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Abstract: This study addresses the challenge of effectively modeling uncertainty and
hesitation in complex decision-making environments, where traditional fuzzy and vague
set models often fall short. To overcome these limitations, we propose the Fermatean
neutrosophic vague soft set (FNVSS), an advanced extension that integrates the concepts
of neutrosophic sets with Fermatean membership functions into the framework of vague
sets. The FNVSS model enhances the representation of truth, indeterminacy, and falsity
degrees, providing greater flexibility and resilience in capturing ambiguous and imprecise
information. We systematically develop new operations for the FNVSS, including union,
intersection, complementation, the Fermatean neutrosophic vague normalized weighted
average (FNVNWA) operator, the generalized Fermatean neutrosophic vague normalized
weighted average (GFNVNWA) operator, and an adapted Technique for Order of Prefer-
ence by Similarity to Ideal Solution (TOPSIS) method. To demonstrate the practicality of
the proposed methodology, we apply it to a solar panel selection problem, where managing
uncertainty is crucial. Comparative results indicate that the FNVSS significantly outper-
forms traditional fuzzy and vague set approaches, leading to more reliable and accurate
decision outcomes. This work contributes to the advancement of predictive decision-
making systems, particularly in fields requiring high precision, adaptability, and robust
uncertainty modeling.

Keywords: Fermatean neutrosophic vague soft set; decision-making; TOPSIS; FNVNWA;
GFNVNWA

MSC: 91B06; 90B50; 94D05; 03E72

1. Introduction
In real-life scenarios, data rarely come in a perfect form and are often riddled with gaps,

uncertainty, or inconsistencies. These issues arise from various sources, such as randomness,
measurement errors, and subjective human judgment. This uncertainty presents a major
hurdle in areas such as engineering, economics, healthcare, and environmental science,
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where decisions must be made despite unclear or incomplete information. To address these
challenges, researchers have developed a variety of mathematical models over time, each
contributing to a better grasp and representation of uncertainty.

Among the most notable advances is the development of fuzzy set theory by Zadeh [1],
who introduced a mathematical approach to represent vague or imprecise information.
Fuzzy sets differ from traditional sets by allowing partial membership, offering a more
flexible and realistic way to model real-world phenomena. Building on this, Atanassov
introduced intuitionistic fuzzy sets, which go a step further by incorporating not only
membership but also non-membership values, along with a hesitation margin to reflect
uncertainty more fully. Atanassov [2,3] later expanded this framework to include interval-
valued intuitionistic fuzzy sets, equipping the model to better deal with intricate and
nuanced uncertainty within datasets. Soft sets were proposed by Molodtsov [4] as another
commonly used method in handling uncertainties in data. The concept of a fuzzy soft set
was introduced by Maji [5].

In parallel, vague set theory was developed by Gau and Buehrer [6], who introduced a
concept closely related to intuitionistic fuzzy sets but distinguished by its use of upper and
lower bounds for membership degrees. This connection was further elucidated by Bustince
and Burillo [7], who showed that vague sets are a derived form of intuitionistic fuzzy sets.
Chen [8,9] found applications of vague sets in various fields, such as system reliability
analysis, where they are used to model and assess the reliability of systems under fuzzy
conditions. Chen defined similarity measures between vague sets, which are essential for
comparison and clustering applications in fuzzy environments.

As the landscape of uncertainty modeling evolved, the introduction of neutrosophic
set theory by Smarandache [10] opened new possibilities for managing indeterminacy
alongside traditional membership and non-membership degrees. This was further ex-
panded by the development of neutrosophic soft set theory [11], a flexible approach that
enhances decision-making under uncertainty by accommodating various types of un-
certain and imprecise information. Building on this foundation, Alkhazaleh et al. [12]
proposed the notation of Fermatean neutrosophic soft sets, which incorporate Fermatean
algebra to offer a more refined structure for addressing complex forms of uncertainty. Also,
Alkhazaleh et al. [13] introduced the possibility Fermatean neutrosophic soft set, which
introduces a probabilistic component from possibility theory and takes this a step further,
providing an even more powerful tool to model and resolve uncertainty in dynamic systems.
Al-shboul et al. [14] introduced the notation of Fermatean vague soft sets, which provided
a new dimension by combining the principles of Fermatean algebra with vague set theory,
further enhancing the ability to model complex uncertainties in decision-making scenarios.

The relevance of vague sets in decision-making was further highlighted by Hong
and Choi [15], who applied vague set theory to multiattribute decision-making (MADM)
problems. Gorzalzany’s work [16] on interval-valued fuzzy sets provided a method for
inference in approximate reasoning, establishing a foundation for using interval-valued
sets in decision-making. In practical applications, Kumar et al. [17,18] used interval-valued
vague sets to analyze the reliability of marine power plants and extended this work with
arithmetic operations on interval-valued vague sets for system reliability analysis.

Recent research has built on these foundations, incorporating more sophisticated
methods such as Einstein hybrid geometric aggregation operators have been applied in
MADM, as introduced by Alhazaymeh et al. [19]. Additionally, Einstein operations on
vague soft sets have further expanded the theoretical and practical scope of soft set theory,
particularly in uncertain environments.

The study of vague soft set relations has also advanced with the introduction of
transitive closure operators [20], which refine decision models by improving the way
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relationships between vague sets are processed. The application of vague sets has been
extended through cubic vague sets [21], which provide a more comprehensive decision-
making framework by integrating cubic set theory and vague sets. Furthermore, possibility
interval-valued vague soft sets [22] and generalized interval-valued vague soft sets [23]
offer additional tools for managing uncertainty, particularly in scenarios where membership
and non-membership values are best represented as intervals.

Several studies have focused on enhancing decision-making frameworks using ad-
vanced fuzzy set theories and their extensions. Alhazaymeh et al. [24] introduced a neutro-
sophic cubic Einstein hybrid geometric aggregation operator, demonstrating its efficiency
in prioritization problems involving multiple attributes. Similarly, Wang et al. [25] explored
parameterized OWA operators under vague set theory to strengthen fuzzy multicriteria
decision-making (MCDM) strategies. Zhou and Wu [26] extended these approaches through
the development of generalized intuitionistic fuzzy rough approximation operators, laying
the groundwork for more refined and granular fuzzy decision models. Shahzad et al. [27]
contributed to the theoretical foundation by analyzing mappings and stability within fuzzy
rough sets. Rahim et al. [28] introduced novel distance measures for Pythagorean cubic
fuzzy sets, applying these techniques effectively to the selection of optimal treatments for
psychological disorders such as depression and anxiety. In another important advancement,
Khan et al. [29] presented covering-based intuitionistic hesitant fuzzy rough set models
with specific applications to decision-making problems, highlighting the utility of hybrid
hesitant frameworks. Fahmi et al. [30] proposed a group decision-making method based
on cubic Fermatean Einstein fuzzy weighted geometric operators, enabling more robust
aggregation under uncertainty. Building on this, Fahmi et al. [31] also applied a disaster
decision-making strategy using the DDAS method in Fermatean fuzzy environments, in-
corporating regret theory and philosophy to handle conflicting and uncertain evaluations.
Liang et al. [32] described an extended structure that includes cognitive decision-making,
path-planning, and motion-control programs using extracted deep Q-networks and inverse
reinforcement learning techniques. Wu et al. [33] analyzed the development of contentment
prediction success from the integration of societal expertise into AI simulations, contin-
uously exposing additional vital factors for decision-making. Pan et al. [34] presented a
decision-level integration strategy to analyze the emotions of the mine worker with an
extended Yager rule for insertion. Li et al. [35] proposed an advanced decision-making and
scheduling mechanism for an autonomous vehicle that confirms oscillation-free execution.

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a
multicriteria decision-making approach proposed by Ching et al. [36]. The TOPSIS evalu-
ates options by measuring their geometric distance to an ideal solution, hence promoting
objective decision-making in several fields. Chen and Hwang [37] extended the TOPSIS
method and introduced a new method of TOPSIS.

Due to the complexity of solar panel selection, a Fermatean neutrosophic vague
TOPSIS method offers a systematic and computationally efficient approach for rating many
choices. The integration of Fermatean vague sets enables a more sophisticated depiction of
uncertainty, guaranteeing that expert evaluations are precisely represented in the decision-
making process. This method provides a more reliable and data-informed selection of solar
panels, hence facilitating the implementation of cost-effective photovoltaic solutions.

