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A B S T R A C T

Biochar production from organic waste can reduce fossil fuel reliance and combat climate change, but current
models are computationally demanding and have limited accuracy. The study creates four machine learning
models using multiple linear regression, decision trees, Adaboost regressors, and bagging regressors, trained on a
dataset of pyrolysis tests. The results show that the data-driven models have significantly higher predictive ac-
curacy than existing models, with an R2 of up to 0.96. The Bagging Regressor (BR) demonstrated superior ef-
ficacy compared over the MLR, AR, and DT models across all eight output parameters, with R2 values of 0.94,
0.93, 0.93, 0.94, 0.95, 0.90, 0.92, and 0.96 for Biochar Yield, Fixed Carbon, Volatile Matter, Ash, and ultimate
composition parameters (C, H, O, and N), respectively. The study developed a data-driven model to predict
Biochar yield and compositions, enhancing production processes and promoting sustainable farming practices.

1. Introduction

As concerns about the impact of climate change and the global en-
ergy crisis both worsen, the development of alternative energy sources is
becoming increasingly important [1]. A biomass of about 140 billion
metric tons is produced each year globally, and inappropriate disposal of
this material pollutes the environment [2]. The conversion of wastes
into useful products appears to be an effective way to manage waste and
promote sustainable resource usage [3]. Biochar can be produced using
thermochemical techniques from organic waste, an important type of
waste biomass. Biochar is being known as one of the most valuable
renewable bioresources due to its numerous applications, which include
contaminant adsorption, GHG (greenhouse gas) elimination, treatment
of wastewater, soil remediating, manufacturing of energy, and usage as
catalysts. [4]. Surface functional categories, a sizable surface-specific
area, and a high amount of minerals are some of its distinguishing

features. Specifically, because of its carbon-rich microporous structure,
it is used in a range of applications [5]. For the removal of water and air
pollutants, biochar is a useful adsorbent. The outcome may be affected
by the kind of feedstock utilized and the technique of production used,
such as pyrolysis or gasification [6,7]. Biochar is used to absorb water
pollutants and remove heavy metals from wastewater. According to
scientific literature, the Successful removal of lead, Copper, Zinc, and
Cadmium from water-based solutions was achieved by biochar made of
husks of rice and manure as raw materials [8]. Furthermore, it has been
demonstrated that biochar is effective at removing organic contami-
nants such as aromatic materials, organic solvents that are volatile and
pungent chemicals, as well as metal aerosols, especially acid gases,
ozone, metallic mercury (Hg), oxides of nitrogen, and other contami-
nants. [9]. Another important feature of biochar is its catalyst nature,
which makes it suitable for an array of uses such as the syngas purifi-
cation process, biofuels synthesis, and pollution in the atmosphere
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Fig. 1. Adapted process flowchart for this investigation.

Table 1
To ensure generalizability, a statistical analysis of the input and output factors for the raw data.

I/O Types Of Variables Variables Mean Median Mode Standard
Deviation

Range Minimum Maximum Count (Percent
Missing)

Input Feedstock Proximate
composition

Fixed carbon 13.84 13.84 13.84 13.84 23.47 4.33 27.80 226(0 %)
Volatile matter 79.83 80.85 82.38 4.91 22.96 68.20 91.16 226(0 %)
Ash 6.33 6.61 7.45 3.94 14.98 0.16 15.14 226(0 %)

Feedstock ultimate
composition

Carbon 44.19 43.57 43.95 5.44 28.53 35.70 64.23 226(0 %)
Hydrogen 5.94 5.81 5.81 1.00 6.08 4.10 10.18 226(0 %)
Oxygen 42.44 42.00 41.12 5.20 25.49 27.61 53.10 210(16 %)
Nitrogen 1.30 0.99 1.12 1.66 9.61 0.00 9.61 226(0 %)
Sulphur 0.48 0.48 0.56 0.24 0.83 0.09 0.92 152(74 %)

Feedstock lignocellulosic
composition

Cellulose 37.52 40.14 28.70 8.24 29.78 17.89 47.67 112(114 %)
Hemicellulose 24.97 23.21 39.30 13.30 44.81 11.48 56.29 107(119 %)
Lignin 22.26 22.40 19.60 6.54 27.27 4.99 32.26 112(114 %)

Pyrolysis condition Residence time
(min)

38.08 30.00 30.00 18.76 89.00 1.00 90.00 226(0 %)

Temperature (◦C) 460.66 450.00 600.00 124.82 600.00 200.00 800.00 226(0 %)
Heating rate (◦C/
min)

11.37 10.00 10.00 5.69 20.00 5.00 25.00 226(0 %)

Output Process Efficiency Biochar yield (%) 39.53 35.20 23.30 15.10 78.21 17.68 95.89 226(0 %)
HHV (MJ/kg) 23.28 22.50 20.56 5.50 34.06 3.60 37.66 105(121 %)
Energy yield (%) 60.07 54.71 56.89 14.67 61.40 38.40 99.80 87(139 %)

Biochar Proximate
Composition

Fixed Carbon 53.57 54.16 59.20 19.77 79.07 15.04 94.11 159(67 %)
Volatile matter 32.38 25.78 32.21 20.00 82.23 0.49 82.72 159(67 %)
Ash 14.05 14.20 6.70 9.02 37.59 0.32 37.91 159(67 %)

Biochar Ultimate
Composition

Carbon 64.57 62.26 57.00 12.07 50.49 44.12 94.61 162(64 %)
Hydrogen 3.69 3.59 2.91 1.50 7.46 1.26 8.72 150(76 %)
Oxygen 17.39 14.38 9.64 10.27 45.17 0.00 45.17 150(76 %)
Nitrogen 1.48 1.12 0.00 1.38 9.05 0.00 9.05 162(64 %)
 0.53 0.52Sulphur 0.47 0.31 1.29 0.00 1.29 115(111 %)
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reduction. [10]. Furthermore, biochar provides exceptional benefits for
soil rehabilitation. When applied to soil, a part of the carbon in recal-
citrant biochar might continue for a long time in the soil ecology and
store carbon. [9]. According to a previous study, fertilizer made with
decentralized, renewable energy sources emits fewer pollutants than
fertilizer made with Conventional manufacturing methods [11].

