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Abstract
We introduce a novel extension of conventional fuzzy sets in this paper: called trimorphic fuzzy sets. As per
our research, trimorphic fuzzy sets which exhibit greater capability than intuitionistic fuzzy sets, picture fuzzy
sets and bipolar fuzzy sets, present a viable approach to address ambiguity and uncertainty in decision-making
scenarios. We present a complete characterization of trimorphic fuzzy sets, discuss their properties, and consider
applications to real-world decision-making scenarios.We also present a case study to further highlight the practical
applications of trimorphic fuzzy sets. We look into a few aggregation strategies for trimorphic fuzzy data in this
work. We create the MCDMmethod using trimorphic fuzzy aggregation operators to help people with disabilities
choose AI-Powered Assistive Technologies. We have also presented the extended TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) method with trimorphic fuzzy numbers. A numerical example for
selection of AI-Powered Assistive Technologies using TOPSIS method is also provided.

Keywords Fuzzy set · Trimorphic fuzzy sets · Decision-making · Aggregation operators · Disabilities · Assistive
technologies · TOPSIS method

1 Introduction

A fuzzy set is a type of mathematical structure that is an extension of the classical set [32]. There is a degree of
membership connected to every element in the fuzzy set. The value of this membership degree ranges from 0 to
1. Numerous domains, such as artificial intelligence, control systems, and decision-making, find extensive use for
fuzzy sets [35]. In an expansion of the fuzzy set, Atanassov presented the intuitionistic fuzzy set [1]. For this type
of fuzzy set, there exists a relationship between the degree of membership and the degree of non-membership.
Various problems with accuracy and uncertainty in decision-making processes have been resolved with this type
of fuzzy set. Cuong [7] introduced a picture fuzzy set in 2013 which was an additional variation of the fuzzy set.
This kind of fuzzy set whose elements are linked to three values (membership, non-membership and neutrality)
is better equipped to handle issues of ambiguity and imprecision during the decision-making process. However, a
novel kind of fuzzy set known as bipolar fuzzy set (BFS) [8] has emerged the elements of which are correlated
with the degree of both positive and negative memberships. Picture fuzzy and other fuzzy sets that have already
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been discussed however are not always applicable. The situations that require consideration of one positive and
two negative memberships cannot be discussed by all the existing types of fuzzy set.

In order to solve this, we have created a novel class of fuzzy sets called trimorphic fuzzy sets (TrFS). Better
than intuitionistic fuzzy sets, picture fuzzy sets and BFSs [1, 2, 25, 34], these sets build upon the foundations of
classical fuzzy sets. Three values are assigned to each element in a TrFS: one positive membership function and
two negative membership functions. Because of this, TrFS is more adaptable and complete than other kinds of
fuzzy sets. For instance, mobility is a positive (good) when selecting a wheelchair for a disabled person while
increased social barriers or reliance on caregivers are negative (bad). An expert assigned a positive value of 0.6 and
two negative values of −0.4 each. A set (0.6−0.4−0.4) is thus produced. TrFS is highly capable of handling this
type of data something that other fuzzy sets are unable to do. In addition, the TrFS sets are described using three
membership grades ρ̂t Ď, ̂βt Ď and γ̂ t Ď the sum of absolute which is at most 1, i.e., 0 ≤ ∣

∣ρ̂t Ď + ̂βt Ď + γ̂ t Ď
∣

∣ ≤ 1.
Consider the following example to illustrate more the idea of an TrFS set: an expert expresses a preference for

attribute values with positive membership 0.4, one negative membership −0.3, and another negative membership
−0.2. Then clearly 0.4 + (−0.3) + (−0.4) = −0.3. Consequently the PF, BF or all other types of fuzzy set are
unable to handle this kind of data. However, we have the TrFS set. |0.4 + (−0.3) + (−0.4)| = |−0.3| = 0.3 ≤ 1,
TrFS sets can therefore deal with such situations quite well.

Fuzzy multi-criteria decision-making (MCDM) is one method [32] designed to manage uncertainty in data. In
contemporary decision science,MADM serves as a valuable research tool. The selection and the use of appropriate
MCDM techniques to solve complex problems are one of the difficult decisions that decision-makers must make.
MCDM techniques have been successfully applied to handle these issues, for example, in the fields of artificial
intelligence, information technology, farming,medicine, business, and trade.The integrationofMCDMtechniques,
which have been successfully applied in a variety of application areas, is the subject of this study. For instance,
making the best decision is the aim of this strategy. Management science has made extensive use of MADM [14],
economics [22], and operation research [21] applications that incorporate attribute values that are both qualitative
and quantitative. In life, there are a lot of imprecise facts that must be considered when making decisions. Experts
frequently find it difficult to articulate their opinions with precise values in decision-making scenarios and to
pinpoint the precise values of potential Alts when faced with competing criteria or attributes [4, 28, 29].

Disability is a social construct influenced by cultural norms environmental variables and the availability of
services and infrastructure, all of which should not be overlooked. In order to minimize the effects of disabilities
and promote greater equity and inclusion for people with diverse abilities, efforts must be made to create inclusive
environments and promote accessibility [20]. Utilizing developments in robotics artificial intelligence and sensor
technologies, these assistive technologies (ATs) are always changing and offeringmore individualized and practical
solutions for a wide range of disability categories [5]. When it comes to reducing barriers that individuals with
disabilities must face in order to participate more fully in a range of activities, creative solutions known as assistive
technologies or ATs are developed [31]. The combination of artificial intelligence (AI) and ATs enhances the
quality of life for individuals with disabilities [13]. For instance, speech recognition technology makes it easier
for those who struggle with speech to communicate by utilizing natural language processing [3, 33]. Computer
vision systems assist blind individuals with object recognition and environment description through sophisticated
algorithms making navigation easier [26]. Individuals with limited mobility can interact with electronics more
easily usinghandgestures [18]. In addition, the integration ofAI-poweredpersonalized recommendations and smart
home systems promotes independence and accessibility within the home. Furthermore, improvedmobility aids and
prosthetics with artificial intelligence offer more natural movement and control. The quality of life for those with
disabilities is eventually improved by these technologieswhich address a variety of disability categories and provide
specialized assistance to address specific problems. People with social communication challenges can benefit
from emotion recognition technology and those with cognitive impairments can benefit from cognitive assistance
technologies [24].Anarray of learning requirements is also satisfiedbyAI-powered educationalmaterials, provided
that privacy accessibility and usability are given high priority during the development and implementation process.
The integration of AI into ATs generally has great potential to improve quality of life and promote inclusively
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independence. In recent years, the field of assistive technology has advanced significantly particularly with the
introduction of intelligent computer programs and sophisticated decision-making tools [10]. The data can be
processed and a decision made using AI techniques.

Trimorphic fuzzy sets can be applied to resolve a variety of imprecise and uncertain decision-making prob-
lems. Multi-criteria decision analysis can make use of the trimorphic fuzzy set. We have developed a number of
aggregation operators with trimorphic fuzzy information.

Flaws of using Existing Aggregation Operators

1. Struggling with high uncertainty, leading to inaccurate results.
2. Understanding to extreme values.
3. Troubling in interpretation of outcomes.
4. Partial litheness in correcting aggregation procedure.

Despite the fact that IFS or PFS is successfully applied to real-world problems, but certain real-world situations
are beyond the scope of these theories. The flavor of food is a prime example [30]. Foods with sweet flavors have
a positive membership value whereas those with bitter tastes have a negative one. Foods with different flavors
like chilly or acidic stand for neutral membership values. However, traditional generalizations of fuzzy sets are
binary in nature, assigning a degree of membership to an element and its complement. In many decision-making
problems, it is often necessary to express some reluctance or uncertainty regarding the extent of membership. The
addition of a third value by a trimorphic fuzzy set allows for the explicit representation of hesitancy or neutrality
and provides a more detailed structure. TrFS which is a generalized version of BFS and IFS. FS, IFS and BFS data
are all contained in TrFS: a hybrid structure. But these trimorphic fuzzy numbers (TrFNs) cannot be combined
using any of the previously listed techniques. As such compiling these, TrFNs is a challenging task. We will use
traditional arithmetic and geometry operations as a basis to create several trimorphic fuzzy aggregation processes in
this study in order to address these issues. We develop trimorphic fuzzy averaging and trimorphic fuzzy geometric
aggregation operators.

Solutions to the flaws using Tripolar Fuzzy Aggregation Operators

1. Generates the results which are more accurate.
2. Proposes exhaustive and fathomable outcomes to facilitate better decision-making.
3. Offers superior liberty to alter the technique to meet distinctive necessities.
4. More effectively seizures vagueness, vagueness, uncertainty and imprecision.
5. Copes complicated relationships among the criteria.

A major source of motivation for us in developing our current work was decision-making difficulties in aggre-
gation systems with imprecise information. This article’s main goal is to illustrate these aggregation operations
under trimorphic fuzzy data for assessing the various decision-priority options throughout the MCDM process.
Apart from the noteworthy and complicated techniques that have been previously developed in this domain, we
have taken great care to ensure that our suggested procedures are fully tested and capable of resolving any existing
issues while also addressing real-world concerns, provide MCDM formulations based on trimorphic fuzzy data
and a brief explanation of the decision-making procedure using established operators, and analyze a case to the
assess the effectiveness of various AI-powered cognitive assistive technologies for people with disabilities to show
the viability and usefulness of the newly suggested methods.

