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Abstract

This research introduces the Quantum Chimp Optimization Algorithm (QChOA), a pio-
neering methodology that integrates quantum mechanics principles into the Chimp Opti-
mization Algorithm (ChOA). By incorporating non-linearity and uncertainty, the QChOA
significantly improves the ChOA’s exploration and exploitation capabilities. A distinctive
feature of the QChOA is its ability to displace a ’chimp,’ representing a potential solution,
leading to heightened fitness levels compared to the current top search agent. Our com-
prehensive evaluation includes twenty- nine standard optimization test functions, thirty
CEC-BC functions, the CEC06 test suite, ten real-world engineering challenges, and the
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IEEE CEC 2022 competition’s dynamic optimization problems. Comparative analyses
involve four ChOA variants, three leading quantum-behaved algorithms, three state-of-
the-art algorithms, and eighteen benchmarks. Employing three non-parametric statistical
tests (Wilcoxon rank-sum, Holm-Bonferroni, and Friedman average rank tests), results
show that the QChOA outperforms counterparts in 51 out of 70 scenarios, exhibiting per-
formance on par with SHADE and CMA-ES, and statistical equivalence to jDE100 and
DISHchain1e+12. The study underscores the QChOA’s reliability and adaptability, posi-
tioning it as a valuable technique for diverse and intricate optimization challenges in the
field.
Keywords: statistical analysis, engineering application, Chimp optimization algorithm,
quantum optimization

1 Introduction

In the swiftly advancing domain of compu-
tational optimization [1–3], the convergence of
quantum computing principles and nature-inspired
algorithms offers a promising frontier character-
ized by abundant possibilities [4]. Quantum com-
puting is renowned for its exceptional computa-
tional power and ability to execute several tasks si-
multaneously, offering a groundbreaking approach
to solving complex optimization problems [5, 6].
The revolutionary framework utilizes the distinctive
characteristics of quantum physics, including super-
position and entanglement, to investigate solution
spaces with unparalleled efficacy [7, 8]. The incor-
poration of quantum principles into nature-inspired
algorithms is becoming increasingly attractive as
the demand for more advanced optimization ap-
proaches rises [9], particularly in scenarios that in-
volve extensive and complex datasets. The com-
bination of these algorithms not only improves the
capabilities of classic methods but also creates op-
portunities for the development of innovative ap-
proaches that may effectively address the intricacies
of contemporary optimization problems [10–12].

Benioff and Feynman proposed the concept of
quantum computing in the early 1980s, arguing that
quantum-based computers outperformed their clas-
sical equivalents when solving particular problems
[13]. Feynman suggested using quantum mechan-
ics to solve computational issues [14]. Based on
this reference, issues that classic computers can-
not solve can be solved by primary quantum ma-
chines simulating sophisticated quantum systems.
The idea of a quantum Turing machine was then
introduced, and reference [15] provided a theoret-

ical demonstration of the possibility of universal
representations based on quantum physics. Ref-
erence [16] provides the first quantum algorithm.
Subsequently, Cerezo et al. [17] introduced quan-
tum algorithms that demonstrate the superiority of
quantum computing over conventional computers
in tackling specific tasks. These particular issues,
meanwhile, were handcrafted, and as a result, they
have only a marginally practical impact.

In 1994, Shor proposed factoring big inte-
gers [18]. The cryptographical security of the
Rivest-Shamir-Adleman (RSA) is ensured by size-
able prime factorization, an NP-hard issue. Utiliz-
ing conventional computers, it takes exponentially
more time to tackle this issue [19]. However, the
Shor technique demonstrates that just polynomial
time is required with quantum computing, making
RSA easily crackable. The Grover quantum search-
ing technique can thus successfully locate a specific
piece of information in an unsorted database [20].
Grover’s approach can verify all data simultane-
ously at each turn by utilizing quantum parallelism,
significantly decreasing the difficulty of solving this
search problem. The novel computing approach and
enormous possibilities for information processing
offered by quantum computing have drawn much
attention since the Shor and Grover algorithms were
proposed.

The design of algorithms has been significantly
impacted by quantum computation [21]. There is
much worry about integrating quantum comput-
ing’s robust storage and analysis advantages into
current optimization algorithms. Since nature-
inspired algorithms have long been widespread [22,
23], including chaotic Henry gas solubility opti-
mization algorithm [24], chaotic Lévy flight distri-
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bution optimization algorithm [25], african vultures
optimization algorithm for optimization [26], artifi-
cial gorilla troops algorithm [27], and hunger games
search algorithm [28], it makes sense to suggest
merging quantum theory with these techniques [29,
30]. By leveraging the principles of quantum par-
allel processing, the limitations inherent in nature-
inspired programs can be efficiently mitigated [31].

This work focuses on the task of enhancing
the rate at which optimization algorithms converge
while simultaneously avoiding their entrapment in
local minima. We suggest employing ChOA, a
nature-inspired optimization method renowned for
its simplicity and efficacy in diverse optimization
situations. Nevertheless, ChOA may have difficul-
ties while dealing with intricate situations and get
trapped in local optima. In order to address this
constraint, we propose the incorporation of a quan-
tum mechanism (QM) to augment the performance
of ChOA. The QChOA technique seeks to achieve
a harmonious equilibrium between exploration and
exploitation, which is a crucial undertaking in meta-
heuristic algorithms. By attaining this balance, we
allow the algorithm to effectively navigate the range
of possible solutions, discover innovative solutions,
and enhance its ability to optimize hard issues by
improving upon promising areas.

The sections of this paper are as follows: Sec-
tion 2 presents a comprehensive review of related
works. The basics of ChOA are discussed in Sec-
tion 3. In Section 4, we provide a comprehen-
sive description of the QChOA. Section 5 discusses
QChOA and its application to testing benchmark
functions and engineering problems. The final sec-
tion provides a brief conclusion and some directions
for the future.

2 Literature review

There are several existing quantum intelligent
algorithms, such as the quantum co-evolution algo-
rithm (QCA) [32, 33], the quantum- behaved sim-
ulated annealing (QSA) [34], the quantum whale
optimization algorithm (QWOA) [35], the quan-
tum recurrent encoder- decoder neural network
(QREDNN) [36], the Quantum-inspired ant lion
optimizer (QALO) [37], the probabilistic quantum
clustering (PQC) [38], the quantum probability-
inspired graph attention network (QGAN) [39],

the quantum differential evolution (QDE) [40],
the quantum grey wolf optimizer (QGWO) [41],
the quantum particle swarm optimization algorithm
(QPSO) [42, 43], the quantum- behaved sparse
dictionary learning (QSDL) [44], the quantum an-
nealing algorithm (QAA) [45]. Table 1 presents
the comparative characteristics of quantum-inspired
optimization techniques.

These algorithms incorporate the advantages of
quantum computing by being designed to align with
the characteristics of quantum mechanisms or draw-
ing inspiration from them. Because of the signif-
icant delay in the advancement of quantum hard-
ware, it is not possible to evaluate these algorithms
on an actual quantum computer. Nevertheless,
through the process of modeling quantum comput-
ing, these algorithms can showcase their superiority
over traditional algorithms inspired by nature.

Motivated by previous studies [32, 34, 35, 37,
40–43, 45], we recommend incorporating the quan-
tum computing concept into the classical ChOA
[47] to improve its performance.

In 2020, Khishe introduced a nature-inspired
ChOA technique [47]. The algorithm relies on cer-
tain swarm behaviors exhibited by groups of chim-
panzees during the hunting operation to find opti-
mal or near-optimal solutions. Researchers and in-
dustrial experts have used the ChOA in three major
research categories since its introduction in 2020:

In the first category, the ChOA has tried to address
a wide range of real-world optimization problems
and mathematical equations, such as:

– COVID-19 Diagnosis [48]: ChOA has demon-
strated promise in providing precise illness di-
agnosis. However, the availability of large and
high-quality data for training and validation may
be a determining factor in its effectiveness.

– Time Series Prediction [49]: When used with
time series data, ChOA can produce precise
forecasts. On the other hand, treating data sen-
sitivity and model generalization carefully may
be necessary.

– Multi-level Thresholding Segmentation [50]: Al-
though ChOA has enhanced picture segmenta-
tion, the implementation of the algorithm may
become more complex.
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Table 1. Comparative characteristics of quantum-inspired optimization techniques

Algorithm Disadvantages Advantages Research Gap Addressed in
Quantum-behaved Version

QCA [33] Slow convergence Efficient for binary problems Enhanced convergence using quantum
interference

QPSO [43] Limited exploration capa-
bility

Improved exploration and ex-
ploitation

Improved exploration and exploitation
of quantum concepts

QSA [34] Temperature schedule
choice

Improved exploration and ex-
ploitation

Enhanced quantum-inspired exploration
and exploitation

QACO [46] High computational cost Rapid convergence for small
problems

Integration of quantum principles in ant
colony optimization

QALO [37] Slow for large-scale prob-
lems

High precision Quantum speed-up for large-scale opti-
mization

PQC [38] Requires large quantum
depth

Quantum-assisted
clustering

Improved scalability with quantum tech-
niques

QWOA [35] Complexity due to hybrids update mechanisms Improved search and update mecha-
nisms

QGAN [39] Requires complex training
data

Quantum-based feature ex-
traction

Quantum-enhanced training method

QDE [40] Prone to getting stuck in lo-
cal minima

Quick adaptation to the envi-
ronment

Enhanced quantum-based global search

QSDL [44] Requires high quantum
depth

efficiency in dictionary learn-
ing

Improved quantum depth handling

QGWO [41] Hardware limitations Quantum-inspired exploration Integration of quantum concepts for op-
timization

– Haptic Brief Appearance Framework [51]: Al-
though ChOA improves haptic feedback sys-
tems, system and hardware constraints may pre-
vent it from being implemented fully.

– Simultaneous Feature Selection [52]: For fea-
ture selection, ChOA can be applied to im-
prove model performance. However, high-
dimensional data might run into issues with scal-
ability and processing complexity.

– Fuzzy Cluster Analysis [53]: Cluster analysis is
improved by ChOA via fuzzification. It might,
however, be susceptible to the selection of fuzzi-
fication parameters.

– Data Clustering [54]: Cluster analysis is en-
hanced by ChOA; however, because of its com-
plexity, precise parameter tuning may be neces-
sary.

– Environmental Power Dispatch Problem [55]:
Although ChOA maximizes power dispatch,
system dynamics, and environmental conditions
may have an impact on it.

– Multi-Sensor Computation [56]: Although
ChOA enhances multi-sensor data fusion, its

adaptation to various sensor types might need to
be taken into account.

– Oil-Gas Recovery [57]: Although ChOA im-
proves hydrocarbon recovery, oil and gas opera-
tions in the real world are complicated and un-
certain.

– Intelligent Robots [58]: ChOA improves robotic
systems’ intelligence; however, in practical im-
plementations, hardware and implementation is-
sues could arise.

– Sonar Dataset Target Detection and Recognition
[59]: Target detection and recognition are en-
hanced by ChOA; however, robustness to handle
noisy data may be needed.

– Minimizing Power Loss of Distribution Net-
works [60]: Although ChOA lowers power loss
in distribution networks, it may not be easy to
handle complexity and network scale issues.

– Design of Tunnel FET Architectures [61]: Al-
though there is potential for energy-efficient de-
signs utilizing ChOA, there may be restrictions
due to design specifications.

– Color image enhancement [62]: This method
uses bilateral gamma correction to improve the
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contrast of the image further while using ChOA
to choose the incomplete Beta function’s param-
eter values adaptively.

While these research projects hold value, pur-
suing innovative paradigms or employing novel
techniques as initial approaches to address a well-
established problem may not constitute robust re-
search directions. Table 2 provides a summary of
the applications of ChOA in practical scenarios,
along with their respective merits and drawbacks.

In the second category, the ChOA is merged with
other methods to increase efficiency and productiv-
ity, such as:

– Hybrid Whale optimization algorithm and
ChOA (WOA-ChOA) [63]: It aims to boost ef-
ficiency and productivity in duties pertaining to
optimization. The solution space can be effi-
ciently explored by the new search techniques
made possible by the connection with WOA.
However, the extra complexity of the hybrid
method needs to be considered in real use.

– Hybrid ChOA-Hunger Game Search [64]: The
hunger game search (HGS) algorithm and ChOA
are combined in this hybrid method. It seeks
to improve exploitation and exploration capa-
bilities through integration with HGS. Never-
theless, the hybrid algorithm’s additional com-
plexity needs to be carefully controlled, partic-
ularly in situations with limited computational
resources.

– Hybrid ChOA-Cuckoo Search [65]: This hy-
brid method combines the cuckoo search (CS)
method with ChOA. It aims to enhance the ex-
ploitation and exploration of the solution space
through the integration of CS. When using this
hybrid strategy, it is imperative to take into ac-
count the trade-off between optimization advan-
tages and algorithm complexity.

– Spotted Chimp Hybrid Optimization Algorithm
(SChOA) [66]: SChOA is an additional hy-
bridization that combines search strategies in-
spired by spotted hyenas with ChOA. Through
the combination of two tactics, this hybridiza-
tion seeks to improve overall performance.
However, it is essential to consider how hy-
bridization has increased complexity.

– Crossbred Random Forests ChOA (CRF- ChOA)
[67]: In this version, ChOA is combined with
random forests (RF), an accuracy-focused ma-
chine learning approach. The goal of the RF
integration is to increase task accuracy in opti-
mization. The complexity that is added by com-
bining these two approaches is the trade-off.

Other hybrid models are random vector func-
tional link network (RVFL)-ChOA [68], hybrid
dragonfly ChOA [69], and the SChOA [70]. Al-
though the proposed hybrid algorithms significantly
increased accuracy, their fundamental drawback is
their enormous complexity. The summary of hy-
brid models and their advantages and disadvantages
is presented in Table 3.

These hybrid algorithms indeed offer advan-
tages in terms of accuracy, efficiency, and produc-
tivity. However, their increased complexity should
be considered in practical applications, especially
when computational resources are limited. Careful
parameter tuning and performance evaluation are
essential to harness the benefits of these hybrid ap-
proaches effectively.

In summary, the second category of ChOA vari-
ants involves hybrid algorithms that combine ChOA
with other optimization techniques to improve per-
formance. While they offer advantages, such as
enhanced accuracy and efficiency, their complexity
needs to be managed and evaluated in the context of
specific optimization tasks.

Finally, in the third category, In an effort to
enhance the performance of the ChOA, researchers
undertook the task of inventing and tweaking a
range of operators. As an illustration:

– FuzzyChOA [71]: FuzzyChOA introduces fuzzi-
fication to fine-tune ChOA’s variables. This
modification enhances adaptability and fine-
tuning capabilities, making ChOA better suited
for complex optimization tasks. However, it
may add some computational complexity to the
algorithm.

– Opposition-Based Lévy Flight ChOA (IChOA)
[50]: In order to improve the transition between
the exploitation and exploration phases, this ver-
sion includes opposition-based Lévy flight be-
havior. It is more capable of exploring and ex-
ploiting the solution space, which increases its
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Table 2. The summary of the applications of ChOA in real-world problems.

Application Disadvantages Advantages
COVID-19 Diagnosis [48] May require extensive data and valida-

tion
Potential for accurate disease diagnosis

Multi-level Thresholding Segmentation
[50]

Algorithm complexity Improved image segmentation

Time Series Prediction [49] Data sensitivity and model generaliza-
tion

Potential for accurate predictions

Simultaneous Feature Selection [52] Complexity and scalability issues Feature selection for improved model
performance

Haptic Brief Appearance Framework
[51]

Hardware and implementation con-
straints

Enhanced haptic feedback system

Data Clustering [54] Algorithm complexity Improved cluster analysis
Fuzzy Cluster Analysis [53] Algorithm sensitivity to fuzzification Enhanced cluster analysis
Multi-sensor computation [56] Algorithm adaptability to sensor types Improved multi-sensor data fusion
Environmental Power Dispatch Problem
[55]

Sensitivity to environmental factors Optimized power dispatch

Oil-Gas Recovery [57] Real-world complexities Improved hydrocarbon recovery
Minimizing Power Loss of Distribution
Networks [60]

Complexity and network size Reduced power loss in networks

Sonar Dataset Target Detection and
Recognition [59]

Data quality and noise issues Enhanced target detection and recogni-
tion

Design of Tunnel FET Architectures
[61]

Algorithm-specific design constraints Potential for energy-efficient designs

Intelligent Robots [58] Hardware and implementation chal-
lenges

Enhanced intelligence in robotic sys-
tems

Color image enhancement [62] Need bilateral gamma correction Adaptively select the parameter values

Table 3. Comparative characteristics of ChOA and its hybrid variants

Algorithm Disadvantages Advantages Improvements
dragonfly ChOA [69] Increased complexity Enhanced exploration and ex-

ploitation
Integration with Dragonfly for
better balance

CRF-ChOA [67] Enormous complexity Improved accuracy through
hybrids

Integration with random
forests for accuracy

SChOA [66] Complexity due to hybridiza-
tion

Improved accuracy with hy-
bridization

Integration with spotted
hyena-inspired search

WOA-ChOA [63] Increased complexity Enhanced efficiency and pro-
ductivity

Integration with whale opti-
mization for productivity

ChOA-HGS [64] Increased complexity Enhanced exploration and ex-
ploitation

Integration with Hunger game
search for diversity

ChOA-CS [65] Increased complexity Improved exploration and ex-
ploitation

Integration with cuckoo
search for optimization

RVFL-ChOA [68] Complexity due to hybridiza-
tion

Enhanced performance
through hybridization

Integration with RVFL
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robustness. For best outcomes, users might need
to adjust some parameters.