One of the most often used processes for creating biochar is pyrolysis.
Value-added products like biochar, bio-oil, and syngas are created when
organic material is heated in an inert environment (i.e., without oxygen
(O)) [10]. The pyrolysis process factors, in addition to the varieties and
composition of the biomass source govern how applying biochar will
affect the soil’s condition and carbon reduction. For example, increased
temperatures, greater combustion rates, reduced pressures, or smaller
dimensions of particles during pyrolysis increase the breakdown of
biomass polymers and reduce the generation of biochar [11]. Higher
pyrolysis temperatures, on the contrary, result in a higher carbon

content and, as a result, a higher quality biochar for soil usage. This
conflict of interests demonstrates that the pyrolysis process produces
biochar optimally under these circumstances [12]. In order to create the
best biochar systems for ecologically friendly chemical and agricultural
uses, it is essential to understand and forecast output.

Theoretical models have been frequently employed in the previous
decades to forecast the product yields of pyrolysis processes [13]. Spe-
cifically, over the last two decades, a number of theoretical models have
been employed extensively to forecast the yield of pyrolysis processes,
including decision trees, support vector machines (SVM, neural net-
works, and integration methods for decision trees. For instance, with a
model accuracy of R2 = 0.78–0.87 [12,13]. Li et al. employed feedback
neural networks to forecast the generation of biochar from organic
waste, demonstrating the impact of ideal model parameters determined
by sensitivity [14]. Gradient learning outperformed random forests in
Leng et al.’s machine learning prediction of biochar generation by

Fig. 2. (a) PCCC between each of the interested variables. b) Biochar yield; c) the approximate composition of biochar (FC-VM-ash); and d) the eventual composition
of biochar (C–H–O–N).
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regulating carbonaceous ingredients [15].These models’ semi-empirical
character, complexity, and time requirements, however, limit their
applicability for predicting biochar yield in favor of more Development
and optimization of complicated processes (such as optimization with
multiple goals of biochar application). Based on the results of the
mathematical models or experiments, researchers have also created
actual correlations [14]. However, because they are limited to a few
specific experimental settings and biomass feedstocks, these empirical
correlations are often not suitable for extrapolative situations.

Data-driven modelling has grown in favour as a tool for forecasting
biochar synthesis, thanks to the advancement of artificial intelligence
and the availability of an abundant amount of pyrolysis information
from experiments. These techniques have better prediction accuracy,
faster computation times, and capacities to reproduce complicated data
trends [16]. The method in particular, using scant experimental and
system data, could accurately estimate biochar production. Through
training, it establishes the connection between the parameters affecting
input and output. and generates conclusions that are unaffected by
preconceived notions. However, current Machine learning (ML) forecast
based biochar models for forecasting have a limited degree of accuracy,
particularly when only a small number of datasets are used to build the
model. In one earlier study, 245 datasets from a variety of biomass
feedstocks and operational methods parameters were used to create a RF
(Random Forest) regression-based model for estimating the output and
carbon content of biochar. R2 values for the coefficients of determina-
tion are 0.855 & 0.848, respectively, were obtained by the researchers
for projecting the output of biochar and the carbon content [15].
Another study looked at the accuracy of the xtreme gradient-boosting
(XGB) machine learning be used to estimate biochar output. Using 91
data sets for training, its R2 value was 0.84 [16]. A recent research
improved R2 for estimating biochar output by using an artificially
generated neural network (ANN) in combination with metaheuristic

approaches [17]. Popular prediction techniques include ANFIS (Adap-
tive Neuro-Fuzzy Inference System) and MLP-NN (Multiple Layer Per-
ceptron Neural Networks), well-known based on data programming
method for MLP-NN performs processing of signals, workflow training,
functional estimating, and recognition of patterns. They are frequently
employed to represent intricate relationships between input and output
parameter spaces, examine data trends, or represent statistical sophis-
tication in unidentified composite distributions of probabilities between
variables that can be observed [18]. In contrast, ANFIS integrates
adaptive control approaches with ANN & fuzzy inference techniques.
Fuzzy logic is a technique for deep learning that allows human
perception as well as decision-making uncertainty to be mathematically
expressed [19]. The models’ potential for predicting biochar output is
still far from clear. However, the development of a comprehensive data-
driven model capable of forecasting biochar output and compositions
(both proximal and ultimate) has never been undertaken previously.
According to the literature, pyrolysis conditions and biomass feedstock
compositions can have a significant influence on biochar output and
compositions. As a result, this study aims to build a comprehensive
machine learning (ML) model capable of forecasting both biochar
output and composition, which is of considerable scientific significance.