Consequently, by tackling some of the shortcomings of current theories, especially
in relation to computing complexity and parameterization, Fermatean vague sets have
great potential to further the area of uncertainty modeling. Traditional fuzzy sets, intu-
itionistic fuzzy sets, and vague sets all fall short in certain contexts; however, FNVSS can
handle a broader range of uncertainty values, making them applicable in more diverse
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and complex decision-making environments. This opens up new research and practical
application avenues.

This study is directed by several main research questions such as the following:

1. In what manner may the conventional VS framework be extended via the Fermatean
approach and neutrosophic set theory to encompass supplementary dimensions of
uncertainty in decision-making?

2. What are the theoretical properties of the FNVSS, and how do these characteristics
augment its efficacy in modeling complex, practical scenarios?

3. How can the implementation of the FNVSS framework enhance decision accuracy
and robustness relative to conventional methods?

1.1. Motivation and Contribution

In real-world decision-making, information is rarely complete, precise, or crisp. Most
often, decision-makers face scenarios where the data are vague, ambiguous, indeterminate,
and context-dependent. Classical mathematical tools, such as fuzzy sets, intuitionistic
fuzzy sets, and even traditional soft sets, are insufficient to model this multidimensional
uncertainty. They either oversimplify the structure of the data or ignore critical components
such as conflicting evidence, indeterminacy, and subjectivity.

To address these challenges, the following were proposed:

1. Neutrosophic sets were developed to model truth, indeterminacy, and falsity in-
dependently, acknowledging the inherent contradiction and incompleteness of hu-
man knowledge.

2. Fermatean fuzzy sets extended traditional fuzzy models by using a nonlinear con-
straint T3 + I3 + F3 ≤ 1, allowing higher degrees of truth, indeterminacy, and falsity
to be represented simultaneously, something unattainable in earlier fuzzy models.

3. Vague sets introduced linguistic flexibility and interval-based flexibility to handle
imprecise and overlapping concepts.

4. Soft sets allowed parameter-driven modeling, which is especially useful in complex
multiattribute environments with multiple experts or sources.

However, no single framework before Fermatean neutrosophic vague soft sets (FN-
VSSs) could simultaneously accomplish the following:

1. Capture nonlinear degrees of truth, falsity, and indeterminacy;
2. Handle vague or linguistic information through interval-based representation;
3. Support the parameterization of context, source, or expert view through soft sets;
4. Enable granular decision modeling in a modular and scalable way.

Therefore, we propose the FNVSS as a unified and highly expressive framework that
fills this critical gap. It is designed to bridge the limitations of previous models and to
fully capture the multifaceted uncertainty and vagueness encountered in real-life decision-
making processes.

In order to operationalize the FNVSS in practical applications, we integrate it with
the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The TOPSIS
method offers a mathematically sound, efficient, and interpretable approach to rank al-
ternatives based on their proximity to ideal conditions. When fused with the expressive
power of the FNVSS, this hybrid model becomes a powerful decision-making tool that can
outperform traditional models in terms of accuracy, realism, and robustness.

1.2. Structure of Article

The subsequent sections of this work are organized as follows: Section 2 discusses the
necessary preliminaries, including definitions of VS, VSS, NSS, FNS, and their associated
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operations. Section 3 presents the idea of the FNVSS, including basic definitions and
mathematical properties. Section 4 discusses basic operations, including union, intersection,
complementation, and new type operators of the FNVSS. Section 5 presents an FNV-TOPSIS
to solve decision-making issues, which shows the efficacy of the suggested methodology.
In Section 6, the FNVSS is compared with other traditional models. Section 7 ultimately
summarizes the work by summarizing major findings, prospective applications, and future
research avenues.

2. Preliminaries
This section provides some fundamental definitions required in this paper.

2.1. Vague Set

Definition 1 ([6]). Let X = {x1, x2, . . . , xn}. A vague set (VS) over X, denoted by ∆v, is
characterized by truth-membership function τv(x) : X → [0, 1] and false-membership function
ϕv(x) : X → [0, 1] such that τv(x) + ϕv(x) ≤ 1 for every x ∈ X. The grade of membership µv of
an element x ∈ X is not specified precisely but lies within the interval τv(x) ≤ µv(x) ≤ 1− ϕv(x),
indicating uncertainty or vagueness in evaluating x′s membership.

The membership interval of x ∈ X in the vague set ∆v is given as

∆v(x) = [τv(x), 1 − ϕv(x)].

If X is a continuous universe, then a vague set ∆v on X may be defined as:

∆v =
∫
[τv(xi), 1 − ϕv(xi)]/xi, xi ∈ X.

If X is a discrete universe, then a vague set ∆v on X may be defined as

∆v =
n

∑
i=1

[τv(xi), 1 − ϕv(xi)]/xi, xi ∈ X.

2.2. Fermatean Neutrosophic Set

Definition 2 ([38]). Let X be a non-empty set. A Fermatean neutrosophic set (FNS) on X is
defined as A = {(x, T(x), I(x), F(x)) : x ∈ X}, where T(x), I(x), F(x) ∈ [0, 1] satisfying
0 ≤ T(x)3 + I(x)3 + F(x)3 ≤ 2 for all x ∈ X.

2.3. Neutrosophic Soft Set

Definition 3 ([11]). Consider a universal set U, and consider P(U) as the collection of all neutro-
sophic sets defined over U. Let E

′′
be a set of parameters and A... be a subset of E

′′
. A neutrosophic

soft set over U is defined by the pair (ℑ, A...), where ℑ is a function that links each parameter in
A... to a neutrosophic set in P(U), formally written as

ℑ : A... → P(U).

2.4. Vague Soft Set

Definition 4 ([39]). Consider a pair (ℑ, A...), where A... is a collection of parameters and ℑ is a
function defined as

ℑ : A... → V(U),
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with V(U) representing the set of vague sets over the universe U. This pair is known as a vague
soft set over U. To put it differently, a vague soft set over U is essentially a family of vague sets,
each associated with a parameter in A.... For a given parameter ε ∈ A..., the vague set

ϱℑ(ε) : U → [0, 1]2

describes the degree of truth and the degree of falsity for each element in U. This mapping is
considered to define the ε-approximate elements in the vague soft set (ℑ, A...).

3. Fermatean Neutrosophic Vague Soft Set
This section presents the notation for Fermatean vague sets (FNVSSs).

Definition 5. Let X be a universal set and E be a set of parameters. Suppose A ⊆ E and
ℑ : A → FNV(X), where FNV(X) indicates the collection of all Fermatean neutrosophic vague
soft subsets of X. Let ℑ̃ : A → FNV(X) be a function defined as follows:

ℑ̃ = {(x, Tv(x), Iv(x), 1 − Fv(x)) : x ∈ X},

where each membership function is defined as

Tv(x) = [T−, T+], Iv(x) = [I−, I+], Fv(x) = [F−, F+]

with
Tv(x) = [T−, T+] → [0, 1]

Iv(x) = [I−, I+] → [0, 1]

Fv(x) = [F−, F+] → [0, 1]

representing the truth, indeterminacy, and falsity interval-valued degrees for element x ∈ X,
respectively.

To maintain the integrity of the Fermatean neutrosophic condition, the components
must satisfy the following conditions:

T−
v (x)3 + I−v (x)3 + F−

v (x)3 ≤ 2,

T+
v (x)3 + I+v (x)3 + F+

v (x)3 ≤ 2.

Example 1. Let X = {x1, x2, x3} be a universal set. Suppose ℑ̃ is a Fermatean neutrosophic vague
soft set in X defined by

ℑ̃ =

{
x1

[0.3, 0.4], [0.6, 0.5], [0.7, 0.9]
,

x2

[0.7, 0.4], [0.1, 0.5], [0.8, 0.9]

}
.

For element x1, we have verification for Fermatean and vague conditions:

(i.) T−
v = 0.3 and T+

v = 0.4;
(ii.) I−v = 0.6 and I+v = 0.5;
(iii.) From 1 − F−

v = 0.7 and 1 − F+
v = 0.9, we obtain F−

v = 0.3 and F+
v = 0.1.

