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Abstract 35 

Plastic waste poses a significant threat as a hazardous material, while the production of cement 36 

raises environmental concerns. It is imperative to urgently address and reduce both plastic waste 37 

and cement usage in concrete products. Recently, several experimental studies have been 38 

performed to incorporate plastic waste into paver blocks as a substitute for cement. However, the 39 

experimental testing can’t be enough to optimize the use of waste plastic in pavers due to resource 40 

and time limitations. This study proposes an innovative approach, integrating experimental testing 41 

with machine learning to optimize plastic waste ratios in paver blocks efficiently. Initially, 42 

experimental investigations are performed to examine the compressive strength (CS) of plastic 43 

sand paver blocks (PSPB). Varied mix proportions of plastic and sand with different sizes of sand 44 

are employed. Moreover, to enhance the CS and meet the minimum requirements of ASTM C902-45 

15 for light traffic, basalt fibers, a sustainable industrial material, are also utilized in the 46 

manufacturing process of environmentally friendly PSPB. The highest CS of 17.26 MPa is 47 

achieved by using the finest-size sand particles with a plastic-to-sand ratio of 30:70. Additionally, 48 

the inclusion of 0.5% basalt fiber, measuring 4 mm in length, yields further enhancement in 49 

outcome by significantly improving CS by 25.4% (21.65 MPa). Following that, an extensive 50 

experimental record is established, and multi-expression programming (MEP) is used to forecast 51 

the CS of PSPB. The model's projected results are confirmed by using various statistical 52 

procedures and external validation methods. Furthermore, comprehensive parametric and 53 

sensitivity studies are conducted to assess the effectiveness of the MEP-based proposed models. 54 

The sensitivity analysis demonstrates that the size of the sand particles and the fiber content are 55 

the primary factors contributing to more than 50% of the CS in PSPB. The parametric analysis 56 

confirmed the model's accuracy by demonstrating a comparable pattern to the experimental results. 57 

Furthermore, the results indicate that the proposed MEP-based formulation exhibits high precision 58 

with an R2 of 0.89 and possesses a strong ability to predict. The study also provides a graphical 59 

user interface (GUI) to increase the significance of ML in the practical application of handling 60 

waste management The main aim of this research is to enhance the reuse of plastic waste to 61 

promote sustainability and economic benefits, particularly in producing green environments with 62 

integration of machine learning and experimental investigations. 63 

Keywords:  Compressive Strength, Plastic Waste, Basalt Fiber, Multi-Expression Programming, 64 

Paver Blocks, Graphical User Interface 65 
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Abbreviations 70 

PSPB  Plastic-sand paver blocks 71 

CS  Compressive strength 72 

ASTM   American Society for Testing and Materials 73 

ML       Machine learning 74 

LDPE  Low-density polyethylene  75 

F  Fiber content 76 

S  Sand 77 

MEP  Multi expression programming 78 

PW  Plastic waste 79 

SVM  Support vector machine 80 

R  Coefficient of correlation 81 

OF  Objective function 82 

ANN  Artificial neural network 83 

PI  Performance Index 84 

RMSE  Root means squared error. 85 

ANFIS  Adaptive neuro-fuzzy inference system 86 

MAE  Mean absolute error 87 
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1. Introduction 89 

Efficiently managing solid waste remains a significant obstacle, especially in developing countries. 90 

PW is a sort of solid waste that is a matter of serious concern at both national and global levels. 91 

The issue of PW has been steadily increasing over the past four decades, with only a fraction of it 92 

currently being recycled. The widespread use of plastic, because of its adaptability and extended 93 

reliability, has resulted in the substantial creation of disposable plastic and the accompanying 94 

generation of garbage. The massive increase of PW in the ecosystem poses a significant risk to 95 

many aquatic creatures and the long-term viability of the natural world. Water pollution arises 96 

when polluted wastewater is discharged into aquatic environments such as oceans and rivers, in 97 

which it is exposed to solar radiation and the motions of water and waves [1], [2], [3]. An estimated 98 

8 million metric tonnes of plastic are being dumped into the ocean, and it is expected that if this 99 

trend persists, garbage in the marine environment exceed the number of fish [4]. Microplastics 100 

produced during the degradation of plastic have been linked with health problems in animals as a 101 

result of the process of bioaccumulation and biomagnification [5]. Furthermore, PW can hinder 102 

the movement of water in sewer systems, leading to overflow and the rapid spread of insect 103 

parasites and waterborne diseases [6]. The global consistently expanding trend of plastic waste 104 

production from 1950 to 2015 is shown in Fig. 1 [7]. Due to its inability to decompose, plastic has 105 

exacerbated various ecological challenges while posing additional risks to local communities. 106 

 107 

Fig. 1: Worldwide plastic waste production (1950-2015) [7]. 108 

Among the several approaches to managing PW, the conversion of plastic into a useful item is 109 

particularly beneficial. This approach not only decreases the need for new materials but also 110 

enhances the economic value of waste. Additionally, studies have indicated that recycling PW by 111 

stabilizing it in concrete or creating useful items using supplementary recycling has less 112 

detrimental effects on the environment compared to pyrolysis and incineration methods [8]. Paver 113 

blocks (PB) and bricks have also been produced using PW. For many years, Cement-based PB has 114 

been extensively used in pedestrian walkways, driveways, shipping yards, and roads [9]. However, 115 
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scientists are worried about the growing production of concrete products and the subsequent 116 

release of CO2, which poses a significant environmental risk. To preserve the planet, it is necessary 117 

to decrease the utilization of cement. This is because the manufacture of cement-based 118 

composites results in substantial releases of CO2. Minimizing cement consumption can 119 

significantly decrease CO2 emissions, with around 0.9 tonnes of CO2 produced annually for 120 

every 1.0 tonnes of cement consumed [10]. The cement sector accounts for nearly 8% of all 121 

anthropogenic greenhouse gas emissions [11]. The conventional paver block (PB) utilizes 210 122 

kg/m3 of cement, resulting in significant CO2 emissions [12]. The need to tackle numerous 123 

significant emissions originating from cement factories is crucial. Furthermore, concrete contains 124 

small amounts of crystalline silica, a material that can cause skin damage, lung irritation, and 125 

environmental pollution. Efforts should be made to find substitutes to decrease the usage of 126 

cement-based composites. Employing PW instead of cement as a binder material in concrete 127 

products is a viable option that can help reduce the use of cement and decrease the PW, which 128 

results in sustainable products [13]. 129 

In 2006, Pierre Kamsouloum first used a combination of PW and sand to manufacture pavement 130 

blocks. Agyeman et al. [14] stated that recycled PW can be used as a viable alternative to cement 131 

in the production of PB. Utilizing PW in construction projects has benefits in improving ecological 132 

sustainability [15]. Furthermore, the addition of PW in the PB leads to a 15% decrease in weight 133 

compared to a standard concrete block. The financial investigation reported that the PSPB has a 134 

