtained by the proposed bMBER algorithm surpass those acquired by other algorithms for feature selection.

The average error of proposed bMBER alongside five alternative feature selection algorithms is shown in 
Fig. 6. The proposed algorithm produced the lowest average error, demonstrating its resilience. as the figure 
presents.

Figure  7 displays the bMBER algorithm’s convergence curve compared to other binary optimization 
algorithms. The figure shows the algorithm’s exploitation potential and ability to prevent potential local optima 
from arising throughout the optimization process.

To determine if the proposed bMBER is statistically superior, p-values were calculated by contrasting the 
outcomes of every pair of algorithms. This study used Wilcoxon’s rank-sum test to conduct the investigation. 
The Wilcoxon rank-sum test results are shown in Table 3. The statistical superiority of the proposed algorithm is 
demonstrated by its lower p-value (p < 0.005) when compared to the other optimization algorithms. To find out 
if the proposed bMBER algorithm and the other algorithms differed statistically significantly from one another, 

Evaluation metrics bMBER bBER bPSO bWAO bGWO bGA

Average error 0.61698 0.63418 0.66798 0.66778 0.65428 0.66638

Average select size 0.56978 0.76978 0.76978 0.93318 0.69258 0.80428

Average fitness 0.68018 0.69638 0.69478 0.70258 0.70248 0.74668

Best fitness 0.58198 0.61668 0.67508 0.66668 0.68028 0.66538

Worst fitness 0.68048 0.68358 0.74278 0.74278 0.75648 0.76298

Standard deviation fitness 0.50248 0.50718 0.50658 0.50878 0.50778 0.54338

Table 2.  Comparison of the proposed (bMBER) with other competing feature selection algorithms.

 

Fig. 5.  A correlation matrix between dataset features.
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a one-way analysis of variance (ANOVA) test was performed. Table 4 presents the results of the ANOVA test. 
The results shown in these tables confirm the proposed feature selection algorithm’s superiority, significance, 
and effectiveness.

In Fig.  8, the plots demonstrate the outcomes obtained from the proposed feature selection algorithm. 
The figure utilizes residual plots, quartile–quartile (QQ), homoscedasticity, and heatmap to demonstrate 
the robustness and efficacy of the proposed algorithm. The values displayed in the QQ plot exhibit a close 
approximation to a linear trend, indicating the robustness of the chosen features in accurately identifying the 
eye state. Furthermore, the emphasis on outcomes is further highlighted by the recorded results in the residual 

Fig. 7.  The convergence curve of the bMBER algorithm in comparison to other methods.

 

Fig. 6.  The average error of the outcomes obtained using bMBER.
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Fig. 8.  Analysis plots of the obtained outcomes based on bMBER algorithm.

 

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.02297 5 0.004594 F (5, 54) = 187.5 P < 0.0001

Residual (within columns) 0.001323 54 2.45E-05

Total 0.02429 59

Table 4.  The analysis-of-variance (ANOVA) test for evaluating the proposed algorithm, bMBER.

 

bMBER bBER bPSO bWAO bGWO bGA

Theoretical median 0 0 0 0 0 0

Actual median 0.617 0.6342 0.668 0.6678 0.6543 0.6664

Number of values 10 10 10 10 10 10

Wilcoxon signed rank test

Sum of signed ranks (W) 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0

Sum of positive ranks 55 55 55 55 55 55

P value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002

P value summary ** ** ** ** ** **

Exact or estimate? Exact Exact Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.617 0.6342 0.668 0.6678 0.6543 0.6664

Table 3.  Wilcoxon signed-rank test for assessing the proposed (bMBER) compared to other feature selection 
algorithms.
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plots and homoscedasticity. The superiority of bMBER is verified by the heatmap, as it attained the most optimal 
outcomes in comparison to other feature selection algorithms.

Classification results
The classification results for different ML models are listed in Table 5. The proposed models show encouraging 
outcomes of DT, KNN, and RF than SGD, GNB, SVC, and LR. The KNN model achieved the highest values of 
PPV (0.959425), NPV (0.964969), FScore (0.963431), accuracy (0.9612), Sensitivity (0.970578) and Specificity 
(0.949711). Thus, KNN serves as a fitness function and is optimized by the utilization of Modified Al-Biruni 
earth radius (MBER).

The statistical results presented in Table  6 compare the efficiency of the MBER algorithm to five other 
optimizers (PSO, BER, WAO, GA, and GWO). The table demonstrates that the MBER algorithm had superior 
performance compared to the other five optimizers, owing to the utilization of two distinct exploitation 
strategies in every cycle. The initial strategy is moving towards the most optimal solution discovered thus 
far, but the subsequent strategy involves actively seeking superior solutions in proximity. By employing these 
strategies, the MBER algorithm can optimize its use of the search space and attain outstanding outcomes. To 
accomplish efficient exploitation, achieving a balance between exploring and exploiting the search space is 
essential. Furthermore, it’s critical to start the process of exploitation early in every round and gradually expand 
the exploitation group’s size.