For the vague condition:
0.3 + 0.3 = 0.6 ≤ 1,

0.4 + 0.1 = 0.5 ≤ 1.
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For the Fermatean neutrosophic condition:

0.33 + 0.63 + 0.33 = 0.27 ≤ 2,

0.43 + 0.53 + 0.13 = 0.19 ≤ 2.

Fermatean neutrosophic and vague conditions are satisfied for element x1. Similarly, Fermatean
neutrosophic and vague conditions are satisfied for element x2.

Definition 6. Let χv be an FNVSS of the universe X, where for each x ∈ X, Tv(x) = [0, 0],
Iv(x) = [1, 1], and Fv(x) = [1, 1]. Then, χv is said to be the zero FNVSS.

Example 2. Let X = {x1, x2, x3} be a universal set. Then, the zero FNVSS of the universe X is
defined as follows:

χv =

{
x1

[0, 0], [1, 1], [1, 1]
,

x2

[0, 0], [1, 1], [1, 1]
,

x3

[0, 0], [1, 1], [1, 1]

}
.

Definition 7. Let Υv be an FNVSS of the universe X, where for each x ∈ X, Tv(x) = [1, 1],
Iv(x) = [0, 0], and Fv(x) = [0, 0]. Then, Υv is said to be the unit FNVSS.

Example 3. Let X = {x1, x2, x3} be a universal set. Then, the unit FNVSS is defined as follows:

Υv =

{
x1

[1, 1], [1, 1], [0, 0]
,

x2

[1, 1], [1, 1], [0, 0]
,

x3

[1, 1], [1, 1], [0, 0]

}
.

Definition 8. Let X be a universal set. Let P(ei) and K(ei) be two FNVSSs of the universe X.
If for each x ∈ X, the following hold:

(i.) P(ei)
T ≤ K(ei)

T ;

(ii.) P(ei)
I ≥ K(ei)

I ;

(iii.) P(ei)
F ≥ K(ei)

F.

then P(ei) is said to be a subset of K(ei), and we write P(ei) ⊆ K(ei).

Example 4. Let X = {x1, x2, x3} be a universal set. Let P(e) and K(e) be two FNVSSs of the
universe X defined by

P(e1) =

{
x1

[0.3, 0.4], [0.6, 0.5], [0.7, 0.9]
,

x2

[0.7, 0.4], [0.1, 0.5], [0.8, 0.9]

}
,

P(e2) =

{
x1

[0.2, 0.6], [0.4, 0.4], [0.8, 0.8]
,

x2

[0.5, 0.2], [0.3, 0.5], [0.6, 0.3]

}
,

K(e1) =

{
x1

[0.6, 0.5], [0.3, 0.4], [0.6, 0.8]
,

x2

[0.7, 0.5], [0.1, 0.2], [0.7, 0.6]

}
,

K(e2) =

{
x1

[0.5, 0.8], [0.3, 0.3], [0.7, 0.8]
,

x2

[0.6, 0.8], [0.2, 0.4], [0.4, 0.2]

}
.

It is clear that P(e) is a Fermatean neutrosophic vague subset of K(e).

4. Union, Intersection, and Complementation of FNVSSs
We will discuss some operations of FNVSSs below.

Definition 9. The complement of an FNVSS 𭟋 of a universe X is denoted by (𭟋)c, where for each
x ∈ X, the following are true:
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(i) (Tv(x))c = 1 − Fv(x);
(ii) (Iv(x))c = 1 − Iv(x);
(iii) (1 − Fv(x))c = Tv(x).

Example 5. Consider the FNVSS in Example 1 defined as follows.

𭟋 =

{
x1

[0.3, 0.4], [0.6, 0.5], [0.7, 0.9]
,

x2

[0.7, 0.4], [0.1, 0.5], [0.8, 0.9]

}
.

The complement of 𭟋 is

(𭟋)c =

{
x1

[0.7, 0.9], [0.4, 0.5], [0.3, 0.4]
,

x2

[0.8, 0.9], [0.9, 0.5], [0.7, 0.4]

}
.

Definition 10. Let X be a universal set. Let P(e) and K(e) be two FNVSSs of the universe X.
The union of P(e) and K(e) is defined by P(e) ∪ K(e), where for each x ∈ X,

P(e) ∪ K(e) = {x, max[PT(e), KT(e)], min[PI(e), K I(e)], min[PF(e), KF(e)]}

Definition 11. Let X be a universal set. Let P(e) and K(e) be two FNVSSs of the universe X.
The intersection of P(e) and K(e) is defined by P(e) ∩ K(e), where for each x ∈ X,

P(e) ∩ K(e) = {x, min[PT(e), KT(e)], max[PI(e), K I(e)], max[PF(e), KF(e)]}

Example 6. Consider Example 4. To find the union and intersection of two FNVSSs, we will use
the methods mentioned in Definitions 9 and 10:

P(e1) =

{
x1

[0.3, 0.4], [0.6, 0.5], [0.7, 0.9]
,

x2

[0.7, 0.4], [0.1, 0.5], [0.8, 0.9]

}
,

P(e2) =

{
x1

[0.2, 0.6], [0.4, 0.4], [0.8, 0.8]
,

x2

[0.5, 0.2], [0.3, 0.5], [0.6, 0.3]

}
,

K(e1) =

{
x1

[0.6, 0.5], [0.3, 0.4], [0.6, 0.8]
,

x2

[0.7, 0.5], [0.1, 0.2], [0.7, 0.6]

}
,

K(e2) =

{
x1

[0.5, 0.8], [0.3, 0.3], [0.7, 0.8]
,

x2

[0.6, 0.8], [0.2, 0.4], [0.4, 0.2]

}
.

(i) To find the union of P(e) and K(e):

P(e1) ∪ K(e1) = {x, max[PT(e1), KT(e1)], min[PI(e1), KI(e1)], min[PF(e1), KF(e1)]}

P(e1) ∪ K(e1) =

{
x1

[0.6, 0.5], [0.3, 0.4], [0.6, 0.8]
,

x2
[0.7, 0.5], [0.1, 0.2], [0.7, 0.6]

}
Similarly, for P(e2) and K(e2),

P(e2) ∪ K(e2) =

{
x1

[0.5, 0.8], [0.3, 0.3], [0.7, 0.8]
,

x2
[0.6, 0.8], [0.2, 0.4], [0.4, 0.2]

}
.

(ii) To find the intersection of P(e) and K(e):

P(e1) ∩ K(e1) = {x, min[PT(e1), KT(e1)], max[PI(e1), KI(e1)], max[PF(e1), KF(e1)]}

P(e1) ∩ K(e1) =

{
x1

[0.3, 0.4], [0.6, 0.5], [0.7, 0.9]
,

x2
[0.7, 0.4], [0.1, 0.5], [0.8, 0.9]

}
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Similarly, for P(e2) and K(e2),

P(e2) ∩ K(e2) =

{
x1

[0.2, 0.6], [0.4, 0.4], [0.8, 0.8]
,

x2
[0.5, 0.2], [0.3, 0.5], [0.6, 0.3]

}
.

Definition 12. Let X be a universal set. Let P(e) and K(e) be two FNVSSs of the universe X.
“P(e) AND K(e)”, denoted by “P(e) ∧ K(e)”, is defined by P(e) ∩ K(e), where for each x ∈ X,

P(e) ∧ K(e) = {x, min[PT(e), KT(e)], max[PI(e), K I(e)], max[PF(e), KF(e)]}

Definition 13. Let X be a universal set. Let P(e) and K(e) be two FNVSSs of the universe X.
“P(e) OR K(e)”, denoted by “P(e) ∨ K(e)”, is defined by P(e) ∪ K(e), where for each x ∈ X,

P(e) ∨ K(e) = {x, max[PT(e), KT(e)], min[PI(e), K I(e)], min[PF(e), KF(e)]}.