The idea of TOPSIS method was established by Hwang and Yoon [9]. Many authors developed this method
later. The high flexibility of the TOPSIS method allows us to add additional extensions in order to make the best
choices in different situations. Practically, to solve many theoretical and real-world problems, TOPSIS and its
modifications are used [15, 19]. The results can be easily evaluated using TOPSIS method in complex decision-
making, which contains a lot of qualitative information. For ranking and selection of Altrs, the TOPSISmethod is a
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useful and practical technique. In this paper, we describe the concept of the TOPSIS algorithm for trimorphic fuzzy
data. An extension of the trimorphic fuzzy TOPSIS technique to a group decision environment is also investigated.

In this innovative approach, the trimorphic fuzzy sets to the conventional fuzzy set is meant to handle situations
wheremultiple complex instructions are provided. For example, the selection of AI-powered assistive technologies
for people with disabilities and employment advancement, etc. To sum up, by tackling situations where limitations
exist like job selection and promotion, the designed trimorphic fuzzy set makes a significant contribution to the
field of fuzzy sets. The integration of AI into assistive technologies holds great promise for enhancing quality of
life independence and transparency as long as privacy accessibility and usability are prioritized throughout the
development and implementation phases.

The current paper is formatted in this manner. In Sect. 2, the fundamental ideas and fundamental operational
guidelines of the fuzzy sets are briefly covered. In Sect. 3, several aggregation operators for trimorphic fuzzy data
are discussed. Both a trimorphic fuzzy weighted geometric (TrFWG) operator and a trimorphic fuzzy weighted
arithmetic (TrFWA) operator are developed. We created a model using the proposed operators to handle multiple
attribute decision-making issues in a trimorphic fuzzy environment in Sect. 4. In Sect. 5, we use the MADM tech-
nique for selecting AI-Powered assistive technology for individuals with disabilities. The suggested aggregation
operators under trimorphic information are compared to other existing aggregation operators. An extended TOP-
SIS approach with trimorphic fuzzy numbers is described in Sect. 6. We use the TOPSIS technique for selecting
AI-Powered assistive technology for individuals with disabilities. A comparison analysis of TOPSIS method with
other existing techniques is also provided in Sect. 6.2. Section 7 concludes the paper with a few closing thoughts.

2 Preliminaries

In this section, we have demonstrated a number of basic definitions that will influence the framework for the
discussions and analyses that are presented later in this paper. These definitions are essential for outlining a
standard understanding of the main concepts and language. Our goal in defining these terms clearly is to ensure
precision and clarity in our discussions and paper. As we delve further into the topic, it is imperative that you have
a firm grasp of these fundamental definitions in order to engage in meaningful and thoughtful dialog. This section
serves as an introduction to the next sections which will apply and analyze these concepts in greater detail.

2.1 Fuzzy Set

A fuzzy set is a set of numbers that covers a range of items with varying enrollment grades. Unlike traditional
sets in which an item is either included in the set or not, a fuzzy set takes partial enrollment into account allowing
an item to have a partially defined place within the set. This concept is particularly useful in domains where
vulnerability and ambiguity are common, such as artificial intelligence decision-making and pattern recognition.
Fuzzy sets are widely used to illustrate and make sense of ambiguous or loose data providing a more flexible
and logical framework for handling confusing real-world data. Fuzzy sets are a crucial tool in various domains
of logical and design inquiry because they take into account the representation of consistent variations between
enrollment and non-participation enabling a more nuanced understanding of suspicious or unclear peculiarities.

Definition 2.1 [32] Let L be a fixed set. A fuzzy set Ď of L is given by

Ď = {(l, ρ̂t Ď
(

l
)

)|l ∈ L},

where ρ̂t Ď(l) : L → [0, 1] is the membership function of a fuzzy set Ď.

Shortcoming:

Cannot model hesitation, opposition, or neutrality explicitly.
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Restricted to single-dimension decision-making.

Definition 2.2 [32] Let Ď1 = {(l, ρ̂t Ď1

(

l
)

)|l ∈ L} and Ď2 = {(l, ρ̂t Ď2

(

l
)

)|l ∈ L} be two FSs, and ñ > 0, then,

1. Ď2 ⊂ Ď1 iff ρ̂t Ď2
(l) < ρ̂t Ď1

(l);
2. Ď2 = Ď1 iff ρ̂t Ď2

(l) = ρ̂t Ď1
(l);

3. Ďc = 1 − ρ̂t Ď(l);
4. Ď2 ∪ Ď1 = max

{

ρ̂t Ď2
(l), ρ̂t Ď1

(l)
}

;
5. Ď2 ∩ Ď1 = min

{

ρ̂t Ď2
(l), ρ̂t Ď1

(l)
}

;
6. Ď2 ⊕ Ď1 =

{

ρ̂t Ď2
(l) + ρ̂t Ď1

(l) − ρ̂t Ď2
(l)ρ̂t Ď1

(l)
}

;
7. Ď2 ⊗ Ď1 =

{

ρ̂t Ď2
(l) · ρ̂t Ď1

(l)
}

;
8. ñ Ď = {1 − (1 − ρ̂t Ď(l))ñ};
9. Ďñ = {(ρ̂t Ď(l))ñ};

10. ñ(Ď1 ⊕ Ď2) = ñ Ď1 ⊕ ñ Ď2;
11. (ñ1 ⊕ ñ2)Ď = ñ1 Ď + ñ2 Ď.

2.2 Intuitionistic Fuzzy Set

An expansion of the fuzzy set that takes into account how vulnerability and delay are portrayed in dynamic cycles
is called the Intuitionistic fuzzy set (IFS). Every element in uncertainty is reduced to a level of non-enrollment and
faltering in addition to a level of participation in a set. This takes into account presenting data in a more nuanced
manner particularly when the boundaries between classifications are blurry. The concept of uncertainty has been
applied to a variety of domains including picture-processing control frameworks emotionally supportive network
selection and design acknowledgment. A more flexible method for handling loose and unsure data is provided by
uncertainties which incorporates the idea of faltering. Enhancements to intuitionistic fuzzy sets have contributed to
the development of fuzzy reasoning and its uses providing a more comprehensive and useful approach to handling
ambiguity and vulnerability when making decisions.

Definition 2.3 [1] Let L be a fixed set. An intuitionistic fuzzy set Ď of L is defined as

Ď = {(l, ρ̂t Ď
(

l
)

, ̂βt Ď(l)|l ∈ L},

where for each element l ∈ L , the membership function is ρ̂t Ď
(

l
) : L → [0, 1] and the non-membership function

is ̂βt Ď(l) : L → [0, 1], with 0 ≤ ̂βt Ď(l) + ρ̂t Ď
(

l
) ≤ 1 for every l ∈ L.

Shortcoming:
Cannot differentiate between conflicting positive and negative sentiments.
No explicit neutrality component.

Definition 2.4 [1] The two IFS are Ď2 =
(

ρ̂t Ď2
(l), ̂βt Ď2

(l)
)

and Ď1 =
(

ρ̂t Ď1
(l), ̂βt Ď1

(l)
)

. Yager and Xu

established operations on these sets as follows:

1. Ď2 ⊂ Ď1 iff ρ̂t Ď2
(l) < ρ̂t Ď1

(l) and ̂βt Ď2
(l) > ̂βt Ď1

(l);
2. Ďc = (

̂βt Ď(l), ρ̂t Ď(l)
)

3. Ď2 ∪ Ď1 =
(

max
{

ρ̂t Ď2
(l), ρ̂t Ď1

(l)
}

,min
{

̂βt Ď2
(l), ̂βt Ď1

(l)
})

;
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4. Ď2 ⊕ Ď1 =
{

ρ̂t Ď2
(l) + ρ̂t Ď1

(l) − ρ̂t Ď2
(l)ρ̂t Ď1

(l), ̂βt Ď2
(g) ̂βt Ď1

(g)
}

;
5. Ď2 ⊗ Ď1 =

{

ρ̂t Ď2
(l)ρ̂t Ď1

(l), ̂βt Ď2
(l) + ̂βt Ď1

(l) − ̂βt Ď2
(l)̂βt Ď1

(l)
}

;
6. Ď2 ∩ Ď1 =

(

min
{

ρ̂t Ď2
(l), ρ̂t Ď1

(l)
}

,max
{

̂βt Ď2
(l), ̂βt Ď1

(l)
})

;
7. ñ AĎ1 = {1 − (1 − ρ̂t Ď(l))ñ, (̂βt Ď(l))ñ};
8. Ďñ = {(ρ̂t Ď(l))ñ, 1 − (1 − ̂βt Ď(l))ñ};
9. ñ(Ď1 ⊕ Ď2) = ñ Ď1 ⊕ ñ Ď2;

10. (ñ1 ⊕ ñ2)Ď = ñ1 Ď + ñ2 Ď.

2.3 Bipolar Fuzzy Set

Expanding upon traditional fuzzy sets, bipolar fuzzy sets take into account a more nuanced representation of vul-
nerability and equivocality. Bipolar fuzzy sets incorporate the notions of non-participation and against enrollment
in addition to the participation and non-enrollment considered in traditional fuzzy sets. It is especially useful in
applications where precise boundaries are not always evident because this extra feature allows for a more compre-
hensive demonstration of vulnerability. In this direction, certain certifiable situations have an inherent vulnerability
that bipolar fuzzy sets can capture. Leaders can more effectively address their vulnerability regarding the various
options available by advocating against participation and non-enrollment. This can lead to more intelligent and
robust dynamic cycles particularly in perplexing and questionable circumstances. Bipolar fuzzy sets provide a
more flexible and adaptable method of expressing the inherent uncertainty in information when it comes to design
acknowledgment. Conventional fuzzy sets may find it difficult to capture the subtleties of unclear or ambiguous
examples, but bipolar fuzzy sets provide a more comprehensive representation that is more likely to align with the
confusing concept of real information.