– Quadratic Mutation ChOA (QSA) [72]: In order
to launch a species with a quadratic mutation,
QSA uses Spearman’s rank value of the lowest-
ranking chimps in society. Optimization per-
formance is enhanced by this method, primar-
ily when used in conjunction with ChOA. Nev-
ertheless, it could result in a more sophisticated
algorithm.

– Weighted ChOA (WChOA) [73]: To acceler-
ate convergence, WChOA suggests averaging
chimpanzees in a weighted manner. Although
it streamlines the optimization process, precise
parameter tuning might be necessary to get the
best outcomes.

– Dynamic Levy Flight ChOA (DLFChOA) [74]:
To facilitate the best possible transition be-
tween the exploration and exploitation phases
of ChOA, DLFChOA implements dynamic Levy
flight. Although this adjustment increases the
adaptability of the algorithm, it may also in-
crease computing complexity.
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complexity resulting from hybridization is nec-
essary.

– Refraction Learning ChOA (RL-ChOA) [76]:
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early-stage population diversity. Still, it adds an-
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The summary of improved models and their advan-
tages and disadvantages is presented in Table 4.

In the third category of ChOA variants, re-
searchers have focused on enhancing ChOA’s per-
formance by introducing various modifications and
operators to the algorithm. While these modifica-
tions and operators have demonstrated relative ad-
vantages in enhancing specific aspects of ChOA’s
performance, they also come with potential draw-
backs, such as increased complexity or the need for
parameter tuning. Therefore, researchers and prac-
titioners should carefully assess the suitability of
these variants for their specific optimization tasks,
considering the trade-offs involved.

Although the methods mentioned above had rel-
ative advantages in one of the phases of extrac-
tion or exploitation or adjusting the relationship be-
tween these two phases, practically, they helped in-
crease the speed of convergence or avoid local op-
tima. Although some algorithms, such as DLF-
ChOA and SOCSChOA, showed promising results
in both phases, they had high time complexity.

Motivations: The shortcomings mentioned above,
on the one hand, and the no free lunch theory [79],
on the other hand, motivated us to look for a com-
bined technique to simultaneously improve both the
exploration and exploitation phases so that the con-
vergence rate increases and the optimizer do not get
stuck in local minima.

The reason for choosing ChOA among other
newly presented nature-inspired and swarm-based
optimization algorithms is its simple math, the low
number of setting parameters, and the ability of this
algorithm in many optimization problems. How-
ever, it frequently becomes stuck at a local opti-
mum when attempting to handle intricate issues.
Our work presents the quantum mechanism (QM),
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Table 4. The advantages and disadvantages of ChOA and its improved version (3rd category)

Algorithm Disadvantages Advantages Enhancement
FuzzyChOA [71] May introduce additional

complexity
Enhanced adaptability and
fine-tuning

Fuzzification

IChOA [50] May require parameter tuning Enhanced exploration and ex-
ploitation

Opposition-based Lévy flight

QSA [72] Potential increase in algo-
rithm complexity

Improved optimization per-
formance

Quadratic mutation and
Spearman’s rank

WChOA [73] May require careful parameter
tuning

Increased convergence speed Weighted averaging of chim-
panzees

DLFChOA [74] May introduce computational
complexity

Improved transition between
exploration and exploitation

Dynamic Levy flight

SOCSChOA [75] Increased complexity due to
hybridization

Improved overall optimization
performance

Combined with cuckoo search
and selective opposition

RL-ChOA [76] Potential for increased com-
putational cost

Increased population variabil-
ity and convergence speed

Refraction learning

EChOA [77] Complexity due to adaptive
weight and somersault forag-
ing

Enhanced exploration and ex-
ploitation

Somersault foraging with
adaptive weight

MSChimp [78] Potential for increased com-
putational cost

Enhanced exploration and ex-
ploitation

opposition-based learning and
SCA

a novel approach to enhance ChOA’s performance
on complex optimization tasks.

Achieving a balance between exploration and
exploitation is a crucial and challenging task in
metaheuristic algorithms, including the QChOA
that has been presented. It is essential to achieve
this balance to ensure that the algorithm can effec-
tively explore the solution space to discover new
and potentially better solutions, while also taking
advantage of already promising areas to further en-
hance the solutions. In the context of QChOA, the
following approach is employed to tackle this chal-
lenge:

Incorporating Quantum Concepts: QChOA uti-
lizes quantum computing techniques to augment its
exploration and exploitation skills. Quantum com-
puting inherently exhibits parallelism, allowing for
the simultaneous investigation of several solutions.
Using parallelism during the exploration phase fa-
cilitates the algorithm’s ability to broaden its search
by concurrently searching multiple places inside the
solution space.

Non-Linearity and Uncertainty: The use of non-
linearity and uncertainty, which are fundamen-
tal characteristics of quantum physics within the
QChOA framework, inject elements of randomness
and variety into the search process. Utilizing non-
linearity within the approach allows it to navigate
the solution space in a non-linear manner, hence

aiding in the avoidance of local optima. The inclu-
sion of uncertainty in decision-making introduces a
degree of randomization, preventing the algorithm
from being confined to suboptimal regions.

Population Diversity: Preserving diversity within
a population is of utmost importance to obtain a har-
monious equilibrium between exploitation and ex-
ploration. QChOA implements strategies to main-
tain a diversified population of candidate solutions.
The presence of diversity inside the algorithm fa-
cilitates the exploration of a broad spectrum of po-
tential solutions, hence mitigating the risk of early
convergence.

Dynamic Adaptation: The search strategy em-
ployed by QChOA is subject to continuous adap-
tation in response to the optimization process. This
adaptation involves the dynamic adjustment of pa-
rameters to manage the exploration and exploitation
trade-off effectively. To illustrate, the algorithm
may enhance exploration by introducing higher ran-
domness if it detects rapid convergence or intensi-
fies exploitation when it identifies the discovery of
promising regions.

Constraint Handling: In the context of real en-
gineering applications, it is frequently necessary
to adhere to certain constraints to achieve desired
outcomes. The QChOA framework incorporates a
novel constraint- handling technique for effectively
managing constraints. This constraint-handling
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technique ensures that the method does not exces-
sively prioritize exploration to the detriment of ful-
filling the problem’s restrictions.

Benchmarking and Analysis: In order to op-
timize the trade-off between exploration and ex-
ploitation, the QChOA algorithm undergoes thor-
ough benchmarking and analysis using a wide range
of test functions and real-world engineering prob-
lems. This thorough evaluation enhances our under-
standing of the algorithm’s effectiveness in various
contexts and allows us to make suitable adjustments
to its parameters.

In summary, QChOA combines quantum con-
cepts, introduces randomness through non- linear
and uncertain elements, maintains a diverse popu-
lation, adapts its strategy dynamically, and includes
constraint management to address the exploration-
exploitation problem. By combining these method-
ologies, QChOA is able to efficiently balance the
exploration and exploitation trade- off, making it a
viable tool for solving complex optimization issues
in real-world situations.

Because of this, the following are the paper’s most
significant contributions:

Contribution:

– We present QChOA, a quantum-based variant of
the classical ChOA that improves upon the clas-
sical algorithm’s flexibility and speed of conver-
gence.

– The QChOA incorporates the non- linearity and
uncertainty concepts into the current ChOA to
place a chimp far away from the population, re-
sulting in an agent with superior fitness than the
present best agent.

– To address the drawbacks of constrained en-
gineering optimization problems that arise in
real-world settings, QChOA provides a novel
constraint-handling technique.

29 conventional benchmark functions, 30 com-
plicated CECBC functions, ten functions of the
CEC06 test suit, and ten real-world application-
based engineering challenges are used to con-
duct in-depth analyses of the merits of the pro-
posed QChOA. The QChOA is evaluated against
four groups of standard optimization approaches,
including (1) DLFChOA [74], ULChOA [80],

NChOA [81], and IChOA [77] as novel variants
of ChOA, (2) QGWO [41], QWOA [35], and QSA
[34] as the three best quantum behaved techniques,
(3) SHADE [82], CMAES [82], and LSHADE-
SPACMA [83] as the three well-known optimiza-
tion algorithms, and jDE100, DISHchain1e+12,
CIPDE, and EBOwithCMAR as best performing al-
gorithms in IEEE CEC competition [83]. A com-
prehensive evaluation is carried out using three
non-parametric statistical tests: Wilcoxon rank sum
[84], Holm’s sequential Bonferroni procedure [85],
and Friedman-type rank tests [86] The findings re-
veal that the QChOA ranked top among 46 out of
70 test functions and engineering challenges and
displayed comparable outcomes to SHADE and
CMAES in other comparisons. The analytical re-
search showed that QChOA is statisticall compa-
rable to jDE100 and DISHchain1e+12 while being
a much better optimizer than the benchmark algo-
rithms for the three first categories.

3 Related Terminology: Chimp
Optimization Algorithm

In a chimpanzee group, there are four distinct
roles that individuals might take on: attacker, bar-
rier, chaser, and driver. They each bring unique
skills to a meal that are essential for hunting. Fi-
nally, the attacker estimates the prey’s escape path,
leading it to return to the driver or go down into the
lower canopy, while the barriers position one an-
other in the canopy in order to prevent the escape
of prey. The chaser follows the prey rather than
endeavoring to capture it. Successful hunters are
rewarded with a massive piece of meat since it is
believed that attackers require more intelligence to
forecast the actions of their target. An attacker plays
a crucial role, and it increases with maturity, intelli-
gence, and strength. In exchange for social rewards,
including group support and courting, chimpanzees
have been proven to engage in meat hunting. Af-
ter the hunt, all the chimpanzees abandon their as-
signed tasks in favor of acquiring meat as quickly as
possible, a chaotic outcome driven by their underly-
ing social motivation (sexual desire). Chimps typi-
cally split their hunting activity into two stages: the
exploration stage, which entails behaviors like bar-
riering, chasing, and driving prey, and the exploita-
tion stage, which entails attacking prey. The ChOA



330 Meng Yu, Mohammad Khishe, Leren Qian, Diego Martı́n, Laith Abualigah, Taher M. Ghazal

is based on swarm intelligence and is designed to
mimic the collaborative predation habits of chim-
panzee groups in the wild [47].

3.1 Exploration Phase (Chasing and Ariv-
ing Prey)

The initial phase in catching prey is the tech-
nique of chasing prey, Equations (1) to (4) can de-
scribe [47]:

pt+1
chimp = pt

prey −κ · |J ·pt
prey −ζ ·pt

chimp| (1)

κ = 2 ·β · r1 −β (2)

J = 2 · (r2) (3)

ζ = accordingtochaoticmaps (4)

Where pprey is the best solution found thus far,
pchimp indicates the best chimpanzee position, t rep-
resents the number of iterations, κ,J, and ζ repre-
sents the coefficient vectors. Furthermore, where r1
and r2 represent random numbers between 0 and 1,
it is worth noting that these coefficients and transla-
tions are described in detail in reference [47].

3.2 Exploitation Phase (Attacking Prey)

Due to our ignorance about the precise location
of our initial meal, the greatest and first chimpanzee
strategy is to use prey in order to mimic our be-
havior statistically. After ChOA stores the top four
chimps, the other chimps will be compelled to re-
locate in relation to where the top four chimps are
located, as decided by Eqs. (5) and (6) [47].

pt+1 =
1
4
× (p1 + p2 + p3 + p4) (5)

Where

p1 = pA −a1 · |c1 pA −m1x|
p2 = pB −a2 · |c2 pB −m2x|
p3 = pC −a3 · |c3 pC −m3p|
p4 = pD −a4 · |c4 pD −m4p|

(6)

3.3 Sexual Motivation (Social Incentive)

At the conclusion of the hunting expedition, the
four subspecies of chimpanzees interact, and the
chimps’ social motivations (group support, court-
ing) temporarily relieve them of their hunting du-
ties. So they attempted to coerce their way into
the supply of chaotic flesh. Further alleviating is-
sues like local optimization and sluggish conver-
gence when addressing high dimensional problems
is achieved by the algorithm’s chaotic pattern dur-
ing the last stage. Table 5 shows all six of the
chaotic maps that were utilized in the paper. These
maps show systems that are both stochastic and de-
terministic. To account for both phenomena, we as-
sume that, during optimization, chimpanzees’ loca-
tions can be updated by either the standard posi-
tionupdating mechanism or the chaotic model with
equal probability. Equation (7) gives the mathemat-
ical form of its model.

pt+1 =

{
Eq. (5) ηm < 0.5
ζ ηm ≥ 0.5

(7)

Where ηmis an arbitrary integer between zero
and one. This oversimplified perspective on learn-
ing, however, may cause modest or early conver-
gence. To fix these issues, we propose a quantum
mechanism in the section that follows. Using the
same strategy, we can expand the search region to
D dimensions and have the chimpanzees move in a
hyperbolic shape (or hyperspheres) around the best
spot we have found so far.

4 Proposed Methodology: A Quan-
tum-behaved Chimp Optimiza-
tion Algorithm

When an agent uses a quantum-based search
method (instead of a Newtonian random walk), the
resulting search space analysis can reveal the most
advantageous locations. It is feasible due to the pos-
sibility that some search agents will occur at a great
distance from a given site. Searching agents in the
quantum-based search space should move in the D-
dimensional Hilbert space instead of the Newtonian
space and have a potential quantum field to assure
the constraint state for preventing the explosion and,
by extension, ensure convergence.
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Table 5. The Chaotic maps used in ChOA

No Name Chaotic map Range

1 Tent xi+1 =

{
10×xi

7 xi < 0.66
10
3 (1− xi) 0.66 ≤ xi

(0,1)

2 Logistic xi+1 = 4× (1− xi × xi (0,1)

3 Gauss/mouse xi+1 =

{
1 xi = 0

1
mod(xi,1)

otherwise
(0,1)

4 Singer xi+1 = 1.08× (7.86xi −23.31x2
i +28.75x3

i −13.30x4
i ) (0,1)

5 Quadratic xi+1 = x2
i −1 (0,1)

6 Bernoulli xi+1 = 2× xi(mod1) (0,1)

Conventional ChOA’s mathematical model
shows that the algorithm’s convergence is depen-
dent on the positions of each chimp, which change
in response to the roles of the barrier, attacker,
chaser, and driving chimps with the final update
by Equation (5), where pt+1 denotes the average
position of the top four chimps. It follows that a
chimp’s local draw is determined by the average of
the top four chimps as well as by the positions of
each individual. For υ = 1,2, ...,ψ chimps’ popula-
tion, the local movement of each chimpanzee can be
expressed as Wt

υ = (wt
υ,1,w

t
υ,2, . . . ,w

t
υ,DIM) , where t

denotes the iteration, and DIM denotes the number
of variables (dimension) associated with the prob-
lem. Thus, Equation (8) can express the local attrac-
tor positions for the wth chimp and dth dimension at
the t iteration.

wt
υ,d =κA × pt

Ave,d

+(1− JA)pt
A,d +(1− JB)pt

B,d

+(1− JC)pt
C,d +(1− JD)pt

D,d

pt
Ave,d =

1
4
× (pA + pB + pC + pD)

(8)

Where pt
Ave,d denotes the average position of

the top four chimpanzees for the dth dimension (at-
tacker, barrier, chaser, and driver). As defined in
the original ChOA, the parameter κ and J can be
similarly stated. The value of the κA, which can be
changed to balance the algorithm’s global and local
search capability, is employed to drive the attack
more towards the direction of the attacker chimp.
Adding the term (1− Jk) to Equation (8) will cause

the associated chimp to move in the negativ and
positive directions as follows randomly:

(1− Jk) =




−di, i f rand < 1
2

0, i f rand = 1
2

+di, i f rand > 1
2

(9)

The chimps’ present attacker, barrier, chaser,
driver positions, and average positions all approach
a single point, which causes the ChOA to converge
globally. The essential time-dependent Schrödinger
equation for quantum mechanics is given by Equa-
tions (10) and (11):

λ
∂Θ(P, t)

∂t
=−Γ̂(P)Θ(P, t) (10)

Γ̂(P) =− λ2

2υ
∇2 +Π(P) (11)

Where υ stands for the chimpanzee’s mass
λ, denotes the Planck constant, and Π(P) repre-
sents the potential energy distribution. In Equa-
tion (10), the wave function Θ(P, t) describes the
chimpanzee’s quantum state and solely depends on
the chimpanzee’s position. It has no direct phys-
ical significance. Its amplitude squared Θ(.)2 in
a four-dimensional space establishes a probability
measure by solving the following equation:

Θ(P, t)2 dxdydz = ϖdxdydz (12)

Where ϖdxdydz represents the likelihood that
a chimpanzee will appear in the threedimensional
space around the location (x, y, z). In other words,
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Θ(P, t) 2 is the probability density function (PDF)
fitting Equation (13).