35.39% lower per unit cost than a typical concrete block [12]. Moreover, the CS of concrete PB is 135 

mainly influenced by the water-to-cement (w/c) ratio, the hydration process, the time of curing, 136 

and the properties of the concrete components used [16]. Eliminating cement from PSPB will result 137 

in the removal of both the water-to-cement ratio and the curing time, as there is no need for curing 138 

in the case of PSPB. It is important to highlight that PW is a thermoplastic substance that shows 139 

the property of being flexible and can assume any needed shape when exposed to heat. 140 

Nevertheless, as a thermoplastic substance, its strength decreases significantly as the temperature 141 

increases. Consequently, this study included basalt fibers as an addition to plastic-bonded sand 142 

paver to improve CS at elevated temperatures.  143 

The strength of plastic blocks produced with PW is assessed to determine their performance. This 144 

assessment is influenced by various factors, such as the particular type, the composition, the 145 

content of plastic, the mix design, and the testing methodologies employed [17]. The PSPB 146 

responds in an anomalous manner when various mixed composites with additives like basalt 147 

fibers are utilized. In essence, an experimental study must be carried out for a complete 148 

understanding of the relationship between PSPB ingredients and their properties. However, 149 

conducting experimental studies could be a time-consuming and expensive process. Therefore, the 150 

availability of soft computing, along with experimental investigation, can accurately correlate 151 

influencing factors and properties of PSPB, which could be the best alternative to address the issue 152 

(of time and cost) and promote the re-utilization of PW for sustainability [18].  153 

Recently, artificial intelligence (AI) approaches, such as multi-expression programming (MEP) 154 

[19], [20], support vector machine (SVM) [21], gene-expression programming (GEP) [22], [23], 155 

artificial neural network (ANN) [24] and Particle Swarm Optimization (PSO), have been 156 

extensively used to address issues related to complex construction materials [25], [26], [27]. Chou 157 

et al. [28] employed SVM and ANN to estimate the CS of high-strength concrete. The findings of 158 

the study showed that the proposed model had a significant prediction performance. In a different 159 
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study by Trocoli et al. [29], the ANN was utilized to simulate the CS of recycled aggregate 160 

concrete, and they found that ANN models are reliable. Gupta [30] utilized SVM for forecasting 161 

the 28-day CS of high-strength concrete. They used a total of 371 data points from experimental 162 

findings and literature for model development. The findings confirm the efficacy of SVM-based 163 

modeling in forecasting the CS of high-performance concrete with an R2 of more than 0.8. Amlashi 164 

et al. [31] explore the three ML techniques, namely, ANN, SVM, and ANFIS, optimized with PSO 165 

to estimate the CS and tensile strength of concrete incorporated with plastic waste. The outcomes 166 

indicate that ANN-PSO achieves a higher R2 of 0.95 as compared to other techniques. Complex 167 

engineering problems are simplified due to the pattern recognition capabilities of these techniques 168 

[32]. Although these models found strong correlations, no mathematical equation was presented 169 

for real implementation due to the complex construction of these models, which is also considered 170 

to be one of the main obstacles preventing the method from being widely used [33]. In the majority 171 

of neural network-based approaches, a sophisticated mathematical formula is generated to estimate 172 

the output depending on the input parameters. Notably, neural networks (NN) may only perform 173 

for optimization problems under consideration since these techniques are referred to as black box 174 

models (BBM). Physical events or any data associated with the problem being addressed are not 175 

considered in BBM. Moreover, overfitting is another major issue found in ANN techniques [34]. 176 

In one of our earlier studies, Iftikhar et al. [35] employed GEP to estimate the CS of PSPB. The 177 

prediction was based on a dataset consisting of 135 measurements and seven input 178 

characteristics. The GEP models demonstrated a high degree of agreement with the findings, 179 

reaching R2 values above 0.85. Parametric and sensitivity analyses were carried out to assess the 180 

validity of the suggested models. However, the GEP approach was limited in that it was unable to 181 

combine a few dissimilar datasets for model construction, hence restricting its utility. In order to 182 

improve the model's performance, it is necessary to remove the inconsistent data points from both 183 

the training and validation processes. Furthermore, genetic operators contain a single chromosome 184 

within their program and are appropriate when the input-output correlation is quite simple. 185 

In recent years, an improved ML approach known as multi-expression programming (MEP) has 186 

been created to overcome the aforementioned drawbacks of ANN. MEP, an advanced form of 187 

genetic programming (GP), is considered superior to other evolutionary algorithms in its ability to 188 

produce accurate results even when the desired level of complexity is unknown [36]. The capacity 189 

of MEP to encode numerous chromosomes within a single computer program is a noteworthy 190 

indicator. The optimal chromosome is chosen as the definitive representation of the solution [37]. 191 

The pre-specification of the final expression form is necessary for other ML techniques [38], 192 

while the MEP evolving approach removes mathematical mistakes from the final expression. 193 

Compared with other ML techniques, the decoding process evolved in MEP is very simple.  194 

Considering the benefits of MEP and the drawbacks of other ML models, this study employed the 195 

MEP technique for estimating the CS of PSPB. As per the author's knowledge, no studies have 196 

explored the use of both experimental and ML techniques to evaluate the CS of PSPB with basalt 197 

fiber as an additive. In the past, only experimental investigations or simple mathematical models 198 

were used, requiring a substantial investment of time and financial resources. Therefore, for the 199 

first time, this study integrates the experimental findings with MEP-based models to estimate and 200 

provide predictive equations for CS of PSPB. Firstly, experimental examinations were performed 201 
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to assess the CS of PSPB. Varied mix proportions of plastic and sand with different sizes of sand 202 

were employed. Subsequently, an extensive experimental record was established, and the MEP 203 

technique was used to forecast the CS of PSPB. Various statistical methods and parametric and 204 

sensitivity analysis were performed to assess the models' effectiveness. This study aims to provide 205 

a sustainable alternative to cement by experimentally investigating the use of plastic waste instead 206 

of cement and providing an MEP-based simplified equation that can be applied in practice for pre-207 

design purposes of PSPB. 208 

2. Experimental analysis 209 

2.1  Materials 210 

2.1.1  Low-density polyethylene (LDPE) 211 

In this study, the plastic type known as LDPE was utilized as a binding material in PSPB. The 212 

LDPE was obtained from the municipal authorities in Abbottabad, Pakistan. Following 213 

the collection process, the material was initially washed completely, cleaned, and dried to remove 214 

any pollutants that could hinder the melting process. In the end, the plastic material was 215 

transformed into small fragments using shredding. Table 1 shows the characteristics of LDPE 216 

utilized in this investigation. 217 

Table 1: Properties of LDPE.  218 

Description Value   

Softening temperature 70 O C 

Modulus of elasticity 0.6-1.4 GPa 

Melting temperature 110  O C 

Density 0.91 to 0.94 gm/cm3 

 219 

2.1.2  Natural fine aggregates (Sand) 220 

The locally available sand was used as a fine material for the production of PSPB.  Initially, two 221 

different types of sands were used to examine the impact of particle size on CS of PSPB. The 222 

properties of sand were assessed by conducting tests following the ASTM standards, as illustrated 223 

in Table 2. Specific gravity and sieve analysis tests were performed to ascertain the fineness 224 

modulus of both sands. A finer form of sand (Sand-1) was utilized for subsequent analysis. 225 