Definition 2.5 [8] Let L be fixed set. A bipolar fuzzy set Ď of L is defined as,

Ď = {(l, ρ̂t Ď
(

l
)

, γ̂ t Ď(l)|l ∈ L},

where for each element l ∈ L , membership function is ρ̂t Ď
(

l
) : L → [0, 1] and γ̂ t Ď(l) : L → [−1, 0] is negative

membership function respectively, with −1 ≤ ρ̂t Ď(l) + γ̂ t Ď
(

l
) ≤ 1 here π

Ď
(l) = 1− ρ̂t Ď

(

l
)+ γ̂ t Ď(l), π

Ď
(l)

is hesitancy.

Shortcoming:
Cannot represent neutrality or hesitation explicitly.
Restricted to positive and negative perspectives. Cannot represent a situations that require one positive and two

negative memberships.

Definition 2.6 [8] Let Ď1 =
(

ρ̂t Ď1
(l), γ̂ t Ď1

(l)
)

and Ď2 =
(

ρ̂t Ď2
(l), γ̂ t Ď2

(l)
)

be two BFSs, and ñ > 0, then

1. Ď2 ⊂ Ď1 iff ρ̂t Ď2
(l) < ρ̂t Ď1

(l) and γ̂ t Ď2
(l) > γ̂ t Ď1

(l);
2. Ď1 ∩ Ď2 =

(

min
{

ρ̂t Ď2
(l), ρ̂t Ď1

(l)
}

,max
{

γ̂ t Ď2
(l), γ̂ t Ď1

(l)
})

;
3. Ď1 ∪ Ď2 =

(

max
{

ρ̂t Ď2
(l), ρ̂t Ď1

(l)
}

,min
{

γ̂ t Ď2
(l), γ̂ t Ď1

(l)
})

;
4. Ďc = (

1 − ρ̂t Ď(l),
∣

∣ρ̂t Ď(l)
∣

∣− 1
)

.

Definition 2.7 [8] Let Ď = (ρ̂t Ď, γ̂ t Ď) be bipolar fuzzy number, then the score function of Ď is defined as

S(Ď) = 1

2
(1 + ρ̂t Ď + γ̂ t Ď), S(Ď) ∈ [0, 1]
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The accuracy function H of Ď is formulated as

H(Ď) = 1

2
(ρ̂t Ď − γ̂ t Ď), L(Ď) ∈ [0, 1]

If S(Ď1) ≤ S(Ď2) or S(Ď1) = S(Ď2) but H(Ď1) ≤ H(Ď2), then Ď1 ≺ Ď2 If S(Ď1) = S(Ď2) and H(Ď1) =
H(Ď2) then Ď1 = Ď2.

Definition 2.8 [23] Let us suppose a universal set X . A tripolar fuzzy set Ë is an object having the form,

Ë = {x, �Ë (x) , ςË (x) , ëË (x)},

here �Ë : X → [0, 1], represents positive membership function, ςË : X → [0, 1] represents the negative
membership function TFS and ëË : X → [−1, 0] represents the irrelevant membership function. For simplicity,
Ë = (�Ë , ςË , ëË ) has been used instead of Ë = {x, (�Ë (x), ςË (x), ëË (x))}. Also −1 ≤ �Ë + ςË + ëË ≤ 1.

3 Trimorphic Fuzzy Set

In this section, a novel extension of the fuzzy set, a Trimorphic Fuzzy Set, is introduced. It is used where a function
has one positive value and two negative values, for example, to select a wheelchair for disabled people. Mobility is
a positive value and increases social barriers, and dependence on caregivers is a negative value. The application of
TrFSs in the process of the selection of the wheelchairs for individuals with disabilities demonstrates its capacity
to address real-world problems.

Importance and Implications
Situations that require consideration of one positive and two negative memberships are better suited for trimor-

phic fuzzy sets. In sentiment analysis, decision-making processes involving opposing viewpoints andmulti-criteria
decision analysis (MCDA)where various alternativesmayhave one positive and twonegative aspects are frequently
employed.

Definition 3.1 A Trimorphic fuzzy set is an object having the form

Ď = {l, (ρ̂t Ď(l), ̂βt Ď(l), γ̂ t Ď(l))}

here ρ̂t Ď : L → [0, 1], represents a positive degree of membership and ̂βt Ď : L → [−1, 0] and γ̂ t Ď :
L → [−1, 0] represents a negative degree of membership a counter property of Trimorphic Fuzzy Sets Ď.
For simplicity, Ď = (ρ̂t Ď, ̂βt Ď, γ̂ t Ď) has been used instead of Ď = {l, (ρ̂t Ď(l), �λsĎ(l), γ̂ t Ď(l))}.Also 0 ≤
∣

∣ρ̂t Ď + ̂βt Ď + γ̂ t Ď
∣

∣ ≤ 1Let Ď = (ρ̂t Ď, ̂βt Ď, γ̂ t Ď). be a Trimorphic fuzzy number (TrFN).We define an accuracy
function and a score function for now.

Definition 3.2 Let Ğ = (ρ̂t Ğ, ̂βt Ğ, γ̂ t Ğ) and Ď = (ρ̂t Ď, ̂βt Ď, γ̂ t Ď) be two trimorphic fuzzy numbers and
ñ ∈ [0, 1], then

1. Ğ ∧ Ď = (min(ρ̂t Ğ, ρ̂t Ď), max(̂βt Ğ, ̂βt Ď), max(γ̂ t Ğ, γ̂ t Ď))

2. Ğ ∨ Ď = (max(ρ̂t Ğ, ρ̂t Ď), min(̂βt Ğ, ̂βt Ď), min(γ̂ t Ğ, γ̂ t Ď))

3. Ğ ⊕ Ď = (ρ̂t Ğ + ρ̂t Ď − ρ̂t Ğ ρ̂t Ď, − ∣∣̂βt Ğ
∣

∣

∣

∣̂βt Ď
∣

∣ , − ∣∣γ̂ t Ğ
∣

∣

∣

∣γ̂ t Ď
∣

∣))

4. Ğ ⊗ Ď = (ρ̂t Ğ ρ̂t Ď, −(̂βt Ğ + ̂βt Ď + ∣

∣̂βt Ğ
∣

∣

∣

∣̂βt Ď
∣

∣), −(γ̂ t Ğ + γ̂ t Ď + ∣

∣γ̂ t Ğ
∣

∣

∣

∣γ̂ t Ď
∣

∣))

5. nĞ = (1 − (1 − ρ̂t Ğ)ñ, − ∣∣̂βt Ğ
∣

∣

ñ
, − ∣∣γ̂ t Ğ

∣

∣

ñ
)
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6. Ğñ = (ρ̂t ñ
Ğ
, −(1 − (1 − ∣

∣̂βt Ğ
∣

∣)ñ), −(1 − (1 − ∣

∣γ̂ t Ğ
∣

∣)ñ).

Definition 3.3 The score function S of Ď = (ρ̂t Ď, ̂βt Ď, γ̂ t Ď) is evaluated as

S(Ď) = 1

3

∣

∣ρ̂t Ď + ̂βt Ď + γ̂ t Ď
∣

∣ S(Ď) ∈ [0, 1]

As is the formulation of Ď accuracy function H.

H(Ď) = 1

2

∣

∣ρ̂t Ď − γ̂ t Ď
∣

∣ , H(Ď) ∈ [0, 1]

if S(Ď1) ≤ S(Ď2) or S(Ď1) = S(Ď2) but H(Ď1) ≤ H(Ď2) then Ď1 ≺ Ď2 If S(Ď1) = S(Ď2) and H(Ď1) =
H(Ď2) then Ď1 = Ď2 Some basic operation on Trimorphic fuzzy number.

Theorem 3.4 Suppose Ğ = (ρ̂t Ğ, ̂βt Ğ, γ̂ t Ğ) and Ď = (ρ̂t Ď, ̂βt Ď, γ̂ t Ď) are two trimorphic fuzzy number and
ñ, ñ1 > 0, ñ2 ≤ 1, then

1. Ğ ⊕ Ď = Ď ⊕ Ğ
2. Ğ ⊗ Ď = Ď ⊗ Ğ
3. ñ(Ğ ⊕ Ď) = nBĞ ⊕ nAĎ
4. (Ğ ⊗ Ď)ñ = Ğñ ⊗ Ďñ

5. ñ1Ğ ⊕ ñ2Ğ = (ñ1 ⊕ ñ2)Ğ
6. Ğñ1 ⊗ Ğñ2 = Ğñ1+ñ2

3.1 Distance in Trimorphic Fuzzy Sets

Our proposed distance formula between trimorphic fuzzy sets (TrFS) can be calculated using various distance
measures. Here are some common distance formulas used for TrFS:

Definition 3.5 Let Ğ = (ρ̂t Ğ, ̂βt Ğ, γ̂ t Ğ) and Ď = (ρ̂t Ď, ̂βt Ď, γ̂ t Ď) be two trimorphic fuzzy numbers and
ñ ∈ [0, 1], then

