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Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics 
the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow 
convergence and a tendency to reach local optima when dealing with multidimensional problems. To 
address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant. 
The TASR-CHOA algorithm integrates two novel methodologies: a stochastic approach to improve 
the speed at which convergence is achieved and a dual adaptive weighting approach to optimize the 
exploration of early patterns, which refer to initial trends or behaviors in the algorithm’s convergence 
process during the early stages of iterations and the exploitation of subsequent tendencies, indicating 
how these initial trends develop over time as the algorithm iterates and refines its search. To evaluate 
TASR-CHOA, we apply it to 29 conventional optimization benchmark functions, 10 IEEE CEC-06 
benchmarks, 30 complicated IEEE CEC-BC benchmark functions, and ten well-known benchmark 
real-world challenges. We evaluate TASR-CHOA against 4 categorical optimization techniques as well 
as 18 top IEEE CEC-BC algorithms. Based on our broad investigation done using three statistical tests, 
we claim that TASR-CHOA outperforms the majority of the algorithms since within a position takes 
the best place, 54 out of 73 evaluation functions and engineering problems. In other cases, the results 
are almost the same as those of SHADE and CMA-ES over several comparisons. As an illustrative 
application of this joint approach, a computer-aided fire detection task is performed using a deep 
convolutional neural network combined with TASR-CHOA. We also outline the algorithm executed in 
steps, indicating computational complexity, which is O(NI×NV) + O(NI×NV×6) + O(NI×NV + 2×NI×NV) 
as a function of number of individuals (NI) and dimensions (NV).

Keywords  Chimp optimization algorithm, Metaheuristic, Twofold adaptive weighting, IEEE CEC-BC 
competitions, Optimization, Multidimensional problems

We need more advanced optimization techniques because engineering optimization and its related fields are 
always looking for better designs, ways to recognize and estimate, and ways to predict system efficiency1–3. As a 
result, an urgent need for better optimization methods arises4. Evolutionary algorithms are the best way to deal 
with complex optimization problems, as these algorithms are widely used5. This is because such approaches 
adapt well to real-life engineering activities where they seek to mimic processes and use biological intelligence 
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for efficiency6. Recently, the CHOA has been acknowledged as a nature-inspired algorithm that is useful in 
solving optimization problems7.

The rationale for selecting CHOA for multimodal and fire detection problems.
CHOA was chosen for this study because it has some specific advantages, especially when addressing optimization 
problems in fire detection systems8. CHOA is a novel search algorithm developed on the social and cognitive 
behavior models of chimpanzees for effective search space exploration and search space exploitation9. The main 
benefit of CHOA is the shifting between exploration and exploitation when needed10. This is very important 
during fire detection, where the search space can be complicated, and the target can be multidimensional, among 
others11–14. Apart from that, instantaneous reinforcement is another unique feature of CHOA that allows it to 
modify its search strategy dynamically and improve its effectiveness in stable but rapidly changing environments, 
such as fire detection situations.

Compared to other methods of more established optimization where a genetic algorithm (GA)15, particle 
swarm optimization (PSO)16, and differential evolution (DE)17 may be concerned, CHOA presents many benefits. 
PSO, though convergent, often exhibits a severe drawback, which is premature convergence on most multi-
modal problems dominated by a multitude of local optima. On the contrary, there are mechanisms integrated 
within CHOA that help to alleviate the problem of premature convergence through the induced search of novel 
solution spaces. Also, GA includes costly operations such as crossover and mutation, which leads to the increased 
time taken to optimize, whereas CHOA utilizes efficient less update mechanisms to ensure quick sensitivity. DE, 
on the other hand, works well in simple optimization of operations such as real numbers but would make one 
inefficient within spaces that have high dimensions18. However, the CHOA layout focuses on the retention of 
population diversity, ensuring higher efficacy in solving high-dimensional complex optimization problems such 
as the fire detection problem19. Therefore, the overall performance of the CHOA report improves the ability to 
solve some tasks of fire detection optimization, particularly within local optima and dynamic problems changing 
over time.

As much as we appreciate these efforts as research, we should also point out that seeking to find new paradigms 
or using new techniques as first attempts to solve a well-known problem may not be the most constructive course 
of action in conducting research20.

In the second variant, the CHOA technique has merged with other techniques to enhance the efficiency 
and productivity; these are hybrid RVFL-CHOA21, hybrid whale-CHOA22, CHOA with spotted hyena (SSC)23, 
flexible-constrained time-dependent hybrid reliability-based design and cuckoo search-based hybrid chimp24, 
and SCHOA/CHOA with dragonfly processing25, a two-phase CHOA with other methods26, CHOA fused with 
random forests and other methods27, and the SCHOA28. While the suggested hybrid algorithms have really 
improved accuracy to a great extent, their primary downside lies in their immense complexity.