Table 2: Properties of Sand.  226 

Test type Test Results Standards 

Sieve analysis Sand-1 Sand-2 ASTM_C136 

Water absorption 4.1% 5.3% ASTM_C128 

Specific gravity 2.64 2.67 ASTM _D854-02 

Fineness Modulus 

(FM) 

2.92 3.24 ASTM_C125 
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2.1.3  Basalt fibers 227 

Basalt fiber is labeled as a green industrial material. Basalt fiber is formally known as the "21st-228 

century non-polluting green material" [39]. Quarried basalt rock, when heated to a temperature of  229 

1400 o C, results in the formation of molten basalt rock. Extrusion of these molten rocks through 230 

small holes can be used to form basalt fibers. Due to its property to withstand high temperatures, 231 

basalt fiber is generally used in applications like heat-insulated materials, vehicle braking systems, 232 

and flame-retardant materials [40]. Basalt can be used as an aggregate, fiber, mesh, and rebar. 233 

Being a multi-performance fiber, basalt fiber has several advantages [41]: it has high thermal 234 

resistance to heat, it is a waste and renewable material, it is very light in weight, and it increases 235 

the flexural and CS of paver blocks. The present study employed basalt fibers of two different 236 

lengths, specifically 4 mm and 12 mm. Table 3 displays the chemical composition of the basalt 237 

fibers. 238 

Table 3: Chemical composition of basalt fiber.  239 

Compound percentage by weight  

MgO 1.3-3.7 

K2O 0.80-4.50 

Fe2O3 4.0-9.5 

Cao 5.21-7.80 

Al2O3 16.9 -18.2 

Na2O 2.51-6.4 

SiO2 51.6 -57.5 

 240 

2.2  Mix design and sample preparation 241 

The samples were produced by mixing LDPE and sand in a multi-stage procedure, as shown in 242 

Fig. 2. The LDPE material was initially melted in an exposed container to attain the intended 243 

flexibility. After being melted, it was properly blended with appropriate proportions of sand.  244 

In the first stage, the impact of varying particle sizes of sand (d < 0.420 mm, 0.420 mmn< d < 245 

0.595 mm, and 0.59 mm < d < 1.68 mm) on CS of PSPB was determined by keeping the exact 246 

proportions of plastic and sand (25% and 75%). During the second phase, the sand that showed the 247 

highest level of strength in the initial phase was mixed with LDPE in various proportions of plastic 248 

and sand (15:85, 20:80, 25:75, 30:70, 35:65 and 40:60). In the final stage, the mechanical 249 

characteristics of the PSPB were improved by adding basalt fibers of lengths 4 mm and 12 mm in 250 

different amounts (0.1%, 0.3%, 0.5%, 0.7%, and 1%) to the optimized specimens.  251 

A total of 114 specimens were carefully produced, with a precise allocation of six specimens for 252 

each scenario, as shown in Table 4. A mixture comprised of liquefied plastic, fibers, and sand was 253 

carefully poured into cubic molds  50 mm in size that had been preheated and coated with 254 

lubricant. The molds were coated with lubricating oil to make it easier to demolding and were 255 

subjected to a temperature of 100°C to simplify the installation and compression of the specimens. 256 

Following 24 hours at ambient temperature, the specimens were evaluated for CS. The complete 257 

experimental procedure is described in Fig. 2. 258 
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This experimental study seeks to determine the most suitable sand grain sizes at a constant plastic-259 

to-sand ratio and then investigate the optimum plastic-to-sand ratio using the chosen sand particle 260 

size. The plastic-to-sand ratio that yielded the best results was subsequently used in combination 261 

with basalt fibers of varied lengths and proportions to evaluate the CS of PSPB. 262 

Table 4: Mix design for PSPB. 263 

Description Code Plastic 

content by 

weight % 

Sand 

content by 

weight % 

Particle size of 

sand  

No of 

samples 

Effect of and grain 

size  

S1 25 75 Dia < 0.42mm 6 

S2 25 75 0.59mm < Dia 

< 0.42mmm 

6 

S3 25 75 1.68mm < Dia 

< 0.59mm 

6 

Varying Proportions 

of plastic-sand  

P1 15 85 Dia < 0.42mm 6 

P2 20 80 Dia < 0.42mm 6 

P3 25 75 Dia < 0.42mm 6 

P4 30 70 Dia < 0.42mm 6 

 P5 35 65 Dia < 0.42mm 6 

 P6 40 60 Dia < 0.42mm 6 

Basalt fiber of 4mm 

and 12mm in length 

with various 

proportions of fiber 

 

Fi 30 70 Dia < 0.42mm 60 

 264 
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 265 

Fig. 2: Experimental program. 266 
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9. Compaction 

10. Sample preparation 

11. Placing samples at ambient 
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using CTM. 
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2.3  Compressive strength testing 267 

The CS of PSPB was evaluated using a compressive testing machine (CTM). The test specimens 268 

were placed at room temperature for 24 hours and then tested following the guidelines provided 269 

by ASTM 109. Loading and strain rates of 20 MP/s and 10 mm/min were used as specified in 270 

ASTM standards. The Cubic size molds measuring 50 mm × 50 mm x 50 mm were utilized, as 271 

depicted in Fig. 3. Before testing, the CTM was provided with specific information regarding the 272 

area. Therefore, CTM automatically computes the amount of stress experienced by the specimen 273 

until it reaches its breaking point.  274 

 275 

Fig. 3: Compressive strength testing 276 

3. Machine learning analysis 277 

The current study utilized multi-expression programming (MEP) to estimate the CS of paver 278 

blocks made with LDPE plastic waste. The method to develop MEP-based ML models is presented 279 

in Fig. 4. 280 
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 281 

Fig. 4: The sequential MEP-based ML analysis used in the current study.  282 

3.1  Multi expression programming (MEP) 283 

Genetic programming-based soft computing techniques aim to provide precise and realistic 284 

mathematical equations for predicting outcomes based on preset parameters in the data input. 285 