The previous approaches of estimating the yield and composition of
biochar are limited by computational complexity and accuracy problems
[17–20], which makes this research important. Such shortcomings
highlight a crucial research gap and seriously impede the useful use of
these techniques in industrial settings. More precise, dependable, and
computationally efficient models that can handle the intricacies of the
processes involved in the synthesis of biochar are desperately needed.
While biochar yield has been predicted using machine learning models
like Random Forest and Artificial Neural Networks (ANN), their forecast
accuracy is usually modest, with R2 values ranging from 0.84 to 0.855.
The possibility of overfitting is another main problem with machine

Fig. 3. Schematic Diagram of DT.
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learning models, especially when training datasets are small or insuffi-
ciently diverse. Because of this, models may perform well on training
data but badly on unseen data, which could compromise their depend-
ability in practical situations [19]. Many machine learning models
function as “black boxes,” which makes it challenging for users to
comprehend how predictions are influenced by input characteristics.
Because stakeholders must base their decisions on the projections, this
lack of transparency may erode their confidence in the model’s out-
comes. Although ongoing, improving interpretability is still quite diffi-
cult [21].These constraint are especially noticeable when working with
small datasets or a variety of biomass feedstocks. Furthermore, the
models’ high computational expense and scalability issues limit their
practical application in optimizing the synthesis of biochar. This study
stands out because it concentrates on improving accuracy by choosing
input and output characteristics with greater diligence. To enhance data
quality, we employ a broader range of biomass properties and sophis-
ticated preprocessing methods. By addressing the shortcomings noted in
earlier research, this methodological change could result in greater R2
values and more accurate biochar yield projections.

According to the author, this is a pilot study to develop a detailed
model that, given the pyrolysis, would forecast biochar production and
composition concurrently settings and compositions of the biomass
feedstock. By focusing on multiple linear regression (MLR), decision
trees (DT), Adaboot Regressor (AR), Bagging Regressor (BR) this study
pioneers a comprehensive exploration of machine learning techniques
for biochar yield and composition prediction. The compositions of
different organic waste feedstocks (mostly straws and wood-based),
associated pyrolysis factors, biochar productivity, and biochar

compositions were all taken into account during the data assimilation
step. Two methods, the RMSE (root mean square error) and R2, utilized
to examine the effects of different model parameters and the division
between training and testing datasets. A thorough performance com-
parison conducted between data-driven models and current models,
which substantially produces a higher prediction accuracy, with an R2
value of up to 0.96. In addition, the research delves into how input
parameters impact what is anticipated, offering an important compre-
hension of the factors influencing the production of biochar.

The goal of this work is to overcome these important constraints by
creating a set of ensemble machine learning models that ensure
computational efficiency while improving forecast accuracy. By closing
this gap, the effort hopes to make it easier to use these sophisticated
models in practical settings, which will ultimately lead to more efficient
biochar production optimization and forward the field’s quest for sus-
tainable energy alternatives. The overall procedure for this inquiry is
shown in Fig. 1. The recommended individual and ensemble approaches
are described in the ensuing subsections.

2. Materials and methods

2.1. Data Collection and Pre-Processing

To develop a data-driven models, 226 datasets from the literature
(19 studies) were acquired, is summarized in Table 1. The dataset con-
tains corn cob, corn stalks, bagasse, coconut peat, coconut shells, co-
conut fibres, and other feedstocks. Wheat straws, husks of rice, straw
from rice, pine trees, pine wood shavings, pine wood, bamboo, citrus

Fig. 4. shows the AdaBoost technique’s schematic diagram.
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bagasse, orange pomace, and various other substances are among the
materials used. Agricultural waste, The cassava plant roots, Cassava
roots, Rape branch Wood stem, Wooden bark, Cotton stem Canola hull,
Oats hull, Vines pruning, Hinoki cypress Litter of poultry [22–40].

To ensure the data’s broad applicability and generalizability, the
following aspects were considered throughout the data gathering stage:
(1) feedstock biomass proximate composition, (2) ultimate biomass
feedstock composition, (3) lignin-based biomass feedstock composition,
(4) the primary pyrolysis circumstances, (5) the conditions for biochar
manufacturing, (6) the near-ultimate component of the biochar, (7) the
higher heating value (HHV) of the biochar,& (9) the overall energy yield
of the biochar. Despite the fact that prior efforts have taken into account
feedstock particle size [41,42]. Due to significant methodological vari-
ances and data-gathering process concerns, it was excluded from the
current analysis.

Ash, fixed carbon, volatile matter, and biochar were the closest
compositional correlations. It is important to note that the current in-
formation is restricted to feedstock ash percentage ranges of 0–15 %. For
increased ash content input data, future dataset development will be
required to create data-driven algorithms. Carbon, hydrogen, nitrogen,
oxygen, and sulfur are the primary (or elemental) components of feed-
stock and biochar. For both feedstock and biochar, the literature had
both wet-base and dry-based data, which were converted to dry material
to conduct the task Using Eq. (1–3). MC stands for moisture content.
Three elements make up the feedstock’s lignocellulose composition:
cellulose, hemicellulose, and lignin. The three most important pyrolysis
process parameters—residence duration, decomposition temperature,
and heating rate—were identified in the literature. The Supplementary
Material contains a full copy of the dataset.