Definition 14. For ∇i > 0 and ∇i ̸= 1, let

k =
〈

log∇i
[T−

k , T+
k ], log∇i

[I−k , I+k ], log∇i
[F−

k , F+
k ]
〉

,

k1 =
〈

log∇i
[T−

k1
, T+

k1
], log∇i

[I−k1
, I+k1

], log∇i
[F−

k1
, F+

k1
]
〉

,

k2 =
〈

log∇i
[T−

k2
, T+

k2
], log∇i

[I−k2
, I+k2

], log∇i
[F−

k2
, F+

k2
]
〉

be any three new-type Fermatean neutrosophic vague numbers (FNVNs). Let L1, L2, L3 be positive
integers and α be a positive real parameter. Their operations are defined as follows:

1.

k1 ⊕ k2 =



[
L1

√
(log∇i

T−
k1
)L1 + (log∇i

T−
k2
)L1 − (log∇i

Tk1 )
L1 · (log∇i

Tk2 )
L1 ,

L1

√
(log∇i

T+
k1
)L1 + (log∇i

T+
k2
)L1 − (log∇i

T+
k1
)L1 · (log∇i

T+
k2
)L1

]
,[

L2

√
(log∇i

I−k1
)L2 + (log∇i

I−k2
)L2 − (log∇i

I−k1
)L2 · (log∇i

I−k2
)L2 ,

L2

√
(log∇i

I+k1
)L2 + (log∇i

I+k2
)L2 − (log∇i

I+k1
)L2 · (log∇i

I+k2
)L2

]
,[

(log∇i
F−
k1
)L3 · (log∇i

F−
k2
)L3 , (log∇i

F+
k1
)L3 · (log∇i

F+
k2
)L3
]


2.

k1 ⊙ k2 =



[
(log∇i

T−
k1
)L1 · (log∇i

T−
k2
)L1 , (log∇i

T+
k1
)L1 · (log∇i

T+
k2
)L1
]
,[

L2

√
(log∇i

I−k1
)L2 + (log∇i

I−k2
)L2 − (log∇i

I−k1
)L2 · (log∇i

I−k2
)L2 ,

L2

√
(log∇i

I+k1
)L2 + (log∇i

I+k2
)L2 − (log∇i

I+k1
)L2 · (log∇i

I+k2
)L2

]
,[

L3

√
(log∇i

F−
k1
)L3 + (log∇i

F−
k2
)L3 − (log∇i

F−
k1
)L3 · (log∇i

F−
k2
)L3 ,

L3

√
(log∇i

F+
k1
)L3 + (log∇i

F+
k2
)L3 − (log∇i

F+
k1
)L3 · (log∇i

F+
k2
)L3

]


3.

α · k =



[
L1

√
1 −

(
1 − (log∇i

T−
k )L1

)α
, L1

√
1 −

(
1 − (log∇i

T+
k )L1

)α]
,[

L2

√
1 −

(
1 − (log∇i

I−k )L2

)α
, L2

√
1 −

(
1 − (log∇i

I+k )L2

)α]
,[(

log∇i
F−
k

)L3α
,
(

log∇i
F+
k

)L3α]
.


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4.

kα =



[
(log∇i

T−
k )L1α, (log∇i

T+
k )L1α

]
[

L2

√
1 −

(
1 − (log∇i

I−k )L2

)α
, L2

√
1 −

(
1 − (log∇i

I+k )L2

)α]
[

L3

√
1 −

(
1 − (log∇i

F−
k )L3

)α
, L3

√
1 −

(
1 − (log∇i

F+
k )L3

)α]
.


Example 7. Let

k1 = ⟨log10[0.4, 0.3], log10[0.3, 0.5], log10[0.7, 0.8]⟩,
k2 = ⟨log10[0.5, 0.5], log10[0.7, 0.2], log10[0.5, 0.6]⟩

be two FNVNs, L1 = L2 = L3 = 2, and α = 3. Then,

1.

k1 ⊕ k2 =



[√
(log10 0.4)2 + (log10 0.5)2 − (log10 0.4)2 · (log10 0.5)2,√
(log10 0.3)2 + (log10 0.5)2 − (log10 0.3)2 · (log10 0.5)2

]
,[√

(log10 0.3)2 + (log10 0.7)2 − (log10 0.3)2 · (log10 0.7)2,√
(log10 0.5)2 + (log10 0.2)2 − (log10 0.5)2 · (log10 0.2)2

]
,[

(log10 0.7)2 · (log10 0.5)2, (log10 0.8)2 · (log10 0.6)2
]



k1 ⊕ k2 =



[√
(−0.397)2 + (−0.301)2 − (0.397)2 · (−0.301)2,

2
√
(−0.522)2 + (−0.301)2 − (−0.522)2 · (−0.301)2

]
,[√

(−0.522)2 + (−0.154)2 − (−0.522)2 · (−0.154)2,√
(−0.301)2 + (−0.698)2 − (−0.301)2 · (−0.698)2

]
,[

(−0.154)2 · (−0.301)2, (−0.096)2 · (−0.221)2
]


Hence,

k1 ⊕ k2 =
[
[0.488, 0.581], [0.538, 0.730], [0.002, 0.004]

]
2.

3 · k1 =



[√
1 −

(
1 − (log10 0.4)2

)3, 2
√

1 −
(
1 − (log10 0.3)2

)3
]

[√
1 −

(
1 − (log10 0.3)2

)3, 2
√

1 −
(
1 − (log10 0.5)2

)3
]

[(
log10 0.5

)2·3,
(
log10 0.6

)2·3
]



3 · k1 =



[√
1 − (1 − (−0.397)2)

3,
√

1 − (1 − (−0.522)2)
3
]

[√
1 − (1 − (−0.522)2)

3,
√

1 − (1 − (−0.301)2)
3
]

[
(−0.301)6, (−0.221)6

]


Hence,

3 · k1 =
[
[0.634, 0.784], [0.784, 0.497], [0.0007, 0.0001]

]
.
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Theorem 1. For i = 1, 2, . . . , n and j = 1, 2, . . . , ij let

ki =

〈
log[T−

kpij
, T+

kpij
], log[I−kpij

, I+kpij
], log[F−

kpij
, F+

kpij
]

〉
,

Wi =

〈
log[T−

kkij
, T+

kkij
], log[I−kkij

, I+kkij
], log[F−

kkij
, F+

kkij
]

〉
.

be FNVN, where pij and kij indicate the parameter indexed for the new type and alternative indexed
for the new type, respectively. If for each i = 1, 2, . . . , n,j = 1, 2, . . . , ij,

(log∇i
T−
kpij

+ log∇i
T+
kpij

)3 ≤ (log∇i
T−
kkij

+ log∇i
T+
kkij

)3,

(log∇i
I−kpij

+ log∇i
I+kpij

)3 ≥ (log∇i
I−kkij

+ log∇i
I+kkij

)3,

(log∇i
F−
kpij

+ log∇i
F+
kpij

)3 ≥ (log∇i
F−
kkij

+ log∇i
F+
kkij

)3,

then ki ≤ Wi,

Hence, the new-type FNVN satisfies:

(k1,k2, . . . ,kn) ≤ (W1,W2, . . . ,Wn).

Proof. For any i and j, (log∇i
T−
kpij

+ log∇i
T+
kpij

)L1 ≤ (log∇i
T−
kkij

+ log∇i
T+
kkij

)L1 . Therefore,

1 − (log∇i
T−
kpij

)L1 + (1 − (log∇i
T+
kpij

)L1 ≥ 1 − (log∇i
T−
kkij

)L1 + 1 − (log∇i
T+
kkij

)L1 .

Hence,
n

∑
i=1

(
1 − (log∇i

T−
kpij

)L1

)χi

+
n

∑
i=1

(
1 − (log∇i

T+
kpij

)L1

)χi

≥
n

∑
i=1

(
1 − (log∇i

T−
kkij

)L1

)χi

+
n

∑
i=1

(
1 − (log∇i

T+
kkij

)L1

)χi

where χi denotes the weight of of ki, for i = 1, 2, . . . , n, and

L1

√
1 −

n

∑
i=1

(
1 − (log∇i

T−
kpij

)L1

)χi

+ L1

√
1 −

n

∑
i=1

(
1 − (log∇i

T+
kpij

)L1

)χi

≤ L1

√
1 −

n

∑
i=1

(
1 − (log∇i

T−
kkij

)L1

)χi

+ L1

√
1 −

n

∑
i=1

(
1 − (log∇i

T+
kkij

)L1

)χi

.