Ferreira Ferreira (2001) initially suggested the genetic algorithm (GA), also known as genetic 286 

expressions. This algorithm was motivated by the Darwinian principle. Similarly, Cramer first 287 

proposed the idea of genetic programming (GP) [43]. Koza et al. [44] made significant 288 

advancements to the concept. The most important distinction between both approaches is that GP 289 

uses nonlinear parse trees compared to the fixed-length binary strings used in GA. Several distinct 290 

types of evolutionary algorithms have been developed in recent decades, with linearity being one 291 

of the most significant variations. Oltean proposed a linear variant of machine learning 292 

evolutionary algorithm called multi-expression programming (MEP). In MEP, each single entity 293 

can be expressed as a variable length [45] [46]. The assumption of linearity distinguishes the MEP 294 

technique from the GEP method. The MEP employs simplified decoding processes in comparison 295 

to the GP methodology and is given special weight when the complexity of the desired gene is 296 

unidentified [47]. In Fig. 5, the various steps of the MEP technique are illustrated. The MEP 297 

method's evaluation process includes creating a population of random chromosomes, selecting two 298 

parents using a binary competition procedure and reconfiguring them according to the possibility 299 

of crossover, mutating the selected parents to produce two offspring, and then the least effective 300 

population member is replaced with the best one. A linear form of string instructions made up of 301 
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a combination of mathematical operators or terminal variables is used to express the results of 302 

MEP-based analysis [48]. 303 

 304 

Fig. 5: Process flow diagram of MEP. 305 

Numerous studies used the GEP approach and neural network methods to build an empirical model 306 

for the evaluation of various properties of structure materials. However, the inclusion of a linear 307 

variation feature of MEP makes it simple to distinguish between individual genotypes and 308 

phenotypes [49]. MEP is quite useful in material engineering, where the uncertainty of the 309 

intended equation is unknown, and a little variation in the concrete design variables may have a 310 

significant impact on concrete properties. In MEP, numerous solutions are encoded in a single 311 

linear chromosome, enabling the software to predict the result by looking at a larger area. MEP is 312 

capable of handling errors like incorrect expressions and division by zero and can convert into any 313 

terminal symbol to let the process proceed. This causes a gap in the chromosome's structure 314 

throughout the assessment procedure. The apparent advantages of MEP methods over other 315 

evolutionary computations would lead to the development of precise and reliable models for the 316 

field of material engineering [50]. The MEP models have been created in this study to formulate 317 

the CS of paver blocks incorporated with plastic waste. Developing a reliable, precise, and 318 

effective model will aid in using plastic waste as construction materials. These models could be 319 

viable options to resolve the issues related to the disposal of LDPE plastic waste. Additionally, 320 

sustainable construction will be prompted, and it would be useful in the savage of natural 321 

resources. 322 
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3.1.1  Database 323 

A comprehensive data set for CS of PSPB was obtained by performing experimental testing in the 324 

laboratory. Raincloud plots with normal distribution curves were used to determine the potential 325 

outliers in the database, as shown in Fig. 6. As can be seen, only a few points deviated from the 326 

normal trend, so those were deleted. The total database comprises 114 data records for CS. All the 327 

input variables were considered to ensure the universality and precision of the proposed model. 328 

Input variables include sand content, fiber content, plastic content, and size and length of fiber 329 

used. Moreover, CS was considered as output for the development of the model. The performance 330 

and generalization capability of any model greatly depend on the distribution of input variables 331 

[51]. The frequency distribution histograms of input parameters can be seen in Fig. 7. It is obvious 332 

from contour plots that variables have higher frequencies, and the distribution of the input 333 

variables is not uniform. It is important to keep in mind that high variable frequencies are necessary 334 

for attaining a better model. 335 

Additionally, Table 5 provides a summary of the statistics indicators and ranges of the various 336 

variables included in the development of the models for CS, making the data analysis simple. It is 337 

clear that sand and plastic contents lie in the range of 1140 – 1615 kg/m3 and 285 – 760 kg/m3. 338 

Moreover, the values of CS lie in a range of 11 MPa – 22.43 MPa. A smaller standard deviation 339 

indicates that the majority of the values cluster closely around the mean value. Conversely, a 340 

greater standard deviation indicates a wider dispersion of data. Skewness refers to the extent to 341 

which the probability distribution of a variable differs from being symmetrical around the mean. 342 

As stated by reference [52], the optimal range for kurtosis values is between -10 and +10, which 343 

indicates the type of probability distribution. The statistical values of skewness and kurtosis 344 

indicate that the MEP-based models are viable for a wide range of input data, hence greatly 345 

increasing their potential applications. Furthermore, the entire database was divided into two 346 

distinct sections: the training area and the validation section. The predictive validity of the model 347 

was evaluated with the help of a validation database, and the overall development of the model 348 

was accomplished with the assistance of training data. 349 
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 350 
Fig. 6: Raincloud plots for outliers’ detection. 351 



17 

 

 352 

Fig. 7:  Contour plots representing data distribution. 353 
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Table 5: Statistical description of the developed dataset. 354 

Parameters 

Sand Plastic Fiber 
Sand 

Size 

Fiber 

Length 
CS 

(kg/m3) (kg/m3) (kg/m3) (mm) (mm) (MPa) 

Mean 1360.00 540.00 0.50 1.57 4.21 16.16 

Sample Variance 9634.51 9634.51 0.08 3.88 24.59 6.26 

Median 1330.00 570.00 0.42 0.63 4.00 15.99 

Standard Error 9.19 9.19 0.03 0.18 0.46 0.23 

Mode 1330.00 570.00 0.42 0.00 0.00 15.54 

Standard Deviation 98.16 98.16 0.29 1.97 4.96 2.50 

Kurtosis 1.47 1.47 4.12 -0.43 -1.12 -0.12 

Minimum 1140.00 285.00 0.42 0.00 0.00 11.00 

Skewness 0.51 -0.51 3.95 0.97 0.75 0.19 

Range 475.00 475.00 1.27 5.70 12.00 11.43 

Maximum 1615.00 760.00 1.69 5.70 12.00 22.43 

 355 

3.1.2  MEP model development and assessment 356 

As discussed earlier, to construct a reliable and widely applicable model, a number of MEP 357 

modeling parameters must be determined before the modeling process. Considering the prior 358 

recommendations, a hit-and-trial method was used in this study to select the best model-fitting 359 

parameters [53]. The size of the population determines how many programs will be included in 360 

the evolutionary process. If the population size of the model is large, the model will be complicated 361 

and precise and may take more time to converge. Overfitting of the model is a potential problem 362 

when a particular threshold has been reached. The procedure began with the assumption that there 363 

were ten distinct populations. For clarity, the function set considers just the four fundamental 364 

mathematical operators (+, -, x, and /). The accuracy level of the model greatly relies on the 365 

number of generations.  The statistical mistakes in the algorithm would be reduced by running the 366 

program for several generations. The frequency with which offspring experience these genetic 367 

changes is measured by the crossover rate and mutation. In general, the crossover rate is between 368 