Finally, the researchers endeavored to improve the CHOA performance by engaging in the development and 
modification of a range of operators. For example, in IChOA, the opposition-based Lévy flight chimp optimizer 
was utilized to evolve the transition behavior between the exploration and exploitation stages29. In the Fuzzified 
CHOA30, CHOA was developed with fuzzification to optimize the setting variables in CHOA. In the ECHOA31, 
the species underwent a specific mutation and rank correlation coefficients to assess the social position of 
chimpanzees with the lowest standing in society. Gang Hu et al.32 proposed an improved version of CHOA 
called SOCSCHOA combined with cuckoo search and selective opposition to improve the total optimization 
performance. An original chimp optimization technique, including refraction learning, was proposed by Quan 
Zhang et al. (RL-ChOA)33. By using the Tent chaotic system for population initialization in RL-ChOA, they 
increase variability in the population and speed up the algorithm’s convergence. In addition, ChOA introduces 
a refraction learning approach that is opposition-based learning that helps the population leap out of the local 
optimum using the physical theory of light refraction. For the 3D route planning issue, Nating Du et al.34 
presented an enhanced CHOA using a somersault foraging method with adaptive weight. To begin, a weighting 
factor obtained from the ChOA’s coefficient vector was introduced into the coordinates, updating the formula for 
real-time fine-tuning. Second, the somersault foraging technique was used to safeguard against the occurrence 
of a local optimum in the final phase, and this change also had a little positive effect on early-stage population 
diversity. In a recent work by Khishe et al.35, the third-weighted chimpanzee optimization algorithm, WCHOA, 
was introduced for the purpose of improving convergence speed. In addition, Wei Kaidi et al.36 proposed a 
method known as dynamic levy flight DLF, which unfolds the transformations of the CHOA algorithm, leading 
to DLFCHOA. Qian37 proposed an improved CHOA using spiral exploitation behavior to improve exploitation 
behavior.  Qian38 proposed an improved CHOA based on a hybrid extreme learning machine technique to 
diagnose breast cancer using an evolving deep convolutional neural network.

While the strategies mentioned above offered certain advantages in specific stages of exploration and 
exploitation or in optimizing the interaction between these stages, they were primarily beneficial in either 
accelerating convergence or preventing the occurrence of local optima. Despite the fact that algorithms such as 
DLFCHOA and SOCSCHOA performed well in both phases, they had high temporal complexity.

Motivations
Considering the no-free lunch theory39 and the above-listed drawbacks, we tried fusion methods, which are 
expected to provide improved performance over exploration or exploitation alone. This strategy would improve 
the convergence rate and avoid the algorithm being trapped within a localized optimum.

Due to the simple mathematics, few adjustable parameters, and efficient multiple optimization of CHOA, it 
has been favored over the other evolutions of bioinspired systems and swarm-based optimization algorithms. 
However, CHOA has many problems as well, in particular, the large problem-solving tendency, which makes 
CHOA ineffective because it gets stuck at the local rather than the global optimum solution. Hence, the design 
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of a new concept known as TASR in this work is motivated by the need to enhance the performance of CHOA 
in handling more and more complex optimization problems.

Contribution

•	 We introduce the TASR-CHOA method based on an adaptive two-way stochastic reinforcement. The method 
of CHOA enhances the rate of convergence in solving multi-dimensional optimization problems.

•	 The TASR-CHOA algorithm not only improves the CHOA’s performance but also shows improved conver-
gence in most cases when compared to standard CHOA algorithms. This progress is made by self-adjusting 
the weights and utilizing a reinforcement scheme that allows knowledge transfer among chimpanzees.

•	 This paper provides a detailed overview of the complexity of computation for TASR-CHOA, and thus, the 
efficiency of the chosen algorithm with respect to time and space is put on an elaborate edifice. This analysis 
aims to facilitate researchers’ comprehension of the algorithm’s performance characteristics.

•	 To address the limitations commonly encountered in real-world engineering optimization problems, the 
TASR-CHOA proposes an innovative means of addressing constraints.

TASR-CHOA is subjected to severe evaluation, and we made use of 29 conventional optimization benchmark 
problems, 30 test functions of complex optimization, 10 engineering problem solutions, and 10 functions 
from the IEEE CEC06 test suite. We compared TASR-CHOA in opposition to four categories of conventional 
optimization methods, including (1) dynamic levy flight CHOA (DLFCHOA)36, universal learning CHOA 
(ULCHOA)40, enhanced CHOA (ECHOA)29, niching CHOA (NCHOA)41, improved CHOA (ICHOA)34 as novel 
variants of CHOA, (2) adaptive reinforcement-based genetic algorithm (ARBGA)42 and adaptive reinforced 
whale optimization algorithm (ARWOA)43 (two best adaptive reinforcement variant optimizers), (3) SHADE44, 
CMA-ES44, and LSHADESPACMA45 as the three cutting-edge optimizers, and DISHchain1e + 12, jDE100, 
EBOwithCMAR, and CIPDE as the best optimization algorithms in IEEE CEC-BC45. A thorough assessment 
is conducted utilizing non-parametric mathematical evaluations: Holm’s sequential Bonferroni procedure46, 
Wilcoxon rank-sum47, and Friedman-type rank tests48.

This paper is organized as follows: Sect. 2 provides a basic understanding of CHOA. In Sect. 3, the TASR-
CHOA methods are described in detail. Section 4 demonstrates the use of TASR-CHOA in benchmark functions 
and engineering problems. The last portion of the paper sums up the main results and gives some room for 
several future developments.