FCdry
FCwet

1 − MC
(1)

VMdry =
VMwet
1 − MC

(2)

Ashdry
ashwet
1 − MC

(3)

Because the data was gathered from an array of literature (see [14]
[cite original paper here] for more information), discrepancies in the
datasets were unavoidable, resulting in missing values (see Table 1).
Certain characteristics were eliminated if more than 20 % of the data for
the input parametric space was not available. On the basis of this, the
feedstock was excluded from model development due to its high sulfur
level and composition of lignin and cellulose. The output dataset’s cutoff
criteria were set at 35 %, which resulted in the removal of Sulfur con-
centration in biochar, HHV, and energy output. The updated dataset for
the model now includes ten input parameters related to biomass feed-
stock composition and pyrolysis conditions: Fixed Carbon (FC), Volatile
Matter (VM), Ash content (Ash), Carbon (C), Hydrogen (H), Oxygen (O),
Nitrogen (N), Reaction Time (RT), Temperature (T), and Heating Rate
(HR). Additionally, it features eight output parameters that describe
biochar production and composition: Biochar Yield (BYY), Fixed Carbon
Yield (FCY), Volatile Matter Yield (VMY), Ash Yield (AshY), Carbon
Yield [43], Hydrogen Yield (HY), Oxygen Yield (OY), and Nitrogen Yield
(NY).

The restored data continued to have a large number of values that are
missing, which could result in incorrect model training. This issue was
avoided by replacing the value of the attribute’s missing values with the
feature’s average [38], guaranteeing an uninterrupted data. The model’s
performance during testing is unaffected by this strategy because it is
only applied during the training phase. Data normalization was carried
out as a required pre-processing step because the dataset contains var-
iables with a variety of values, mean, and SD (Standard Deviation), as
shown in Table 1. The conventional normal variable Zi (Equation (4)
was utilized, as is typical in machine learning, and is represented as
below.

Zi
Xi − ρ

σ (4)

Xi represents raw data, ρ represents mean, and standard deviation

Fig. 5. Bagging Algorithm Schematic Diagram.
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denoted by σ.
Referring to Eq. (5), a coefficient called the PCC (Pearson Correlation

Coefficient) was utilized to calculate the degree of linear correlation
between a pair of variables (i.e., inputs and outputs or two distinct in-
puts) [15]. A PCC of zero denotes no correlation, while a PCC of one
indicates a significant correlation exists between the factors. The for-
mation of biochar, proximal composition, and final composition were
three output factors that this absolute PCC value also demonstrated the

relative importance of. Section 2.2 discusses the PCC findings and the
relative weights of different factors.

PCC =

∑n
i=1Xi − X

∑n
i=1(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (5)

In this case, the two important variables from which PCC must be
calculated are x and y, and the number of data points is n.

Fig. 6. Actual and predicted biochar yield, proximal composition (FC-VM-ash), and ultimate composition (C–H–O–N) are all plotted using multiple linear
regression (MLR).
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2.2. Exploration of dataset

Table 1 shows the statistical properties of the input parameters i.e
FC, VM, Ash, C, H, O, N, RT, T, and HR and output parameters i.e BYY,
FCY, VMY, AshY, CY, HY, OY, and NY. The PCC (Pearson correlation
coefficient) was used to assess the linear correlation between the vari-
ables in question. A relationship is considered to be weak if the PCC
value is close to 0, and strong if the value is close to 1.

The Fig. 2(a) shows that strong relationships (with PCC > 0.35) exist
between the input parameters and the different elements that make up
the proximate and final composition of biomass feedstock. For example,
there is a strong negative correlation between FC and VM (PCC =

− 0.71), which means that as the FC content of the biomass feedstock
increases, the VM content decreases. Likewise, there is a strong negative
correlation between C and Ash (PCC = − 0.54), which means that as the
C content of the biomass feedstock increases, the Ash content decreases.
Similar investigations found a connection between the proximal and
final components of feedstock from biomass [17,15]. After that, Fig. 2
(b)–(d) showed the PCC values between inputs and outputs, which
represent the corresponding significance of an input’s characteristic in
forecasting outputs.

With a PCC of 0.76, the input variable T has a significant impact.
According to Fig. 2(b)’s negative PCC for T, increasing T would result in
less biochar being produced. On the other hand, raising T might boost
biochar’s carbon content by bringing down volatile substances like H, O,
and N, demonstrating the existence of a balance [15]. The effect of
biochar’s near compositions (FC, VM, and Ash) on input variables is
shown in Fig. 2(c) The subsequent output vs. input combinations are
shown below (in decreasing order) showed significant correlations: |
PCC| = 0.75 for VM vs. PT, 0.7 for Ash vs. ASH, 0.65 for FC vs. PT, and
0.4 for FC vs. ASH. Also, Fig. 2(d) demonstrated a significant impact of
biochar extreme structure (C,H,O, N) on the accompanying (in dimin-
ishing request) input factors: |PCC| rises to 0.8 for O versus PT, 0.75 for
N versus N, 0.65 for H versus PT, 0.5 for C versus PT, and 0.5 for C versus
Debris. Investigation of component importance found that PT altogether
affected six of the eight result factors examined, including BYY, FCY,
VMY, CY, HY, and OY. Both AshY and NY affected the other two factors,
Debris and N. Accordingly, any vulnerabilities related with these factors
would altogether impede the expectation capacity of the information
driven models.

2.3. Proposed ML models

Multiple linear regression, a particular machine-learning model
called Decision Tree, two ensemble methods called Adaboost Regressor

and Bagging Regressor, as well as other factors were utilized to antici-
pate the biochar Yield. The development of ensemble models was built
on the foundation of separate simulations. The same set of modeling
parameters were used for both individual and ensemble models to create
a baseline for contrast. Their wide range of applications, particularly in
material engineering and building construction materials, served as the
main justification for choosing these technologies[39,40]. The most
recent Anaconda application uses Python programming as well as in-
dividual and collective ML approaches. All individual and ensemble
models are run using the Python navigator’s Spider (version 5.1.5). Such
models are frequently used to forecast outcomes depending on the
supplied input data.