Figure 9 exhibits the convergence curves by various optimization algorithms. The figure demonstrates 
that the suggested MBER algorithm surpasses the performance of the other methods by a substantial margin. 
Furthermore, the accuracy of proposed optimization algorithm MBER is evaluated compared to other models. 
This is demonstrated by the results displayed in Fig. 10, which presents the accuracy, and Fig. 11, which shows 
a histogram of the accuracy.

Wilcoxon’s rank-sum and ANOVA tests are used to evaluate the statistical differences between the proposed 
algorithm and competing ones. Table  7 shows the results of the ANOVA. To determine if the results of the 
algorithms differ significantly, the Wilcoxon’s rank-sum test is used, as indicated in Table 8. Significant statistical 
superiority is shown by a p-value that is less than 0.05. The outcomes show the statistical significance of the 
algorithm and show that the MBER performs better.

MBER BER PSO WAO GWO GA

Number of values 10 10 10 10 10 10

Minimum 0.9988 0.9798 0.9699 0.9653 0.974 0.9711

25% Percentile 0.9996 0.9877 0.9788 0.9744 0.974 0.9711

75% Percentile 0.9998 0.988 0.9788 0.9753 0.9745 0.9716

Median 0.9998 0.9877 0.9788 0.9753 0.974 0.9711

Range 0.001 0.00993 0.01 0.01 0.004 0.004

Maximum 0.9998 0.9897 0.9799 0.9753 0.978 0.9751

10% Percentile 0.9988 0.9806 0.9708 0.9659 0.974 0.9711

90% Percentile 0.9998 0.9896 0.9798 0.9753 0.9778 0.9749

95% CI of median

Actual confidence level 97.85% 97.85% 97.85% 97.85% 97.85% 97.85%

Lower confidence limit 0.9988 0.9877 0.9788 0.9715 0.974 0.9711

Upper confidence limit 0.9998 0.9887 0.9788 0.9753 0.976 0.9731

Std. deviation 0.000422 0.002697 0.002879 0.003253 0.00135 0.00135

Mean 0.9996 0.9872 0.978 0.9739 0.9746 0.9717

Std. error of mean 0.000133 0.000853 0.00091 0.001029 0.000427 0.000427

Table 6.  The descriptive statistics of the proposed optimizing MBER algorithm compared to other algorithms.

 

Models PPV NPV FScore Accuracy Sensitivity Specificity

SGDClassifier 0.585275 0.729289 0.8 0.6046 0.967308 0.160214

GaussianNB 0.648238 0.664424 0.583571 0.621 0.681438 0.546951

SVC 0.608502 0.739124 0.781671 0.6342 0.941155 0.258122

LogisticRegression 0.646066 0.706096 0.637552 0.6432 0.778424 0.477526

DecisionTreeClassifier 0.855364 0.851933 0.816219 0.8376 0.848529 0.82421

RandomForestClassifier 0.917393 0.936322 0.943219 0.9284 0.956048 0.894526

KNeighborsClassifier 0.959425 0.964969 0.963431 0.9612 0.970578 0.949711

Table 5.  Different classifiers for eye state classification.
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Fig. 10.  Evaluating the accuracy of MBER compared to other algorithms based on the objective function.

 

Fig. 9.  The convergence curves for MBER, BER, PSO, WAO, GWO, and GA.
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Figure 12 displays the residual plot, heteroscedasticity plot, QQ plot, and heat map for this situation. The QQ 
plot indicates a close alignment of the dots with the line, indicating a linear correlation between the expected and 
actual residuals. This verifies the effectiveness of the proposed MBER method for classifying eye states.

The analysis plots depicted in Fig. 12 illustrate the efficacy of the proposed MBER algorithm in resolving the 
optimization issues employed in this paper.

Conclusions
This study proposes the MBER algorithm, which aims to enhance the accuracy of classifying eye states as either 
open (0) or closed (1). The assessment of the proposed algorithm was conducted using an easily accessible EEG 
dataset that underwent preprocessing techniques such as scaling, normalization, and removal of null values. The 
binary format of the MBER algorithm is designed to choose the optimal features that can enhance classification 
accuracy. The proposed algorithms were assessed using sets of assessment criteria. The statistical investigation 

MBER BER PSO WAO GWO GA

Theoretical median 0 0 0 0 0 0

Actual median 0.9998 0.9877 0.9788 0.9753 0.974 0.9711

Number of values 10 10 10 10 10 10

Wilcoxon signed rank test

Sum of signed ranks (W) 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0

Sum of positive ranks 55 55 55 55 55 55

P value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002

P value summary ** ** ** ** ** **

Exact or estimate? Exact Exact Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.9998 0.9877 0.9788 0.9753 0.974 0.9711

Table 8.  The wilcoxon signed-rank test outcomes of MBER and competing ones for the eye state classification.