For any i, (log∇i
I−kpij

)L2 + (log∇i
I+kpij

)L2 ≥ (log∇i
I−kkij

)L2 + (log∇i
I+kkij

)L2 . Therefore,

1 − (log∇i
I−kpij

)L2 + (1 − (log∇i
I+kpij

)L2 ≤ 1 − (log∇i
I−kkij

)L2 + 1 − (log∇i
I+kkij

)L2 .

Hence,
n

∑
i=1

(
1 − (log∇i

I−kpij
)L2

)χi

+
n

∑
i=1

(
1 − (log∇i

I+kpij
)L2

)χi

≤
n

∑
i=1

(
1 − (log∇i

I−kkij
)L2

)χi

+
n

∑
i=1

(
1 − (log∇i

I+kkij
)L2

)χi

implies that

L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I−kpij
)L2

)χi

+ L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I+kpij
)L2

)χi
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≥ L2

√√√√1 −
n

∑
i=1

(
1 − (log∇i

I−kkij
)L2

)ki

+ L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I+kkij
)L2

)χi

.

Hence,

1 − L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I−kpij
)L2

)χi

+ 1 − L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I+kpij
)L2

)χi

≤ 1 − L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I−kkij
)L2

)χi

+ 1 − L2

√
1 −

n

∑
i=1

(
1 − (log∇i

I+kkij
)L2

)χi

.

For any i, (log∇i
F−
kpij

)L3 + (log∇i
F+
kpij

)L3 ≤ (log∇i
F−
kkij

)L3 + (log∇i
F+
kkij

)L3 . Therefore,

1 −
n

∑
i=1

(log∇i
F−
kpij

)L3 + 1 −
n

∑
i=1

(log∇i
F+
kpij

)L3 ≤ 1 −
n

∑
i=1

(log∇i
F−
kkij

)L3 + 1 −
n

∑
i=1

(log∇i
F+
kkij

)L3 .



(
L3

√
1 −

n

∑
i=1

(
1 − (log∇i

T−
kpij

)L3

)χi

+ L3

√
1 −

n

∑
i=1

(
1 − (log∇i

T+
kpij

)L3

)χi
)3

+ 1 − L3

√
1 −

n

∑
i=1

(
1 − (log∇i

I−kpij
)L3

)χi

+ 1 −
(

L3

√
1 −

n

∑
i=1

(
1 − (log∇i

I+kpij
)L3

)χi
)3

+ 1 −
(

n

∑
i=1

(log∇i
F−
kpij

)

)3

+ 1 −
(

n

∑
i=1

(log∇i
F+
kpij

)

)3



≤



(
L3

√
1 −

n

∑
i=1

(
1 − (log∇i

T−
kkij

)L3

)χi

+ L3

√
1 −

n

∑
i=1

(
1 − (log∇i

T+
kkij

)L3

)χi
)3

+ 1 − L3

√
1 −

n

∑
i=1

(
1 − (log∇i

I−kkij
)L3

)χi

+ 1 −
(

L3

√
1 −

n

∑
i=1

(
1 − (log∇i

I+kkij
)L3

)χi
)3

+ 1 −
(

n

∑
i=1

(log∇i
F−
kkij

)

)3

+ 1 −
(

n

∑
i=1

(log∇i
F+
kkij

)

)3


Hence, (k1,k2, . . . ,kn) ≤ (W1,W2, . . . ,Wn).

Definition 15. Let k1,k2, . . . ,kn be FNVSSs. Then, the new-type generalized Fermatean neutro-
sophic vague weighted average (GFNVWA) operator for k1,k2, . . . ,kn is defined as

(k1,k2, . . . ,kn) =

(
n

∑
i=1

χikα
i

)1/α

,

where χi denotes the weight of ki, for i = 1, 2, . . . , n, and α > 0 is a normalized parameter to ensure
the aggregated result remains in a valid range between [0,1].

Theorem 2. For i = 1, 2, . . . , n, let ki =

〈
log[T−

kpij
, T+

kpij
], log[I−kpij

, I+kpij
], log[F−

kpij
, F+

kpij
]

〉
be

the family of FNVSSs. Then, the new-type GFNVWA operator for the FNVSS is given by:
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(k1,k2, . . . ,kn) =



[(
L1

√
1 −

(
∑n

i=1

(
1 −

(
(log∇i

T−
ki
)L1

)L1
)χi
))1/α

,

(
L1

√
1 −

(
∑n

i=1

(
1 −

(
(log∇i

T+
ki
)L1

)L1
)χi
))1/α]

,

[(
L2

√
1 −

(
∑n

i=1

(
1 −

(
(log∇i

I−ki
)L2

)L2
)χi
))1/α

,

(
L2

√
1 −

(
∑n

i=1

(
1 −

(
(log∇i

I+ki
)L2

)L2
)χi
))1/α]

,

[ L3

√
1 −

(
1 −

(
∑n

i=1

(
L3

√
1 − (log∇i

F−
ki
)L3

)χi
)L3
)1/α

, L3

√
1 −

(
1 −

(
∑n

i=1

(
L3

√
1 − (log∇i

F+
ki
)L3

)χi
)L3
)1/α

].



.

Proof. We have

n

∑
i=1

χikα
i =



[
L1

√
1 − ∑n

i=1

(
1 −

(
(log∇i

T−
ki
)L1

))αi
, L1

√
1 − ∑n

i=1

(
1 −

(
(log∇i

T+
ki
)L1

))αi

]
[

L2

√
1 − ∑n

i=1

(
1 −

(
(log∇i

I−ki
)L2

))αi
, L2

√
1 − ∑n

i=1

(
1 −

(
(log∇i

I+ki
)L2

))αi

]
[

∑n
i=1

(
L3

√
1 −

(
1 − (log∇i

F−
ki
)L3

))αi

, ∑n
i=1

(
L3

√
1 −

(
1 − (log∇i

F+
ki
)L3

))αi
]


.

If n = 2, then

χ1k1 ⊕ χ2k2 =



[
L1

√(
L1

√
1 −

(
1 −

(
(log∇i

T−
k1
)L1

))χ1
+ L1

√
1 −

(
1 −

(
(log∇i

T−
k2
)L1

))χ1
)L1

−
(

L1

√
1 −

(
1 −

(
(log∇i

T−
k1
)L1

))χ1 · L1

√
1 −

(
1 −

(
(log∇i

T−
k2
)L1

))χ1
)L1

,

L1

√(
L1

√
1 −

(
1 −

(
(log∇i

T+
k1
)L1

))χ1
+ L1

√
1 −

(
1 −

(
(log∇i

T+
k2
)L1

))χ1
)L1

−
(

L1

√
1 −

(
1 −

(
(log∇i

T+
k1
)L1

))χ1 · L1

√
1 −

(
1 −

(
(log∇i

T+
k2
)L1

))χ1
)L1

]
[

L2

√(
L2

√
1 −

(
1 −

(
(log∇i

I−k1
)L2

))χ1
+ L2

√
1 −

(
1 −

(
(log∇i

I−k2
)L2

))χ1
)L2

−
(

L2

√
1 −

(
1 −

(
(log∇i

I−k1
)L2

))χ1 · L2

√
1 −

(
1 −

(
(log∇i

I−k2
)L2

))χ1
)L2

,

L2

√(
L2

√
1 −

(
1 −

(
(log∇i

I+k1
)L2

))χ1
+ L2

√
1 −

(
1 −

(
(log∇i

I+k2
)L2

))χ1
)L2

−
(

L2

√
1 −

(
1 −

(
(log∇i

I+k1
)L2

))χ1 · L2

√
1 −

(
1 −

(
(log∇i

I+k2
)L2

))χ1
)L2

]
[(

L3

√
1 −

(
1 − (log∇i

F−
k1
)L3

)L3 · L3

√
1 −

(
1 − (log∇i

F+
k2
)L3

)L3

)χ1

,(
L3

√
1 −

(
1 − (log∇i

F−
k1
)L3

)L3 · L3

√
1 −

(
1 − (log∇i

F+
k2
)L3

)L3

)χ1


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=



[
L1

√
1 − ∑l1

i=1

(
1 −

((
log∇i

T−
k1

)L1
))χi

, L1

√
1 − ∑l1

i=1

(
1 −

((
log∇i

T+
k1

)L1
))χi

]
,[

L2

√
1 − ∑l2

i=1

(
1 −

((
log∇i

I−k1

)L2
))χi

, L2

√
1 − ∑l2

i=1

(
1 −

((
log∇i

I+k1

)L2
))χi

]
,[

∑L3
i=1

 L3

√
1 −

(
1 −

(
log∇i

F−
ki

)L3
)L3

χi

, ∑L3
i=1

 L3

√
1 −

(
1 −

(
log∇i

F+
ki

)L3
)L3

,

χi]


.