2.3.1. Multiple linear regression
Regression models often calculate the strength of the correlation and

describe the type of connection between the parameters of the input and
output [41]. A common technique for determining the strength of the
association between more than one variable is linear regression. MLR
methods are types of models of regression that incorporate both inde-
pendent and dependent variables [42]. A general linear connection is
created as shown in Eq. (6) in order to determine the values of a factor
that is dependent based on the values of the independent ones.

y = β0 + β1x1 + β2x2 + β3x3 + • • • •+ βnxn (6)

2.3.2. Decision tree
The DT is a categorization method incorporating categorization is-

sues and complexities, with classes included inside the tree [43]. If there
is no such thing as a class, the regression technique with independent
parameters can be used to anticipate the outcome [44]. A hierarchical
classifier, with inner nodes reflecting database properties, is what a DT
is. While the branches show the decision rules, each leaf node displays
the outcome. The two nodes that make up the DT are a leaf and a de-
cision node. In contrast to leaf nodes, which only have a few number of
branches, choice nodes can make any choice. The framework of this
approach is shaped like a tree, with roots at the bottom and branches
growing in every position [45]. The sets of data are categorized by the
DT. The method evaluates the discrepancy between the intended and
projected values at each division point. The gap between actual and
expected results is calculated at each division point. The technique is
repeated to locate the following split point. The location with the
smallest difference between experimental and anticipated values is
known as the split point. The diagram for the DT is shown in Fig. 3.

2.3.3. AdaBoost regressor
A artificial intelligence approach called the ensemble method is

Fig. 6. (continued).
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utilized to optimize several models using just one method [46]. The
entire set consists of numerous algorithms, commonly referred to as
multi-classifiers. Many hundreds of thousands of students form an alli-
ance and work together to solve the problem. Adaptive boosting is a
different moniker for AR since each instance is given a new set of
weights and examples that were mistakenly detected are given bigger
weights. Boosting methods are extensively used in supervised ML to
reduce variance and bias. The created data points serve as input data for
another model. It utilized repeatedly until the necessary basic learners
formed. The AR is most effective at improving DT performance on binary

classification issues. It is also used to boost the performance of other ML
algorithms. When applied to a slow learner, this technique performs
admirably. Fig. 4 shows the whole method for anticipating the desired
outcome of the AR algorithm.3.

2.3.4. Bagging regressor
When training the Bagging Regressor, extra data is added to the

prediction model to improve accuracy. Certain observations can be
reproduced in each by using sampling with replacement, a fresh training
dataset is created. There is an equal chance that each stage of the

Fig. 7. Decision tree (DT) parity plots comparing actual and expected biochar yield, proximal composition (FC-VM-ash), and final composition (C–H–O–N).
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bagging procedure will appear in the freshly produced dataset. The ca-
pacity to predict is mostly unaffected by the size of the training batch of
datapoints. In addition, by adjusting the expected outcome to the
desired result, variation may be considerably reduced. The creation of
new models frequently makes use of these data sets. The models in this
ensemble average each forecast that is produced. Regression forecasts
could be the average of the numbers of estimates from many models
[47]. Twenty tiny models used to alter the DT with BR in order to
identify the ideal configuration that produces a particular output result.
The bagging method’s process graph, shown in Fig. 5, shows the steps
necessary to achieve the desired outcomes.

2.4. Model accuracy evaluation metrics

Two data-driven models’ performance was examined and assessed
on a dataset containing 226 data points using different training–testing
splits. Consider two common measures for ML regression problems: R2
and RMSE, which were computed as

RMSE =

̅̅̅̅
1
N

√
∑N

i=1
(Yexp

i − Ypred
i )

2
(7)

R2 = 1 −

∑N
i=1(Y

exp
i − Ypred

i )
2

∑N
i=1(Y

exp
i − Yexp

ave )
2 (8)

The estimated biochar yields from the experiment and the model are
indicated as Yexp

i and Ypred
i respectively, while Yexp

ave is the mean of all
testing biochar outputs and N is the overall number of data points of data
in this paper, which comes to 226.

2.5. Parameters analysis techniques

In this review, the SHAP (Shapley Added substance clarifications)
worth and weight scores were utilized to uncover the weighting of
different information boundaries on the projected qualities [48]. Higher
weight scores for input boundaries show really displaying esteem.
Weight scores, nonetheless, couldn’t consider what the model’s result
meant for by the boundaries for this situation. A game-based hypothesis
technique called SHAP was used to enhance the output of machine
learning models. The SHAP esteem illustrates how a data boundary in-
teracts with the model to derive the anticipated outcome from the
foundation worth. Plotting the SHAP parameters of the information
boundaries was necessary to visualize the coupling impact.

3. Results and Discussion

The study used four models namely MLR, DT, AR, and BR, were
evaluated for their predictive performance. Among these models, the
MLR model exhibited the lowest performance in terms of predictive
accuracy When evaluated against the MLR, DT, AR, and BR models, the
BR model performed the best. The evaluation of the models’ perfor-
mance based on two commonly used error analysis metrics i.e. R2 and
RMSE. Considering the presence of eight output parameters, the models
assessed for their ability to predict these parameters accurately.