 Chimp optimization algorithm
There are four different stages in CHOA’s hunting activity, which comprise driving, chasing, obstructing, and 
attacking. Chimps are initially raised entirely arbitrarily for the purpose of starting the CHOA. Other chimps are 
allocated into one of the four categories using a similar technique but employing different mathematical models 
for each classification. Chapter three represents the mathematical model for hunting in CHOA using a number 
of equations from Eq. (1) to (4)7:

	 pt+1
chimp = pt

prey − A ·
∣∣B · pt

prey − C · pt
chimp

∣∣� (1)

	 A = 2 · D · r1 − D� (2)

	 B = 2r2� (3)

	 C = chaotic maps� (4)

Here, t denotes the total number of iteration numbers, A and B represent the coefficient vectors, pprey denotes 
the best encountered so far, and pchimp represents the best location of the chimp. The D coefficient also has a 
positive value that tends to decrease in the range of [2.5,0]. Within the terms r1 and r2, some random values exist, 
and these vary in the range of [0,1], and C designates the vectors that are used with the chaotic mapping. These 
coefficients and mappings are presented in detail in7.

Using prey to replicate chimpanzees’ activities statistically is the primary and most effective method for 
researching their behavior, even with our limited information of the originating prey’s whereabouts. Four of the 
highest-ranking chimps will be living at the CHOA. Then, as Eqs. (5) and (6) suggest that the inferior chimps 
will have to go, forcing the rest of the species to do the same7.

	
pt+1 = 1

4 × (p1 + p2 + p3 + p4)� (5)

Where

	

p1 = pA − A1 · |B1 · pA − C1 · p|
p2 = pB − A2 · |B2 · pB − C2 · p|
p3 = pC − A3 · |B3 · pC − C3 · p|
p4 = pD − A4 · |B4 · pD − C4 · p|

� (6)

Moreover, the chaotic values exhibit a resemblance to the socially motivated activity observed in traditional 
CHOA, as demonstrated by Eq. (7):
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pt+1 =

{
C ηm ⩾ 0.5
Eq. (5) ηm<0.5

� (7)

Where the variable “ηm” represents a randomly generated number within the inclusive range of zero to one. 
The oversimplified perspective on learning may result in early or gradual converging behavior in any given 
scenario. The subsequent part will propose a novel dual adaptive stochastic reinforcement strategy to mitigate 
these shortcomings.

 Proposed methodology: a twofold adaptive stochastic reinforced CHOA
This section offers a comprehensive description of TASR-CHOA. TASR-CHOA adds two techniques over the 
original algorithm. First, the double weights method was added to the primary method, which was inspired by 
the adaptive weighting of PSO and its tendency to change with the iteration count. In the first half of the method, 
weight 1 enhances the global search capability of the method, while in the second half of the method, weight 2 
enhances the local search capability and the overall optimization of the algorithm. Next, we present a stochastic 
alternative to the method, which increases both the convergence rate of this method and the obtained solution.

 Random replacement methodology
In the application of the random replacement methodology, the present individual’s dimension position vector 
is substituted with the optimal dimension of the vectors of the present individuals. The position vectors of some 
individual dimensions may be reasonable in a number of cases, yet the prevailing approach may not be able 
to conceive enough vectors of this type in most of the dimensions. On the other hand, it can be said that the 
locations of the optimal dimension of individuals are more important; there is such a location with the same 
individual where one can easily find some vector in no time. Thus, in order to reduce the probability of this 
situation, we propose the stochastic alternative. Since not all position vectors in an individual are negative, this 
method is recommended only for trial m and towards the end of the assessment with a specific probability, where 
M represents the initial value among them. Based on the previously expressed concept, let us set m to 0.46. The 
course describes the class of the extreme drawing function and how to determine the global knowledge risk of 
using the random replacement methodology when restocking the probability.

Twofold adaptive weighting technique
The weight parameter holds significance in nature-inspired optimization techniques. Different research works 
have sought improvements to adaptive weight strategies with the aim of improving the effectiveness of the 
method. In the case of TASR-CHOA, the capacity of the technique to conduct global and local searches is 
attempted to be changed by including two changeable weightings. When encountering multi-peak problems in 
population-based algorithms, the traditional CHOA will be stuck quite quickly in local optima. Weight λ1 was 
used to improve the effectiveness of the global search, and weight λ2 was used for improving the effectiveness of 
the local search. Parameters λ1 and λ2 are defined in mathematical terms in Eqs. (8) and (9), respectively.

	
λ1 = (1 − φ

max(φ) )1−tan((r− 1
2 )×π× θmax(φ) )

� (8)

	
λ2 = (2 − 2φ

max(φ) )1−tan((r− 1
2 )×π× θmax(φ) )

� (9)

It is essential to observe that the local optimal level of the technique influences the θ value. Additionally, it is 
worth mentioning that θ is dynamically generated without updating the chimp location. On the other hand, 
when the size of θ is updated, it is divided by two to ensure effective management. The incorporation of Cauchy 
random numbers and the addition of the variable “φ” lead to modifications in λ1 and λ2, rather than a linear 
fall, as the technique converges towards the local minima. The highest possible evaluation numbers that may be 
performed are labeled by the symbol Max (φ). The numerical value assigned to it in the evaluation is 300,000. 
λ1 and λ2 have respective ranges of [0,1] and [0.5,1]. Subsequently, the first half of the procedure adds λ1 and 
Eq. (6) is transformed into Eq. (10).