1. The Hamming distance between two trimorphic fuzzy sets is λ(Ď, Ğ)

λ(Ď, Ğ) =
ñ
∑

�=1

(∣

∣ρ̂t Ď
(

l�
)− ρ̂t Ğ

(

l�
)∣

∣+ ∣

∣̂βt Ď
(

l�
)− ̂βt Ğ

(

l�
)∣

∣+ ∣

∣γ̂ t Ď
(

l�
)− γ̂ t Ğ

(

l�
)∣

∣

)

Example: Let Ď1 = (0.4, −0.3, −0.2), Ď2 = (0.5, −0.4, −0.1) two trimorphic fuzzy numbers, the Hamming
distance between these numbers is calculated as

λ(Ď1, Ď2) = |0.4 − 0.5| + |−0.3 − (−0.4)| + |−0.2 − (−0.1)|
= |−0.1| + |0.1| + |−0.1|
= 0.3
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2. The normalized Hamming distance between two trimorphic fuzzy sets is δ(Ď, Ğ)

δ(Ď, Ğ) = 1

n

⎛

⎝

ñ
∑

�=1

(∣

∣ρ̂t Ď
(

l�
)− ρ̂t Ğ

(

l�
)∣

∣+ ∣

∣̂βt Ď
(

l�
)− ̂βt Ğ

(

l�
)∣

∣+ ∣

∣γ̂ t Ď
(

l�
)− γ̂ t Ğ

(

l�
)∣

∣

)

⎞

⎠

3. The Euclidean distance between two trimorphic fuzzy sets is ψ(Ď, Ğ)

ψ(Ď, Ğ) =
√

√

√

√

ñ
∑

�=1

(

(

ρ̂t Ď
(

l�
)− ρ̂t Ğ

(

l�
))2 + (̂βt Ď

(

l�
)− ̂βt Ğ

(

l�
)

)2 + (γ̂ t Ď
(

l�
)− γ̂ t Ğ

(

l�
)

)2
)

4. The of normalized Euclidean distance between two trimorphic fuzzy sets is σ(Ď, Ğ)

σ (Ď, Ğ) =

√

√

√

√

√

1

n

⎛

⎝

ñ
∑

�=1

(

(

ρ̂t Ď
(

l�
)− ρ̂t Ğ

(

l�
))2 + (̂βt Ď

(

l�
)− ̂βt Ğ

(

l�
)

)2 + (γ̂ t Ď
(

l�
)− γ̂ t Ğ

(

l�
)

)2
)

⎞

⎠

3.2 Aggregation Operators for Trimorphic Fuzzy Data

Trimorphic fuzzy numbers are an expansion of conventional fuzzy numbers, which are utilized to address vul-
nerability and dubiousness in decision-making. In this article, we will examine a few fundamental procedures
on trimorphic fuzzy numbers and their applications in different fields. Fuzzy numbers have found applications
in different fields, including direction, and design. In navigation, fuzzy numbers are utilized to display dubious
data and pursue informed choices in complex conditions. In risk examination, fuzzy numbers help in surveying
and overseeing chances related to questionable occasions and factors. All in all, fuzzy numbers are a significant
device for addressing vulnerability and dubiousness in real world. By understanding the essential procedure on
fuzzy numbers and their applications in different fields, specialists, and professionals can successfully use them
to resolve certifiable issues pursue more real-world problems, and make more informed decisions in uncertain
environments.

In this area, we are going to be building some aggregation operators with trimorphic weighted aggregating
information for example Trimorphic Weighted arithmetic operator (TrFWA) and Trimorphic Weighted Geometric
(TrFWG) operator. We are looking at a number of the properties of these operators.

Definition 3.6 Let Ď� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, . . . , ñ) be a set of TrFNs. Then trimorphic fuzzy weighted
arithmetic (TrFWA) operator is defined as,

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊕

�=1

̂wl� Ď�

where ̂wl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denotes the weight vector with Ď�(� = 1, 2, . . . , ñ) and
∑ñ

�=1
̂wl� =

1,̂wl� � 0, γ � 0.

3.3 Operators for Trimorphic Fuzzy Arithmetic Aggregation

To efficiently aggregate the input data, (TrFWA) and (TrFWG) operators are used. These parameters allow Trimor-
phic fuzzyweighted aggregation operators to capture the ambiguity and uncertainty present in real-world scenarios
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involving decision-making. These operators find extensive application in fields like engineering economics and
medicine where decision-making is beset by imprecise and uncertain data. Trimorphic fuzzy weighted aggrega-
tion operators allow decision-makers to efficiently aggregate and assess trimorphic fuzzy number data leading to
more trustworthy and accurate conclusions. Moreover, these operators meticulously and methodically aggregate
trimorphic fuzzy number data advancing decision-making techniques in various domains.

Definition 3.7 Let Ď� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, . . . , ñ) be TrFNs. In this instance, we create a trimorphic
fuzzy Arithmetic Aggregation operator.

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊕

�=1

(̂wl� Ď�)

wherêwl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denote the weight vector with Ď�(� = 1, 2, . . . , ñ) and̂wl� � 0
∑ñ

�=1
̂wl� =

1.

Theorem 3.8 The TrFWA operator returns a TrFN with

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊕

�=1

(̂wl� Ď�)

=
⎛

⎝1 −
ñ
∏

�=1

(1 − ρ̂t�)
̂wl�, −

ñ
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
ñ
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

⎞

⎠

where ̂wl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denoted the weighted vector with Ď�(� = 1, 2, . . . , ñ) and ̂wl� � 0
∑ñ

�=1
̂wl� = 1.

Proof Mathematical induction can be used to prove this theorem.

1. Let ñ = 2, thereforêwl1 = 1 for the left side of the above

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďñ) = ̂wl1 Ď1 ⊕ (̂wl2 Ď2)

=
⎛

⎝

1 − (1 − ρ̂t1)
̂wl1 + 1 − (1 − ρ̂t2)

̂wl2 − (1 − (1 − ρ̂t1)
̂wl1)(1 − (1 − ρ̂t2)

̂wl2),

− ∣∣̂βt1
∣

∣

̂wl1 ∣
∣̂βt2

∣

∣

̂wl2
, − ∣∣γ̂ t1

∣

∣

̂wl1 ∣
∣γ̂ t2

∣

∣

̂wl2

⎞

⎠

= (1 − (1 − ρ̂t1)
̂wl1)((1 − ρ̂t2)

̂wl2), ̂βt
̂wl1

1
̂βt

̂wl2

2 , − ∣∣γ̂ t1
∣

∣

̂wl1 ∣
∣γ̂ t2

∣

∣

̂wl2)

Thus, for ñ = 2, it is true.
2. Let us assume that for ñ = k, it is true.

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďñ) =
k
⊕

�=1

(̂wl� Ď�)

=
(

1 −
k
∏

�=1

(1 − ρ̂t�)
̂wl�, −

k
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
k
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

)
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3. After that, we must demonstrate its validity for ñ = k + 1

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďk, Ďk+1) =
k
⊕

�=1

(̂wl� Ď�) ⊕ (̂wlk+1 Ďk+1)

=
(

1 −
k
∏

�=1

(1 − ρ̂t�)
̂wl�, −

k
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
k
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

)

⊕
(

1 − (1 − ρ̂tk+1)
̂wlk+1, − ∣∣̂βtk+1

∣

∣

̂wlk+1 , − ∣

∣γ̂ tk+1

∣

∣

̂wlk+1

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −
k
∏

�=1
(1 − ρ̂t�)

̂wl� + 1 − (1 − ρ̂tk+1)
̂wlk+1 − (1 −

k
∏

�=1
(1 − ρ̂t�)

̂wl�)

(1 − (1 − ρ̂tk+1)
̂wlk+1),

−
k+1
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
k+1
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
(

1 −
k+1
∏

�=1

(1 − ρ̂t�)
̂wl�, −

k+1
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
k+1
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

)

Therefore, ñ = k + 1 true. Hence, it is true for all n.

Example: Let Ď1 = (0.4, −0.3, −0.2), Ď2 = (0.5, −0.4, −0.1), Ď3 = (0.4, −0.3, −0.2) and Ď4 =
(0.3, −0.2, −0.1) be four TrFNs and w = (0.4, 0.3, 0.2, 0.1) is the weight vector of Ď�(1, 2, 3, 4) then

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ď4)

=
4
⊕

�=1

(̂wl� Ď�)

=
(

1 −
4
∏

�=1

(1 − ρ̂t�)
̂wl�, −

4
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
4
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

)

=
(

1 − (1 − ρ̂t1)
̂wl1(1 − ρ̂t2)

̂wl2(1 − ρ̂t3)
̂wl3(1 − ρ̂t4)

̂wl4,

− ∣∣̂βt1
∣

∣

̂wl1 × ∣

∣̂βt2
∣

∣

̂wl2 × ∣

∣̂βt3
∣

∣

̂wl3 × ∣

∣̂βt4
∣

∣

̂wl4
, − ∣∣γ̂ t1

∣

∣

̂wl1 × ∣

∣γ̂ t2
∣

∣

̂wl2 × ∣

∣γ̂ t3
∣

∣

̂wl3 × ∣

∣γ̂ t4
∣

∣

̂wl4
)

= (.4231, −.3100, −.1500)

Theorem 3.9 (Idempotency) If all b�(� = 1, 2, 3, . . . , ñ) are equal i.e., Ď� = Ď

then TrFWA
̂wl

(Ď1, Ď2, . . . , Ďñ) = Ď

Proof Since Ď� = (ρ̂t�, ̂βt�, γ̂ t�) and Ď = (ρ̂t, ̂βt, γ̂ t), then we have

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďk) =
k
⊕

�=1

(̂wl� Ď�)