3.1. Predictive performance of multiple linear regression

The predictive accuracy of the MLR model was assessed using the R2
and RMSE measures, as illustrated in Fig. 6. For biochar yield prediction,
the model’s coefficient of R2 was 0.60, indicating that it might account
for nearly 60 % of the variance in observed biochar yield. The model also
performed well for the proximal composition parameters FCY, VMY, and
AshY, with respective R2 coefficients of 0.37, 0.32, & 0.60. The equiv-
alent RMSE figures were 11.27, 13.87, and 5.49. These findings indicate
that the MLR model caught the connections between the input variables
and the proximal composition characteristics adequately, with low
average prediction errors.

The MLR model produced average R2 values of 0.41, 0.04, 0.33, and
0.33 for the final composition parameters CY, HY, OY, and NY, respec-
tively. CY, HY, OY, and NY had average RMSE values of 7.88, 1.74, 6.24,
and 6.24, respectively. Overall, the MLR model outperformed other
models in capturing the complex relationships between input parame-
ters and various output Parameters.

3.2. Predictive performance of DT

The parity graphs in Fig. 7 indicate the accuracy of the DT created in
this work for forecasting. The evaluation of the DT model’s predictive
accuracy using R2 and RMSE metrics showed that it achieved an R2 and
RMSE value of 0.85 and 6.31 for biochar yield (BYY), respectively. In
predicting proximate composition, including FCY, VMY, and AshY, the
DT model achieved R2 values of 0.81, 0.88, and 0.84 with RMSE values
of 6.93, 5.23 and 2.76, respectively. For the ultimate composition pa-
rameters including [43], HY, OY, and NY, the Decision Tree (DT) model
exhibited moderate predictive performance, achieving average R2

values of 0.82, 0.68, 0.85, and 0.77, along with corresponding RMSE
values of 4.56, 0.62, 2.91, and 0.42, respectively. Despite these results,
the DT model underperformed compared to the Adaboost Regressor
(AR) and Bagging Regressor (BR) models, which demonstrated

Fig. 7. (continued).
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significantly higher predictive accuracy for all eight output parameters.
The AR and BR models not only achieved higher R2 values but also had
lower RMSE scores, indicating their superior ability to capture the
complex relationships between the input parameters and the multiple
output variables. These results underscore the limitations of the DT
model in accurately modeling intricate patterns in the dataset, making it
less suitable for predicting biochar composition compared to the
ensemble-based approaches.

3.3. Predictive performance of AR

The predictive accuracy of the AR model, as illustrated by the parity
plots in Fig. 8, was evaluated using R2 and RMSE metrics. In terms of
biochar yield (BYY) prediction, the coefficient R2 of the AR model was
0.91, and the RMSE was 5.63. indicating its ability to account for
approximately 91 % of the variance in the observed biochar yield. For
the proximate composition parameters including FCY, VMY, and AshY,
the AR model demonstrated consistent performance. It attained an R2

Fig. 8. Parity charts for Adaboost Regressor (AR) parity plots comparing the yield, proximal composition (FC-VM-ash), and ultimate composition (C–H–O–N) of
biochar between actual and forecasted values are shown in the graphs below.
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value of 0.84 for FC, 0.83 for VM, and 0.89 for ash content. The corre-
sponding RMSE values measured at 6.66, 6.08, and 2.31, respectively.

These findings imply that the AR model caught the connections be-
tween the input variables and the proximal composition parameters
adequately, with low average prediction errors. Regarding the ultimate
composition parameters, (CY, HY, OY, and NY), the AR model exhibited
favorable predictive accuracy. The average R2 values for the four pa-
rameters were 0.85, 0.74, 0.83, and 0.81 respectively. CY, HY, OY, and
NY had average RMSE values of 4.72, 0.53, 3.23, and 0.42, respectively.
In terms of prediction accuracy across all eight output metrics, the AR
model beat the DT model overall. The AR model displayed greater
performance in capturing the intricate relationships between the many
output parameters and the input parameters, with consistently higher
R2 values and lower RMSE values.

3.4. Predictive performance of BR

The BR model exhibited the highest predictive accuracy among the
evaluated models, as evident from the parity plots visualized in Fig. 9.
With an extraordinary R2 coefficient of 0.94 and a low RMSE coefficient
of 4.27, the BR model successfully predicted biochar yield (BYY),
showing that it could account for almost 94 % of the variance in
observed biochar yield. In terms of the proximate composition param-
eters (FCY, VMY, and AshY), the BR model consistently displayed
excellent performance. It achieved high R2 values of 0.93 for FC, 0.93 for
VM, and 0.94 for ash. The corresponding RMSE values were remarkably
low at 4.35, 3.93, and 1.74, respectively. These results suggest that the
BR model accurately captured the connections between the input pa-
rameters and the proximate composition parameters, exhibiting low
average prediction errors. For the ultimate composition parameters (CY,
HY, OY, and NY), the BR model demonstrated outstanding predictive
accuracy. It achieved an R2 value of 0.95, 0.90, 0.92 and 0.96 across all
four parameters. The average RMSE values for CY, HY, OY, and NY
recorded at 2.59, 0.32, 2.12, and 0.18 respectively, further highlighting
the BR model’s precision in predicting these parameters. Overall, the BR
model outperformed both the AR and DT models in terms of predictive
accuracy across all eight-output parameters. The BR model showed
greater performance in capturing the complicated interactions between
the input variables and the numerous output parameters, with
frequently greater coefficients for R2 and lesser RMSE values. These
results further emphasize the BR model’s potential as a trustworthy
model for such applications by demonstrating how well it can predict
the relevant biochar properties.