	

p1 = λ1 · pA − A1 · |B1 · pA − C1 · p|
p2 = λ1 · pB − A2 · |B2 · pB − C2 · p|
p3 = λ1 · pC − A3 · |B3 · pC − C3 · p|
p4 = λ1 · pD − A4 · |B4 · pD − C4 · p|

� (10)

Equation (6) transforms Eq. (11) by the inclusion of λ2 in the next phase of the methodology, as depicted below:

	

p1 = λ2 · pA − A1 · |B1 · pA − C1 · p|
p2 = λ2 · pB − A2 · |B2 · pB − C2 · p|
p3 = λ2 · pC − A3 · |B3 · pC − C3 · p|
p4 = λ2 · pD − A4 · |B4 · pD − C4 · p|

� (11)

To sum up, Fig. 1 displays the flowchart of the proposed TASR-CHOA technique.
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Fig. 1.  Block diagram of the proposed TASR-CHOA technique; TASR-CHOA performs iteration in a manner 
where the Stochastic Alternative Technique is used for exploration, and the Twofold Adaptive Weighting is 
employed for exploitation where chimp dimensions and positions are modified by fitness evaluation until 
convergence.
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Experimentation and analysis
In this section, the performance of the proposed TASR-CHOA is compared to that of well-known techniques. In 
this regard, the following five groups of benchmark functions and real-world optimization problems are utilized.

	1)	� Three standard categories for test functions: fixed-dimension multimodal, multimodal, and unimodal49
	2)	� The most current and demanding test optimization competition, IEEE CEC-BC, consists of thirty compli-

cated composite and hybrid test functions.
	3)	� The 100-Digit competition IEEE CEC0650
	4)	� Ten well-known challenging real-world engineering problems of IEEE CEC-202051
	5)	� Real applicable fire detection engineering problem

The first set is used to test the potential capability of TASR-CHOA in exploration, exploitation, and avoiding 
local minima using unimodal (UM), fixed-dimension multimodal (FDM), multimodal (MM), and composition 
functions (CFs), respectively. There is no point in excluding the problem of objective evolution; the primary 
purpose of the utilization management functions F1 to F7 is to check the algorithms’ resistance to exploitation. 
The Visual Standard m02 is an efficient primitive-based function. We use F8 to F13 to evaluate the efficiency of 
exploration. Schoenfeld’s two groups mentioned above of functions measure distance in fifty dimensions.

The ability of TASR-CHOA to overcome local optima is assessed with the help of a number of computational 
functions defined even between F24 and F29. The FDM baselines, which range from F14 to F23, offer an 
evaluation of the efficiency of CHOA’s exploration ability in lower dimensions. CFs are utilized to assess the 
overall effectiveness of algorithms because they have a similar level of intricacy to real-world optimization 
challenges, which often involve many local optima. The diagram described in Fig. 2 depicts a two-dimensional 
depiction of many test functions.

The test functions are solved using TASR-CHOA and other competing algorithms, with a limit of 25,000 
functional evaluations. The TASR-CHOA was executed 30 times to provide statistically significant outcomes 
for this research investigation. The findings were presented for each execution in terms of the average (Ave) and 
standard deviation (Std) of the most optimal solutions.

Twelve popular meta-heuristic techniques were evaluated in the research, including ECHOA29, 
DLFCHOA36, ULCHOA40, NCHOA41, ARBGA42, ICHOA34, ARWOA43, DISHchain1e + 1252, jDE10053, 
CIPDE54, EBOwithCMAR55, and CHOA to show the merit of TASR-CHOA compared to test techniques. 
The testing machines use Matlab R2022b, Windows 11 Pro, 32 GB of RAM, and Core i7 CPUs with 3.8 GHz 
clock speeds. Table 1 details the different parameters used by the comparison methods. All techniques’ optimal 
effectiveness ranges are either fully covered by the used configuration parameters or explicitly recommended by 
the techniques’ developers.

The investigation of exploitation ability
The possibility of TASR-exploitation CHOA can be assessed due to the presence of a single global optimum 
in UM functions. Table 2 displays the outcomes of TASR-CHOA and several optimization approaches applied 
to UM functions (F1-F7), with the evaluation based on Ave and Std metrics56,57. The Wilcoxon rank-sum 
analysis procedure47 was employed in a non-parametric way in order to evaluate the existence of statistically 
significant dominance of the TASR-CHOA outcomes over the other benchmark assessments, if any. Let it be 
stated as well that a 5% significance level has been adopted in this case. Wilcoxon’s p-values are also presented 
in the results besides the measures of STD and AVE as reported. The letters “NA” in the findings represent not 
applicable, meaning that an algorithm cannot be compared with itself. What the bolded p-values imply is that 
two algorithms can be considered to be of equal worth with minimal differences between them.

Evidence suggests that TASR-CHOA outperformed the majority of the corresponding techniques in every test 
function, with the exception of F6 and F7, where it was placed second. The obtained results provide evidence of 
the potential for exploitation of the TASR idea, facilitating the TASR-CHOA’s ability to reliably and productively 
converge in the direction of the global optimum.

The investigation of the TASR-CHOA’s exploration ability
MM functions can judge optimization results but can also be used to test the exploratory nature of the algorithms 
since there could be more than one local optima depending on the design parameters. Also, a portion of the 
multimodal test functions, F8-F23, is available in the MM version. The outcomes of the specified techniques and 
those of TASR-CHOA in the columns of Tables 3 and 4 are also shown.