It is valid for n = L and L ≥ 3. Hence,

L

∑
i=1

χikα
i

=



[
L1

√√√√1 − ∑L
i=1

(
1 −

((
log∇i

T−
k1

)L1
)L1

)χi

, L1

√√√√1 − ∑L
i=1

(
1 −

((
log∇i

T+
k1

)L1
)L1

)χi
]

[
L2

√√√√1 − ∑L
i=1

(
1 −

((
log∇i

I−k1

)L2
)L2

)χi

, L2

√√√√1 − ∑L
i=1

(
1 −

((
log∇i

I+k1

)L2
)L2

)χi
]

[
∑L

i=1

 L3

√
1 −

(
1 −

(
log∇i

F−
ki

)L3
)L3

χi

, ∑L
i=1

 L3

√
1 −

(
1 −

(
log∇i

F+
ki

)L3
)L3

χi]


.

If n = L + 1, then
L

∑
i=1

χikα
i + χL+1kα

L+1 =
L+1

∑
i=1

χikα
i .

Now,

L

∑
i=1

χikα
i + χL+1kα

L+1 = χ1kα
1 ⊕ χ2kα

2 ⊕ · · · ⊕ χLkα
L ⊕ χL+1kα

L+1
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=



[
L1

√√√√( L1

√
1 − ∑L

i=1

(
1 −

(
(log∇i

T−
ki
)L1

)L1
)χi

+ L1

√
1 −

(
1 −

(
(log∇i

T−
kL+1

)L1

)L1
)χ1

)L1

−
(

L1

√
1 − ∑l

i=1

(
1 −

(
(log∇i

T−
ki
)L1

)L1
)χi

· L1

√
1 −

(
1 −

(
(log∇i

T−
kL+1

)L1

)L1
)χ1

)L1

,

L1

√√√√( L1

√
1 − ∑L

i=1

(
1 −

(
(log∇i

T+
ki
)L1

)L1
)χi

+ L1

√
1 −

(
1 −

(
(log∇i

T+
kL+1

)L1

)L1
)χ1

)L1

−
(

L1

√
1 − ∑l

i=1

(
1 −

(
(log∇i

T+
ki
)L1

)L1
)χi

· L1

√
1 −

(
1 −

(
(log∇i

T+
kL+1

)L1

)L1
)χ1

)L1]
,

[
L2

√√√√( L2

√
1 − ∑L

i=1

(
1 −

(
log∇i

I−ki
)L2

)L2
)χi

+ L2

√
1 −

(
1 −

(
(log∇i

I−kL+1
)L2

)L2
)χ1

)L2

−
(

L2

√
1 − ∑L

i=1

(
1 −

(
(log∇i

I−ki
)L2

)L2
)χi

· L2

√
1 −

(
1 −

(
(log∇i

I−kL+1
)L2

)L2
)χ1

)L2

,

L2

√√√√( L2

√
1 − ∑L

i=1

(
1 −

(
log∇i

I+ki
)L2

)L2
)χi

+ L2

√
1 −

(
1 −

(
(log∇i

I+kL+1
)L2

)L2
)χ1

)L2

−
(

L2

√
1 − ∑L

i=1

(
1 −

(
(log∇i

I+ki
)L2

)L2
)χi

· L2

√
1 −

(
1 −

(
(log∇i

I+kL+1
)L2

)L2
)χ1

)L2]
[

∑L
i=1

(
L3

√
1 −

(
1 − (log∇i

F−
ki
)L3

)L3

)χi

·
(

L3

√
1 −

(
1 − (log∇i

F−
kL+1

)L3

)L3
)χ1

,

∑L
i=1

(
L3

√
1 −

(
1 − (log∇i

F+
ki
)L3

)L3

)χi

·
(

L3

√
1 −

(
1 − (log∇i

F+
kL+1

)L3

)L3
)χ1

]



.

Thus,

L+1

∑
i=1

χikα
i =



[
L1

√
1 − ∑L+1

i=1

(
1 −

(
(log∇i

T−
k1
)L1

)L1
)χi

, L1

√
1 − ∑L+1

i=1

(
1 −

(
(log∇i

T+
k1
)L1

)L1
)χi
]

[
L2

√
1 − ∑L+1

i=1

(
1 −

(
(log∇i

I−k1
)L2

)l2
)χi

, L2

√
1 − ∑L+1

i=1

(
1 −

(
(log∇i

I+k1
)L2

)l2
)χi
]

[
∑L+1

i=1

(
L3

√
1 −

(
1 − (log∇i

F−
ki
)L3

)L3

)χi

, ∑L+1
i=1

(
L3

√
1 −

(
1 − (log∇i

F+
ki
)L3

)L3

)χi
]


.

Hence,
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(
L+1

∑
i=1

χikα
i

)1/α

=



[(
L1

√(
1 − ∑l+1

i=1

(
1 −

(
(log∇i

T−
k1
)L1

)L1
)χi
)) 1

α

,

(
L1

√(
1 − ∑l+1

i=1

(
1 −

(
(log∇i

T+
k1
)L1

)L1
)χi
)) 1

α
]

[(
L2

√(
1 − ∑L+1

i=1

(
1 −

(
(log∇i

I−k1
)L2

)L2
)χi
)) 1

α

,

(
L2

√(
1 − ∑L+1

i=1

(
1 −

(
(log∇i

I+k1
)L2

)L2
)χi
)) 1

α
]

[
L3

√√√√√√1 −

1 −

∑L+1
i=1

 l3

√
1 −

(
1 −

(
log∇i

F−
ki

)L3
)L3

χi
L3


1
α

,

L3

√√√√√√1 −

1 −

∑L+1
i=1

 l3

√
1 −

(
1 −

(
log∇i

F+
ki

)L3
)L3

χi
L3


1
α ]



.

It is valid for L ≥ 1.

5. Fermatean Neutrosophic Vague TOPSIS to Solve
Decision-Making Problems

We use FNVSS theory in conjunction with multicriteria decision-making (MCDM)
approaches to address this challenge by modeling uncertainty, imprecision, and reluctance
in expert assessments (Figure 1). The TOPSIS method is applied to identify the most
suitable solar panel.

5.1. Mathematical Formulation of FNVSS-TOPSIS Method

Step 1: Construct the decision matrix as follows:

DM =


⟨T11, I11, 1 − F11⟩ ⟨T12, I12, 1 − F12⟩ · · · ⟨T1q, I1q, 1 − F1q⟩
⟨T21, I21, 1 − F21⟩ ⟨T22, I22, 1 − F22⟩ · · · ⟨T2q, I2q, 1 − F2q⟩

...
...

. . .
...

⟨Tp1, Ip1, 1 − Fp1⟩ ⟨Tp2, Ip2, 1 − Fp2⟩ · · · ⟨Tpq, Ipq, 1 − Fpq⟩


Step 2: Normalize the decision matrix by normalizing each Fermatean vague value

FNVSij = ⟨Tij, Iij, 1 − Fij⟩ as:

T
′
ij =

T+
ij

max(T+
ij )

, I
′
ij =

I+ij
max(I+ij )

, 1 − F′
ij =

1 − F+
ij

max(1 − F+
ij )

,

T
′′
ij =

T−
ij

max(T−
ij )

, I
′′
ij =

I−ij
max(I−ij )

, 1 − F′′
ij =

1 − F−
ij

max(1 − F−
ij )

.

where the following are true:

i. max(T+
j ) is the highest upper truth value in the row j;

ii. max(I+j ) is the highest indeterminacy value in the row j;

iii. max(1 − F+
j ) is the highest falsity value in the rowj.
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Figure 1. Graphical model of FNVSS-TOPSIS method.