3.5. Comparison and discussion

The accuracy of the various models developed for this study was
assessed using statistical tests including RMSE and R2. This evaluation is
summarised in Table 2. Table 2 displays the RMSE values for the training
and testing datasets for DT, AR, and BR. The DT model’s RMSE values
were the greatest, whilst the BR model’s were the lowest. This reveals
that the BR model outperformed the AR and DT models for predicting
important biochar features. This study set out to show how to estimate
important biochar properties using both individual and ensemble ma-
chine learning techniques. To solve issues, the DT employs a tree model.
The DT technique aims to build a model that can accurately predict a
number of important factors. In supervised learning, boosting is used to
lessen variation and bias. Its foundation is the idea that learning happens
in stages. Every subsequent learner, with the exception of the first, is
built from a predecessor. In some respects, having fewer makes your
options stronger. On the contrary, bagging is a technique for choosing an
arbitrary dataset variable using a training set using a different approach
that enables the choice of new data values. The weakened models were
taught separately after the generation of numerous data samples, and
based on the task, the bulk or average among the values predicted
produced a more precise forecast or estimation. We looked at the ex-
pected performance of each method employed in this study to see if the
modelling technique was a superior predictor. The output of the BR
model had the greatest R2 of 0.96 when compared to the other models,
showing that it was more accurate [49–51]. To figure out the impact of
each input parameter the anticipated values of the targeted biochar
properties, parameter significance and effect analyses were also carried
out. The performance of the model may be influenced by the parameters
that are input and the number of data sets. Which of the four input
parameters has the greatest influence on the anticipated outcome is
shown by the parameter influence and significance.

3.6. Parameters analysis

3.6.1. Parameter importance
Fig. 10 shows parameter importance of input parameters and their

weight ratings on each output parameter. This figure chosen to develop
a thorough and accessible comprehension of the impact of different
input parameters on prediction accuracy.

Results show that the temperature (T) had the most impact on output
variables. Carbon content (C) highly influenced the CY, BYY, and AshY.
Ash content (A) had a high impact on ASHY, FCY, CY, and VMY. Fig. 10,
which also shows that T is the most sensitive variable, demonstrates the
proportional contributions of Input variables (T, C, O, RT, HR, VM, Ash,

Fig. 8. (continued).
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N, H, and FC).
The results of this analysis show that the most critical input factors

for determining the output variables are temperature and carbon con-
tent. Some output variables are also affected by ash content. These
findings are utilised to enhance prediction model accuracy by ranking
input characteristics based on their relevance.

3.6.2. Parameters influence
The SHAP values of important parameters were used during

prediction to gain an increased awareness of how these variables affect
model outcomes. The parameter’s total impact on model output is rep-
resented by the mean of its SHAP values. This information may be used
to get insights into the BR model by evaluating the SHAP values of the
parameters judged to be most important. SHAP values, in particular, are
used to investigate the effect of each parameter on a given prediction. A
high SHAP value, for example, tends to increase the likelihood of a
positive prediction, whereas a negative SHAP value tends to decrease
the likelihood of a positive prediction. To assess a parameter’s overall

Fig. 9. Parity charts for Bagging Regressor (BR) parity plots comparing the yield, proximal composition (FC-VM-ash), and ultimate composition (C–H-O-N) of
biochar between actual and forecasted values are shown in the graphs below.
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influence on the model result, the parameter’s SHAP value range
average is employed.The SHAP values were employed in this study to
get understanding of the BR model. The SHAP values of the most
important parameters were examined, and it was determined that these
parameters had a significant impact on model output. This information
may be used to improve the BR model by identifying the parameters that
have the most effect on the model output and then altering them
accordingly. To understand the internal functioning of the GEP method,
the SHAP parameters have been generated for all BR forecasts on the test
split. The values for SHAP show how every attribute influenced the
model’s outcome forecast. A positive SHAP number indicates that the
feature improved the prediction above the baseline value, whereas a
negative SHAP number indicates that the feature degraded the predicted
outcome.

Fig. 11 depicts the role of SHAP numbers. Colours ranging from dark
red & light blue are employed to show the high and low values of fea-
tures for every feature, respectively. The horizontal breakdown of the +

ve & − ve SHAP numbers for each parameter is employed to understand
the parameter’s related SHAP value. The parameters are listed in
descending order (from the top down to the bottom) depending on their
respective relevance. In other words, variables with the highest actual
SHAP numbers are crucial in the model’s predictions. SHAP values are
used to understand how the model predicts and to identify the features
that are most essential to the model’s performance.

Fig. 11 shows the key factors influencing the BR prediction. Light
blue dots indicate lower T and Ash concentrations, which are associated
with positive SHAP values in BYY, VMY, HY, and OY. Dark red dots
indicate higher T and Ash concentrations, which are associated with
highly positive SHAP values in AshY and CY. In FCY, higher T and lower
ash values were associated with a highly positive SHAP value. High
amounts of C in CY and N in NY were linked to positive SHAP numbers,
whereas low levels elements were linked to negative SHAP values. NY’s
positive and negative SHAP levels were both moderately positive. This
demonstrates that the influence of these small SHAP values on lowering
and increasing prediction outcomes is much greater in BYY, VMY, HY,
and OY, while it is the least in AshY, FCY, CY, and NY.