∫ ∫ ∫

Y
Θ(P, t) 2 dxdydz =

∫ ∫ ∫

Y
ϖdxdydz = 1

(13)

The statistical analysis of the wave function is
represented by Equations (12) and (13), where the
integral is carried across the entire space. Every
chimpanzee in the method has been given a spinless
motion in D-dimensional Hilbert space with a spe-
cific potential field (energy). The chimp is pulled
using this field by a location specified in Equation
(8). This potential field produces bound states ac-
cording to quantum physics and ought to be cen-
tered at zero. For moving the chimpanzees in the
constrained domain of the search space, the most
basic delta potential that is well-oriented at g is
considered. The potential field is given by Equa-
tion (14) for onedimensional Hilbert space (D = 1),
where the chimpanzee’s location is considered as P
and wt

υ as w .

{
ϒ =−ζ ·δ(P−w) =−ζ ·δ(Ω)

Ω = P−w
(14)

Where ζ is the prospective well’s depth. At
the center, it is infinite, and everywhere else, it is
zero. For D-dimensional Hilbert space, the tech-
nique to implement QChOA can be calculated, in
which each dimension of the chimpanzees’ location
is constrained by a delta potential well and adjusted
individually. In order to measure the dth(1 ≤ d ≤
DIM) dimension of the mth (1 ≤ ϑ ≤ ψ) chimp po-
sition for the (t + 1)th iteration, we can use the up-
date equation obtained for QPSO in reference [42]
as follows:

Pt+1
υ, j = wt

υ,d ±
χt

υ,d

2
Ln(

1
T t+1

υ,d
) (15)

Where T t+1
υ,d denotes a series of random integers

distributed uniformly across the interval (0,1) and
change with time for each υ and d. Equation (16)
represents the value of χt

υ,d

χt
υ,d = 2 · l · Pt

υ,d −gt
d (16)

gt = gt
1,g

t
2, . . . ,g

t
DIM

Where gt denote the chimpanzee’s average po-
sitions at iteration t, as determined by Equation
(17):

gd
t =

1
Ψ

Ψ

∑
υ=1

Pt
υ,d (17)

Lastly, the QChOA position update equation can be
derived as follows:

Pt+1
υ,d = wt

υ,d ± l · Pt
υ,d −gt

d (
1

T t+1
υ,d

) (18)

l =
1
2
− (

t
max(t)

) (19)

In its most fundamental form, the QChOA is
shown by Equation (18). This context makes sense
when we talk about the positions that the words ”at-
tacker,” ”barrier,” ”chaser,” and ”driver” describe.
The parameter ”l” in the current study is linearly
adjusted during iterations between −1

2 and 1
2 . Ac-

cording to Equation (19), it has a positive value dur-
ing the initial half of the iterations and a negative
value during the following half. Figure 1 depicts
the proposed QChOA block diagram.
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Θ(P, t) 2 is the probability density function (PDF)
fitting Equation (13).

∫ ∫ ∫

Y
Θ(P, t) 2 dxdydz =

∫ ∫ ∫

Y
ϖdxdydz = 1

(13)

The statistical analysis of the wave function is
represented by Equations (12) and (13), where the
integral is carried across the entire space. Every
chimpanzee in the method has been given a spinless
motion in D-dimensional Hilbert space with a spe-
cific potential field (energy). The chimp is pulled
using this field by a location specified in Equation
(8). This potential field produces bound states ac-
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and wt

υ as w .

{
ϒ =−ζ ·δ(P−w) =−ζ ·δ(Ω)

Ω = P−w
(14)

Where ζ is the prospective well’s depth. At
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Pt+1
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υ,d ±
χt

υ,d

2
Ln(

1
T t+1

υ,d
) (15)

Where T t+1
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represents the value of χt

υ,d

χt
υ,d = 2 · l · Pt

υ,d −gt
d (16)

gt = gt
1,g

t
2, . . . ,g

t
DIM

Where gt denote the chimpanzee’s average po-
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(17):
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t =

1
Ψ

Ψ

∑
υ=1

Pt
υ,d (17)
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5 Experimentation and Analysis

This section presents a comparative analysis of
the performance of the suggested QChOA in rela-
tion to established methodologies. In this context,
the utilization of three distinct categories of evalu-
ation functions is employed in conjunction with a
single collection of ten practical engineering opti-
mization tasks:

1. Fixed-dimension multi-modal, multi-modal, and
unimodal are the three standard test function cat-
egories.

2. There are thirty complex compositional and hy-
brid functions in the most recent and most
difficult numerical optimization competition
CECBC2017 test sets.

3. The 100Digit Challenge CEC062019 [87],
which has ten functions. Take note that the best
answer offered for the ten processes is the value
1.000000000.

4. 10 real-world Engineering Problems from
CEC2020 [88].

5. Benchmark for dynamic optimization problems
produced by generalized moving peaks at the
2022 IEEE CEC.

Various test functions are used in this research
to test the effectiveness of the QChOA. The typical
baseline functions utilized to evaluate the potential
of QChOA for exploitation, exploration, and avoid-
ing getting stuck in local minima are the unimodal
(UM) [89], multimodal (MM), Fixed-dimension
multi-modal (FDM) [90], and composition func-
tions (CFs) [91]. The primary objective of UM
functions is to assess the algorithm’s susceptibility
to exploitation. The MM functions are used as a
means of measuring exploration performance. Fifty
dimensions are used to evaluate the two groups
mentioned above of functions. The efficacy of
QChOA in overcoming local optima is evaluated by
conducting experiments with a range of CFs, specif-
ically F24 to F29. The FDM benchmark functions,
which vary between F14 and F23, demonstrate the
ability of QChOA to explore in low dimensions.
CFs are used to test the algorithm’s effectiveness

because their complexity is the same as realworld
tasks since they contain many local optima. Fig-
ure 2 displays the twodimensional representation of
several test functions.

A maximum of 25,000 function evaluations and 500
iterations are used to tackle the benchmark func-
tions using QChOA and other different approaches.
The research study involved doing 30 rounds of
the QChOA in order to obtain statistically signifi-
cant findings. The outcomes of each iteration were
recorded and analyzed as a function of the standard
deviation (Std) and average (Ave) values of the most
optimal responses obtained thus far.

Twelve popular metaheuristic methods were
tested in the study, including DLFChOA [74],
ULChOA [80], QSA [34], NChOA [81], IChOA
[77], QGWO [41], QWOA [35], jDE100 [92],
DISHchain1e+12, CIPDE1 [93], EBOwithCMAR2

[94], and standard ChOA to prove the merit of
QChOA over other benchmark methods. Each eval-
uation is performed on a PC equipped with Win 11,
16 GB of RAM, a Core i7 processor that clocks in at
3.8 GHz, and Matlab R2020a. The various param-
eters of the comparison algorithms are described in
Table 6. The utilized setup parameters fall in the
permitted range for achieving the highest possible
efficiency across all algorithms or precisely advised
by their respective inventors.

5.1 The Performance Analysis of Exploita-
tion Feature

They can evaluate the exploitation of QChOA’s
potential since only one global optimum in UM ex-
ists. The results of QChOA and various optimiza-
tion techniques on UMs (F1-F7) utilizing Ave and
Std metrics are shown in Table 7. A non-parametric
statistical procedure called Wilcoxon’s rank-sum
testing was utilized to find out if the QChOA results
differed significantly from other assessments [84].
It should be noted that 5% was chosen as the sig-
nificance level in this instance. In addition to AVE
and STD, the research outcomes also present the p-
values obtained from Wilcoxon’s test. The abbrevi-
ation ”N/A” signifies ”Not Applicable,” indicating
that the technique is unsuitable as this test cannot
contrast the most suitable algorithm with itself. The

1Collective Information Powered Differential Evolution
2Effective Butterfly Optimizer with Covariance Matrix Adapted Retreat phase
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a) UM benchmark function

b) MM benchmark function

c) FDM benchmark function

d) CFs

Figure 2. Twodimensional representation of several test functions.
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a) UM benchmark function

b) MM benchmark function

c) FDM benchmark function

d) CFs

Figure 2. Twodimensional representation of several test functions.
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Table 6. Setting parameters for the utilized algorithm

Algorithm Parameter Value
ChOA & its variants f [2,0)

m Chaos
QGWO a linearly varied

between 0.5 and 0.5
QWOA selection Roulette wheel

crossover Single point
mutation rate 0.01

jDE100 & DISHchain1e+12 CR 0.8
F 0.4
F 0.6
CR 0.4

CIPDE c 0.12
T 250
RT 1950

EBOwithCMAR CR, freq 0.4
F 0.6
T 0.1

Table 7. The results of UM functions.
Algorithm F1 F2 F3 F4 F5 F6 F7

ChOA
Ave 7.89E-08 7.44E19 1.90E-07 1.55E-03 48.441 3.50E-04 3.89E-03
Std 7.55E-08 6.53E23 1.89E-07 1.96E-03 39.331 3.50E-04 3.89E-03

p-value 0.00033 0.0055 0.0051 0.0073 0.0068 0.0025 0.0030

ULChOA
Ave 1.44E12 0.00331 1.02E-07 1.33E-04 51.455 8.32E03 1.53E-03
Std 7.53E-09 0.00023 1.44E-07 1.75E-04 33.785 5.33E03 1.11E-03

p-value 0.0055 0.0044 0.0025 0.0039 0.0056 0.0051 0.0082

IChOA
Ave 6.96E12 2.11E07 1.42E08 1.22E09 48.335 1.32E02 3.22E03
Std 6.44E-08 3.33E08 0.0017E07 1.11E06 33.045 5.14E03 2.02E03

p-value 0.0033 0.0035 0.0014 0.0013 0.0055 0.0072 0.0083

NChOA
Ave 2.01E27 2.11E08 3.2E08 1.21E08 47.236 1.33E12 1.07E03
Std 1.21E55 8.42E07 1.25E06 1.11E07 35.443 2.55E06 2.51E03

p-value 0.0015 0.0044 0.0025 0.0039 0.0073 0.0051 0.0082

DLFChOA
Ave 3.11E40 7.11E23 5.11E09 3.53E08 63.220 7.25E06 1.49E03
Std 6.06E40 6.35E23 1.90E08 1.12E09 33.116 4.25E07 6.06E02

p-value 0.0033 0.0044 0.0055 0.0056 0.0071 0.0025 0.0030

QSA
Ave 6.44E07 5.41E21 0.98E06 1.15E08 76.350 1.42E07 1.89E03
Std 4.11E07 6.44E23 1.90E08 1.12E09 33.045 5.14E03 2.02E03

p-value 0.0055 0.0047 0.0025 0.0039 0.0056 0.0051 0.0082

QCChOA
Ave 1.14E33 1.78E23 3.88E11 1.42E09 2.41 1.45E04 1.05E03
Std 0.0000 1.54E35 2.34E11 1.12E09 2.41 1.14E07 1.05E04

p-value N/A N/A N/A N/A N/A N/A N/A

QGWO
Ave 4.35E14 4.33E14 1.90E08 1.12E09 76.350 1.42E07 1.89E03
Std 1.33E16 1.35E16 1.90E08 1.12E09 33.045 5.14E03 2.02E03

p-value 0.0055 0.0047 0.0025 0.0039 0.0056 0.0051 0.0082

QWOA
Ave 1.07E07 0.0036 3.88E07 1.32E06 75.350 1.11E03 7.29E-03
Std 7.00E-07 0.0076 3.88E07 1.32E06 33.045 1.14E07 1.11E03

p-value 0.0044 0.0055 0.0025 0.0039 0.0056 0.0051 0.0082

SHADE
Ave 1.23E19 3.22E19 2.20E04 1.33E11 1.31E01 1.42E07 1.05E04
Std 2.11E37 1.15E12 1.10E05 1.12E09 3.14E01 1.45E07 1.05E04

p-value 0.0055 0.0055 0.0025 0.0039 0.0056 0.0051 0.0082

CMAES
Ave 2.05E31 0.00E+00 1.25E09 1.09E09 2.07E16 1.11E07 2.02E03
Std 1.23E33 0.00E+00 1.10E05 1.12E09 3.14E01 1.45E07 1.05E04

p-value N/A N/A N/A N/A N/A N/A N/A

LSHADE-SPACMA
Ave 0.7537 2.52E12 2.52E09 1.14E08 51.291 1.42E07 7.20E03
Std 1.23E19 1.52E19 1.10E05 1.12E09 3.14E01 1.45E07 1.05E04

p-value 0.0055 0.0055 0.0025 0.0039 0.0056 0.0051 0.0082
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bold style of the p-values indicates little difference
between the two algorithms.

Numbers in bold represent the best performance
achieved for each metric in each experiment. Based
on the findings, it can be observed that QChOA ex-
hibited superior performance compared to the ma-
jority of competing algorithms across all test func-
tions, with the exception of F6 and F7, in which
it attained a second-place ranking. The findings of
this study illustrate the potential for exploitation of
the quantum mathematical notion, which allows the
QChOA to efficiently and accurately converge to-
wards the global optimum.

5.2 The Performance Analysis of Explo-
ration Feature

The evaluation of an algorithm’s capacity for
exploration is conducted using MM functions, as
they can exhibit numerous local optima based on
the layout parameters. All of the test functions in
F8F23 are multi-modal and come in both MM and
FDM types. The outcomes of the QChOA and other
techniques for such tasks are presented in Tables 8
and 9. Numbers in bold represent the best perfor-
mance achieved for each metric in each experiment.

These tables show that, among the methods,
the QChOA has the best capacity for exploration.
QChOA demonstrates superior performance con-
trasted to other techniques for 50% of the MMs,
while for the others, as modern optimizers, it pro-
duces competitive results. The level of accuracy
achieved by QChOA in FDMs is analogous to that
of state- of-the-art optimization techniques in at-
taining the optimal solution in most cases. The dif-
ferent stages of optimization that go into QChOA’s
exploration capability impact this improvement due
to the QM capability.

5.3 The Local Optima Avoidance Capabil-
ity

F24-F29 is the CF that is obtained by using ro-
tating, shifting, and combination operations on ba-
sic UM and MM functions. CFs are produced to
evaluate the methods’ ability to avoid local minima
and strike a good balance between exploration and
exploitation. It can be seen how well the QChOA
and other optimization techniques perform in CFs
in Table 10. The outcomes indicate that QChOA is

more effective than competing methods. The out-
comes reveal that the QChOA algorithm is well-
balanced between the exploration and exploitation
phases and that it is able to avoid local optima quite
well by means of the thorough relocation process
that QM facilitates. Table 11 employs Friedman’s
mean rank test to ascertain the cumulative rank of
the benchmark algorithms. As indicated in Ta-
ble 11, QChOA demonstrated the highest ranking
in comparison to the other benchmark techniques.
Numbers in bold represent the best performance
achieved for each metric in each experiment.