Step 3: Calculate weighted normalized decision matrix by:

T⊕
ij = wj · (T′

ij), I⊕ij = wj · (I′ij), 1 − F⊕
ij = wj · (1 − F′

ij)

T⊖
ij = wj · (T′′

ij ), I⊖ij = wj · (I′′ij ), 1 − F⊖
ij = wj · (1 − F′′

ij )

Step 4: Identification of the PIS and NIS by:

• Positive Ideal Solution (PIS):

P+ = ⟨max(T⊕
ij ), min(I⊕ij ), min(1 − F⊕

ij )⟩

• Negative Ideal Solution (NIS):

N− = ⟨max(T⊖
ij ), min(I⊖ij ), min(1 − F⊖

ij )⟩

Step 5: Compute separation measures by:

D+
i =

√√√√ n

∑
j=1

(
T⊕

ij − T′
j )

2 + (I⊕ij − I ′ij)
2 + ([1 − F⊕

ij ]− [1 − F′
j ])

2
)

D−
i =

√√√√ n

∑
j=1

(
T⊖

ij − T′′
j )

2 + (I⊖ij − I ′′ij)
2 + ([1 − F⊖

ij ]− [1 − F′′
j ])

2
)

Step 6: Calculate the relative closeness coefficient by:

Ci =
D−

i
D+

i + D−
i

Step 7: Rank the alternatives based on Ci (higher values are preferred).
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5.2. Application of TOPSIS Method Based on FNVSS

A renewable energy firm intends to implement a large-scale solar power system to op-
timize energy efficiency while reducing prices and environmental effect. Four alternatives
of solar panels—which are x1: Monocrystalline, x2: Polycrystalline, x3: Thin-Film, and x4:
PERC—are assessed for these criteria: c1: efficiency, c2: installation expenses, c3: durability,
and c4: ecological effect. Nevertheless, professional judgments entail uncertainty, rendering
accurate assessments challenging. Monocrystalline panels provide excellent efficiency at a
greater cost, whereas Thin-Film panels are more economical but exhibit less durability. This
trade-off requires a decision-making strategy that considers both quantitative accuracy and
expert opinion.

Solution By TOPSIS
Step 1: Construct the Decision Matrix (Table 1)

Table 1. Decision matrix D = [xij]m×n.

Solar Panels (Ef) (C) (D) (EI)

Mono-C [0.3,0.4], [0.6,0.5] [0.7,0.4], [0.1,0.5] [0.2,0.6], [0.4,0.4] [0.5,0.2], [0.3,0.5]
[0.7,0.9] [0.8,0.9] [0.8,0.8] [0.6,0.3]

Poly-C [0.2,0.6], [0.4,0.4] [0.5,0.2], [0.3,0.5] [0.6,0.5], [0.3,0.4] [0.2,0.2], [0.1,0.6]
[0.6,0.3] [0.8,0.8] [0.6,0.3] [0.6,0.8]

Thin-Film [0.5,0.8], [0.3,0.3] [0.6,0.8], [0.2,0.4] [0.3,0.4], [0.6,0.5] [0.3,0.1], [0.4,0.5]
[0.7,0.9] [0.7,0.8] [0.4,0.2] [0.7,0.9]

PERC [0.2,0.6], [0.4,0.4] [0.5,0.2], [0.3,0.5] [0.2,0.6], [0.4,0.4] [0.2,0.6], [0.4,0.4]
[0.8,0.8] [0.8,0.8] [0.6,0.3] [0.8,0.8]

Step 2: Normalize the Decision Matrix (Table 2)

Table 2. Calculating [T′
ij], [T

′′
ij ], [I

′
ij], [I

′′
ij ], [1 − F′

ij], [1 − F′′
ij ].

Solar Panels (Ef) (C) (D) (EI)

Mono-C [0.428,0.666], [1.0,1.0] [1.0,0.666], [0.166,1.0] [0.285,0.666], [0.666,0.8] [0.714,0.333], [0.5,1.0]
[0.875,1.0] [1.0,1.0] [1.0,0.888] [0.75,0.333]

Poly-C [0.333,1.0], [1.0,0.666] [0.833,0.333], [0.75,0.833] [1.0,0.833], [0.75,0.666] [0.333,0.333], [0.25,1.0]
[0.75,0.375] [1.0,1.0] [0.75,0.375] [0.75,1.0]

Thin-Film [0.833,1.0], [0.5,0.6] [1.0,1.0], [0.5,0.8] [0.5,0.5], [1.0,1.0] [0.5,0.125], [0.666,1.0]
[1.0,1.0] [1.0,0.8888] [0.571,0.222] [1.0,1.0]

PERC [0.4,1.0],[1.0,0.8] [0.4,0.333],[0.75,1.0] [0.4,1.0],[1.0,0.8] [0.4,1.0],[1.0,0.8]
[1.0,1.0] [1.0,1.0] [0.75,0.375] [1.0,1.0]

To normalize the decision matrix, divide each entry, for example:

T
′

ij =
T+

ij

max(T+
ij )

, I
′

ij =
I+ij

max(I+ij )
, 1 − F′

ij =
1 − F+

ij

max(1 − F+
ij )

,

T
′
11 =

0.3
max(0.3, 0.7, 0.2, 0.5)

=
0.3
0.7

= 0.428, I
′
11 =

0.6
max(0.6, 0.1, 0.4, 0.3)

=
0.6
0.6

= 1.0,

1 − F′
11 =

0.7
max(0.7, 0.8, 0.8, 0.6)

=
0.7
0.8

= 0.875,

T
′′

ij =
T−

ij

max(T−
ij )

, I
′′

ij =
I−ij

max(I−ij )
, 1 − F′′

ij =
1 − F−

ij

max(1 − F−
ij )

.

T
′′
11 =

0.4
max(0.4, 0.4, 0.6, 0.2)

=
0.4
0.6

= 0.666, I
′′
11 =

0.5
max(0.5, 0.5, 0.4, 0.5)

=
0.5
0.5

= 1.0,

1 − F′′
11 =

0.9
max(0.9, 0.9, 0.8, 0.3)

=
0.9
0.9

= 1.0.
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Step 3: Computation of the Weight Matrix (Table 3)
The weights assigned by the experts (decision makers) to the criteria are given by

the matrix:

W =
[
w1 (Ef) = 0.3, w2 (C) = 0.25, w3 (D) = 0.2, w4 (EI) = 0.25

]
T⊕

ij = wj · (T′
ij), I⊕ij = wj · (I′ij), 1 − F⊕

ij = wj · (1 − F′
ij)

T⊖
ij = wj · (T′′

ij ), I⊖ij = wj · (I′′ij ), 1 − F⊖
ij = wj · (1 − F′′

ij )

Table 3. Weighted normalized decision matrix.

Weights wj 0.3 0.25 0.2 0.25

Ef C D EI

Mono-C [0.128,0.199], [0.3,0.3] [0.25,0.041], [0.041,0.25] [0.057,0.133], [0.133,0.16] [0.178,0.083], [0.15,0.3]
[0.262,0.3] [0.25,0.25] [0.2,0.177] [0.187,0.833]

Poly-C [0.099,0.3], [0.3,0.199] [0.208,0.083], [0.187,0.208] [0.2,0.166], [0.15,0.133] [0.083,0.066], [0.05,0.2]
[0.225,0.112] [0.25,0.25] [0.15,0.075] [0.187,0.25]

Thin-Film [0.249,0.3], [0.15,0.18] [0.25,0.25], [0.125,0.2] [0.1,0.1], [0.2,0.2] [0.125,0.031], [0.166,0.25]
[0.3,0.3] [0.25,0.222] [0.114,0.044] [0.25,0.25]

PERC [0.12,0.3], [0.3,0.24] [0.1,0.083], [0.187,0.25] [0.08,0.2], [0.2,0.16] [0.1,0.25], [0.25,0.2]
[0.3,0.3] [0.25,0.25] [0.15,0.075] [0.25,0.25]