4. Conclusion

By presenting and testing a set of ensemble machine learning models
for highly accurate biochar yield and composition prediction, this study
makes a substantial contribution to the field of biochar manufacturing.
The promise of ensemble techniques in improving prediction precision is
demonstrated by the use of models like the Bagging Regressor, which
performed better than more conventional models like Multiple Linear
Regression (MLR), Decision Trees (DT), and Adaboost Regressor (AR).
Specifically, the Bagging Regressor outperformed previous techniques,
achieving an R2 value of up to 0.96 for biochar output. The model

Fig. 9. (continued).

Table 2
R2 and RMSE values for biochar yield (BYY), proximate composition (FCY-VMY-AshY), and ultimate composition (CY-HY-OY-NY) prediction were obtained using
varying quantities of training and testing data.

R2 RMSE

DT AR BR MLR DT AR BR MLR

BYY Tra 0.88 0.88 0.94 0.64  5.22 5.07 3.47 9.31
Tes 0.85 0.91 0.94 0.60  6.31 5.63 4.27 9.87

FCY Tra 0.82 0.83 0.93 0.64  7.17 7.06 4.47 10.39
Tes 0.81 0.84 0.93 0.37  6.93 6.66 4.35 11.27

VMY Tra 0.84 0.86 0.93 0.70  6.84 6.33 4.43 9.83
Tes 0.88 0.83 0.93 0.32  5.23 6.08 3.93 13.87

AshY Tra 0.88 0.88 0.95 0.71  2.74 2.79 1.74 4.17
Tes 0.84 0.89 0.94 0.60  2.76 2.31 1.74 5.49

CY Tra 0.85 0.86 0.96 0.56  3.90 3.87 1.94 6.80
Tes 0.82 0.85 0.95 0.41  4.56 4.72 2.59 7.88

HY Tra 0.72 0.74 0.94 0.69  0.67 0.66 0.33 0.72
Tes 0.68 0.74 0.90 0.04  0.62 0.53 0.32 1.74

OY Tra 0.87 0.90 0.92 0.72  3.11 2.68 2.42 4.62
Tes 0.85 0.83 0.92 0.33  2.91 3.23 2.12 6.24

NY Tra 0.80 0.84 0.98 0.72  0.58 0.50 0.18 4.62
Tes 0.77 0.81 0.96 0.33  0.42 0.42 0.18 6.24
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Fig. 10. Relative Contribution of output Parameters (BYY, FCY, VMY, AshY, CY, HY, OY, NY).

J. Gou et al. Ain Shams Engineering Journal 16 (2025) 103209 

15 



Fig. 11. SHAP parameter values demonstrating the effect of output parameters on the BR simulation (BYY, FCY, VMY, AshY, CY, HY, OY, NY).
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provides more accurate yield and ultimate composition parameter pre-
dictions (such as Carbon Yield (CY), Hydrogen Yield, Oxygen Yield, and
Nitrogen Yield (NY)) than traditional techniques, which adds scientific
value. This research closes a significant gap in the literature on biochar
modeling, as earlier attempts at modeling the material have been beset
by poor computational efficiency and low generalizability.

The results of this study can potentially be used to optimize biochar
production procedures in the industrial setting. The models presented
here can be utilized by biochar producers to optimize their processes for
various inputs, as they can accurately forecast biochar yield and
composition across a range of biomass feedstocks and pyrolysis condi-
tions. As a result, biochar may be used more effectively, more cheaply,
and for better purposes like waste management, soil improvement, and
carbon sequestration. The models can assist decision-making in a variety
of biochar-related businesses thanks to their predictive capacity across
many output characteristics, which encourages the use of more envi-
ronmentally and agriculturally sustainable approaches.

Notwithstanding these efforts, the Study acknowledged several
shortcomings. Despite being thorough with 226 datasets from published
literature, the dataset employed in this study might not fully describe the
heterogeneity of biochar synthesis processes, particularly when extreme
pyrolysis conditions or uncommon feedstocks are involved. Addition-
ally, methodological discrepancies in the data obtained prevented the
inclusion of some biomass feedstocks and process characteristics, such as
moisture content and particle size. Consequently, in order to address
these unrepresented circumstances, the models might need to be further
refined, which could affect their prediction ability in practical applica-
tions using novel or unusual feedstocks.

Given these constraints, there exist other potential directions for
further investigation. Enhancing the dataset to encompass a wider va-
riety of biomass kinds and pyrolysis settings would enhance the model’s
resilience and applicability. Moreover, utilizing cutting-edge machine
learning methods like hybrid models or deep learning may improve
prediction accuracy, especially for more intricate biochar compositions.
Creating real-time predictive models that are integrated with industrial
systems may also make it easier to dynamically optimize the processes
involved in the manufacture of biochar, thus increasing efficiency. To
further understand the effects of these and other crucial variables on
biochar yield and composition, future research could include examine
the effects of feedstock particle size, moisture content, and pyrolysis
duration.

In conclusion, by presenting high-accuracy machine learning models
that improve the predictability and efficiency of biochar production, this
study makes a significant contribution to both academic research and
industry application. The findings show how employing ensemble
learning models in this field advances science and lay the groundwork
for more research and development of biochar modeling methods. These
models provide a viable tool for streamlining biochar manufacturing
processes, encouraging sustainable farming methods, and assisting in-
ternational environmental initiatives to manage organic waste and fight
climate change by increasing the accuracy of yield and composition
projections.
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