5.4 QChOA’s Convergence Analysis

This section delves into the experimental con-
vergence of the QChOA. To evaluate the conver-
gence of QChOA, we employ measures including
average fitness history, converging graphs, and tra-
jectories. For the performance and convergence in-
vestigation of QChOA in several benchmark test
functions, these metrics are displayed in Figure 3.
The 2D illustration of benchmarks regarding this
figure is indicated in the 1st column, which might
help comprehend the function’s domain architec-
ture.

One of the earliest metrics to reveal the top out-
come up to this point is the convergence curve.
Convergence curves in UM functions follow a
smooth pattern, consistent across all categories,
which indicates improving outcomes with time.
This trend, however, transforms into the regular
stepwise pattern for MM and CFs. It is clear from
each category that, for UM functions, QChOA can
initially encompass the ideal point and then itera-
tively improve the results. On the contrary, even
in the final rounds, participants in MM and CFs
achieved better outcomes by doing a global search
throughout the search region. This strategy results
in curves resembling steps, with little progress even
after a few MM functions have been applied. It is
observed that the exploratory performance depends
on the agents’ QM factor in the most recent iter-
ations. Once the searching agents are viewed as
colony members, the best individual’s behavior in
maximizing the colony’s success may be noticed in
the convergence graph. However, no data is avail-
able about the entire colony’s performance. This
shortcoming is the rationale behind choosing the
average fitness history statistic as an additional in-
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bold style of the p-values indicates little difference
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achieved for each metric in each experiment. Based
on the findings, it can be observed that QChOA ex-
hibited superior performance compared to the ma-
jority of competing algorithms across all test func-
tions, with the exception of F6 and F7, in which
it attained a second-place ranking. The findings of
this study illustrate the potential for exploitation of
the quantum mathematical notion, which allows the
QChOA to efficiently and accurately converge to-
wards the global optimum.

5.2 The Performance Analysis of Explo-
ration Feature

The evaluation of an algorithm’s capacity for
exploration is conducted using MM functions, as
they can exhibit numerous local optima based on
the layout parameters. All of the test functions in
F8F23 are multi-modal and come in both MM and
FDM types. The outcomes of the QChOA and other
techniques for such tasks are presented in Tables 8
and 9. Numbers in bold represent the best perfor-
mance achieved for each metric in each experiment.

These tables show that, among the methods,
the QChOA has the best capacity for exploration.
QChOA demonstrates superior performance con-
trasted to other techniques for 50% of the MMs,
while for the others, as modern optimizers, it pro-
duces competitive results. The level of accuracy
achieved by QChOA in FDMs is analogous to that
of state- of-the-art optimization techniques in at-
taining the optimal solution in most cases. The dif-
ferent stages of optimization that go into QChOA’s
exploration capability impact this improvement due
to the QM capability.
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sic UM and MM functions. CFs are produced to
evaluate the methods’ ability to avoid local minima
and strike a good balance between exploration and
exploitation. It can be seen how well the QChOA
and other optimization techniques perform in CFs
in Table 10. The outcomes indicate that QChOA is

more effective than competing methods. The out-
comes reveal that the QChOA algorithm is well-
balanced between the exploration and exploitation
phases and that it is able to avoid local optima quite
well by means of the thorough relocation process
that QM facilitates. Table 11 employs Friedman’s
mean rank test to ascertain the cumulative rank of
the benchmark algorithms. As indicated in Ta-
ble 11, QChOA demonstrated the highest ranking
in comparison to the other benchmark techniques.
Numbers in bold represent the best performance
achieved for each metric in each experiment.

5.4 QChOA’s Convergence Analysis

This section delves into the experimental con-
vergence of the QChOA. To evaluate the conver-
gence of QChOA, we employ measures including
average fitness history, converging graphs, and tra-
jectories. For the performance and convergence in-
vestigation of QChOA in several benchmark test
functions, these metrics are displayed in Figure 3.
The 2D illustration of benchmarks regarding this
figure is indicated in the 1st column, which might
help comprehend the function’s domain architec-
ture.

One of the earliest metrics to reveal the top out-
come up to this point is the convergence curve.
Convergence curves in UM functions follow a
smooth pattern, consistent across all categories,
which indicates improving outcomes with time.
This trend, however, transforms into the regular
stepwise pattern for MM and CFs. It is clear from
each category that, for UM functions, QChOA can
initially encompass the ideal point and then itera-
tively improve the results. On the contrary, even
in the final rounds, participants in MM and CFs
achieved better outcomes by doing a global search
throughout the search region. This strategy results
in curves resembling steps, with little progress even
after a few MM functions have been applied. It is
observed that the exploratory performance depends
on the agents’ QM factor in the most recent iter-
ations. Once the searching agents are viewed as
colony members, the best individual’s behavior in
maximizing the colony’s success may be noticed in
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able about the entire colony’s performance. This
shortcoming is the rationale behind choosing the
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Table 8. The results of MM functions.
Algorithm F8 F9 F10 F11 F12 F13

ChOA
Ave −1.07E+04 3.39E−07 7.33E-16 0.00E 00 4.30E-06 3.09E-01
Std 1.22E+03 3.39E−07 7.25E-16 0.00E 00 4.30E-06 3.09E-01

p-value 0.0033 0.0055 N/A 0.0022 0.0035 0.0045

ULChOA
Ave −1.25E+04 1.25E−07 7.33E16 0.00E 00 1.01E-04 2.10E-04
Std 0.1 3.22E−07 3.22E−07 0.00E 00 1.30E-04 8.50E-04

p-value 0.0077 0.0082 0.0035 0.0041 0.0033 0.0071

IChOA
Ave −1.12E+04 1.4423 2.0441 0.0002 2.01E-03 2.22E-04
Std 1766.46 0.3000 0.1001 0.0033 2.02E-03 1.33E-04

p-value 0.0011 0.0047 0.0032 0.0015 0.00001 0.0017

NChOA
Ave −1.03E+04 1.11E−04 0.8223 1.01E-05 1.30E-05 2.10E-05
Std 555.233 3.45E−04 0.0021 1.00E-05 1.25E-05 1.50E-05

p-value 0.0072 0.0082 0.0035 0.0041 0.0033 0.0071

DLFChOA
Ave −9.03E+03 2.22E−07 8.21E14 0.00E 00 7.88E07 2.92E-03
Std 595.1113 2.11E−07 2.44E14 0.00E 00 7.88E07 1.44E-03

p-value 0.0033 0.0042 0.0035 0.0047 0.0047 0.0015

QSA
Ave −1.33E+04 0.0933 2.12E15 1.01E-07 7.12E04 3.94E-07
Std 796.12698 0.0322 2.33E14 1.30E-07 0.0031 1.22E-03

p-value 0.0035 0.0042 0.0086 0.0032 0.0036 0.0091

QChOA
Ave −1.75E+04 0.00E 00 1.88E13 0.00E 00 0.00E 00 0.00E 00
Std 525.5351 0.00E 00 1.44E12 0.00E 00 0.00E 00 0.00E 00

p-value N/A N/A 0.0017 N/A N/A N/A

QGWO
Ave −1.38E+04 1.1335 9.33E12 0.00E 00 8.30E-04 2.11E-03
Std 742.6746 0.3440 6.17E12 0.00E 00 7.44E-04 1.02E-03

p-value 0.0076 0.0042 0.0086 0.0032 0.0036 0.0091

QWOA
Ave −1.42E+04 0.3007 0.9003 0.00E 00 2.10E-04 5.10E-04
Std 715.5351 0.1001 0.1335 0.00E 00 8.50E-04 2.30E-04

p-value 0.0063 0.0082 0.0035 0.0041 0.0033 0.0071

SHADE
Ave −8.83E+03 0.029 0.1702 1.01E-04 1.19E-04 1.01E-04
Std 418.8 0.831 0.0244 1.22E-04 3.90E-04 1.00E-04

p-value 0.0077 0.0025 0.0035 0.0032 0.0033 0.0071

CMAES
Ave −1.16E+04 0.0085 6.044 0.00E 00 1.13E14 1.25E12
Std 331.3 0.0344 2.706 0.00E 00 1.25E13 1.11E12

p-value 0.0035 0.0042 0.0055 0.0032 0.0044 0.0091

LSHADE-SPACMA
Ave −1.32E+04 0.0023 0.1525 9.01E-05 0.0008 2.11E-06
Std 454.325 0.0016 0.0188 9.30E-05 0.0019 1.04E-08

p-value 0.0065 0.0082 0.0040 0.0041 0.0033 0.0071
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Table 9. The results of FDM functions.
Algorithm F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

ChOA
Ave 2.3332 3.05E−04 1.0359 0.4005 3.000022 3.8544 3.21003 10.133 10.333 10.45
Std 0.0911 3.02E−04 6.32E−14 1.33E06 1.21E09 1.47E10 2.44E02 2.04E02 2.77E02 2.11E02

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

IChOA
Ave 1.0444 3.54E−04 1.0449 0.3989 3.000019 3.8633 3.29622 10.122 10.421 10.531
Std 0.2731 6.32E−04 2.11E−12 7.11E11 2.44E12 1.42E13 1.66E10 2.13E02 3.33E04 2.55E02

p-value 0.0044 0.0047 0.0021 0.0011 0.0025 0.0066 0.0025 0.0077 0.0065 0.0063

IChOA
Ave 1.0305 2.20E−04 1.0355 0.4033 3.00000 3.8621 3.2901 6.155 10.322 10.522
Std 1.0001 3.32E−04 5.11E−09 0.4033 3.00000 3.8655 3.2608 2.77E02 3.13E01 2.75E02

p-value 0.0028 0.0073 0.0014 0.0032 0.0032 0.0073 0.0071 0.0042 0.0066 5.11E−09

NChOA
Ave 0.9645 3.29E−04 1.0384 0.3995 3.000042 3.8622 3.28876 10.133 9.4033 10.510
Std 1.22E14 4.02E−04 4.73E15 5.12E14 1.88E14 2.77E15 1.22E10 2.66E08 2.11E02 5.11E−09

p-value 0.0044 0.0047 0.0021 0.0011 0.0025 0.0066 0.0025 0.0077 0.0065 0.0063

DLFChOA
Ave 0.1033 3.21E−04 1.0362 0.3925 3.00012 3.7954 3.19001 7.544 9.320 9.6501
Std 1.22E14 6.52E−04 6.15E15 9.36E14 1.88E13 4.11E15 1.60E08 1.44E02 1.23E01 7.11E−02

p-value 0.0011 0.0033 0.0021 0.0011 0.0021 0.0066 0.0088 0.0077 0.0015 0.0063

QSA
Ave 1.1330 2.11E06 1.0352 0.3989 3.000045 3.8636 3.28654 10.165 10.421 10.520
Std 2.8713 3.33E04 2.38E−09 9.36E13 2.40E02 1.25E14 1.85E10 2.33E05 2.77E02 8.15E−03

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

QChOA
Ave 1.08E−05 3.01E−04 1.03161 0.3972 3.000001 3.8645 3.0004 10.165 9.4077 10.537
Std 1.09E−17 3.08E15 4.03E18 9.02E15 1.33E16 2.41E15 1.11E11 2.1E11 2.25E11 3.62E11

p-value N/A N/A N/A 0.0577 N/A N/A 0.00184 N/A 0.0033 N/A

QGWO
Ave 0.9333 3.02E−04 1.0341 0.3996 3.000033 3.8633 3.2899 10.122 10.4041 10.536
Std 2.33E15 4.09E−04 4.46E16 9.12E15 1.46E14 1.46E14 1.14E11 2.53E11 2.38E−09 3.91E11

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

QWOA
Ave 1.0002 3.64E−04 1.0357 0.3991 3.000033 3.8644 1.992 6.144 7.477 6.5322
Std 1.0044 6.66E−04 6.85E−14 8.22E13 1.32E13 3.11E13 1.13E09 2.25E02 2.38E−09 0.0033

p-value 0.0066 0.0047 0.0055 0.0011 0.0025 0.0066 0.0023 0.0057 0.0065 4.11E−06

SHADE
Ave 0.8827 1.25E03 1.0316 0.3983 3.000025 3.8628 3.0334 9.1344 10.414 10.537
Std 3.41E16 5.22E03 0.0033 1.12E16 3.14E15 1.46E14 5.77E02 1.1325 2.63E11 9.00E11

p-value 0.054 0.0022 0.054 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.052

CMAES
Ave 1.0335 3.02E−04 1.0316 0.3982 3.9900 3.8628 3.2903 7.1410 10.414 10.537
Std 0.2044 1.19E−04 6.22E17 0.0000 1.33E+01 2.51E15 1.44E11 3.4120 2.02E11 5.11E−09

p-value 0.0033 0.0033 0.066 N/A 0.0035 0.00001 N/A 0.0003 N/A 0.066

LSHADE-SPACMA
Ave 0.9044 1.44E03 1.0316 0.3988 3.000041 3.8628 3.0333 9.1436 10.435 10.537
Std 3.21E16 5.32E03 0.0033 1.11E16 3.22E14 1.33E14 5.77E02 1.2269 2.44E11 9.11E11

p-value 0.054 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075

Table 10. The results of CFs.
Algorithm F24 (CF1) F25 (CF2) F26 (CF3) F27 (CF4) F28 (CF5) F29 (CF6)

ChOA
Ave 63.2201 198.221 283.1423 392.2145 198.2214 807.3355
Std 75.2001 58.2214 87.0745 88.251 98.5213 100.073

p-value 0.0033 0.0023 0.0043 0.0021 0.0013 0.0017

ULChOA
Ave 37.5421 135.3225 212.321 266.3021 183.556 699.4123
Std 50.1332 89.5213 32.5514 89.03212 99.3256 109.85215

p-value 0.0019 0.0033 0.0011 0.0039 0.0022 0.0025

IChOA
Ave 67.553 89.5213 311.365 60.3356 85.1444 720.08236
Std 95.802 57.4122 38.2574 95.1444 105.0884 197.3521

p-value 0.0047 0.0024 0.0032 0.0017 0.00022 0.0037

NChOA
Ave 44.2255 72.3355 295.6625 133.2541 92.1358 690.07621
Std 43.399 39.152 77.521 122.1358 92.1358 63.9631

p-value 0.0019 0.0035 0.0011 0.0022 0.0017 0.0025

DLFChOA
Ave 67.5213 88.2214 145.225 302.3521 49.5588 701.2014
Std 84.3322 44.1332 41.2811 66.2569 33.7745 189.3026

p-value 0.0033 0.0025 0.0043 0.0021 0.0035 0.0017

QSA
Ave 32.4421 65.3214 198.3214 311.1111 132.447 729.204
Std 19.2136 23.6145 45.3321 101.5569 88.7541 88.2369

p-value 0.0019 0.0043 0.0022 0.0021 0.0017 0.0025

QCChOA
Ave 6.1133 14.0021 137.852 273.133 2.1124 88.2145
Std 11.2211 22.0000 16.021 24.1003 1.2341 39.5541

p-value N/A N/A N/A N/A N/A N/A

QGWO
Ave 7.2222 21.2143 165.3352 288.651 2.1334 517.5541
Std 12.8453 17.845 74.5621 74.5621 1.1321 77.1457

p-value 0.0019 0.0045 0.0011 0.0019 0.0017 0.0025

QWOA
Ave 22.2143 68.2514 235.114 401.321 33.974 699.8142
Std 23.3300 33.2514 56.9702 98.3524 33.974 88.46236

p-value 0.0019 0.0035 0.0011 0.0019 0.0025 0.0022

SHADE
Ave 8.3625 15.0142 144.911 269.902 4.324 444.3251
Std 8.1425 22.3333 3.1001 27.3333 1.531 65.7451

p-value 0.0021 0.0044 0.0025 0.0023 0.0017 0.0044

CMAES
Ave 6.4521 14.0021 152.214 281.558 2.0906 396.8541
Std 11.3322 22.1133 22.3324 45.3342 12.906 92.336

p-value 0.0057 0.54 0.0033 0.0024 0.0022 0.0021

LSHADE-SPACMA
Ave 6.3256 13.1935 151.6301 275.002 2.132 412.7133
Std 11.2211 24.1003 24.1003 27.3333 1.2341 77.556

p-value 0.0033 0.0025 0.0033 0.0021 0.0022 0.0017
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Table 9. The results of FDM functions.
Algorithm F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

ChOA
Ave 2.3332 3.05E−04 1.0359 0.4005 3.000022 3.8544 3.21003 10.133 10.333 10.45
Std 0.0911 3.02E−04 6.32E−14 1.33E06 1.21E09 1.47E10 2.44E02 2.04E02 2.77E02 2.11E02