Step 4: Identification of PIS and NIS
To find the PIS P+,

P+ = ⟨max(T⊕
ij ), min(I⊕ij ), min(1 − F⊕

ij )⟩

P+ =


([0.25, 0.199], [0.041, 0.16], [0.187, 0.075]),

([0.208, 0.3], [0.05, 0.133], [0.187, 0.075]),

([0.249, 0.3], [0.125, 0.18], [0.114, 0.044]),

([0.12, 0.3], [0.187, 0.16], [0.15, 0.075])


To find the NIS N−,

N− = ⟨min(T⊖
ij ), max(I⊖ij ), max(1 − F⊖

ij )⟩

N− =


([0.057, 0.041], [0.3, 0.3], [0.262, 0.833]),

([0.083, 0.066], [0.3, 0.2], [0.25, 0.25]),

([0.1, 0.031], [0.2, 0.25], [0.3, 0.3]),

([0.08, 0.083], [0.3, 0.25], [0.3, 0.3])


Step 5: Compute Separation Measures (Table 4)

D+
i =

√√√√ n

∑
j=1

(
T⊕

ij − T′
j )

2 + (I⊕ij − I ′ij)
2 + ([1 − F⊕

ij ]− [1 − F′
j ])

2
)

D−
i =

√√√√ n

∑
j=1

(
T⊖

ij − T′′
j )

2 + (I⊖ij − I ′′ij)
2 + ([1 − F⊖

ij ]− [1 − F′′
j ])

2
)
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Table 4. Calculation of D+
i , D−

i .

D+
i D−

i

Mono-C (0.3885) (0.5921)
Poly-C (0.4102) (0.6109)
Thin-Film (0.4571) (0.6774)
PERC (0.4352) (0.6422)

Step 6: Relative Closeness to Ideal Solution
The RCC to the ideal solution Ci is computed as follows:

CMono =
D−

1
D+

1 + D−
1

=
0.5921

0.5921 + 0.3885
= 0.6038

Similarly, we can obtain

CPoly = 0.5983,

CThin = 0.5971,

CPERC = 0.5965.

Step 7: Ranking Closeness to Ideal Solution
The final ranking indicates that Mono-C emerged as the preferred choice due to its

strong overall performance across multiple evaluation criteria, such as efficiency, durability,
and cost-effectiveness. This suggests that decision-makers prioritized a balance between
high energy output and long-term reliability, even if certain alternatives might have had
advantages in specific isolated factors. The results reflect a trade-off where slightly higher
costs or installation complexity were considered acceptable in exchange for superior long-
term benefits and consistent performance.

5.3. Comparative Analysis

We conduct a comparison between the AHP and VIKOR methods. The results are
shown in Table 5. From the above analysis, it is evident that the three methods present
consistent results in identifying the best alternative, although some variations exist in
the detailed ranking orders. Specifically, both the FNVSS-based TOPSIS method and the
VIKOR method select CMono as the best alternative, while the AHP method identifies CThin

as the top choice. The proposed FNVSS-based TOPSIS approach effectively addresses
the MAGDM problem under fuzzy environments. Additionally, compared to traditional
AHP and VIKOR methods, our method demonstrates higher robustness by consistently
ranking CMono at the top, thereby providing more reliable decision support in the selection
of alternatives.

Table 5. Comparison of ranking results based on different methods.

Methods Ranking Orders Best Alternative

Proposed Method (FNVSS-TOPSIS) CMono ≻ CPoly ≻ CThin ≻ CPERC CMono
AHP CThin ≻ CPoly ≻ CPERC ≻ CPERC CThin

VIKOR CMono ≻ CPoly ≻ CPERC ≻ CThin CMono

6. Analysis and Comparisons of FNVSS with Traditional Models
FNVSSs further refine the representation of uncertainty and vagueness by integrating

the triple-valued logic of neutrosophic theory with the augmented constraints of Fermatean
logic, governed by the inequality Tp + Ip + Fp ≤ 1, where p > 1, typically p = 3. This
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generalized situation permits the concurrent existence of elevated membership and non-
membership degrees, facilitating a more accommodating and articulate framework for
expert assessment and divergent viewpoints. Furthermore, the vague characteristics of
truth, indeterminacy, and varying degrees of untruth within FNVSSs provide interval-
based evaluations, effectively encapsulating indeterminacy, ambiguity, and contradiction
with greater precision than traditional models.

Consequently, FNVSS provides enhanced modeling capabilities for practical decision-
making contexts, particularly in areas such as intelligent medical diagnosis, trust assessment
in blockchain systems, environmental evaluation, and renewable energy prioritization,
where information frequently lacks clarity, precision, or completeness. As shown in Table 6,
this comparison emphasizes the advantages of FNVSS in relation to traditional and con-
temporary fuzzy frameworks, focusing on essential semantic, structural, and application-
oriented criteria.

Table 6. Comparison of FS, IFS, PFS, NSS, NVSS, and Fermatean neutrosophic vague soft set models.

Parameter FS IFS PFS NSS NVSS FNVSS

Membership Model µ (µ, ν) (µ, ν) (T, I, F) Vague (T, I, F) Vague (T, I, F)

Membership Constraint µ ∈ [0, 1] µ + ν ≤ 1 µ2 + ν2 ≤ 1 None None Tp + Ip + Fp ≤ 1

Hesitation Degree Not Defined 1 − µ − ν 1 − µ2 − ν2 Explicit I Vague I Enhanced Vague I

Handles Indeterminacy No Indirect Indirect Yes Yes Yes

Handles Contradiction No No Partial Yes Yes Yes

Vagueness Support No Limited Limited Partial Strong Very strong

Degree of Freedom Low Moderate High High High Very High

Soft Set Structure No Moderate Moderate Full Full Full

Uncertainty Flexibility Low Moderate High High Very High Extreme

MCDM Suitability Weak Moderate High High Very High Excellent

Linguistic Input Support No Limited Limited Moderate Strong Very Strong

Model Complexity Low Medium High Medium High High

TOPSIS Compatibility Weak Moderate Strong Strong Very Strong Excellent

Application Scope Limited Moderate Strong Strong Broad Very Broad

Expert Hesitation Modeling No Partial Partial Yes Yes Full

7. Conclusions
This study applied the TOPSIS method integrated with FNVSSs to evaluate solar

panel technologies based on efficiency, cost, durability, and environmental impact. The pro-
posed model provided a structured and robust decision-making framework, effectively
managing uncertainty and prioritizing the most suitable solar panels for sustainable
energy applications.

The results highlight the significant advantage of using FNVSS in multicriteria analysis,
ensuring more precise and reliable rankings by accounting for both vagueness and indeter-
minacy in expert evaluations. This approach enhanced the selection process, optimizing
performance, affordability, and sustainability in solar energy deployment.

In general, this research marks an important step towards more efficient, intelligent,
and environmentally responsible energy systems while opening new pathways to apply
FNVSS models in diverse and impactful domains.
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Future Research

Future research drawn from [40–48], studying the evolution of HIV transmission,
can boost simulations of fluctuating uncertainty by implementing dynamic system theory
into Fermatean vague set structures. Determining bifurcation problems and transitioning
network characteristics can give new perspectives on resilience and decision processes in the
context of indeterminacy. The mathematical description of decision premises may be further
improved by integrating notes of symmetry implications from Z2-equivariant mechanisms
with convoluted center movements. Also, higher-order numerical methods complemented
by transparency and recurrence studies offer a solid conceptual basis for managing
challenging decision-making problems using nonlinear uncertainty and reluctance.
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DM decision-making
FS fuzzy set
VS vague set
VSS vague soft set
NS neutrosophic set
NSS neutrosophic soft set
NVSS neutrosophic vague soft set
IFS intuitionistic fuzzy set
FNS Fermatean neutrosophic set
PFS Pythagorean fuzzy set
MCDM multicriteria decision-making
MAGDM Multiattribute Group Decision-Making
PIS Positive Ideal Solution
NIS Negative Ideal Solution
FNVSS Fermatean neutrosophic vague soft set
FNVNWA Fermatean neutrosophic vague number weighted aggregation
GFNVNWA generalized Fermatean neutrosophic vague number weighted aggregation
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
AHP Analytic Hierarchy Process
VIKOR VIsekriterijumsko KOmpromisno Rangiranje
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