=
⎛

⎝1 −
ñ
∏

�=1

(1 − ρ̂t�)
̂wl�, −

ñ
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
ñ
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

⎞

⎠
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=
(

1 −
4
∏

�=1

(1 − ρ̂t),
4

−
∏

�=1

∣

∣̂βt
∣

∣ , −
4
∏

�=1

∣

∣γ̂ t
∣

∣

)

= (

1 − (1 − ρ̂t), − ∣∣̂βt∣∣ , − ∣∣γ̂ t∣∣)

= (ρ̂t, ̂βt, γ̂ t) = Ď

Theorem 3.10 (Monotonicity property)Let Ď� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, 3, . . . , n)and Ď
′
�

= (ρ̂t
′
�, ̂βt

′
�, γ̂ t

′
�)

(� = 1, 2, . . . , n) be two number of TrFNs. Ď� ≤ Ď
′
�

for all � = 1, 2, . . . , n

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďn) ≤ Tr FW A
̂wl

(Ď
′
1, Ď

′
2, . . . , Ď

′
k)

Theorem 3.11 (Boundedness property) Let h� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, 3 . . . , ñ) be a number of TrFNs, then

Ď− ≤ Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) ≤ Ď+

3.4 Trimorphic Fuzzy Geometric Aggregation Operators

For handling ambiguous and contradicting data in a variety of applications, trimorphic fuzzy geometric aggregation
operators provide a strong and adaptable tool. These operators allow for more robust and dependable data analysis
information fusion and decision-making utilizing the rich representation capabilities of trimorphic fuzzy sets and
the geometric aggregation framework. More advanced and efficient aggregation techniques that fully utilize the
special characteristics of trimorphic fuzzy sets are likely to emerge as this field of study develops. We will now
talk about a few geometric aggregation operators that work with trimorphic fuzzy data.

Definition 3.12 Let Ď� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, . . . , ñ) be collection of TrFNs. Here we establish trimorphic
fuzzy weighted geometric (TrFWG) operator is

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊗

�=1

Ď
̂wl�
�

where ̂wl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denoted the weighted vector with Ď�(� = 1, 2, . . . , ñ) and ̂wl� � 0,
∑ñ

�=1
̂wl� = 1, γ � 0

Theorem 3.13 The TrFWG operator returns a TrFN with

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊗

�=1

(Ď�)
̂wl�

=
⎛

⎝

ñ
∏

�=1

(ρ̂t�)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

⎞

⎠

where ̂wl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denoted the weighted vector with Ď�(� = 1, 2, . . . , ñ) and ̂wl� � 0,
∑ñ

�=1
̂wl� = 1.
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Proof This theorem can be proved using mathematical induction when ñ = 2 thereforêwl1 = 1 for the left side
of the above

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) = (Ď1)
̂wl1
⊗

(Ď2)
̂wl2

=

⎛

⎜

⎜

⎝

(ρ̂t1)
̂wl1(ρ̂t2)

̂wl2,

−(2 − (1 − ̂βt1)
̂wl1 − (1 − ̂βt2)

̂wl2) − (1 − (1 − ̂βt1)
̂wl1)(1 − (1 − ̂βt2)

̂wl2,

−(2 − (1 − γ̂ t1)
̂wl1 − (1 − γ̂ t2)

̂wl2) − (1 − (1 − γ̂ t1)
̂wl1)(1 − (1 − γ̂ t2)

̂wl2)

⎞

⎟

⎟

⎠

= (̂βt
̂wl1

1
̂βt

̂wl2

2 , 1 − (1 − ρ̂t1)
̂wl1)((1 − ρ̂t2)

̂wl2), −1 + (1 − ρ̂t1)
̂wl1)((1 − ρ̂t2)

̂wl2)

= (1 − (1 − ρ̂t1)
̂wl1)((1 − ρ̂t2)

̂wl2), − ∣∣̂βt1
∣

∣

̂wl1 ∣
∣̂βt2

∣

∣

̂wl2
, − ∣∣γ̂ t1

∣

∣

̂wl1 ∣
∣γ̂ t2

∣

∣

̂wl2)

Therefore it is true for ñ = 2
2. Let us assume that for ñ = k, it is true.

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ)

= k⊗(
�=1

Ď�)
̂wl�

=
(

k
∏

�=1

(ρ̂t�)
̂wl�, −1 +

k
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, − 1 +

k
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

)

3. After that, we must demonstrate its validity for ñ = k + 1

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďk, Ďk+1)

=
k
⊗

�=1

(Ď�)
̂wl�

⊗

(Ďk+1)
̂wlk+1

=
(

k
∏

�=1

(ρ̂t�)
̂wl�, −1 +

k
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, − 1 +

k
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

)

⊕
(

(

ρ̂tk+1)
̂wlk+1, −1 + (1 − ∣

∣γ̂ tk+1

∣

∣)
̂wlk+1, −1 + (1 − ∣

∣γ̂ tk+1

∣

∣

)
̂wlk+1

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k+1
∏

�=1
(ρ̂t�)

̂wl�,

−[1 −
k
∏

�=1
(1 − ̂βt�)

̂wl� + 1 − (1 − ̂βtk+1)
̂wlk+1 − (1 −

k
∏

�=1
(1 − ̂βt�)

̂wl�)

(1 − (1 − ̂βtk+1)
̂wlk+1) )],

−[1 −
k
∏

�=1
(1 − γ̂ t�)

̂wl� + 1 − (1 − γ̂ tk+1)
̂wlk+1 − (1 −

k
∏

�=1
(1 − γ̂ t�)

̂wl�)

(1 − (1 − γ̂ tk+1)
̂wlk+1) )]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

k+1
∏

�=1

(ρ̂t�)
̂wl�, −1 +

k+1
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, − 1 +

k+1
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

)

Therefore, ñ = k + 1 true. Hence, it is true for all n. ��
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Theorem 3.14 (Idempotency) If all Ď�(� = 1, 2, 3, . . . , ñ) are equal i.e., Ď� = Ď then

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) = Ď

Proof Since Ď� = (ρ̂t�, ̂βt�, γ̂ t�) = (ρ̂t, ̂βt, γ̂ t), then we have

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊗

(

�=1

Ď�)
̂wl�

=
⎛

⎝

ñ
∏

�=1

(ρ̂t�)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

⎞

⎠

=
⎛

⎝

ñ
∏

�=1

(ρ̂t�)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

⎞

⎠

= (

(ρ̂t), −1 + 1 − ∣

∣̂βt
∣

∣ , −1 + 1 − ∣

∣γ̂ t
∣

∣

)

= (ρ̂t, ̂βt, γ̂ t) = Ď

Theorem 3.15 (Boundedness property) Let h� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, 3, . . . , ñ) be a number of TrFNs,
then

Ď− ≤ Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) ≤ Ď+

Theorem 3.16 (Monotonicity Property) Let Ď� = (ρ̂t�, ̂βt�, γ̂ t�)(� = 1, 2, 3 . . . ñ) and Ď
′
�

= (ρ̂t
′
�, ̂βt

′
�,

γ̂ t
′
�)(� = 1, 2, 3 . . . n) be two number of TrFNs. Ď� ≤ Ď

′
�

for all � = 1, 2, 3 . . . ñ

T r FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) ≤ Tr FWG
̂wl

(Ď
′
1, Ď

′
2 . . . Ď

′
ñ)

4 Multiple Attribute Decision-Making Algorithmwith Trimorphic Fuzzy Information

Our proposed model for a multiple attribute decision-making model using trimorphic fuzzy information based on
the TrFWA (TrFWG) operators will be discussed in this section. Assume Ğ = {Ğ1, Ğ2, . . . , Ğñ} be a discrete
set of alternatives. where G = {G1,G2, . . . ,Gñ} is the set of criteria. Assume ̂wl = (̂wl1,

̂wl2, . . . ,
̂wl ñ)T be

the weight of the criteria G�(� = 1, 2, . . . , ñ) such that ̂wl ∈ [0, 1], ∑ñ
�=1

̂wl� = 1. Let R = (Ďi j )m×ñ =
(ρ̂t i× j , ̂βt i× j , γ̂ t i× j )m×ñ. be decision matrix where ρ̂t i j ∈ [0, 1], ̂βt i j ∈ [−1, 0] and γ̂ t i j ∈ [−1, 0]. We then
use the TrFWA (TrFWG) operator to construct MADM algorithm involving trimorphic fuzzy data.

The MCDM process involve following steps:

Step 1 Normalize Mi j = [ρ̂t i j , ̂βt i j , γ̂ t i j ]m×n, (ı̆ = 1, 2, . . . ,m; i = 1, 2, . . . , n). Generally, the criteria can be
classified into two groups, benefit criteria and cost criteria. If all the criteria are of similar type, process of
normalization will not be done. But if Miı̆ contains both cost criteria and benefit criteria, then the rating
values of the cost criteria can be changed into the benefit criteria by the following normalization method:

ri j = [pi j , qi j , zi j ] =
{

Mc
i j , if the criterion is of cost type

Mi j , if the criterion is of benefit type
,
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Fig. 1 Multicriteria
decision-making algorithm

where pi j = ρ̂t i j
√

∑m
i=1 ρ̂t2i j

, qi j = ̂βt i j
√

∑m
i=1

̂βt
2
i j

and zi j = γ̂ t i j
√

∑m
i=1 γ̂ t2i j

,

pi j , qi j ,and zi j are the elements of normalized decision matrix, respectively.