50% and 95%. Numerous combinations of these parametric settings were tried, and optimum 369 

parametric settings were selected based on the prediction performance of the models, as displayed 370 

in Table 6. Overfitting of the data is the major issue in ML-based models.  To prevent this issue, 371 

it is suggested that the models should be trained on unseen data sets [54]. Following this, the whole 372 

data set has been separated into two parts, i.e., training and validation.  Both of the data sets have 373 

been checked to make sure they have the same distribution. This work employed 70% and 30%   of 374 

the dataset for training and validation, respectively. The proposed models performed well across 375 

both data sets. A commercially available software program, MEPX v1.0, was used to apply MEP 376 

models.  377 

 378 

 379 
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Table 6: MEP model Parameters settings 380 

Genetic operators  

Generations 1000 

Code-length 50 

sub-population size 240 

Arithmetic operations +, −, ×, ÷ 

Sub-population count 10 

Size of tournament  4 

Crossover Probability 0.9 

Fitness parameter RMSE 

Probability of mutation 0.01 

Training data 70% 

Validation data 30% 

The first step in the model development is to produce an initial population of viable solutions. The 381 

iterative procedure is implemented, and each successive generation converges to the solution. 382 

Within the solutions population, each generation's fitness is continuously assessed. The MEP 383 

model will continue to develop until the predetermined fitness function, such as root mean squared 384 

error (RMSE) or R, no longer shows any indications of alteration. In order to address the problem 385 

of overfitting, the study additionally evaluates the objective function (OF). Suppose the findings 386 

of the model are not correct for both datasets (training and validation). In that case, the procedure 387 

is then rerun by progressively increasing both the number of subpopulations and their overall size. 388 

Following that, the model with the lowest OF is chosen to be the best one.  It is important to 389 

remember that the evolving time of the number of generations has an influence on the correctness 390 

of the model. Due to the introduction of additional variables in such methods, a model may keep 391 

evolving continuously. However, in this study, the model was terminated after 1000 generations 392 

or when the variation in fitness value was smaller than 0.1%. The efficiency of the 393 

proposed models is determined by determining various statistical error indices. The metrics used 394 

in this analysis are the performance index (PI), the relative squared error (RSE), the relative root 395 

mean square error (RRMSE), the mean absolute error (MAE), and RMSE. Similarly, an alternative 396 

approach to mitigate overfitting is to select the optimal model by reducing the OF, as recommended 397 

by Iqbal et al. [55]. This methodology was chosen to address the problem in this study, and the 398 

term fitness function is used for OF. Es (1)-(6) shows the mathematical expressions for these 399 

statistical indices. 400 

𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑥𝑝𝑖−𝑚𝑜𝑑𝑖)2𝑛

𝑖=1

𝑛
     (1) 401 

𝑀𝐴𝐸 =
∑ |𝑒𝑥𝑝𝑖−𝑚𝑜𝑑𝑖|𝑛

𝑖=1

𝑛
     (2)  402 

𝑅𝑆𝐸 =
∑ (𝑚𝑜𝑑𝑖−𝑒𝑥𝑝𝑖)2𝑛

𝑖=1

∑ (𝑒𝑥𝑝̅̅ ̅̅ ̅̅ −𝑒𝑥𝑝𝑖)2𝑛
𝑖=1

     (3) 403 

𝑅𝑅𝑀𝑆𝐸 =
1

|𝑒𝑥𝑝̅̅ ̅̅ ̅̅ |
√

∑ (𝑒𝑥𝑝𝑖−𝑚𝑜𝑑𝑖)2𝑛
𝑖=1

𝑛
     (4) 404 
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𝑅 =
∑ (𝑒𝑥𝑝𝑖−𝑒𝑥𝑝̅̅ ̅̅ ̅̅ 𝑖)2(𝑚𝑜𝑑𝑖−𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅𝑖)2𝑛

𝑖=1

√∑ (𝑒𝑥𝑝𝑖−𝑒𝑥𝑝̅̅ ̅̅ ̅̅ 𝑖)2𝑛
𝑖=1 ∑ (𝑚𝑜𝑑𝑖−𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅

𝑖)2𝑛
𝑖=1

    (5)  405 

𝑃𝐼 = 𝜌 =
𝑅𝑅𝑀𝑆𝐸

𝑅
                (6) 406 

𝑂𝐹 = (
nT-nv

n
)𝜌T + 2(

nv

𝑛
)𝜌𝑣                           (7) 407 

In the given expressions, expi and modi indicate the experimental and model anticipated outcomes. 408 

Whereas 𝑚𝑜𝑑̅̅ ̅̅ ̅̅
𝑖 and 𝑒𝑥𝑝̅̅ ̅̅ ̅𝑖 signifies the average model anticipated and experimental outcomes, 409 

respectively, and n represents total occurrences. A model is considered accurate when it has a high 410 

R-value and minimal statistical errors. Alabduljabbar et al. [56] and Alyami et al [57] stated that 411 

an R-value of more than 0.8 indicates a strong connection between the anticipated and 412 

actual results. Since it is not affected by multiplying or dividing the outcome by a constant, it 413 

cannot be used as a solitary criterion for determining the overall effectiveness of the 414 

prediction models. The RMSE and MAE are indicators that are used to measure the average 415 

errors.  However, each of these indicators has its own importance. RMSE gives greater importance 416 

to larger errors since they are squared before a mean is estimated. A high RMSE value shows that 417 

the number of estimates with high error is notably larger than anticipated and should be avoided. 418 

Meanwhile, MAE gives less importance to larger errors in comparison to the RMSE. 419 

Meanwhile, MAE gives less importance to larger errors in comparison to the RMSE. Both PI and 420 

OF have values that range between 0 and infinity. According to [58], the reliability of a ML model 421 

can be evaluated based on the value of PI and OF. A lesser value of OF indicates that the overall 422 

efficiency of a proposed model is better. As previously explained, several different trial runs were 423 

performed, and the model that produced the lowest OF is the one discussed in this study. In 424 

addition, external validation of the proposed model was done by using criteria given by various 425 

scholars [59]. 426 

4. Results and discussion 427 

4.1  Experimental findings 428 

4.1.1  Compressive strength 429 

The laboratory-derived CS results of PSPB are depicted in Fig. 8. As discussed earlier in the first 430 

stage, the effect of sand particle size on CS was determined, as shown in Fig. 8 (a). It can be seen 431 

that there is a reverse correlation between CS and sand particle size, indicating that as particle 432 

size increases, the CS decreases. This can be attributed to less cohesion between larger grain sizes 433 

due to increased contact area as compared to smaller grain sizes of sand [60]. The maximum CS 434 

was 15.93 MPa for the finest sand grain size of d < 0.420 mm at fixed a plastic-to-sand ratio of 435 

25:75. 436 

The influence of varying plastic-to-sand proportions on the CS of PSPB is illustrated in Fig. 8 437 

(b). It can be examined that an increase in the percentage of plastic content up to 30% results in a 438 

rise in CS. This can be explained by the fact that the optimal mixture was achieved with a plastic-439 

to-sand ratio of 30:70. Whereas a further increase in plastic content results in a decline in CS. This 440 
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decline in CS can be associated with an increase in the brittleness of the mixture due to the heating 441 

of plastic waste. The highest CS was observed as 17.26 MP at a plastic-to-sand ratio of 30:70.  442 