According to these tables, the TASR-CHOA approach is the most capable of exploring. TASR-CHOA 
outperforms competing methods for approximately half of the MM functions and achieves competitive results 
when pitted against state-of-the-art optimizers for the other functions. TASR-CHOA’s performance in FDMs 
is on par with state-of-the-art optimization algorithms when it comes to finding the best possible answer. The 
exploration capacity of TASR-CHOA is greatly improved because of the additional parameters as well as the 
stochastic replacement method of the optimization steps that comprise the TASR-CHOA’s exploration tasks.

 Study of the strategy for evading local optimum
In a similar method, CFs F25 to F29 structure out of the rotation, translation, and composition of the single UM 
and MM functions. These CFs are constructed with the intention of examining how well the algorithms can skip 
the local minima and how these algorithms aim to balance exploration and exploitation. Results from Table 5 
show the effectiveness evaluation results of the optimization techniques within CF systems with a focus on the 
TASR-CHOA algorithm. We can say that the TASR-CHOA technique is superior to the rest of the techniques. 
The results show that the TASR-CHOA model coordinates prudence with the adventurous modes without 
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creating a risk of being trapped in local optima for guaranteed performance. This could be due to the variable 
size of the steps. The table contains cumulative ranks obtained from the one-way ANOVA using Friedman’s test 
in the benchmark systems. Table 6 easily indicates that TASR-CHOA performed better than all the benchmark 
algorithms with the highest rank.

TASR-CHOA’s convergence analysis
In this section, we investigate the experimental convergence of TASR-CHOA. To understand the convergence of 
TASR-CHOA, several metrics are employed; these include trajectories, converging graphs, and average fitness 
history, among others. These measures for the performance and the convergence investigation of the TASR are 
displayed in Fig. 3, which deals with the TASR on different functions. Since the purpose is to learn the structure 
of the function’s domain, the first column presents two-dimensional illustrations of the functions.

The convergence curves are the most exceptional statistical criteria thus far. In UM functions, convergence 
graphs show a general pattern that is the same within any function category and generally indicates a positive 
change with time. However, for MM and CF, this trend transitions into a step-by-step chronological regression 
pattern. From the limited observation in each category, for UM functions, TASR-CHOA starts off enclosing 
the ideal point and improves step-wise from the limited observation in each category. In MM and CF, however, 
during the last iterative steps, every agent deployed a thorough search strategy to the bounded search area, 
producing better result concentrations. Several annual reports depict the eliminations of numerous curves, 
including the generated step patterns, which are found irrelevant even after some perform certain MM functions 
with minimal advancement improvement, which can be termed the success of the strategy employed. The last 

Fig. 2.  The graphical illustration of common test functions in a three-dimensional coordinate system.
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point of this version of the paper makes a point of the explanatory review performance in the last round of 
iteration upon all participating agents’ relative weight ratio being unique on that particular occasion.

The investigation of the department collapse qualified the search agency as a member of the colony. From 
the convergence graph, however, the behavior of the top-performing individual of the colony supports the 
colony’s success. However, currently, data about the functioning or behavior of the entire colony is not available. 
The decision to adopt this behavior justifies the inclusion of the mean fitness history metric in the inlet as an 
additional measure to assess the colony’s effectiveness. The trend of the metric is similar to the convergence rate, 
where ceilings are reached, but it highlights that this intervention enhances the productivity of the initial agent. 
The algorithm’s phase transition results in an increase in the fitness value of chimps. This change makes the test 
functions’ average fitness history behave like a step function. Slow but steady changes usually characterize the 
slopes of curves expressing different utility maximization functions.

The skew patterns observed in these kinds are notably evident in MM and CFs. Another parameter that 
is measured is the orientation of the chimps (column 4). This metric provides a quantitative measure of the 
structural transformations undergone by an individual throughout the entirety of the optimization process, 
spanning from its beginning state to its end state. Given the agents’ ability to move in many directions, we 
have opted to utilize the first dimension as a representation of their trajectory. The purpose of this pattern is 
to ensure that an approach eventually reaches an acceptable local minimum region by promoting exploratory 
search behavior in the early iterations and moving to a targeted search approach in the subsequent stages. 
The frequency, size, and period changes of these events are often larger than those of UM test functions. This 
discrepancy results from the fact that UM test functions lack the distinguishing features shown by MM and CF 
test functions.

We consider searching histories to be the most recent metric, and the final column of the diagram illustrates 
this process. The depicted image provides evidence that TASR-CHOA is performing well in fulfilling the 
objective of showing how the agents share the search load through dual reinforcement weighting behavior. This 
model demonstrates that a greater number of agents are located at the optimal points of UM functions, whereas 
the seeking behavior of MM and CFs is more scattered. The distinctive feature of the primary pattern plays a 
crucial role in facilitating the attainment of desired outcomes in UM activities. The ultimate phase involves the 
examination of the domain, allowing TASR-CHOA in CF and MM functions to conduct a comprehensive search 
of the whole region. Furthermore, Fig. 4 shows the convergence curve of specific evaluations for the comparing 
algorithms.