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

IChOA
Ave 1.0444 3.54E−04 1.0449 0.3989 3.000019 3.8633 3.29622 10.122 10.421 10.531
Std 0.2731 6.32E−04 2.11E−12 7.11E11 2.44E12 1.42E13 1.66E10 2.13E02 3.33E04 2.55E02

p-value 0.0044 0.0047 0.0021 0.0011 0.0025 0.0066 0.0025 0.0077 0.0065 0.0063

IChOA
Ave 1.0305 2.20E−04 1.0355 0.4033 3.00000 3.8621 3.2901 6.155 10.322 10.522
Std 1.0001 3.32E−04 5.11E−09 0.4033 3.00000 3.8655 3.2608 2.77E02 3.13E01 2.75E02

p-value 0.0028 0.0073 0.0014 0.0032 0.0032 0.0073 0.0071 0.0042 0.0066 5.11E−09

NChOA
Ave 0.9645 3.29E−04 1.0384 0.3995 3.000042 3.8622 3.28876 10.133 9.4033 10.510
Std 1.22E14 4.02E−04 4.73E15 5.12E14 1.88E14 2.77E15 1.22E10 2.66E08 2.11E02 5.11E−09

p-value 0.0044 0.0047 0.0021 0.0011 0.0025 0.0066 0.0025 0.0077 0.0065 0.0063

DLFChOA
Ave 0.1033 3.21E−04 1.0362 0.3925 3.00012 3.7954 3.19001 7.544 9.320 9.6501
Std 1.22E14 6.52E−04 6.15E15 9.36E14 1.88E13 4.11E15 1.60E08 1.44E02 1.23E01 7.11E−02

p-value 0.0011 0.0033 0.0021 0.0011 0.0021 0.0066 0.0088 0.0077 0.0015 0.0063

QSA
Ave 1.1330 2.11E06 1.0352 0.3989 3.000045 3.8636 3.28654 10.165 10.421 10.520
Std 2.8713 3.33E04 2.38E−09 9.36E13 2.40E02 1.25E14 1.85E10 2.33E05 2.77E02 8.15E−03

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

QChOA
Ave 1.08E−05 3.01E−04 1.03161 0.3972 3.000001 3.8645 3.0004 10.165 9.4077 10.537
Std 1.09E−17 3.08E15 4.03E18 9.02E15 1.33E16 2.41E15 1.11E11 2.1E11 2.25E11 3.62E11

p-value N/A N/A N/A 0.0577 N/A N/A 0.00184 N/A 0.0033 N/A

QGWO
Ave 0.9333 3.02E−04 1.0341 0.3996 3.000033 3.8633 3.2899 10.122 10.4041 10.536
Std 2.33E15 4.09E−04 4.46E16 9.12E15 1.46E14 1.46E14 1.14E11 2.53E11 2.38E−09 3.91E11

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

QWOA
Ave 1.0002 3.64E−04 1.0357 0.3991 3.000033 3.8644 1.992 6.144 7.477 6.5322
Std 1.0044 6.66E−04 6.85E−14 8.22E13 1.32E13 3.11E13 1.13E09 2.25E02 2.38E−09 0.0033

p-value 0.0066 0.0047 0.0055 0.0011 0.0025 0.0066 0.0023 0.0057 0.0065 4.11E−06

SHADE
Ave 0.8827 1.25E03 1.0316 0.3983 3.000025 3.8628 3.0334 9.1344 10.414 10.537
Std 3.41E16 5.22E03 0.0033 1.12E16 3.14E15 1.46E14 5.77E02 1.1325 2.63E11 9.00E11

p-value 0.054 0.0022 0.054 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.052

CMAES
Ave 1.0335 3.02E−04 1.0316 0.3982 3.9900 3.8628 3.2903 7.1410 10.414 10.537
Std 0.2044 1.19E−04 6.22E17 0.0000 1.33E+01 2.51E15 1.44E11 3.4120 2.02E11 5.11E−09

p-value 0.0033 0.0033 0.066 N/A 0.0035 0.00001 N/A 0.0003 N/A 0.066

LSHADE-SPACMA
Ave 0.9044 1.44E03 1.0316 0.3988 3.000041 3.8628 3.0333 9.1436 10.435 10.537
Std 3.21E16 5.32E03 0.0033 1.11E16 3.22E14 1.33E14 5.77E02 1.2269 2.44E11 9.11E11

p-value 0.054 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075

Table 10. The results of CFs.
Algorithm F24 (CF1) F25 (CF2) F26 (CF3) F27 (CF4) F28 (CF5) F29 (CF6)

ChOA
Ave 63.2201 198.221 283.1423 392.2145 198.2214 807.3355
Std 75.2001 58.2214 87.0745 88.251 98.5213 100.073

p-value 0.0033 0.0023 0.0043 0.0021 0.0013 0.0017

ULChOA
Ave 37.5421 135.3225 212.321 266.3021 183.556 699.4123
Std 50.1332 89.5213 32.5514 89.03212 99.3256 109.85215

p-value 0.0019 0.0033 0.0011 0.0039 0.0022 0.0025

IChOA
Ave 67.553 89.5213 311.365 60.3356 85.1444 720.08236
Std 95.802 57.4122 38.2574 95.1444 105.0884 197.3521

p-value 0.0047 0.0024 0.0032 0.0017 0.00022 0.0037

NChOA
Ave 44.2255 72.3355 295.6625 133.2541 92.1358 690.07621
Std 43.399 39.152 77.521 122.1358 92.1358 63.9631

p-value 0.0019 0.0035 0.0011 0.0022 0.0017 0.0025

DLFChOA
Ave 67.5213 88.2214 145.225 302.3521 49.5588 701.2014
Std 84.3322 44.1332 41.2811 66.2569 33.7745 189.3026

p-value 0.0033 0.0025 0.0043 0.0021 0.0035 0.0017

QSA
Ave 32.4421 65.3214 198.3214 311.1111 132.447 729.204
Std 19.2136 23.6145 45.3321 101.5569 88.7541 88.2369

p-value 0.0019 0.0043 0.0022 0.0021 0.0017 0.0025

QCChOA
Ave 6.1133 14.0021 137.852 273.133 2.1124 88.2145
Std 11.2211 22.0000 16.021 24.1003 1.2341 39.5541

p-value N/A N/A N/A N/A N/A N/A

QGWO
Ave 7.2222 21.2143 165.3352 288.651 2.1334 517.5541
Std 12.8453 17.845 74.5621 74.5621 1.1321 77.1457

p-value 0.0019 0.0045 0.0011 0.0019 0.0017 0.0025

QWOA
Ave 22.2143 68.2514 235.114 401.321 33.974 699.8142
Std 23.3300 33.2514 56.9702 98.3524 33.974 88.46236

p-value 0.0019 0.0035 0.0011 0.0019 0.0025 0.0022

SHADE
Ave 8.3625 15.0142 144.911 269.902 4.324 444.3251
Std 8.1425 22.3333 3.1001 27.3333 1.531 65.7451

p-value 0.0021 0.0044 0.0025 0.0023 0.0017 0.0044

CMAES
Ave 6.4521 14.0021 152.214 281.558 2.0906 396.8541
Std 11.3322 22.1133 22.3324 45.3342 12.906 92.336

p-value 0.0057 0.54 0.0033 0.0024 0.0022 0.0021

LSHADE-SPACMA
Ave 6.3256 13.1935 151.6301 275.002 2.132 412.7133
Std 11.2211 24.1003 24.1003 27.3333 1.2341 77.556

p-value 0.0033 0.0025 0.0033 0.0021 0.0022 0.0017
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Figure 3. Search space, convergence curve, average fitness history, and first dimension’s trajectory of some
functions.
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Table 11. Friedman mean rank statistics.
Algorithm ChOA ULChOA IChOA NChOA DLFChOA QSA
Friedman mean rank 11.29 5.8 10.94 10.075 8.87 6.87
Rank 12 6 11 10 9 7
Friedman mean rank QChOA QGWO QWOA SHADE CMAES LSHADE-

SPACMA
Rank 2.14 4.36 8.59 3.65 2.68 5.82

1 4 8 3 2 5

dicator to assess colony efficiency. The observed
trend of the metric exhibits a resemblance to con-
vergence rates, although it places particular empha-
sis on the enhancement of outcomes within the ini-
tial population resulting from this cooperative ef-
fort. The phase change of the algorithm results in
an enhanced fitness level for each agent. The mean
fitness history of test functions demonstrates a step-
like pattern as a result of this improvement. Grad-
ual and seamless changes generally characterize the
gradients of the curves of UMs.

The skew patterns for these types are prominent
in MM and CFs. A further measurement is the di-
rection of the agents, which is illustrated in column
4. This metric provides an individual’s topological
changes from the optimization process’s inception
to its very end. The first dimension can represent
the agents’ route since they can go in numerous di-
rections.

An algorithm is guaranteed to converge to the
local minimum area in the end by following this
pattern, which involves iteratively switching from
an exploration-oriented to a local search-oriented
strategy in later rounds. The changes in frequency,
magnitude, and length of these phenomena are fre-
quently more substantial compared to those of the
UM functions. This is attributed to the distinct
properties of MM and CFs, which exhibit a greater
degree of radiculitis than UM functions.

Lastly, in the final column of the chart, we can
see the results of searching history metric evalua-
tion. Because of the agents’ two-pronged reinforce-
ment weighting behavior, QChOA is able to reveal
patterns in their aggregate- seeking behavior in this
image. In this model, UM functions more agents to
occupy optimal points, but MM and CFs are more
scattered in their search activity. Achieving success
in UM endeavors is made more accessible by the
central pattern’s defining feature. Last but not least,
we search the whole area by investigating the do-

main, which allows QChOA in MM and CFs. Fur-
thermore, the convergence trajectory for particular
assessment functions for the comparison algorithms
is displayed in Figure 4.

Figure 4 shows the results of analyzing the
QChOA and competitive approaches’ convergence
curves for optimization of the test functions. The
findings show that phase one quickly approaches
the global minimum, and phase two only makes
marginal improvements over phase one, supporting
the idea that only one stage may be effective in ad-
dressing a benchmark. This search pattern is visible
in F1, F3, F4, and F11. Since the algorithm had al-
ready reached the optimal or nearly optimal state,
we can observe another comparable pattern without
enhancing solutions in the subsequent phases. F2,
F16, F17, and TF18 all exhibit this pattern. Follow-
ing each phase shift visible in F4, F8, F10, F26, and
F28, the last pattern shows a modification in a con-
vergence curve. Weight modification is employed
by the QChOA in order to investigate and leverage
the domain, hence enhancing the performance of
the approach. Additionally, the fact that their con-
vergence trajectories behave consistently across the
last phase provides more evidence that these func-
tions are converging.

A thorough comprehension of how weight
changes affect algorithm performance as a whole
can be achieved by including rigorous MM and CF.
Additionally, these models elucidate the underly-
ing reasoning behind the formulation of each phase.
This approach allows QChOA to find the minima in
the first phase of UM functions. The experimental
effectiveness of each separate stage becomes evi-
dent and persuasive when the approach is evaluated
in MMs and CFs.
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Table 11. Friedman mean rank statistics.
Algorithm ChOA ULChOA IChOA NChOA DLFChOA QSA
Friedman mean rank 11.29 5.8 10.94 10.075 8.87 6.87
Rank 12 6 11 10 9 7
Friedman mean rank QChOA QGWO QWOA SHADE CMAES LSHADE-

SPACMA
Rank 2.14 4.36 8.59 3.65 2.68 5.82

1 4 8 3 2 5

dicator to assess colony efficiency. The observed
trend of the metric exhibits a resemblance to con-
vergence rates, although it places particular empha-
sis on the enhancement of outcomes within the ini-
tial population resulting from this cooperative ef-
fort. The phase change of the algorithm results in
an enhanced fitness level for each agent. The mean
fitness history of test functions demonstrates a step-
like pattern as a result of this improvement. Grad-
ual and seamless changes generally characterize the
gradients of the curves of UMs.

The skew patterns for these types are prominent
in MM and CFs. A further measurement is the di-
rection of the agents, which is illustrated in column
4. This metric provides an individual’s topological
changes from the optimization process’s inception
to its very end. The first dimension can represent
the agents’ route since they can go in numerous di-
rections.

An algorithm is guaranteed to converge to the
local minimum area in the end by following this
pattern, which involves iteratively switching from
an exploration-oriented to a local search-oriented
strategy in later rounds. The changes in frequency,
magnitude, and length of these phenomena are fre-
quently more substantial compared to those of the
UM functions. This is attributed to the distinct
properties of MM and CFs, which exhibit a greater
degree of radiculitis than UM functions.

Lastly, in the final column of the chart, we can
see the results of searching history metric evalua-
tion. Because of the agents’ two-pronged reinforce-
ment weighting behavior, QChOA is able to reveal
patterns in their aggregate- seeking behavior in this
image. In this model, UM functions more agents to
occupy optimal points, but MM and CFs are more
scattered in their search activity. Achieving success
in UM endeavors is made more accessible by the
central pattern’s defining feature. Last but not least,
we search the whole area by investigating the do-

main, which allows QChOA in MM and CFs. Fur-
thermore, the convergence trajectory for particular
assessment functions for the comparison algorithms
is displayed in Figure 4.

Figure 4 shows the results of analyzing the
QChOA and competitive approaches’ convergence
curves for optimization of the test functions. The
findings show that phase one quickly approaches
the global minimum, and phase two only makes
marginal improvements over phase one, supporting
the idea that only one stage may be effective in ad-
dressing a benchmark. This search pattern is visible
in F1, F3, F4, and F11. Since the algorithm had al-
ready reached the optimal or nearly optimal state,
we can observe another comparable pattern without
enhancing solutions in the subsequent phases. F2,
F16, F17, and TF18 all exhibit this pattern. Follow-
ing each phase shift visible in F4, F8, F10, F26, and
F28, the last pattern shows a modification in a con-
vergence curve. Weight modification is employed
by the QChOA in order to investigate and leverage
the domain, hence enhancing the performance of
the approach. Additionally, the fact that their con-
vergence trajectories behave consistently across the
last phase provides more evidence that these func-
tions are converging.

A thorough comprehension of how weight
changes affect algorithm performance as a whole
can be achieved by including rigorous MM and CF.
Additionally, these models elucidate the underly-
ing reasoning behind the formulation of each phase.
This approach allows QChOA to find the minima in
the first phase of UM functions. The experimental
effectiveness of each separate stage becomes evi-
dent and persuasive when the approach is evaluated
in MMs and CFs.
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a) UM benchmark function

b) MM benchmark function

c) FDM benchmark function

d) CFs

Figure 4. The convergence graphs of the QChOA and other benchmarks.
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5.5 Performance of QChOA on
CECBC2017 Test Functions

The study utilized the CECBC2017 test suite,
which is recognized for its recentness and complex-
ity, in order to evaluate numerical optimization con-
tests [100]. This test suite has 30 functions, pre-
dominantly consisting of intricate hybrid and com-
posite evaluation benchmark tasks. The purpose
of employing this test suite is to demonstrate the
performance of the suggested technique. Awad et
al. [64] provided a comprehensive mathematical
framework along with extensive details regarding
this testbed. These functions are used to contrast
the QChOA with other popular approaches. Table
12 displays the Ave, Std, and p-value. Numbers
in bold represent the best performance achieved for
each metric in each experiment.

According to Friedman’s mean rank, QChOA
and CMAES rank first and second. According to
the findings, QChOA is the best of the existing op-
timizers.

5.6 Results of the IEEE CEC062019
100digit Challenge

In order to assess QChOA’s performance even
further, ten functions from the 100Digit Challenge
CEC062019 [58] are used. Table A5 contains the
functions’ characteristics. In the IEEE CEC062019
100Digit competition, algorithms executed each
test task 50 times. The minimal function evalua-
tion counts the total accurate numbers across the 25
runs. The score of the test function is then com-
puted using Nc/25. The optimal challenge score is
100 if at least 25 of 50 trials for every ten trials
give ten-digit results. At least 1.000000000 must
be achieved on tasks. A 3D representation of a few
mentioned tasks is shown in Figure 5.

Figure 6 shows the results of 18 benchmark al-
gorithms and standard ChOA and QChOA for each
of the ten issues.