In addition, varying proportions of basalt fiber  (0.1%, 0.3%, 0.5%, and 1%) with lengths of 4mm 443 

and 12mm were used to further enhance the CS of PSPB, as depicted in Fig. 8 (c and d).  The 444 

optimum proportions of the plastic-to-sand ratio of 30:70 with a particle size of sand less than 0.42 445 

mm, as achieved in the initial stages, were used to determine the influence of fiber content in 446 

PSPB. The findings indicate that the addition of basalt fiber increases CS up to a certain proportion 447 

and then decreases. The optimum results of CS with the basalt fiber of 4 mm in length were noted 448 

as 19.61 MPa, whereas in the case of 12 mm, the highest CS value was measured as 21.65 MPa at 449 

0.5% fiber content. It can be noted that the use of 4 mm basalt fiber leads to a significant 450 

improvement in CS, with an increase of 25.4% as compared to 12 mm, which results in only 13% 451 

enhancement in CS. It is due to the fact that there is a restriction on the number of fibers that can 452 

be mixed because fibers with a higher aspect ratio and greater lengths reduce workability 453 

noticeably, making the mixing process more difficult, which in turn affects their CS [61]. It is 454 

worth mentioning that the typical CS of concrete paver blocks has been determined to be 19.8 MPa 455 

at 28 days' curing time [62]. The ASTM standard (ASTM C902-00) specifies that for light 456 

vehicular traffic, the CS of pavement bricks must be a minimum of 20.7 MPa (the mean of 5) and 457 

17 MPa (individual). Therefore, plastic, sand, and basalt fibers proposed in this study can be 458 

efficiently utilized in low-traffic regions. The addition of basalt fibers with a length of 4 mm at an 459 

amount of around 0.5% in PSPB yields optimum outcomes. 460 
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 461 

Fig. 8: CS test laboratory results 462 

4.2  Machine learning results   463 

4.2.1  MEP models predictive performance 464 

Fig. 9 illustrates the comparison of the experimental and anticipated CS values of PSPB obtained 465 

from the optimum MEP-based model. The MEP model exhibited exceptional performance, with 466 

R2 values of 0.88 and 0.87 during the training and evaluation stages, respectively. Ideally, the slope 467 

of the regression line should approach a value of 1. The slope values of 0.87 and 0.79 for the 468 

training and evaluation (testing) phases indicate a significant connection between the predicted 469 

and actual values in the established model. Moreover, the values demonstrate a high degree of 470 

similarity and closely align with the desired fit throughout both the training and evaluation phases. 471 

This suggests that the proposed model received adequate training and possesses a strong predictive 472 

capability, performing equally well on unfamiliar data. This also illustrates that the issue of 473 

overfitting the model has been much mitigated. 474 

Additionally, in order to comprehend the statistical analysis for proposed models, absolute error 475 

analysis was performed, as shown in Fig. 10. It can be noted that the average error in the 476 

anticipated values for CS is 4.5 MPa, with a higher error value that does not exceed 11 MPa. 477 
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(b) Effect of plastic-sand proportions
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(c) Effect of basalt fiber (4 mm)
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Overall, less than 5% of the total data points have an error value greater than 5 MPa. It is essential 478 

to emphasize the fact that the frequency of occurring maximum errors is substantially lower. Based 479 

on the above analysis, it can be stated that the developed MEP model for predicting the CS of 480 

PSPB can be used in the design process.  481 

 482 

Fig. 9: Experimental Vs MEP-anticipated outcomes. 483 

10 12 14 16 18 20 22 24

10

12

14

16

18

20

22

24  MEP-Training

 MEP-Testing

 y = 0.87x + 1.88

 y = 0.79x + 3.38

M
E

P
-P

re
d

ic
te

d
 C

S
 (

M
P

a
)

Experimental CS (MPa)

RMSETraining = 0.812

RMSETesting  = 0.943

R2
Training        = 0.881

R2
Testing         = 0.876



24 

 

 484 

Fig. 10: Error distribution in MEP-anticipated CS results. 485 

4.2.2  MEP-based formulations 486 

After performing the statistical examination of various MEP trials, the optimum trial was chosen 487 

for additional analysis. The selected MEP model for CS was decoded to develop the empirical 488 

equations based on five input parameters. The development of equations used four arithmetic 489 

operators, namely subtraction (−), addition (+), multiplication (×), and division (÷), as previously 490 

mentioned. The explicit formulations are represented by the equations (7). These mathematical 491 

formulas can be used to estimate the CS of PSPB. 492 

𝐶𝑆 (𝑀𝑃𝑎) =  𝐹 +  42 (𝑆𝑠) −  16 𝐹2  −  6 (𝐹. 𝑆𝑠2)
(−6 + 𝑃 + 4.𝑆 − 𝑆𝑠)

𝐹 + 4 𝑆𝑠
 +  8 𝐹 . 𝑆𝑠2 (−1 +493 

 4. 𝐹𝑙) (−4 −  3 (−6 +  𝐹)/4. 𝑆2)               (8) 494 

4.2.3  External validation of MEP model 495 

The outcomes of statistical criteria employed for the external validation of the proposed models 496 

are shown in Table 7. Khan  et al. [64] reported that for the proposed models to have a better level 497 

of precision, the slope of one of the regression lines (k or k') that pass through the center should 498 

be relatively near to one. For proposed models, these values can be noted as 0.947, which is in the 499 

acceptable range. Furthermore, if the values of the evaluation metrics (i.e., m and n) are less than 500 
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0.1, then they are regarded as adequate. A number of researchers have suggested that the squared 501 

coefficient (𝑅𝑜
2) of experimental and estimated values should also be near to 1 [65]. It can be seen 502 

that all of the evaluated models lie in the recommended range of outcomes, making it obvious that 503 

the recommended models can satisfy the conditions for external verification. This demonstrates 504 

the MEP models' exceptional validity, predictive capability, and independent correlations between 505 

input and output. 506 

Table 7: External validation of the MEP model. 507 

S. No. Equation Model Acceptable range 

1 𝑅 0.96 𝑅 > 0.8 

3 
𝑅′𝑜

2
= 1 −

∑ (𝑒𝑥𝑝𝑖−𝑚𝑜𝑑𝑖
𝑜)

2𝑛
𝑖=1

∑ (𝑒𝑥𝑝𝑖−𝑒𝑥𝑝𝑖
𝑜)2𝑛

𝑖=1

 , 𝑚𝑜𝑑𝑖
𝑜 = 𝑘′ × 𝑒𝑥𝑝𝑖  

 

0.961 𝑅′𝑜
2

≅ 1 

2 𝑅𝑜
2 = 1 −

∑ (𝑚𝑜𝑑𝑖−𝑒𝑥𝑝𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑚𝑜𝑑𝑖−𝑚𝑜𝑑𝑖
𝑜)