Figure  4 shows the performance of the convergence curve of generic numbers for test functions in the 
application of the TASR-CHOA approach and other competing methods. The results clearly indicate that the 
first phase is extensively focused on obtaining the global minimum in a short time, while the second stage shows 
tiny improvement when compared to the first stage. These findings support the notion that a single phase may 
be sufficient to tackle a benchmark function. The searching mentioned above behavior can be observed in F1, 
F3, F4, and F11. Given that the technique has already attained the optimal or near-optimal state, it is possible 
to detect another analogous pattern without making any further improvements in the succeeding phases. The 
patterns observed in F3, F15, F18, and F19 are consistent. After each observed phase shift in functions number 
4, 8, 9, 26, and 28, the convergence curve shows a change in the final form. The TASR-CHOA employs weight 
alteration as a means to examine and capitalize on the domain, hence enhancing the efficacy of the technique. 
The convergence of these tasks is additionally reinforced by the consistent patterns observed in their convergence 
trajectories throughout the final stage.

It is essential to acknowledge that the inclusion of rigorous CF and MM functions, including F8, F24, F27, 
and F29, provides a comprehensive understanding of the influence of changes in weight on the whole efficacy 
of methods, as well as the underlying rationale supporting the description of every stage. The utilization of this 

Technique Parameter Value

Different techniques based on CHOA and its variants ARWOA

m Gauss/mouse

f [2, 0)

W1 [0,1]

W2 [0.5,1]

ARBGA
Selection
Crossover
Mutation rate

Roulette wheel
Single point
0.01

jDE100 and DISHchain1e + 12 CR
F

0.6
0.8

CIPDE

µCR 0.3

µF 0.6

c 0.2

T 250

EBOwithCMAR

T 0.1

Freq and CR 0.5

F 0.7

Table 1.  Initial parameters for the technique employed.
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technique enables TASR-CHOA to identify the optimal point during the Ums’ first phase; nevertheless, when 
evaluating the technique in testing CFs and MMs, the results of each stage of the experiment become clear and 
convincing.

Performance of TASR-CHOA on IEEE CEC-BC test functions
For the present paper, the IEEE CEC-BC test suite was used in the numerical optimization contest. This test suite 
contains a total of 30 functions, most of which are complex hybrid and mixed optimization bench functions. The 
aim of using this test suite was to showcase the usefulness of the proposed approach. For a thorough examination 
of the other popular techniques, the performance of TASR-CHOA is tested against those functions. In this suite, 
the dimension of the function is set to 10. Ave, Std, and p values are shown in Table 7.

Friedman’s mean rank clearly places TASR-CHOA and CMA-ES in the first and second positions, respectively. 
On the basis of the results, TASR-CHOA is advanced as the best among the available optimizers.

 Results of the IEEE CEC06
In view of the measures above, the last version of the optimizer, TASR-CHOA, was tested on functions taken 
from the 100-digit competition IEEE CEC06. Each computational experiment included 50 repetitions for the 
algorithmic execution of the assigned test task. The minimum function evaluation counts the total accurate 
numbers across the 25 runs. The score of the test function can be calculated on condition Nc/25. In this instance, 
the perfect challenge score would originate from a minimum of 100 if 25 of 50 at least ten 10-digit results 
emerged from each of the ten trials conducted. Being that a score above a minimum of 1,000000000 on each of 