Step 2 Use the proposed aggregation operators i.e., TrFWA (TrFWG) operator to calculate the aggregated TFNs
for each alternatives Ği (i = 1, 2, . . . , ñ).

Step 3 Calculate the score values of all the aggregated values of the alternatives.
Step 4 Rank all the alternatives according to the score values of the alternatives. Select the alternative with the

highest score as the best alternative

4.1 Flowchart

Flowcharts are a visual representation of a process or algorithm and their importance lies in their ability to break
down intricate procedures into easy-to-understand steps, also provide a clear and concise visual representation of
a process, reducing confusion and errors. The following flowchart helps understand the process and algorithms of
models with trimorphic fuzzy information.

5 Numerical Example

In this section, we demonstrate the application of the developed approaches on a real-world example of multiple
attribute decision-making problems. An organization of disabled persons wants to select the best AI-powered
assistive technology (AT) for individuals with disabilities among the five alternatives ( Â1, Â2, Â3, Â4 and Â5),
using trimorphic fuzzy set to enhance decision-making (Fig. 1).

Alternatives:

1. Â1: Manual wheel chair
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Table 1 Decision-maker’s information

M =

⎡

⎢

⎢

⎢

⎣

(0.6,−0.3,−0.1) (0.4,−0.1,−0.6) (0.3,−0.5,−0.4) (0.1,−0.3,−0.2)
(0.4,−0.2,−0.5) (0.1,−0.5,−0.3) (0.5,−0.2,−0.4) (0.5,−0.1,−0.1)
(0.6,−0.1,−0.1) (0.6,−0.2,−0.2) (0.4,−0.4,−0.1) (0.2,−0.4,−0.5)
(0.2,−.3,−0.6) (0.3,−0.4,−0.7) (0.4,−0.5,−0.2) (0.5,−0.4,−0.3)
(0.6,−0.2,−0.3) (0.4,−0.3,−0.2) (0.5,−0.2,−0.4) (0.3,−0.3,−0.4)

⎤

⎥

⎥

⎥

⎦

2. Â2: Patriotic Wheel chair
3. Â3: Standing power wheel
4. Â4: AI-powered assistive technology (AT) wheel chair
5. Â5: Powered wheel chair

Criteria:

1. Comfort (weight: 0.2)
2. Outdoor travel (weight: 0.1)
3. Battery life (weight:0.3)
4. Cost (weight: 0.4)

Step 1 The decision matrix is given below.
Step 2 Normalization is not needed for the data in Table 1 as all the criteria are of the same type.
Step 3 To select the best AI-powered assistive technology (AT) for individuals with disabilities from five alterna-

tives ( Â1, Â2, Â3, Â4 and Â5), we utilize the (TrFWA/TrFWG) operator.
The TrFWA operator returns a TrFN with

Tr FW A
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊕

�=1

(̂wl� Ď�)

=
⎛

⎝1 −
ñ
∏

�=1

(1 − ρ̂t�)
̂wl�, −

ñ
∏

�=1

∣

∣̂βt�
∣

∣

̂wl� , −
ñ
∏

�=1

∣

∣γ̂ t�
∣

∣

̂wl�

⎞

⎠

wherêwl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denoted the weighted vector with Ď�(� = 1, 2, . . . , ñ) and̂wl� � 0
∑ñ

�=1
̂wl� = 1.

To get Â1, we have to use the following values from matrix M and weighted vector ̂wl1 = 0.2,̂wl2 =
01,̂wl3 = 0.3,̂wl4 = 0.4
ρ̂t1 = 0.6, ρ̂t2 = 0.4, ρ̂t3 = 0.3, ρ̂t4 = 0.1,
̂βt1 = 0.3, ̂βt2 = 0.1, ̂βt3 = 0.5, ̂βt4 = 0.3,
γ̂ t1 = 0.1, γ̂ t2 = 0.6, γ̂ t3 = 0.4, γ̂ t4 = 0.2,

Â1 =

⎛

⎜

⎜

⎝

1 − (1 − ρ̂t1)
̂wl1 × (1 − ρ̂t2)

̂wl2 × (1 − ρ̂t3)
̂wl3 × (1 − ρ̂t4)

̂wl4,

− ∣∣̂βt1
∣

∣

̂wl1 × ∣

∣̂βt2
∣

∣

̂wl2 × ∣

∣̂βt3
∣

∣

̂wl3 × ∣

∣̂βt4
∣

∣

̂wl4
,

− ∣∣γ̂ t1
∣

∣

̂wl1 × ∣

∣γ̂ t2
∣

∣

̂wl2 × ∣

∣γ̂ t3
∣

∣

̂wl3 × ∣

∣γ̂ t4
∣

∣

̂wl4

⎞

⎟

⎟

⎠
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Table 2 Score values and ranking TrFWA

Â1 = (0.3185,−0.3133,−0.2392)

Â2 = (0.4500,−0.1661,−0.23341)

Â3 = (0.40392,−0.2828,−0.2040)

Â4 = (0.3999,−0.4037,−0.3321)

Â5 = (0.4428,−0.2449,−0.3523)

Fig. 2 Ranking of the
alternatives

Â1 =
⎛

⎝

1 − (1 − 0.6)0.2 × (1 − 0.4)0.1 × (1 − 0.3)0.3 × (1 − 0.1)0.4,
− |0.3|0.2 × |0.1|0.1 × |0.5|0.3 × |0.3|0.4 ,

− |0.1|0.2 × |0.6|0.1 × |0.4|0.3 × |0.2|0.4

⎞

⎠

Â1 = (.3185, −.3133, −.2392)

Similarly, we can find Â2, Â3 and Â4, we got the following Table 2.
Step 4 Determine the scores S( Â�) of trimorphic fuzzy numbers Â� the score function S of Â = (ρ̂t Â, ̂βt Â,

γ̂ t Â) is evaluated as.

S( Â) = 1

3

∣

∣ρ̂t Â + ̂βt Â + γ̂ t Â
∣

∣ S( Â) ∈ [0, 1]

S( Â1) = 1

3
|0.3185 − 0.3133 − 0.2392|

S( Â1) = 0.0780

S( Â1) = 0.0780, S( Â2) = 0.0168, S( Â3) = 0.0276, S( Â4) = 0.112, S( Â5) = 0.0515
Step 5 Ranking all the alternatives according to the score values. Â4 � Â1 � Â5 � Â3 � Â2.

A4 is the best AI-powered assistive technology (AT) for individuals with disabilities among the five evaluated
alternatives.
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Table 3 Total score values and these alternatives order of
ranking

TrFWG

Â1 = (0.2285,−0.3511,−0.2989)

Â2 = (0.4070,−0.1999,−0.3090)

Â3 = (0.3423,−0.3303 − 0.2968)

Â4 = (0.3699,−0.4141 − 0.4014)

Â5 = (0.4134,−0.2516,−0.3631)

From graph, we can see that Â4 is the first ranking, Â1 is the second ranking, Â5 is the third ranking Â3 is the
fourth and Â2 is the fifth ranking (Fig. 2).

Next we have to apply TrFWG operator on the data present in decision matrix M .

The TrFWG operator returns a TrFN with

Tr FWG
̂wl

(Ď1, Ď2, . . . , Ďñ) =
ñ
⊗

�=1

(Ď�)
̂wl�

=
⎛

⎝

ñ
∏

�=1

(ρ̂t�)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣̂βt�
∣

∣)
̂wl�, −1 +

ñ
∏

�=1

(1 − ∣

∣γ̂ t�
∣

∣)
̂wl�

⎞

⎠

where ̂wl = (̂wl1,
̂wl2, . . . ,

̂wl ñ)T denoted the weighted vector with Ď�(� = 1, 2, . . . , ñ) and ̂wl� � 0,
∑ñ

�=1
̂wl� = 1.

To get Â1, we have to use the following values frommatrixM andweighted vector̂wl1 = 0.2,̂wl2 = 01,̂wl3 =
0.3,̂wl4 = 0.4
ρ̂t1 = 0.6, ρ̂t2 = 0.4, ρ̂t3 = 0.3, ρ̂t4 = 0.1,
̂βt1 = 0.3, ̂βt2 = 0.1, ̂βt3 = 0.5, ̂βt4 = 0.3,
γ̂ t1 = 0.1, γ̂ t2 = 0.6, γ̂ t3 = 0.4, γ̂ t4 = 0.2,

Â1 =

⎛

⎜

⎜

⎝

(ρ̂t1)
̂wl1 × (ρ̂t2)

̂wl2 × (ρ̂t3)
̂wl3 × (ρ̂t4)

̂wl4,

−1 + (1 − ∣

∣̂βt1
∣

∣)
̂wl1 × (1 − ∣

∣̂βt2
∣

∣)
̂wl2 × (1 − ∣

∣̂βt3
∣

∣)
̂wl3 × (1 − ∣

∣̂βt4
∣

∣)
̂wl4,

−1 + (1 − ∣

∣γ̂ t1
∣

∣)
̂wl1 × (1 − ∣

∣γ̂ t2
∣

∣)
̂wl2 × (1 − ∣

∣γ̂ t3
∣

∣)
̂wl3 × (1 − ∣

∣γ̂ t4
∣

∣)
̂wl4

⎞

⎟

⎟

⎠

Â1 =
⎛

⎝

(0.6)0.2 × (0.4)0.1 × (0.3)0.3 × (0.1)0.4,
−1 + (1 − |−0.3|)0.2 × (1 − |−0.1|)0.1 × (1 − |−0.5|)0.3 × (1 − |−0.3|)0.4,
−1 + (1 − |−0.1|)0.2 × (1 − |−0.6|)0.1 × (1 − |−0.4|)0.3 × (1 − |−0.2|)0.4

⎞

⎠

Â1 = (0.2285, −0.3511, −0.2989)

Similarly, we can find Â2, Â3 and Â4, we got the following table:

The results of which are present in Table 3.
Determine the scores S( Â�) of the trimorphic fuzzy numbers Â�.