2𝑛
𝑖=1

 , 𝑒𝑥𝑝𝑖
𝑜 = 𝑘 × 𝑚𝑜𝑑𝑖  

 

0.99 𝑅𝑜
2 ≅ 1 

4 
𝑘 = ∑

(𝑒𝑥𝑝𝑖 × 𝑚𝑜𝑑𝑖)

𝑒𝑥𝑝𝑖
2

𝑛

𝑖=1
 

 

0.971 0.85 < 𝑘 < 1.15 

5 
𝑘′ = ∑

(𝑒𝑥𝑝𝑖 × 𝑚𝑜𝑑𝑖)

𝑚𝑜𝑖
2

𝑛

𝑖=1
 

 

1.032 0.85 < 𝑘′ < 1.15 

6 
𝑚 =

(𝑅2 − 𝑅𝑜
2)

𝑅2
 

 

0.0441 𝑚 < 1 

7 
𝑛 =

(𝑅2 − 𝑅′𝑜
2

)

𝑅2
 

 

0.0535 𝑛 < 1 

 508 

4.2.4  Sensitivity and parametric analysis 509 

While working with ML-based modeling, it is essential to carry out a wide range of assessments 510 

to validate that the indicated models are reliable and work efficiently when applied to a diverse set 511 

of data. In this study, sensitivity analysis (SA) and parametric analysis (PA) were done to ensure 512 

the validity of the proposed MEP models. Firstly, SA is studied to determine the relative effect of 513 

input variables (ingredients) on the outcome (i.e., CS) of the proposed MEP model. The SA is 514 

evaluated by using Eqs (9) and (10) for a given input parameter yi.  515 

𝑋𝑖 = 𝑓𝑚𝑎𝑥(𝑦𝑖) − 𝑓𝑚𝑖𝑛(𝑦𝑖)     (9) 516 

𝑆𝐴 =
𝑋𝑖

∑ 𝑋𝑗
𝑗=1
𝑛

       (10) 517 

where 𝑓𝑚𝑎𝑥(y𝑖) and 𝑓𝑚𝑖𝑛(y𝑖), indicates the largest and minimum of the forecasted outcome, 518 

accordingly on the basis of the ith input variable, while the other input variables are kept constant at 519 

their mean values. When SA is performed on the entire dataset, it shows how sensitive a 520 

constructed model is to a particular change in the defined parameters. The outcomes of the SA are 521 
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shown in Fig. 11. Among the five inputs being analyzed, the size of sand particles (S_S) and 522 

fiber content (F) have the greatest impact, contributing 33.02% and 21.56%, respectively, to the 523 

anticipated compressive strength (CS) of PSPB. Conversely, the sand content (S) and fiber length 524 

(F_L) are identified as the least influential factors, contributing just 15.57% and 12.44%, 525 

respectively, to the predicted CS. These findings are highly comparable with experimental 526 

outcomes, indicating the validity of the models. 527 

 528 

Fig. 11: Sensitivity analysis CS-MEP  529 

To further evaluate the validity of the recommended models, PA, also known as monotonicity 530 

analysis, has been recommended by various research studies, and thus, it is also implemented in 531 

the presented study. In the parametric study, one input variable varied while the values for other 532 

input variables were fixed at their mean values. When these input features are combined with 533 

the MEP models that have been developed, it is possible to determine the corresponding change 534 

in the output parameters, such as CS. The pattern of CS with a corresponding input parameter is 535 

presented by fixing all other variables at their average scores across the full range of defined input 536 

variables. Fig. 12 provides the findings of the parametric analysis for the created CS-MEP model. 537 

The CS of PSPB  is considerably influenced by increasing the plastic concentration up to a certain 538 

limit and then decreasing. At first, the CS experiences a rapid rise as a result of the initial mixing of 539 

the preheated plastic and sand. Nevertheless, after the addition of 500 kg/m3 of plastic, this graph 540 

approaches a state of near-constancy. The results align with the findings of [66] and [60], which 541 

indicate that an increase in the amount of plastic enhances the bonding between particles, 542 

increasing CS. The optimum amount of plastic content was noted as 28%, which is very near to 543 
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the experimental findings which was 30%. The inverse relationship between the particle size of 544 

sand and the CS of PSPB was observed. It is clear that an increase in sand size results in a decline 545 

in CS due to greater contact area and lesser cohesion between particles. The same trend was also 546 

found in experimental investigations. Likewise, the fiber content significantly impacts the CS of 547 

PSPB. By maintaining all other input components at a similar level, the increase in fiber content 548 

up to 0.48% (3 kg/m3) results in an increase in CS; further addition of fiber, leads to a decline in 549 

CS. These findings are well aligned with laboratory-derived outcomes. The prior research has 550 

already highlighted the identical impact of the fiber content on the CS of PSPB [67]. The sand 551 

content and fiber length have a relatively lower influence on the CS of PSPB. It can be noted that 552 

a fiber length of 4 mm has shown higher strength than 12 mm. In the case of sand content, the 553 

graph remains consistent with little increment in CS by decreasing sand initially and by increasing 554 

sand later. 555 
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 556 

Fig. 12: Parametric analysis of input parameters 557 
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4.2.5  MEP model evolution and comparison with multi-linear regression (MLR) 558 

The size of the database utilized for developing a model substantially affects the credibility of the 559 

model. Previous studies recommended that the ratio of recorded data points to the number of 560 

input parameters that were used in both the training and evaluation (testing) stages should exceed 561 

5. In this study, this ratio is 23, which is much higher than the recommended values. The efficacy 562 

of the suggested model is examined by using statistical measures, as discussed in section 3.1.2, 563 

and the results are also compared with MLR, as shown in Table 8. It can be noted that MEP shows 564 

enhanced performance as compared to MLR, as is evidenced by a strong relationship between 565 

actual and anticipated values, exhibiting R values of 0.938 and 0.936 for the training and testing 566 

set of the CS-MEP as compared to MLR, which has R2-value 0.861 and 0.825. The high efficiency 567 

and generalizability of the proposed MEP models are also indicated by substantially low values 568 

of MAE, RMSE, and RRSME across both sets. The RMSE for CS is close to 0.81 MPa and 0.944 569 

MPa, whereas the values for the MLR model are 1.2 MPa and 0.97 MPa for the training and 570 

validation stages, respectively. The MAE values are 0.54 MPa and 0.724 MPa for MEP, while the 571 

MLR model has values around 0.8 MPa and 0.811 MPa. The values for PI are less than 0.20 for 572 

both the training and validation stages of MEP and MLR models. Therefore, the models have 573 

higher accuracy and prediction performance. Overall, based on comparison, it can be stated that 574 