As shown in Figure 6, jDE100 yields the high-
est number of significant results with a score of 100,
which DISHchain1e+12 follows. Out of twenty
cutting-edge methods, the ChOA comes in at num-
ber six with an 87.6. Our method, which applies
the QM to the ChOA, places third out of twenty
benchmarking with a score of 94.11. It is impor-
tant to note that the QChOA ranks highest in seven

of the ten problems. However, because of the size
of the challenges, QChOA has trouble with F5, F6,
and F10 but does well with F7, F8, and F9. For
28 of the 35 test functions, the statistically best
performance is achieved by QChOA. Notably, the
QChOA performs better than the other cutting-edge
benchmarks.

5.7 Statistical Analysis of QChOA

In this section, Bonferroni-Dunns and Holm
and Friedman tests, are provided to compare the
QChOA with its competitors. The functions were
divided into three groups for the purpose of creat-
ing a trustworthy evaluation. All of the operations
shown in Tables 7, 8, and 9 fall under the first group.
In order to create the CFs, which are designated as
F24–F29, several basic UM and MM functions are
rotated, shifted, and mixed. The objective of pro-
ducing the CFs is to assess the algorithms’ capacity
to effectively navigate away from local minima and
strike a balance between exploration and exploita-
tion. Table 10 presents the performance evaluation
of various optimization methods in CFs, including
the QChOA. The findings indicate that QChOA has
a higher degree of overall effectiveness compared
to alternative approaches. It appears from the re-
sults that the fine-tuned QChOA is quite good at
balancing the two stages of its operation, exploita-
tion and exploration. This leads to exceptional per-
formance in avoiding local minima, which can be
attributed to the complete relocation facilitated by
QM. The benchmark algorithms’ overall rank in
this table is determined using Friedman’s mean rank
test. As seen by the data presented in Table 11,
the QChOA algorithm demonstrated superior per-
formance when compared to other baseline tech-
niques.

Based on the data presented in Table 12, it can
be observed that the CECBC2017 test functions
constitute the second class. The third class is com-
prised of a synthesis of the first two classes. The
statistical differentiation of the algorithms’ perfor-
mance can be achieved through the application of
the nonparametric Friedman test. Upon detecting
statistically significant changes in the performance
of multiple algorithms, it is imperative to ascertain
which algorithms exhibit a substantial deviation in
efficiency compared to QChOA. As a result, to find
out if there were any significant differences between
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5.5 Performance of QChOA on
CECBC2017 Test Functions

The study utilized the CECBC2017 test suite,
which is recognized for its recentness and complex-
ity, in order to evaluate numerical optimization con-
tests [100]. This test suite has 30 functions, pre-
dominantly consisting of intricate hybrid and com-
posite evaluation benchmark tasks. The purpose
of employing this test suite is to demonstrate the
performance of the suggested technique. Awad et
al. [64] provided a comprehensive mathematical
framework along with extensive details regarding
this testbed. These functions are used to contrast
the QChOA with other popular approaches. Table
12 displays the Ave, Std, and p-value. Numbers
in bold represent the best performance achieved for
each metric in each experiment.

According to Friedman’s mean rank, QChOA
and CMAES rank first and second. According to
the findings, QChOA is the best of the existing op-
timizers.

5.6 Results of the IEEE CEC062019
100digit Challenge

In order to assess QChOA’s performance even
further, ten functions from the 100Digit Challenge
CEC062019 [58] are used. Table A5 contains the
functions’ characteristics. In the IEEE CEC062019
100Digit competition, algorithms executed each
test task 50 times. The minimal function evalua-
tion counts the total accurate numbers across the 25
runs. The score of the test function is then com-
puted using Nc/25. The optimal challenge score is
100 if at least 25 of 50 trials for every ten trials
give ten-digit results. At least 1.000000000 must
be achieved on tasks. A 3D representation of a few
mentioned tasks is shown in Figure 5.

Figure 6 shows the results of 18 benchmark al-
gorithms and standard ChOA and QChOA for each
of the ten issues.

As shown in Figure 6, jDE100 yields the high-
est number of significant results with a score of 100,
which DISHchain1e+12 follows. Out of twenty
cutting-edge methods, the ChOA comes in at num-
ber six with an 87.6. Our method, which applies
the QM to the ChOA, places third out of twenty
benchmarking with a score of 94.11. It is impor-
tant to note that the QChOA ranks highest in seven

of the ten problems. However, because of the size
of the challenges, QChOA has trouble with F5, F6,
and F10 but does well with F7, F8, and F9. For
28 of the 35 test functions, the statistically best
performance is achieved by QChOA. Notably, the
QChOA performs better than the other cutting-edge
benchmarks.

5.7 Statistical Analysis of QChOA

In this section, Bonferroni-Dunns and Holm
and Friedman tests, are provided to compare the
QChOA with its competitors. The functions were
divided into three groups for the purpose of creat-
ing a trustworthy evaluation. All of the operations
shown in Tables 7, 8, and 9 fall under the first group.
In order to create the CFs, which are designated as
F24–F29, several basic UM and MM functions are
rotated, shifted, and mixed. The objective of pro-
ducing the CFs is to assess the algorithms’ capacity
to effectively navigate away from local minima and
strike a balance between exploration and exploita-
tion. Table 10 presents the performance evaluation
of various optimization methods in CFs, including
the QChOA. The findings indicate that QChOA has
a higher degree of overall effectiveness compared
to alternative approaches. It appears from the re-
sults that the fine-tuned QChOA is quite good at
balancing the two stages of its operation, exploita-
tion and exploration. This leads to exceptional per-
formance in avoiding local minima, which can be
attributed to the complete relocation facilitated by
QM. The benchmark algorithms’ overall rank in
this table is determined using Friedman’s mean rank
test. As seen by the data presented in Table 11,
the QChOA algorithm demonstrated superior per-
formance when compared to other baseline tech-
niques.

Based on the data presented in Table 12, it can
be observed that the CECBC2017 test functions
constitute the second class. The third class is com-
prised of a synthesis of the first two classes. The
statistical differentiation of the algorithms’ perfor-
mance can be achieved through the application of
the nonparametric Friedman test. Upon detecting
statistically significant changes in the performance
of multiple algorithms, it is imperative to ascertain
which algorithms exhibit a substantial deviation in
efficiency compared to QChOA. As a result, to find
out if there were any significant differences between
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Table 12. Results for CECBC2017 benchmark functions
Type No. Metric ChOA ULChOA IChOA NChOA DLFChOA QSA
UM F1 Ave 2741.28 274.33 9322.22 166.33 2433.22 417.88

Std 345.21 274.31 5741.49 4.22E06 1952.112 362.74
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

F3 Ave 300 833.33 587.00 300 300 300
Std 1.95E11 25.031 125.33 8.77E07 2.44E07 2.12E04
p-value 0.054 0.0046 0.0055 0.0014 0.0033 0.0021

MM F4 Ave 399.44 407.44 408.33 401.25 404.33 406.55
Std 4.1425 7.652 2.22 1.4521 1.7412 1.4123
p-value 0.0018 0.0017 0.0011 0.0033 0.0044 0.0027

F5 Ave 511.77 509.21 512.55 509.33 509.33 508.22
Std 2.4563 7.9654 4.6523 4.5412 4.4169 3.5551
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

F6 Ave 633.88 614.42 599.55 602.41 601.33 603.41
Std 1.25E01 9.3332 1.44E02 5.11E04 1.02E04 2.3330
p-value 0.0018 0.0017 0.0011 0.0033 0.0044 0.0027

F7 Ave 722.33 714.33 719.55 720.10 720.10 717.33
Std 4.4174 1.2336 5.3625 3.0333 5.3201 3.4141
p-value 0.0014 0.07323 0.0024 0.0011 0.0036 0.0002

F8 Ave 820.45 814.654 812.65 811.22 818.22 815.44
Std 5.3333 2.4141 7.1523 2.3696 6.8585 5.9142
p-value 0.0018 0.0017 0.0011 0.0033 0.0044 0.0027

F9 Ave 902.36 900.00 900.00 905.33 900.00 902.11
Std 5.33E14 0.00 5.98E14 0.0044 0.0512 1.1236
p-value 0.0044 0.143 0.0024 0.0011 0.0036 0.0002

F10 Ave 1652.11 1677.33 1633.11 1355.24 1411.33 2566.33
Std 199.222 198.475 233.11 134.258 259.546 223.252
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

Hybrid F11 Ave 1117.25 1110.33 1106.25 1103.33 1105.42 1110.36
Std 6.1425 7.5552 7.5533 2.33211 5.4414 9.3369
p-value 0.0027 0.0017 0.0015 0.0033 0.0044 0.0027

F12 Ave 1.38E+06 7.11E+05 3.55E+05 1.35E+03 1.03 E+05 1.81E+06
Std 1.22E+06 4.22E+05 3.33E+05 6.76E+01 9.79 E+03 1.86E+06
p-value 0.0024 0.0035 0.0044 0.0018 0.0019 0.0055

F13 Ave 2.14E+03 1.4E+03 1.03E+04 1.31E+03 8.02E+03 9.85E+03
Std 0.53E+03 25.3312 7.73E+03 7.33E+02 6.72E+03 2.14E+03
p-value 0.0024 0.0011 0.0036 0.0002 0.0021 0.0046

F14 Ave 7.47E+03 1.45E+03 1.45E+03 1.41E+03 1.46E+03 7.14E+03
Std 8.15E+03 54.33 82.33 5.5221 31.54214 1.49E+03
p-value 0.0018 0.0017 0.0011 0.0033 0.0044 0.0027

F15 Ave 9.7E+03 1.62E+03 1.29E+03 1.50E+03 1.50E+03 2.23E+03
Std 285.69 2.333 8.97 1.4421 1.3321 0.52E+03
p-value 0.0031 0.0025 0.0044 0.0044 0.0033 0.0061

F16 Ave 1.62E+03 1.64E+03 1.62E+03 1.60E+03 1.58E+03 1.82E+03
Std 99.22 99.33 99.14 5.412 35.77 198.441
p-value 0.0011 0.024 0.0036 0.0039 0.0014 0.0013

F17 Ave 1.77E+03 1.75E+03 1.74E+03 1.73E+03 1.74E+03 1.77E+03
Std 44.3321 29.1425 25.1245 6.4142 5.3365 27.2512
p-value 0.0047 0.0002 0.0032 0.0021 0.0054 0.0061

F18 Ave 1.85E+03 1.84E+03 1.83E+03 1.79E+03 1.83E+03 1.84E+03
Std 45.3636 15.1414 45.2312 2.4758 17.3656 1.29E+04
p-value 0.0024 0.0011 0.0036 0.0002 0.0021 0.0046

F19 Ave 2.96E+03 2.91E+03 2.41E+03 1.91E+03 1.95E+03 1.94E+03
Std 99.5454 74.1333 89.2552 1.1414 47.0021 41.3625
p-value 0.0011 0.024 0.0036 0.0039 0.0014 0.0013

F20 Ave 2.05E+03 2.03E+03 2.03E+03 2.01E+03 2.02E+03 2.27E+03
Std 46.5521 7.1421 44.4747 5.02586 23.0231 82.0125
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061
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CFs F21 Ave 2.29E+03 2.21E+03 2.30E+03 2.20E+03 2.30E+03 2.28E+03
Std 42.1625 39.1421 44.3333 20.0202 21.1475 39.6363
p-value 0.0011 0.024 0.0036 N/A 0.0014 0.0013

F22 Ave 2.30E+03 2.03E+03 2.29E+03 2.51E+03 2.29E+03 2.30E+03
Std 13.4412 12.2200 19.3636 63.1425 17.1425 11.0120
p-value 0.0017 N/A 0.0011 0.024 0.0036 0.0039

F23 Ave 2.62E+03 2.61E+03 2.62E+03 2.61E+03 2.61E+03 2.72E+03
Std 9.5554 10.3325 7.3321 8.1245 5.4141 233.321
p-value 0.0011 0.0017 0.0036 0.0039 0.0014 0.0013

F24 Ave 2.74E+03 2.74E+03 2.74E+03 2.56E+03 2.74E+03 2.73E+03
Std 15.4412 5.4456 9.3321 42.4432 6.0021 64.0014
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

F25 Ave 2.95E+03 2.93E+03 2.94E+03 2.90E+03 2.93E+03 2.94E+03
Std 248.1414 15.3311 20.07644 19.5541 19.5252 23.3636
p-value 0.0024 0.0011 0.0036 0.0002 0.0021 0.0046

F26 Ave 3.45E+03 3.44E+03 3.00E+03 2.90E+03 2.96E+03 2.92E+03
Std 208.6541 632.7412 201.7474 25.3635 164.3321 32.3321
p-value 0.0011 0.024 0.0025 0.0039 0.0033 0.0013

F27 Ave 3.11E+03 3.11E+03 3.10E+03 3.09E+03 3.09E+03 3.09E+03
Std 11.0021 14.3321 7.9963 8.9987 2.5598 2.5521
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

F28 Ave 3.31E+03 3.30E+03 3.31E+03 3.10E+03 3.30E+03 3.21E+03
Std 156.332 90.142 112.444 19.8521 132.212 113.001
p-value 0.0036 0.011 0.0036 0.0039 0.0014 0.0013

F29 Ave 3.20E+03 3.20E+03 3.24E+03 3.15E+03 3.17E+03 3.21E+03
Std 36.6666 44.9630 43.8520 13.4120 23.6654 51.3366
p-value 0.0024 0.0011 0.0036 0.0002 0.0021 0.0046

F30 Ave 5.31E+05 4.99E+05 4.63E+05 3.50E+03 3.01E+05 3.01E+05
Std 4.89E+05 6.39E+05 4.92E+05 4.92E+03 4.52E+05 3.31E+05
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

UM F1 Ave 100.00 100.00 109.99 100 100 100
Std 3.14E07 2.55E05 0.0021 0.000 0.000 4.33E06
p-value 0.66 0.0041 0.0021 N/A 0.42 0.033

F3 Ave 300.00 300.00 300.00 300.00 300.00 300.00
Std 0.0000 9.94E11 1.25E03 0.000 0.000 1.11E33
p-value N/A 0.0011 0.0013 0.063 0.42 0.001

MM F4 Ave 400.00 400.21 403.55 400.00 400.00 400.00
Std 1.21E15 2.35E07 1.21E05 0.000 0.000 1.02E12
p-value 0.056 0.0017 0.0043 N/A 0.052 0.0037

F5 Ave 504.33 508.44 510.33 507.00 531.11 521.42
Std 1.000 4.001 4.2222 1.007 59.11 56.19
p-value N/A 0.0011 0.0013 0.052 0.0033 0.0011

F6 Ave 600.00 600.00 602.88 604.00 606.99 624.96
Std 3.83E07 5.53E04 2.55E05 5.28E04 5.99E04 2.44E03
p-value N/A 0.0021 0.0033 0.0046 0.0011 0.0033

F7 Ave 713.22 717.33 716.23 715.98 715.96 719.87
Std 1.033 2.0014 1.0014 1.541 1.632 1.7112
p-value N/A 0.0021 0.0033 0.082 0.075 0.0033

F8 Ave 805.64 806.33 807.71 806.85 806.84 810.93
Std 1.845 2.5413 3.7831 1.8456 1.9863 2.1456
p-value N/A 0.0021 0.0033 0.082 0.075 0.0043

F9 Ave 900.00 900.00 902.33 900.00 900.00 902.11
Std 0.000 1.64E02 2.55E02 0.000 0.000 1.44E02
p-value N/A 0.0025 0.0037 0.056 0.053 0.0028

F10 Ave 1189.38 1244.52 1355.33 1999.25 1195.26 1249.23
Std 79.33 123.11 129.65 109.57 101.32 134.56
p-value N/A 0.0021 0.0033 0.0046 0.0011 0.0033
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CFs F21 Ave 2.29E+03 2.21E+03 2.30E+03 2.20E+03 2.30E+03 2.28E+03
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p-value 0.0017 N/A 0.0011 0.024 0.0036 0.0039
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p-value 0.0011 0.0017 0.0036 0.0039 0.0014 0.0013
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p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

F25 Ave 2.95E+03 2.93E+03 2.94E+03 2.90E+03 2.93E+03 2.94E+03
Std 248.1414 15.3311 20.07644 19.5541 19.5252 23.3636
p-value 0.0024 0.0011 0.0036 0.0002 0.0021 0.0046

F26 Ave 3.45E+03 3.44E+03 3.00E+03 2.90E+03 2.96E+03 2.92E+03
Std 208.6541 632.7412 201.7474 25.3635 164.3321 32.3321
p-value 0.0011 0.024 0.0025 0.0039 0.0033 0.0013