The score function S of Â = (ρ̂t Â, ̂βt Â, γ̂ t Â) is evaluated as

S( Â) = 1

3

∣

∣ρ̂t Â + ̂βt Â + γ̂ t Â
∣

∣ S( Â) ∈ [0, 1]
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Fig. 3 Ranking of the
alternatives

S( Â1) = 1

3
|0.2285 − 0.3511 − 0.2989|

S( Â1) = 0.14051

S( Â1) = 0.14051, S( Â2) = 0.0339, S( Â3) = 0.0949, S( Â4) = 0.1485, S( Â5) = 0.0671
Ranking order
Â4 � Â1 � Â3 � Â5 � Â2.

A4 is the best AI-powered assistive technology (AT) for individuals with disabilities among five evaluated
alternatives (Fig. 3).

The graph indicates that Â4 is in the top position followed by Â1 in the second place Â3 in the third Â5 in the
fourth and Â2 in the fifth. The ranking results of the alternatives by both the operators are given below:

Operators Ranking order

TrFWA Â4 � Â1 � Â5 � Â3 � Â2

TrFWG Â4 � Â1 � Â3 � Â5 � Â2

5.1 Comparison Analysis

This section will cover a comparison between other known aggregation operators and the suggested aggrega-
tion operators under trimorphic fuzzy information. The suggested aggregation operators were contrasted with
picture fuzzy weighted averaging/ geometric (PFWA/PFWG) [6], picture fuzzy order weighted averaging/ geo-
metric (PFOWA/PFOWG) [6], picture fuzzy Dombi weighted averaging/ geometric (PFDWA/PFDWG) [11],
picture fuzzy Dombi order weighted averaging/ geometric (PFDOWA/PFDOWG) [11], picture fuzzy Dombi
hybrid weighted averaging/ geometric (PFDHWA/PFDHWG) [11], picture fuzzy Einstein weighted averaging/
geometric (PFEWA/PFEWG), picture fuzzy Einstein order weighted averaging/ geometric (PFEOWA/PFEOWG)
[12]. The following in Table 4 is a summary of our findings.

We can see from the table above that the ranking of the existing operators PFWA [6] and PFWG [6] operators
are Â2 � Â4 � Â3 � Â5 � Â1 and Â2 � Â3 � Â4 � Â5 � Â1 respectively in which the choice of second
alternative is confusing similarly since the ranking results of other existing aggregation operators are not similar,
even there is confusion in the selection of the best alternative among them. In the case of our proposed trimorphic
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Table 4 Ranking order of the alternatives Operators Ranking

PFWA [6] Â2 � Â4 � Â3 � Â5 � Â1

PFWG [6] Â2 � Â3 � Â4 � Â5 � Â1

PFOWA [6] Â2 � Â4 � Â3 � Â5 � Â1

PFOWG [6] Â2 � Â4 � Â3 � Â5 � Â1

PFEWA [12] Â4 � Â3 � Â2 � Â5 � Â1

PFEWG [12] Â2 � Â4 � Â3 � Â5 � Â1

PFEOWA [12] Â2 � Â4 � Â3 � Â5 � Â1

PFEOWG [12] Â2 � Â4 � Â3 � Â5 � Â1

PFDWA [11] Â2 � Â1 � Â5 � Â4 � Â3

PFDWG [11] Â2 � Â3 � Â4 � Â5 � Â1

PFDOWA [11] Â2 � Â1 � Â5 � Â3 � Â4

PFDOWG [11] Â3 � Â2 � Â4 � Â5 � Â1

PFDHWA [11] Â2 � Â1 � Â5 � Â4 � Â3

PFDHWG [11] Â1 � Â3 � Â5 � Â5 � Â4

fuzzy aggregation operators, there is no confusion as compared to other existing aggregation operators with regard
to their choice of the first and also of second option.

Therefore, it ismore reliable and efficient to use our proposed trimorphic fuzzy aggregation operators as opposed
to those of the past.

6 TOPSIS Method

Hwang and Yoon [9] developed the TOPSISmethod. It is a very useful MCDM technique. This method is based on
the idea of the level of optimality established in an alternative, where different criteria stand in for the idea of the
best option [27]. The foundation of the TOPSIS approach is the notion that, in actual practice, the best alternative
will be the closest to the positive ideal solution and the farthest from the negative ideal solution.The TOPSIS
technique has been used in a variety of decision scenarios. This is because (a) it is computationally feasible, (b)
it is significant in solving various viable decision issues, (c) it is simple, and (d) it is easy to understand. TOPSIS
looks at these extremes in an attempt to find the option that minimizes the adverse effect and most closely matches
the desired criteria [16]. When presented with a variety of options and competing evaluation criteria, this method
offers a methodical and structured way to decide. TOPSIS helps decision-makers make well-informed decisions
by giving equal weight to the advantages and disadvantages of each alternative. Because it enables a thorough
evaluation that considers the relative importance of each criterion this method is especially helpful in scenarios
where there are trade-offs between various criteria [17]. In general, TOPSIS provides a methodical and orderly
framework for making decisions assisting in making sure the selected option is appropriate for fulfilling the given
requirements and goals.

Flowchart of TOPSIS Method
Using a variety of criteria the TOPSIS method offers a methodical way to assess and rank options. This method

is a useful tool for decision-making in a variety of fields because it consists of a set of clearly defined steps that
aid in selecting the best option from a set of options (Fig. 4).

The Algorithm of TOPSIS method is given below.
TOPSIS method has the below steps:
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Fig. 4 Algorithm of TOPSIS method

Step 1 Construct the decision matrix.

Mi j = [ρ̂t i j , ̂βt i j , γ̂ t i j ]m×n

Step 2 Normalize Mi j = [ρ̂t i j , ̂βt i j , γ̂ t i j ]m×n, (ı̆ = 1, 2, . . . ,m; i = 1, 2, . . . , n). Generally, the criteria can be
classified into two groups, benefit criteria and cost criteria. If all the criteria are of similar type, process of
normalization will not be done. But if Miı̆ contains both cost criteria and benefit criteria, then the rating
values of the cost criteria can be changed into the benefit criteria by the following normalization method:

ri j = [pi j , qi j , zi j ] =
{

Mc
i j , if the criterion is of cost type

Mi j , if the criterion is of benefit type
,

where pi j = ρ̂t i j
√

∑m
i=1 ρ̂t2i j

, qi j = ̂βt i j
√

∑m
i=1

̂βt
2
i j

and zi j = γ̂ t i j
√

∑m
i=1 γ̂ t2i j

,

pi j , qi j ,and zi j are the elements of normalized decision matrix respectively.

Step 3 Weighted normalized decision matrix i.e.,

Mi j = Gi j
̂wl j∀i, j

where the weight given to attribute j is denoted bŷwl j .

Step 4 Finding the positive-ideal
(

Ď+
)

and negative-ideal
(

Ď−
)

solutions i.e.,

Ď+ =
{{(

max
q

ρ̂t pq(l)/p ∈ R

)

,

(

min
q
̂βt pq(l)/p ∈ R/

)

,

(

min
q

γ̂ t pq(l)/p ∈ R/

)}}

Ď− =
{{(

min
q

ρ̂t pq(l)/p ∈ R

)

,

(

max
q
̂βt pq(l)/p ∈ R/

)

,

(

max
q

γ̂ t pq(l)/p ∈ R/

)}}

where R and R′ are associated with benefit and cost criteria respectively. Calculate Hamming distance between

each element of decision matrix with a positive ideal
(

Ď+
)

and negative-ideal
(

Ď−
)

of separation measure.

Positive ideal values are calculated by the below formula:

λ(Ď, Ğ)+i =
ñ
∑

�=1

(

∣

∣ρ̂t i j
(

l�
)− ρ̂t+i

(

l�
)∣

∣+
∣

∣

∣

̂βt i j
(

l�
)− ̂βt

+
i

(

l�
)

∣

∣

∣+ ∣

∣γ̂ t i j
(

l�
)− γ̂ t+i

(

l�
)∣

∣

)

.
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Negative ideal values are calculated by the below formula:

λ(Ď, Ğ)−i =
ñ
∑

�=1

(

∣

∣ρ̂t i j
(

l�
)− ρ̂t−i

(

l�
)∣

∣+
∣

∣

∣

̂βt i j
(

l�
)− ̂βt

−
i

(

l�
)

∣

∣

∣+ ∣

∣γ̂ t i j
(

l�
)− γ̂ t−i

(

l�
)∣

∣

)

.

Step 5 Find the closeness coefficient. Closeness coefficient ranks options according to how close they are to the
optimal solution. This is determined by dividing the distance of an alternative from the NIS by the total of
its distances from the PIS and the NIS. Mathematically, it is expressed as

F+
i = λ(Ď, Ğ)+i

λ(Ď, Ğ)+i + λ(Ď, Ğ)−i

Step 6 Wewill select the best alternative on the basis of closeness to the positive ideal solution. The optionwith the
highest closeness coefficient is regarded as the best. This methodical approach guarantees a fair assessment
of each option in light of the selection criteria.