 

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.005708 5 0.001142 F (5, 54) = 228.6 P < 0.0001

Residual (within columns) 0.00027 54 4.99E−06

Total 0.005977 59

Table 7.  ANOVA results of the proposed and competing models for the eye state classification.

 

Fig. 11.  Histograms of the accuracy outcomes obtained by MBER, BER, PSO, WAO, GWO, and GA 
algorithms.
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utilized the ANOVA and Wilcoxon signed-rank test to determine the relevance and efficacy of the proposed 
algorithm in comparison to five other algorithms (BER, PSO, WAO, GWO, and GA). Additionally, a series of 
visual depictions of the outcomes were produced to verify the strength and efficacy of the proposed algorithm. 
In general, the experimental and statistical findings demonstrate the superiority of the proposed algorithm in 
comparison to other competing optimization algorithms for the eye state classification. The next objectives of 
this study involve evaluating the proposed algorithm using extensive datasets and other optimization problems 
to ascertain its strengths and weaknesses definitively.

Future work and limitations
Future work regarding this study requires improving the stability, versatility, and efficacy of the modified Al-
Biruni Earth Radius (MBER) algorithm. One of them is the application of more extensive and more diverse 
datasets. Incorporating other datasets derived from different EEG instruments and diverse experimental 
scenarios will advance the assessment of the algorithm’s versatility. There are also algorithmic optimizations. Algo 
improvements are also significant. More improvement can be made by embracing MBER with other advanced 
optimization methods to come up with best-of-breed solutions.’’ Implementing deep learning frameworks could 
also be integrated into MBER to enhance results. Application in real-time is advisable if the proposed algorithm 
is to be implemented. This paper aims to present a modified version of the weighted center MBER algorithm and 
the factors that should be considered to improve the algorithm’s efficiency at lesser latency and faster processing 
time, which will be significant in real-world BCI applications. Attaining the real-time processing capability will 
make the algorithm useable in assistive technologies, which will immensely benefit disabled persons. Different 
extensions of research using the MBER algorithm in other fields can also be considered for future work. The 
algorithm proposed here can be applied to other domains besides the EEG-based eye state classification results: 
emotion recognition, cognitive workload assessment, and neurofeedback. Another aspect that remains to be 
researched is the customization of the MBER algorithm with certain parameters specific to the user. If models 
capable of learning and adjusting to other characteristic EEG patterns of different people are created, the 
specificity of the classification system will be significantly improved.

However, the study has limitations. The future potential of the results is constructive, but the weaknesses of 
the study can be criticized. The first and probably foremost limitation is related to the available data used as the 
basis for analysis and modeling. Problems associated with the study included the limitation that only one specific 
EEG dataset was used in the study-meaning that there could be generalizability issues if the same amount of 
variability were not included across different participants or indifferent experimental conditions. Therefore, the 
results cannot be applied to other settings without further verification. Furthermore, the analytical formulation 
of the proposed MBER algorithm, it incurs a higher computational complexity than the others. The steps 
mentioned above of feature selection and optimization are computationally expensive, and this brings forth 
a problem when applied to real-time applications or systems with low computational capabilities. Solving this 
complexity while making the required changes to improve the algorithm’s efficiency will be very important for 
the future application of the algorithm. There are also inherent issues with noise and artifacts in the EEG data. 
Despite pre-processing techniques, the data of EEG is always vulnerable to noise and artifacts caused by muscle 
movements and other electronics devices. However, in the proposed method, the mentioned issues are reduced, 
but eliminating them in total causes some loss of classification. Another limitation is model interpretability. Like 
most machine learning algorithms, it isn’t easy to understand how the MBER algorithm arrives at a particular 
decision. Establishing additional ways of explaining how the algorithm interacts and categorizes the EEG signals 
would be helpful for both the research and the customer.

Fig. 12.  Analysis plots for MBER, BER, PSO, WAO, GWO, and GA algorithms.
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Finally, there is a need to cross-validate among different populations. The current study’s participant sample 
fails to sample the whole population of human variations in terms of the EEG results. Thus, future studies should 
focus on the algorithm’s generalization and testing of the intervention on more extensive and different samples 
of participants, including different ages, genders and diseases, to consider the intervention general and efficient. 
In conclusion, the study demonstrated that the MBER algorithm has an excellent potential for EEG classification 
and BCI applications. Therefore, to utilize the full potential of the MBER algorithm, future work should address 
the related directions and limitations. To enhance this novel MBER algorithm, more improvements such as using 
all the datasets at once, varying and improving the algorithm used, implementing it in real-time, adapting the 
methodology across different disciplines, fine-tuning it depending on the users’ specifications, and verifying it 
thoroughly can be done further.

Data availability
https://www.kaggle.com/datasets/robikscube/eye-state-classification-eeg-dataset.
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