F27 Ave 3.11E+03 3.11E+03 3.10E+03 3.09E+03 3.09E+03 3.09E+03
Std 11.0021 14.3321 7.9963 8.9987 2.5598 2.5521
p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061

F28 Ave 3.31E+03 3.30E+03 3.31E+03 3.10E+03 3.30E+03 3.21E+03
Std 156.332 90.142 112.444 19.8521 132.212 113.001
p-value 0.0036 0.011 0.0036 0.0039 0.0014 0.0013
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Std 36.6666 44.9630 43.8520 13.4120 23.6654 51.3366
p-value 0.0024 0.0011 0.0036 0.0002 0.0021 0.0046
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p-value 0.0033 0.0025 0.0044 0.0044 0.0033 0.0061
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Std 3.14E07 2.55E05 0.0021 0.000 0.000 4.33E06
p-value 0.66 0.0041 0.0021 N/A 0.42 0.033

F3 Ave 300.00 300.00 300.00 300.00 300.00 300.00
Std 0.0000 9.94E11 1.25E03 0.000 0.000 1.11E33
p-value N/A 0.0011 0.0013 0.063 0.42 0.001

MM F4 Ave 400.00 400.21 403.55 400.00 400.00 400.00
Std 1.21E15 2.35E07 1.21E05 0.000 0.000 1.02E12
p-value 0.056 0.0017 0.0043 N/A 0.052 0.0037

F5 Ave 504.33 508.44 510.33 507.00 531.11 521.42
Std 1.000 4.001 4.2222 1.007 59.11 56.19
p-value N/A 0.0011 0.0013 0.052 0.0033 0.0011

F6 Ave 600.00 600.00 602.88 604.00 606.99 624.96
Std 3.83E07 5.53E04 2.55E05 5.28E04 5.99E04 2.44E03
p-value N/A 0.0021 0.0033 0.0046 0.0011 0.0033

F7 Ave 713.22 717.33 716.23 715.98 715.96 719.87
Std 1.033 2.0014 1.0014 1.541 1.632 1.7112
p-value N/A 0.0021 0.0033 0.082 0.075 0.0033

F8 Ave 805.64 806.33 807.71 806.85 806.84 810.93
Std 1.845 2.5413 3.7831 1.8456 1.9863 2.1456
p-value N/A 0.0021 0.0033 0.082 0.075 0.0043

F9 Ave 900.00 900.00 902.33 900.00 900.00 902.11
Std 0.000 1.64E02 2.55E02 0.000 0.000 1.44E02
p-value N/A 0.0025 0.0037 0.056 0.053 0.0028
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Hybrid F11 Ave 1100.00 1102.01 1104.38 1102.56 1102.12 1104.11
Std 0.96 1.44 2.11 1.32 1.31 2.77
p-value N/A 0.0077 0.0017 0.0018 0.082 0.0036

F12 Ave 1323.55 1365.25 1411.12 1322.55 1323.20 1351.01
Std 54.55 101.26 99.33 104.20 152.01 110.23
p-value 0.21 0.0021 0.0021 N/A 0.0046 0.0011

F13 Ave 1305.21 1305.31 1311.14 1306.77 1304.47 1309.25
Std 3.22 2.89 3.33 2.71 0.69 2.51
p-value 0.0021 0.0033 0.0046 0.0011 N/A 0.0011

F14 Ave 1402.36 1404.22 1423.16 1409.82 1414.23 1449.38
Std 4.01 4.09 7.33 8.63 9.22 10.99
p-value N/A 0.0023 0.0035 0.0046 0.0011 0.0033

F15 Ave 1500.75 1500.76 1532 1501.33 1502.11 1554.06
Std 0.53 0.53 1.11 0.59 057 2.11
p-value N/A 0.075 0.0025 0.082 0.056 0.0041

F16 Ave 1601.01 1601.83 1614.23 1602.22 1603.25 1652.03
Std 0.88 0.93 1.42 0.93 1.52 2.33
p-value N/A 0.0033 0.0017 0.0018 0.0072 0.0037

F17 Ave 1705.15 1711.23 1717.88 1715.38 1711.78 1722.18
Std 3.56 6.66 6.82 4.33 5.23 8.56
p-value N/A 0.0031 0.0017 0.0018 0.056 0.0029

F18 Ave 1807.21 1808.33 1822.39 1811.25 1815.56 1844.23
Std 4.21 5.22 6.89 6.44 7.12 9.56
p-value N/A 0.0071 0.0057 0.0058 0.0012 0.0047

F19 Ave 1900.00 1902.11 1914.00 1902.14 1902.12 1905.33
Std 0.00 1.22 2.14 1.33 1.23 3.55
p-value N/A 0.0027 0.0029 0.0041 0.0023 0.0033

F20 Ave 2003.22 2004.45 2009.87 2005.33 2006.22 2011.22
Std 0.69 1.33 2.11 1.22 1.25 2.33
p-value N/A 0.0033 0.0017 0.0018 0.082 0.0036

Figure 5. The three-dimension CEC062019 functions’ search space.
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Figure 6. CEC062019 challenge results.

the two competitors, we used the Bonferroni-Dunn
post hoc test, which uses the Critical Difference
(CD) to quantify significance.

It should be mentioned that the control strategy
in this experiment is QChOA. In Figure 7, we can
see how each method fared on average over three
different kinds of functions, with 0.1 and 0.05 be-
ing the significance levels for each. The QChOA al-
gorithm can outperform algorithms that are ranked
higher than the threshold line associated with the
given figure. A colorcoded threshold line demar-
cates each category. Based on the graphical repre-
sentation, QChOA demonstrates the highest rank-
ing across all classes and exhibits the potential to
significantly outperform alternative comparison al-
gorithms at significance levels of both 0.1 and 0.05.

In conclusion, based on the findings presented
in Figure 7, QChOA demonstrates strong and de-
pendable performance in the specified functions
when compared to existing optimizers. Across all
three classes, there is a constant level of perfor-
mance indicated by the marginal variance in the
average ranking of QChOA. Nevertheless, certain
strategies exhibit uneven ordering across different
categories.

5.8 The Real-World Issues

Twelve problems from CEC2020, including in-
dustrial chemical process (heat exchanger network
design (RC01) and reactor network design (RC04)),

process design and synthesis (two-reactor problem
(RC11) and multiproduct batch plant (RC14)), me-
chanical design problems (optimal design of indus-
trial refrigeration system (RC16) and step cone pul-
ley problem (RC23)), power system problems (opti-
mal sizing of distributed generation for active power
loss minimization (RC35) and optimal power flow
(minimization of active power loss) (RC37)), power
electronic problems (SOPWM for 3level inverters
(RC45) and SOPWM for 11level Inverters (RC49)),
livestock feed ration optimization (Beef Cattle (case
1) (RC51) and Beef Cattle (case 2) (RC52)) are ap-
plied to assess the QChOA’s efficiency [88]. It is
noteworthy to add that the comprehensive explana-
tion of the suite test can be found in the CEC2020
publication by Kumar et al. [88]. The results are
summarized in Table 13, as evidenced by the data
presented.

In four particular issue instances—RC14,
RC35, RC37, and RC39—the SHADE approach
provides better performance than other techniques,
as shown in Table 13. Additionally, the ULChOA
method beats other techniques, specifically in issue
instances RC23 and RC37. However, in the sub-
sequent issues, it can be observed that the QChOA
demonstrates the most optimal performance. There-
fore, the statistical analysis reveals that the QChOA
emerges as the most efficient approach for address-
ing real-world engineering challenges. In terms
of the enhanced forms of ChOAs, the DLFChOA
ranks second.
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see how each method fared on average over three
different kinds of functions, with 0.1 and 0.05 be-
ing the significance levels for each. The QChOA al-
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mance indicated by the marginal variance in the
average ranking of QChOA. Nevertheless, certain
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electronic problems (SOPWM for 3level inverters
(RC45) and SOPWM for 11level Inverters (RC49)),
livestock feed ration optimization (Beef Cattle (case
1) (RC51) and Beef Cattle (case 2) (RC52)) are ap-
plied to assess the QChOA’s efficiency [88]. It is
noteworthy to add that the comprehensive explana-
tion of the suite test can be found in the CEC2020
publication by Kumar et al. [88]. The results are
summarized in Table 13, as evidenced by the data
presented.

In four particular issue instances—RC14,
RC35, RC37, and RC39—the SHADE approach
provides better performance than other techniques,
as shown in Table 13. Additionally, the ULChOA
method beats other techniques, specifically in issue
instances RC23 and RC37. However, in the sub-
sequent issues, it can be observed that the QChOA
demonstrates the most optimal performance. There-
fore, the statistical analysis reveals that the QChOA
emerges as the most efficient approach for address-
ing real-world engineering challenges. In terms
of the enhanced forms of ChOAs, the DLFChOA
ranks second.
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Figure 7. Bonferroni Dunn’s test (0.05 and 0.1).

Table 13. The results of QChOA for CEC2020 problems (AVE±STD)
Algorithm ChOA ULChOA IChOA NChOA DLFChOA QSA
RC01 211±1.18 155±0.021 210±1.01 156±0.123 146±0.012 205±0.123
RC04 0.321±1.221 0.335±1.32 0.335±1.21 0.330±1.452 0.341±1.213 0.301±2.121
RC11 11.24±1.70 10.33±2.11 11.02±2.11 10.01 ±2.03 9.88±1.55 11.12±2.02
RC14 7220±3.21 6352±1.28 7330±2.11 6320±2.01 5963±1.12 6985±2.11
RC16 0.044±0.00021 0.046±0.00033 0.047±0.00022 0.043±0.00021 0.0042±0.00033 0.044±0.00036
RC23 30.00±4.31 25.12±2.32 31.13±5.42 25.13±4.01 23.01±2.01 30.22±4.11
RC35 0.0951±1.03 0.0963±0.532 0.0954±0.721 0.0942±0.623 0.0910±0.555 0.0944±1.01
RC37 0.0263±0.01 0.0233±0.015 0.0266±0.019 0.0225±0.014 0.0221±0.013 0.0244±0.019
RC45 0.0432±0.012 0.0425±0.0066 0.0425±0.011 0.0422±0.0053 0.0395±0.0012 0.0426±0.011
RC49 0.0511±0.086 0.0355±0.074 0.0485±0.082 0.0266±0.044 0.0238±0.015 0.0401±0.056
RC51 5030±2.33 4510±1.23 4999±2.36 4500±1.99 4995±1.23 5002±2.36
RC52 4010±311 3452±185 4009±302 3562±162 3385±152 3383±159
Algorithm QChOA QGWO QWOA SHADE CMAES LSHADE-SPACMA
RC01 144±0.002 155±0.021 173±0.632 144±0.021 145±0.120 145±0.025
RC04 0.389±1.02 0.366±1.25 0.352±1.45 0.388±1.03 0.385±1.44 0.385±1.11
RC11 9.79±1.30 10.22±2.12 11.44 ±2.01 9.88±1.45 9.89±1.32 9.98±1.78
RC14 5221±1.02 5362±2.01 5355±1.99 5220 ±1.01 5221±1.02 5222±1.11
RC16 0.004±0.00016 0.041±0.00022 0.041±0.00025 0.0042±0.00017 0.0041±0.00018 0.0041±0.00020
RC23 22.4±1.55 23.55±1.65 23.99±2.01 22.5±1.66 22.4±1.41 23.01±1.96
RC35 0.0909±0.521 0.0922±0.632 0.0932±0.655 0.0909±0.563 0.0910±0.533 0.0912±0.562
RC37 0.0221±0.011 0.0230±0.012 0.0228±0.012 0.0221±0.011 0.0221±0.011 0.0225±0.012
RC45 0.0389±0.0010 0.0401±0.0021 0.0401±0.0019 0.0392±0.0011 0.0393±0.0011 0.0396±0.0019
RC49 0.0235±0.011 0.0305±0.022 0.0300±0.018 0.0227±0.010 0.0228±0.011 0.0236±0.021
RC51 4490±1.11 4502±1.25 4500±1.23 4496±1.15 4492±1.12 4499±1.43
RC52 3392±175 3395±186 3394±175 3380±151 3386±160 3399±179
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Real-world optimization challenges often ex-
hibit dynamically changing landscapes, whether it
be in terms of the number of variables, objective
function, and constraints. The author introduces the
concept of dynamic optimization problems as a type
of problem that undergoes evolution and necessi-
tates real- time solutions using optimization tech-
niques [95]. The discussion of addressing dynamic
optimization problems requires algorithms that pos-
sess the ability to not only identify the most opti-
mal solutions but also swiftly adapt to changes in
the environment. This adaptability allows them to
explore alternative solutions when previously iden-
tified ones are no longer optimal [95].

In order to conduct a comprehensive evaluation
of QChOA and its ability to handle dynamic op-
timization problems, it is essential to have a suit-
able benchmark generator. In this particular field,
the prevailing benchmark generators utilize a strat-
egy that involves harnessing the power of vari-
ous components to construct an optimization land-
scape meticulously. In the majority of the existing
dynamic optimization problems benchmarks, the
dynamic nature of characteristics such as height,
width, and positioning of the elements mentioned
above has been observed. Among these types of
generators, the shifting peaks benchmark stands
out. One thing that makes the rate of change, cf
is the fitness assessment counter for every environ-
ment and the shifting peaks benchmark, a famous
synthetic issue associated with dynamic optimiza-
tion, stand out is that it uses only one peak to make
all of its components.

However, it is worth noting that the classic mov-
ing peaks benchmark, although widely recognized,
is characterized by landscapes that possess sym-
metric, smooth, regular, unimodal, and separable
traits [8]. Consequently, these landscapes are gener-
ally straightforward to optimize. The characteristics
mentioned above may not consistently reflect the
complexities that are inherent in numerous real-life
situations. In order to address this discrepancy, the
authors of [1] have introduced a novel benchmark
known as the generalized moving peaks benchmark.
The generalized moving peaks benchmark provides
the opportunity to generate components that exhibit
a wide array of characteristics. These characteris-
tics can range from straightforward, unimodal land-

scapes to intricate multimodal terrains. They can
also include symmetrical forms as well as notice-
able asymmetries.

Additionally, the generalized moving peaks
benchmark allows for the creation of both smooth
terrains and those that are filled with irregularities.
Furthermore, it enables the exploration of various
levels of variable interaction and condition num-
bers. The generalized moving peaks benchmark,
renowned for its customizable features, offers an in-
valuable tool for scholars seeking to meticulously
analyze the performance of dynamic optimization
algorithms such as QChOA. By assessing their ca-
pabilities across a diverse range of problem at-
tributes, researchers can gain profound insights into
their effectiveness.

We use a primary performance metric to as-
sess the effectiveness of algorithms on problem sets
generated by generalized moving peaks benchmark:
the offline error (OE) [96]. The calculation of OE
is based on determining the average difference be-
tween the ideal position and all fitness evaluations,
which is expressed by the following equation:

OE =
1

NE ×CF

NE

∑
ne=1

CF

∑
c f=1

(
f ne(BPne)− f ne(BP(ne−1)CF+c f )

)

(20)

Where NE is the total number of such environ-
ments, BPne denotes the best position in ne environ-
ment. Furthermore, CF denotes the rate of change,
c f is the fitness assessment counter for every en-
vironment and BP(t−1)CF+c f corresponds to the top
position at the c fth fitness assessment in the neth en-
vironment.

Neutral or neutral and quantum individuals
make up multi-swarms. Ω(M, Mq) is a simple way
to express the multi-swarm arrangement, where M
and Mq stand for the counts of quantum and neutral
individuals in each swarm, respectively. Ω indicates
the total number of swarms in the multi-swarm.

The following are the setup details unless other-
wise noted: The five dimensions of the exploration
domain are comprised of various peaks with ran-
domly varying peak heights between [30, 70] and
unpredictable peak width determinants between [1,
12]. Peaks relocate by a length in any direction
after a predetermined number of assessments, and
their transitions are independent. They were chosen
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to enable juxtaposition with the adaptive-scouts ap-
proach. After 100 peak transitions, each test ends,
resulting in 500,000 function assessments.

Since a pseudorandom number generator con-
trols the beginning point, initial amplitude, initial
width, and future trajectory of the peaks, Scenario 1
effectively provides a suite of benchmark functions.
Our findings are based on an average of fifty itera-
tions, where each iteration uses an entirely distinct
random seed for the optimization approach and a
generalized moving peaks benchmark. The offline
error [96], which calculates the mean discrepancy
of the best solution found after the last environmen-
tal shift, is the primary effectiveness statistic used.
This measure is always positive and goes to zero for
perfect adaptation.