Algorithm F1 F2 F3 F4 F5 F6 F7

CHOA
Ave 7.89E−08 7.44E−19 1.90E−07 1.55E−03 48.441 3.50E−04 3.89E−03

Std 7.55E−08 6.53E−23 1.89E−07 1.96E−03 39.331 3.50E−04 3.89E−03

p-value 0.00033 0.0055 0.0051 0.0073 0.0068 0.0025 0.0030

ULCHOA
Ave 1.44E−12 0.00331 1.02E−07 1.35E−04 51.455 8.32E−03 1.53E−03

Std 7.53E−09 0.00023 1.44E−07 1.75E−04 33.785 5.33E−03 1.11E−03

p-value 0.0055 0.0044 0.0025 0.0039 0.0056 0.0051 0.0082

ICHOA
Ave 6.96E−12 2.11E−07 1.42E−08 1.22E−09 48.335 1.32E−02 3.22E−03

Std 6.44E−08 3.33E−08 0.0017E−07 1.12E−06 33.045 5.14E−03 2.02E−03

p-value 0.0033 0.0035 0.0014 0.0013 0.0055 0.0072 0.0083

NCHOA
Ave 2.01E−27 2.11E−08 3.02E−08 1.21E−08 47.236 1.33E−12 1.07E−03

Std 1.21E−55 8.42E−07 1.25E−06 1.11E−07 35.443 2.55E−06 2.51E−03

p-value 0.0015 0.0044 0.0025 0.0039 0.0073 0.0051 0.0082

DLFCHOA
Ave 3.11E−40 7.11E−22 8.11E−09 5.33E−08 63.222 7.25E−06 1.49E−03

Std 6.02E−40 6.35E−23 1.59E−08 1.22E−08 52.136 4.24E−06 6.60E−04

p-value 0.0033 0.0044 0.0025 0.0039 0.0056 0.0051 0.0082

ECHOA
Ave 6.44E−07 5.41E−21 8.09E−08 1.15E−08 76.350 2.33E−04 3.11E−03

Std 4.11E−07 6.44E−23 1.11E−06 1.11E−06 42.753 1.55E−05 1.55E−03

p-value 0.0055 0.0047 0.0032 0.0015 0.0002 0.0017 0.00001

TASR-CHOA
Ave 1.14E−33 1.87E−22 3.88E−11 1.43E−09 45.033 1.33E−10 1.00E−03

Std 0.0000 1.54E−35 2.34E−11 1.01E−09 2.441 1.25E−07 1.05E−04

p-value NA NA NA NA NA NA NA

ARBGA
Ave 3.85E−14 2.42E−16 0.0912 1.44E−08 51.334 4.25E−03 1.05E−03

Std 4.33 E−14 1.33E−16 0.1452 1.21E−09 21.551 5.33E−03 2.33E−03

p-value 0.0055 0.0055 0.0051 0.0073 0.0057 0.0025 0.0030

ARWOA
Ave 10.076E−07 0.0336 3.88E−07 1.33E−06 73.352 1.11E−13 7.29E−03

Std 7.00E−07 0.0022 1.44E−07 1.25E−06 33. 624 2.44E−09 1.04E−03

p-value 0.0044 0.0055 0.0051 0.0073 0.0068 0.0025 0.0030

SHADE

Ave 1.29E−30 2.33E−19 2.22E−04 1.43E−11 45.244 8.33E−10 3.05E−03

Std 2.11E−37 1.45E−12 1.10E−05 6.33E−09 32.773 1.44E−07 1.03E−03

p-value 0.0055 0.0044 0.0025 0.0041 0.0056 0.0077 0.0082

CMA-ES

Ave 2.02E−31 0.00E+00 1.25E−09 2.09E−09 47.336 5.02E−16 3.20E−03

Std 3.14E−42 0.00E+00 2.87E−08 1.99E−09 23.4421 1.44E−09 7.07E−03

p-value 0.0077 0.048 0.0011 0.451 0.0047 0.0055 0.0033

LSHADESPACMA

Ave 0.07537 2.25E−12 8.25E−09 1.44E−08 52.921 8.25E−10 7.70E−03

Std 0.1480 1.52E−12 1.59E−08 1.21E−09 17.712 1.24E−07 2.11E−03

p-value 0.0025 0.0055 0.0051 0.0062 0.0068 0.0025 0.0030

Table 2.  The results of UM functions.
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the benchmark tests is available, exerting a 10-digit accuracy is demanding. Figure 5 demonstrates the balanced 
visualization of some functions in three-dimensional shapes.

In the case of each of the ten functions (F1, F2, …, F10) confronted, results for the standard CHOA and 
its 18 benchmarking algorithms are illustrated in Fig.  6. It should be noted that each function is shown in 
different colors for better representation. Table A1 (Appendix A) summarized the Acronym for state-of-the-art 
algorithms.

As illustrated in Fig. 6, it may be envisaged that jDE100 achieved the highest score of 100, suggesting the 
best outcomes earned. Next to this is DISHchain1e + 12. Among a cohort of 20 advanced methods, the CHOA 
ranks 6th, scoring 87.6. In total, with twenty benchmarks for comparisons, our method, which adopts the TASR 
insertion of the CHOA, turns out in third place with 94.11. Pay attention to the fact that the TASR-CHOA caused 
better results in 7 of the 10 problems. TASR-CHOA meets such difficulties because of the size of the problems 
F5, F6, and F10, while it beats F7, F8, and F9. The statistical best performance of the method on any of the 35 
different test functions was 28 out of 35 achieved by TASR-CHOA. Of note, the performance of the TASR-CHOA 
was relatively better than other benchmark functions.

 Evaluation of the statistical characteristics of TASR-CHOA
In order to have a comprehensive statistical evaluation, a number of statistical methods are applied that allow 
for the comparison of the TASR-CHOA with its competitors, specifically the Bonferroni Dunns and Holm and 
Friedman analyses. In order to obtain adequate criteria for evaluation, the table functions were divided into 
three groups. The first category is those functions contained from the derived ones, F24 to F29, which are the 