MEP outperformed MLR with enhanced accuracy in terms of error analysis. The comparison 575 

among experimental, MEP, and MLR CS values is visually presented in Fig. 13. It is clear that 576 

there is a minor difference between the outcomes, which indicates the better efficacy of the 577 

proposed models.  578 

Table 8 Statistical summary of MEP and MLR.  579 

Model Phase R2 RRMSE RSE RMSE R MAE PI OF 

MEP-CS Training 0.881 0.05 0.157 0.81 0.938 0.554 0.027 0.026 
 Testing 0.876 0.057 0.084 0.944 0.936 0.724 0.029  

MLR-CS Training 0.742 0.075 0.348 1.202 0.861 0.801 0.041 0.04 

  Testing 0.681 0.055 0.481 0.97 0.825 0.812 0.03   

 580 
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 581 

Fig. 13: Comparison between MLR and MEP models for CS.  582 

4.2.6  Comparison with Literature 583 

This study employs a data set from experimental investigations performed in the laboratory to 584 

create models, as previously stated. Therefore, there are no existing models with similar datasets to 585 

compare the effectiveness of the proposed models. Nevertheless, the outcomes of the present 586 

investigation are compared with alternative machine learning models that are constructed 587 

employing other databases on PSPB, as depicted in Table 9. The outcomes that result from the 588 

proposed model demonstrate a significant similarity to the findings reported in the available 589 

research for different models. The findings of this study demonstrate that equations derived from 590 

the MEP are reliable and useful pre-design predictors for the eco-friendly. The probable use of this 591 

innovation can significantly decrease time, expenditure, and allocation of resources, which 592 

represents a notable advancement for the corresponding field. 593 

Table 9: Comparison of proposed models with existing literature.  594 

Proposed 

models 

Technique Material 

used 

R2 RMSE MAE References  

CS MEP Plastic waste 0.891 0.94 0.554 This study 

CS GEP Plastic waste 0.87 1.171 1.001 Iftikhar, C. Alih, et al. [68] 

CS MEP  0.90 1.115 0.981 Iftikhar, C. Alih, et al.  

[68] 

CS GEP Plastic waste 0.89 1.10 0.76  
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4.2.7  Role of artificial intelligence in sustainable built environments 595 

Artificial intelligence (AI) is essential in developing a sustainable environment by providing 596 

efficient waste management methods, such as using plastic trash as a construction material in 597 

concrete products. Previously, various AI applications have been successfully used to address the 598 

problems associated with the environment, such as waste management [69], [70]. AI-based models 599 

provide cost-effective and time-saving models with accurate estimations [71], [72]. Considering 600 

the above fact, this study utilized MEP-based ML models to make fast predictions and create 601 

mathematical formulas for determining the optimum use of waste plastic in producing paver 602 

blocks. MEP models provide economical methods for tackling difficulties related to reducing 603 

plastic waste, which enables their incorporation into practical applications. This novel method not 604 

only promotes ecologically sustainable environments but also demonstrates the adaptability of AI 605 

in enhancing resource efficiency in handling waste.  606 

The present study utilizes extensive validation approaches such as statistical evaluations, 607 

comparison with MLR, and sensitivity analysis to assure the dependability of the MEP models. 608 

These approaches evaluate the precision and resilience of the prediction models, offering a 609 

thorough assessment of their performance. Utilizing these validation methodologies improves the 610 

credibility of the AI-based solutions used for eco-friendly environments. This study also provides 611 

a Graphical User Interface (GUI) based on the data gathered from the training database, which will 612 

be a useful tool for estimating the CS of plastic paver blocks and their desired elemental 613 

proportions. Users can utilize GUI to assess the CS of paver blocks by inputting certain parameters 614 

inside the defined data range of the research. The GUI enables easy access for users and encourages 615 

more usage of AI-driven waste management solutions for sustainable and effective resource 616 

utilization in building applications. The developed GUI is visually depicted in Fig. 14. 617 

 618 

Fig. 14: GUI for estimating CS of PSPB.  619 
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5. Conclusion 620 

This study presents comprehensive experimental testing to assess the viability of using plastic 621 

waste as an environmentally friendly alternative in paver blocks, addressing substantial concerns 622 

regarding plastic waste and CO2 emissions associated with cement manufacture. Varied mix ratios 623 

of plastic and sand with different particle sizes of sand were employed. Additionally, to enhance 624 

the CS and meet the minimum acceptable level of ASTM C902-15 for light traffic, basalt fibers, a 625 

sustainable industrial material, were also utilized in the manufacturing process of environmentally 626 

friendly PSPB. Further, using experimental findings, an extensive database was created and used 627 

to create MEP-based models to estimate the CS of PSPB. The efficacy of MEP models was 628 

validated by using various statistical, sensitivity, and parametric evaluations. The following 629 

deductions can be made from this study. 630 

a) In experimental findings, the impact of sand particle size on the CS of PSBC was initially 631 

determined. It was found that there is a negative correlation between CS and sand particle 632 

size. 633 

b) Secondly, the influence of varying plastic-to-sand proportions on the CS was determined, 634 

and it was identified that that an increase in the quantity of plastic content up to 30% results 635 

in a rise in CS, whereas a further increase in plastic content results in a decline in CS.  636 

c) The highest CS was observed as 17.26 MP at a plastic-to-sand ratio of 30:70 using the 637 

finest sand particle of d < 0.420 mm.  638 

d) The inclusion of 0.5% basalt fiber, measuring 4 mm in length, yields further enhancement 639 

in outcome by significantly improving CS by 25.4% (21.65 MPa). 640 

e) The proposed MEP model demonstrates outstanding results in accurately describing the 641 

correlations between the input characteristics and CS of PSPB, as indicated by the high R2 642 

of 0.89. 643 

f) The sensitivity analysis showed that the size of sand particles and fiber content have the 644 

greatest impact, contributing 33.02% and 21.56%, respectively, to the anticipated CS of 645 

PSPB. The parametric analysis also validated the model performance by showing a similar 646 

trend to that found in the experimental findings. 647 

g) MEP proposed a simplified closed-form mathematical formula and GUI for forecasting the 648 

CS of PSPB, which can contribute to sustainable practices by providing a design tool for 649 

using plastic waste as a sustainable alternative for cement in paver blocks. 650 

6. Limitations and future work 651 

Although this study provides valuable insights into the use of plastic in pavers through 652 

experimental investigations and machine learning optimization, it has several limitations. The 653 

proposed equations and the graphical user interface (GUI) are restricted to the range of inputs used 654 

in this study. This constraint limits the generalizability of our findings to broader applications. 655 

In future work, it is recommended that the database be expanded to include a wider variety of 656 

parameters and conditions. This enhancement would allow for more robust modeling and 657 

optimization. Additionally, advanced machine learning techniques could be employed to improve 658 
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predictive accuracy and model performance. Further, SHAP (SHapley Additive exPlanations) 659 

analysis can be conducted to gain deeper insights into the contributions of different parameters. 660 
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