The investigation of the algorithm’s responsive-
ness to certain parameter configurations is one of
the main goals of the experimental series. Exam-
ining the effects of different multi-swarm architec-
tures Ω(M, Mq) is another goal. The total ChOA
count (aggregate population count) was limited to
100, with the exception of some instances, in order
to align efficiency with the evolutionary approaches
reported in [97]. Throughout all of our testing, we
consistently used typical ChOA values mentioned
in previous sections.

5.9.1 Implications of Different Multi-Swarm
Setups

The first set of studies looks at how the multi-
swarm configuration affects performance while us-
ing the generalized moving peaks benchmark and
the previously specified standard settings.

There are numerous ways to put up 100 indi-
viduals. Swarm counts vary from 1 (multi-swarms
merge into a single swarm ChOA and QChOA) to
100 (no more swarm essence as a single chimp
cannot communicate with other chimps during up-
dates). The optimal designs, mirroring the peak
count, most likely lie in the middle of these two
extremes. Symmetric configurations with 2–50
swarms, including the maximum and minimum,
were tested wherever it was feasible. Nevertheless,
there are no settings with an equal number of ChOA
in every swarm for 11–19. Despite 14(4+3) hav-
ing a total ChOA count of 98, the configuration was
used to include a multi- swarm in this range.

Two sets of experiment results are presented:
the severe circumstances (Ω=1 and Ω=100) and the
overall results Ω ∈ [2 : 50].

– Multiswarms: First, multi-swarms with a visual
representation in Figure 8, the effect of fluc-
tuation on the offline error is recorded in Ta-
ble 14. More swarms increase the diversity of
the swarm. Data confirms our assumption that
ten swarms is the optimal value for a parame-
ter, showing that efficiency peaks at that number.
Two reasons why adding more than ten swarms
reduces the results are fewer chimps in more
enormous swarms and redundant swarm peak
ascension. The absence of charged swarm di-
versity causes results to drop, particularly in the
conventional ChOA scenario with 50(1+1) small
swarms. QChOA 10(5+5), on the other hand,
works noticeably better. The constant outperfor-
mance of quantum interaction over charged in-
teraction is interesting to see.

– Extremum Setups: Data for extreme setups with
Ω=1 and Ω=100 are shown in Table 15. The
single-swarm configurations confirm that the
multi- swarm approach is practical. The slight
variation between the 1(100+0) and 1(50+50)
layouts is an unexpected finding. Large sin-
gle populations are inherently diverse, and the
moderate shift intensity of the generalized mov-
ing peaks benchmark does not undermine this.
Swarm essence disappears because there is no
way for inter-swarm communication to occur.
Beyond the QChOA finding, it is evident that
a single swarm that engages in localized infor-
mation sharing performs better than Ω=100 that
merely engages in exclusion-based interaction.

5.10 Computational Complexity Analysis

Suppose that ym is a randomly distributed se-
quence; if for each ε > 0andτ > 0,m1(ε,τ) can ex-
ist, the following equation will be satisfied:

Prob(|γm − s|< ε)> 1− τ
∀m > m1orProb(limm→∞|γm − s|< ε)

(21)

The number of steps required to reach the ideal
region RG(ε) is used to measure the QChOA algo-
rithm’s performance. By contrasting the expected
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Table 14. Various configurations (offline error ± standard error).
Configuration 2(25+25) 3(17+16) 4(13+12) 5(10+10) 10(10+0) 10(0+10)
CPSO 10.20±0.29 6.99±0.19 5.01±0.20 3.69±0.21 2.29±0.05 2.16±0.10
QPSO 9.80±0.41 6.69±0.30 4.80±0.20 3.68±0.20 2.29±0.05 1.89±0.07
ChOA 9.19±0.23 6.88±0.12 4.88±0.18 3.55±0.17 2.24±0.05 2.09±0.09
QChOA 8.77±0.31 6.73±0.11 4.68±0.14 3.44±0.14 2.23±0.04 1.86±0.06
Configuration 10(5+5) 14(4+3) 20(3+2) 25(2+2) 50(1+1)
CPSO 1.99±0.05 2.30±0.08 2.90±0.08 3.30±0.10 15.40±0.39
QPSO 1.69±0.05 1.89±0.05 2.40±0.08 2.70±0.06 4.01±0.11
ChOA 1.88±0.04 2.22±0.06 2.85±0.07 3.11±0.07 14.22±0.28
QChOA 1.42±0.03 1.73±0.04 2.32±0.06 2.41±0.05 3.97±0.09

Figure 8. Number of swarms’ influence on OE for 10(5 + 5) configuration.

Table 15. Extremum setups (offline error ± standard error.

Configuration 1(100+0) 1(0+100) 1(50+50) 100(1+0) 100(0+1)
CPSO 15.39±0.49 15.59±0.49 15.58±0.48 24.29±0.69 24.89±0.89
QPSO 15.39±0.49 15.79±0.49 15.09±0.48 24.29±0.69 14.29±0.11
ChOA 14.22±0.33 15.01±0.34 14.33±0.32 23.17±0.52 23.11±0.74
QChOA 14.22±0.32 15.09±0.34 14.01±0.11 23.11±0.51 8.09±0.02
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value and distributional moments, the approach as-
sesses the distribution of the number of steps re-
quired to reach RG(ε). The maximum number of
steps needed to get to the ideal region is given by

MNS(ε) = inf{m | fm ∈ RG(ε)}

where inf denotes the infimum. The expectation
value E(MNS(ε)) and the variance Var(MNS(ε))
are calculated as follows:

Exp(MNS(ε)) =
∞

∑
m=0

mzm (22)

Var(MNS(ε)) =

Exp(MNS2(ε))−Exp(MNS(ε))2

=
∞

∑
m=0

m2zm − (
∞

∑
m=0

mzm)
2

(23)

In practice, ∑∞
m=0 mzm convergence is a prereq-

uisite for Exp(MNS(ε)) to exist. ∑m
i=0 zi = 1 is re-

quired for QChOA to converge globally. Time com-
plexity is measured in terms of the number of objec-
tive function evaluations. The key advantage of this
strategy is that it illustrates the link between CPU
and measuring time as objective function complex-
ity grows. We utilized the sphere function and a
linear constraint to calculate the temporal complex-
ity. Its lowest value is zero. The optimal region’s
value is set to RG(ε) = RG(10−04). The algorithms
ChOA and QChOA are run 40 times on f (z )with
an initial scope of [−10,10]DIMDIM, the number of
dimensions, to calculate the time complexity. We
calculate the variance Var(MNS(ε)) , the standard
deviation (STD) ST D(MNS(ε)), the standard error
(SE) ST D(MNS(ε))√

40
, and the ratio of mean and dimen-

sion MNS(ε)
DIM . The statistical outcomes of the tem-

poral complexity test for the QChOA and ChOA
algorithms, respectively, are shown in Tables 16
and 17. Figure 9 shows that the suggested algo-
rithm’s temporal complexity increases nonlinearly
as the dimension rises. However, the ChOA algo-
rithm’s time complexity increases appropriately lin-
early. As a result, QChOA has a lower temporal
complexity than the ChOA algorithm.

MNS(ε) and DIM are strongly correlated in
Figure 9, according to QChOA, with a correla-
tion coefficient of 0.9989. Compared to QChOA,

ChOA’s linear correlation coefficient, which stands
at 0.9928, is not as astounding. Compared to the
ChOA algorithm, the value of the correlation coef-
ficient for QChOA is more stable, as evidenced by
the correlation between mean and dimension.

5.11 Detailed Analysis of Experimental
Results

This subsection will explore the fundamental
technological principles that enable the QChOA al-
gorithm to attain superior optimization performance
compared to other contemporary algorithms.

5.11.1 Quantum-Inspired Superposition and
Measurement

The QChOA algorithm utilizes quantum- in-
spired operators, including superposition and mea-
surement, to facilitate practical exploration and ex-
ploitation of the solution space. The principle
of superposition enables Quantum computing and
QChOA to explore a diverse

The above attribute significantly augments the
algorithm’s capacity to examine various regions in-
side the search space concurrently. The measure-
ment process guides the algorithm to select solu-
tions with higher fitness values probabilistically, di-
recting it toward promising areas.

The dual-process approach can be analogized
to studying a ”parallel universe,” wherein the al-
gorithm simultaneously traverses numerous alterna-
tive solution routes. Utilizing a quantum-inspired
methodology facilitates the mitigation of local op-
tima by enabling the algorithm to encompass a
broader spectrum of options during each iteration.

5.11.2 Chaotic Dynamics for Enhanced Explo-
ration

The use of chaotic dynamics, facilitated by
adaptive chaotic search, introduces a controlled el-
ement of randomness to the optimization proce-
dure. Chaotic maps, such as the logistic map or the
tent map, incorporate non-linearity and stochastic-
ity into the trajectory of the search process. This
phenomenon proves particularly advantageous in
scenarios where conventional optimization algo-
rithms may have difficulties escaping local optima
due to their deterministic nature.
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Table 16. The statistical outcomes of the time complexity for the QChOA

DIM MNS(ε) Var(MNS(ε)) STD(MNS(ε)) SE MNS(
DIM

2 299.25 4158.11 64.48 10.20 149.63
3 449.02 4499.12 67.07 10.61 149.67
4 619.11 4985.32 70.60 11.17 154.77
5 742.55 6532.22 80.82 12.78 148.51
6 868.05 8225.36 90.69 14.32 144.67
7 1011.11 8952.21 94.61 14.97 144.44
8 1144.44 9012.32 94.93 15.02 143.05
9 1288.52 10236.25 101.17 16.00 143.16
10 1440.25 11325.44 106.41 16.83 144.03

Table 17. The statistical outcomes of the time complexity for the standard ChOA

DIM MNS(ε) Var(MNS(ε)) STD(MNS(ε)) STD(MNS(ε))√
40

MNS(ε)
DIM

2 689.32 16524.21 128.54 20.33 344.66
3 968.21 20325.28 142.24 22.50 322.73
4 1159.24 22541.25 150.14 23.76 289.81
5 1198.36 20145.19 141.93 22.45 239.67
6 1244.52 29215.96 170.92 27.04 207.42
7 1365.21 48941.85 221.22 35.00 195.03
8 1529.24 42158.96 205.32 32.48 191.15
9 1752.25 38174.64 195.38 30.91 194.69
10 2452.32 41754.15 204.33 32.33 245.23

Figure 9. MNS(ε) vs. DIM
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9 1288.52 10236.25 101.17 16.00 143.16
10 1440.25 11325.44 106.41 16.83 144.03

Table 17. The statistical outcomes of the time complexity for the standard ChOA

DIM MNS(ε) Var(MNS(ε)) STD(MNS(ε)) STD(MNS(ε))√
40

MNS(ε)
DIM

2 689.32 16524.21 128.54 20.33 344.66
3 968.21 20325.28 142.24 22.50 322.73
4 1159.24 22541.25 150.14 23.76 289.81
5 1198.36 20145.19 141.93 22.45 239.67
6 1244.52 29215.96 170.92 27.04 207.42
7 1365.21 48941.85 221.22 35.00 195.03
8 1529.24 42158.96 205.32 32.48 191.15
9 1752.25 38174.64 195.38 30.91 194.69
10 2452.32 41754.15 204.33 32.33 245.23

Figure 9. MNS(ε) vs. DIM
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Including a chaotic component in the search
process enhances diversification, mitigating the risk
of premature convergence to unsatisfactory answers
by the algorithm. The QChOA method incorporates
a deliberate degree of randomness in the search pro-
cess, enabling it to overcome suboptimal solutions
that may arise from local search and venture into
unexplored regions of the search space.

5.11.3 Exploitation-Exploration Trade-off

One of the primary issues encountered in op-
timization involves effectively managing the trade-
off between exploitation and exploration. The
quantum operators and chaotic dynamics employed
by QChOA synergistically collaborate to attain a
state of equilibrium. The presence of a chaotic com-
ponent in the algorithm promotes the exploration
of different locations. At the same time, the uti-
lization of quantum operators guides the algorithm
towards promising regions characterized by higher
fitness values.

The superposition and measurement operators
influence the dynamic balance between exploration
and exploitation. The probability of selecting so-
lutions with high fitness values increases, success-
fully directing the algorithm toward convergence.
Nevertheless, the inherent quantum properties of
the algorithm guarantee that a broad range of po-
tential solutions are taken into account, preventing
early convergence towards poor solutions.

5.11.4 Sensitivity to Problem Characteristics

The versatility of the QChOA algorithm can
be attributed to its ability to effectively respond
to problem features, which is achieved through an
adaptive chaotic mechanism. Various optimization
problems exhibit distinct landscapes, and the flex-
ibility of QChOA enables it to customize its be-
havior to address individual issues. The method’s
adaptability is accomplished by dynamically adjust-
ing the parameters of the chaotic map, which allows
for finetuning the exploration-exploitation balance
in response to the complexities inherent in the chal-
lenge at hand.

5.11.5 Analysis of Convergence Behavior

Figures 3 and 4 depict the convergence behav-
ior of QChOA across iterations on specific bench-

mark tasks. The method converges quickly towards
ideal or very close to optimal solutions. The ob-
served behavior can be ascribed to the complimen-
tary interplay of quantum operators and chaotic dy-
namics. The utilization of quantum-inspired explo-
ration expedites the initial convergence process. At
the same time, chaotic dynamics guarantee that the
QChOA consistently explores various regions to en-
hance and refine the solutions.

5.11.6 Algorithmic Robustness and Parameter
Sensitivity

One notable attribute of QChOA is its resilience
when confronted with diverse parameter configu-
rations. By conducting sensitivity analysis, it was
revealed that the algorithm consistently produces
competitive outcomes across various parameter val-
ues. The algorithm’s reliability and effectiveness
are further emphasized by its robustness, rendering
it well-suited for a diverse range of optimization is-
sues.

In conclusion, the QChOA algorithm demon-
strates excellent performance due to its complex
technical processes. The algorithm’s performance
in exploring and exploiting solution spaces, as well
as adapting to the specifics of each problem, is im-
proved by including quantum-inspired agents and
chaotic dynamics. The QChOA method possesses
a notable level of technical depth and adaptability,
which enables it to surpass other algorithms in its
performance across a wide range of real-world en-
gineering optimization challenges.

6 Conclusion

In this study, QChOA, quantum-based ChOA,
was developed to address the main drawbacks of
the original approach, which include slow conver-
gence and the tendency to reach local optimums
when dealing with multidimensional problems ef-
ficiently. In order to address the two mentioned
research gaps, this proposed technique incorpo-
rated two innovative approaches into the original
ChOA. The quantum mechanism was used to in-
crease the convergence rate of this algorithm. In
addition, it was developed to enhance early trends
in exploration search and late trends in exploita-
tion. The algorithm’s total search ability and con-
vergence speed were both greatly enhanced by
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combining the two techniques. Twentynine con-
ventional optimization test functions, thirty com-
plicated CECBC functions, ten functions of the
CEC06 test suit, ten real-world, application-based
engineering challenges, and IEEE CEC 2022 com-
petition on dynamic optimization problems were
used to conduct in-depth analyses of the merits of
the proposed QChOA. The QChOA was tested via
four categories of optimization techniques, includ-
ing (1) DLFChOA, ULChOA, NCHOA, IChOA as
novel variants of ChOA, (2) QGWO, QSA, and
QWOA as the three best quantum-behaved vari-
ant optimization algorithms, (3) SHADE, CMAES,
and LSHADE-SPACMA as the three state-of-th-
eart optimization algorithms, and 18 well-known
algorithms in IEEE CEC competitions. A com-
prehensive evaluation was carried out using three
nonparametric statistical tests: Wilcoxon rank-sum,
Holm– Bonferroni, and Friedman average rank
tests. The findings revealed that the QChOA ranked
top among 51 out of 70 test functions and engineer-
ing challenges and displayed comparable outcomes
to SHADE and CMAES in other comparisons. The
analytical research showed that QChOA is statis-
tically identical to jDE100 and DISHchain1e+12
while being a much better optimizer than the bench-
mark algorithms for the three first categories.

The exploring capabilities of the QChOA
should be enhanced by using different chaotic
maps. Because the weighted models were chosen
through tests, mathematically validating the opti-
mal weighted coefficient might constitute another
subject for future research. It would also be bene-
ficial to create a binary version of QChOA that has
several objectives.
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