6.1 Numerical Example

A multi-criteria approach to decision-making that can be used in a variety of situations including hiring decisions
is called TOPSIS. A healthcare organization seeks to identify the most suitable AI-powered assistive technology
to improve patient care. The organization has the following available choices:

Choices/Alternatives:
F̂1: System A
F̂2: System B
F̂3: System C
F̂4: System D
Criteria:
C1 : Accuracy (weight: 0.3)
C2 : Ease of use (weight: 0.2)
C3 : Scalability (weight: 0.1)
C4 : Cost (weight: 0.4).
The fourth criteria are non-beneficial while the first three are beneficial. The four alternatives are to be assessed

by the decision-makers under the four attributes whose weighting vector iŝwl = (0.3, 0.2, 0.1, 0.4). The decision
matrices of the three experts are given below.

For the selection of suitable system, we use our suggested methodologies. The step-by-step details are given
below:

Step 2 Create a decision matrix.

Expert 1

M1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1 C2 C3 C4

F̂1 (.5, −.4, −.1) (.3, −.4, −.1) (.2, −.2, −.2) (.3, −.1, −.4)
F̂2 (.3, −.2, −.3) (.5, −.4, −.1) (.3, −.2, −.1) (.1, −.1, −.4)
F̂3 (.5, −.5, −.2) (.5, −.2, −.1) (.2, −.2, −.3) (.5, −.2, −.1)
F̂4 (.6, −.2, −.3) (.5, −.4, −.1) (.2, −.2, −.1) (.2, −.5, −.1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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Expert 2

M2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1 C2 C3 C4

F̂1 (.5, −.4, −.3) (.3, −.1, −.1) (.1, −.2, −.4) (.1, −.2, −.4)
F̂2 (.3, −.2, −.3) (.5, −.4, −.4) (.5, −.2, −.1) (.5, −.1, −.1)
F̂3 (.5, −.5, −.2) (.5, −.2, −.2) (.3, −.1, −.1) (.5, −.2, −.1)
F̂4 (.6, −.2, −.3) (.5, −.4, −.1) (.5, −.1, −.4) (.1, −.5, −.4)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Expert 3

M3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1 C2 C3 C4

F̂1 (.1, −.4, −.1) (.3, −.4, −.3) (.5, −.1, −.4) (.5, −.1, −.4)
F̂2 (.3, −.2, −.3) (.5, −.1, −.1) (.5, −.5, −.1) (.5, −.2, −.4)
F̂3 (.5, −.5, −.2) (.1, −.1, −.5) (.3, −.1, −.1) (.1, −.2, −.1)
F̂4 (.3, −.2, −.3) (.5, −.4, −.1) (.1, −.1, −.4) (.1, −.5, −.1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Combining the Tables 1, 2 and 3 and finding the average of each corresponding element of all tables, we get

M4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1 C2 C3 C4

F̂1 (.37, −.40, −.17) (.30, −.30, −.17) (.27, −.17, −.33) (.30, −.13, −.40)
F̂2 (.30, −.20, −.30) (.50, −.30, −.20) (.43, −.30, −.10) (.37, −.13, −.30)
F̂3 (.50, −.50, −.20) (.37, −.17, −.27) (.27, −.13, −.17) (.37, −.20, −.10)
F̂4 (.50, −.20, −.30 (.50 − .40, −.10) (.27, −.13, −.30) (.13, −.50, −.20)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Step 3 We normalized decision matrix M4 which is given as M5.

M5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1 C2 C3 C4

F̂1 (.44, −.57, −.34) (.35, −.49, −.44) (.44, −.43, −.67) (.48, −.23, −.73)
F̂2 (.35, −.29, −.60) (.59, −.49, −.51) (.69, −.75, −.20) (.60, −.23, −.55)
F̂3 (.59, −.71, −.40) (.44, −.28, −.69) (.44, −.33, −.35) (.60, −.35, −.18)
F̂4 (.59, −.29, −.60) (.59, −.66, −.26) (.44, −.33, −.61) (.21, −.88, −.36)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Step 4 Construction of weighted normalized decision matrix:

M6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1(.3) C2(.2) C3(.1) C4(.4)
F̂1 (.13, −.17, −.10) (.07, −.10, −.09) (.04, −.04, −.07) (.19, −.09, −.29)
F̂2 (.11, −.09, −.18) (.12, −.10, −.10) (.07, −.08, −.02) (.24, −.09, −.22)
F̂3 (.18, −.21, −.12) (.09, −.06, −.14) (.04, −.03, −.04) (.24, −.14, −.07)
F̂4 (.18, −.09, −.18) (.12, −.13, −.05) (.04, −.03, −.06) (.08, −.35, −.14)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Step 5 Determination of ideal
(

Ď+
)

and negative-ideal
(

Ď−
)

solutions.

Thefirst three are beneficial and last one is non-beneficial usingmaximumandminimumoperations, respectively.
The positive ideal solution is
Ď+ = {(.18, −.21, −.18), (.12, −.13, −.14)(.07, −.08, −.07), (.08, −.09, −.07)}
The negative ideal solution is
Ď− = {(.11, −.09, −.1), (.07, −.06, −.05)(.04, −.03, −.02), (.24, −.35, −.29)}
This step uses hamming distance operators to calculate the separation between each normalized decision matrix

element and the positive and negative ideal solutions.
λ(Ď, F̂)+i = {.70, .62, .48, .63} and λ(Ď, F̂)−i = {.55, .63, .77, .62}
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Table 5 Values of closeness coefficients Overall rating values

F̂1 = 0.560

F̂2 = 0.496

F̂3 = 0.384

F̂4 = 0.504

Fig. 5 Comparison
analysis

Table 6 Ranking order of alternatives Operators Ranking

PFWA [6] F̂1 > F̂4 > F̂2 > F̂3

PFWG [6] F̂1 > F̂2 > F̂4 > F̂3

PFOWA [6] F̂1 > F̂4 > F̂2 > F̂3

PFOWG [6] F̂4 > F̂1 > F̂3 > F̂2

PFDWA [11] F̂1 > F̂2 > F̂4 > F̂3

PFDWG [11] F̂4 > F̂1 > F̂2 > F̂3

PFDOWA [11] F̂1 > F̂2 > F̂4 > F̂3

PFDOWG [11] F̂4 > F̂1 > F̂2 > F̂3

Step 6 Find the closeness coefficient. The values of closeness coefficients are given in Table 5.
Step 7 Rank all the alternatives according to the closeness coefficients.

F̂1 > F̂4 > F̂2 > F̂3.
F̂1 is the best system among all the evaluated alternatives (Fig. 5).
From the graph, we see that F̂1 is the first ranking, F̂4 is the second ranking, F̂2 is the third ranking, and F̂3 is

the fourth.

6.2 Comparison Analysis

This section presents the comparison between other known aggregation operators and the results of TOPSISmethod
under trimorphic fuzzy information. The results of TOPSIS method were contrasted with picture fuzzy weighted
averaging/geometric (PFWA/PFWG) [6], picture fuzzy order weighted averaging/geometric (PFOWA/PFOWG)
[6], picture fuzzy Dombi weighted averaging/geometric (PFDWA/PFDWG) [11], picture fuzzy Dombi order
weighted averaging/ geometric (PFDOWA/PFDOWG) [11]. The summary of all the ranking of the outcomes is
given in Table 6.

123 Int J Comput Intell Syst          (2025) 18:78 

https://doi.org/10.1007/s44196-025-00770-2


https://doi.org/10.1007/s44196-025-00770-2  Page 25 of 27    78 

We can see from the table above that the ranking of the existing operators PFWA [6] and PFWG [6] operators
is F̂1 > F̂4 > F̂2 > F̂3 and F̂1 > F̂2 > F̂4 > F̂3, respectively, in which the choice of second alternative is
confusing similarly since the ranking results of other existing aggregation operators are not similar even when
there is confusion in the selection of the best alternative among them. In the case of our proposed trimorphic fuzzy
TOPSIS method, there is no confusion as compared to other existing techniques with regard to their choice of the
first and also of the second option.

7 Conclusion

A novel idea of trimorphic fuzzy sets, which are extensions of the current fuzzy sets, has been introduced. For
managing ambiguity in real-world problems, TrFS is a more useful tool. It resolved the issues encountered by
traditional fuzzy sets, intuitionistic fuzzy sets, bipolar fuzzy sets, and picture fuzzy sets, particularly when applied
to hiring promotions and the selection of appropriate AI-powered assistive technology for people with disabilities.
It’s an innovative idea that provides effective representation for problems involving imprecision uncertainty and
decision-making. We have outlined some aggregation operators for trimorphic fuzzy information, covered some
fundamental ideas in brief, and created a model of multiple attribute decision-making in a trimorphic environment.
By comparing suggested aggregation operators with other existing techniques, we utilize trimorphic fuzzy aggre-
gation operators to build the MADM approach for the selection of AI-powered assistive technology for people
with disabilities. We have developed the extended form of TOPSIS method with TrFNs. To validate the developed
approach and demonstrate its effectiveness and practicality, this paper presents a practical example for evaluat-
ing and selecting AI-powered assistive technologies to support individuals with disabilities. After comparing the
outcomes of our suggested techniques with those of the current approaches, we discovered that our results were
clearer and more accurate.

In future work, our proposed models will be applied to various fields, such as engineering, hydro power plants,
renewable energy, and mobile robots, in our upcoming study.
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