Techniques F8 F9 F10 F11 F12 F13

CHOA
Ave −1.06E+04 3.39E−07 7.33E−16 0.00E+00 4.30E−06 3.09E−01

Std 1.14E+03 3.39E−07 7.25E−16 0.00E+00 4.30E−06 3.09E−01

p-value 0.0033 0.0055 0.0017 0.0022 0.0035 0.0045

ULCHOA
Ave −1.25E+04 1.25E−07 7.33E−16 0.00E+00 1.01E−04 2.10E−04

Std 0.1 3.22E−07 3.22E−07 0.00E+00 1.30E−04 8.50E−04

p-value 0.0077 0.0082 0.0035 0.0041 0.0033 0.0071

ICHOA
Ave −1.12E+04 1.4423 2.0441 0.0002 2.01E−03 2.22E−04

Std 1766.46 0.3000 0.1001 0.0033 2.02E−03 1.33E−04

p-value 0.0011 0.0047 0.0032 0.0015 0.00001 0.0017

CHOA
Ave −1.03E+04 1.11E−04 0.8223 1.01E−05 1.30E−05 2.10E−05

Std 555.233 3.45E−04 0.0021 1.00E−05 1.25E−05 1.50E−05

p-value 0.0072 0.0082 0.0035 0.0041 0.0033 0.0071

DLFCHOA
Ave −9.03E+03 2.22E−07 8.21E−14 0.00E+00 7.88E−07 2.92E−03

Std 595.1113 2.11E−07 2.44E−14 0.00E+00 7.88E−07 1.44E−03

p-value 0.0033 0.0042 0.0035 0.0047 0.0047 0.0015

ECHOA
Ave −1.33E+04 0.0933 2.12E−15 1.12E−14 7.12E−04 3.94E−07

Std 796.12698 0.0322 2.33E−14 1.30E−14 0.0031 1.22E−03

p-value 0.0035 0.0042 0.0086 0.0032 0.0036 0.0091

TASR-CHOA
Ave −1.75E+04 0.00E+00 1.88E−13 0.00E+00 0.00E+00 0.00E+00

Std 525.5351 0.00E+00 1.44E−12 0.00E+00 0.00E+00 0.00E+00

p-value NA NA NA NA NA NA

ARBGA
Ave −1.38E+04 1.1335 9.33E−12 0.00E+00 8.30E−04 2.11E−03

Std 742.6746 0.3440 6.17E−12 0.00E+00 7.44E−04 1.02E−03

p-value 0.0076 0.0042 0.0086 0.0032 0.0036 0.0091

ARWOA
Ave −1.42E+04 0.3007 0.9003 0.00E+00 2.10E−04 5.10E−04

Std 715.5351 0.1001 0.1335 0.00E+00 8.50E−04 2.30E−04

p-value 0.0063 0.0082 0.0035 0.0041 0.0033 0.0071

SHADE

Ave −8.83E+03 0.029 0.1702 1.01E−04 1.19E−04 1.01E−04

Std 418.8 0.831 0.0244 1.22E−04 3.90E−04 1.00E−04

p-value 0.0077 0.0025 0.0035 0.0032 0.0033 0.0071

CMA-ES

Ave −1.16E+04 0.0085 6.044 0.00E+00 1.13E−14 1.25E−12

Std 331.3 0.0344 2.706 0.00E+00 1.25E−13 1.11E−12

p-value 0.0035 0.0042 0.0055 0.0032 0.0044 0.0091

LSHADESPACMA

Ave −1.32E+04 0.0023 0.1525 9.01E−05 0.0008 2.11E−06

Std 454.325 0.0016 0.0188 9.30E−05 0.0019 1.04E−08

p-value 0.0065 0.0082 0.0040 0.0041 0.0033 0.0071

Table 3.  The MM test functions’ outcomes. The best results are highlighted in bold.
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CFs obtained from the rotation, shifting, and combination processes of the MMs and UMs. The purpose of 
generating the CF functions is to evaluate the techniques’ capacity to overcome local optima and manage the 
balance between exploration and exploitation. Table 5 demonstrates the performance of optimization algorithms 
employed in the CF systems and also the performance of the TASR-CHOA algorithm. The analysis provides 
evidence that the proposed algorithm, TASR-CHOA, is more efficient than the other approaches. The results of 
this study demonstrate that well-balanced phases of exploration and extraction are present in the finely tuned 
TASR-CHOA.

Also, the findings emphasize the efficiency of the algorithm in escaping from local optima. This is due to the 
use of more adaptive steps and more frontal relocation. The application of Friedman analysis is prescribed in 
order to find the index of algorithm rank. The results in Table 6 indicate that TASR-CHOA is the best-performing 
algorithm, while competing algorithms trend toward average performance.

It can be noted from Table  7 that the IEEE CEC-BC test functions form the second category. The third 
class comprises a subcategory of the two first classes. The nonparametric, non-correlational Friedman’s test can 
also be applied to bring out the difference between the effectiveness of the algorithms. When several methods’ 
effectivity is found to change in a statistically significant manner, it is necessary to seek the answers to the 
questions of which of the proposed methods has the efficiency noticeably lower compared to TASR-CHOA. For 
this reason, we carried out the Bonferroni-Dunn test, and CD was used to assess whether there was a difference 
in the two grouped approaches at a statistically significant level.

In this experimental study, it is essential to mention that TASR-CHOA is considered to be the control 
approach. One of the most exciting and valuable things about this home assessment is Fig. 7, which presents 

Techniques F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

CHOA
Ave 2.3332 3.05E−04 -1.0359 0.4005 3.000022 -3.8544 -3.21003 -10.133 -10.333 -10.45

Std 0.0911 3.02E−04 6.32E−14 1.33E−06 1.21E−09 1.47E−10 2.44E−02 2.04E−02 2.77E−02 2.11E−02

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

ULCHOA
Ave 1.0444 3.54E−04 -1.0449 0.3989 3.000019 -3.8633 -3.29622 -10.122 -10.421 -10.531

Std 0.2731 6.32E−04 2.11E−12 7.11E−11 2.44E−12 1.42E−13 1.66E−10 2.13E−02 3.33E−04 2.55E−02

p-value 0.0044 0.0047 0.0021 0.0011 0.0025 0.0066 0.0025 0.0077 0.0065 0.0063

ICHOA
Ave 1.0305 2.20E−04 -1.0355 0.4033 3.00000 -3.8621 -3.2901 -6.155 -10.322 -10.522

Std 1.0001 3.32E−04 5.11E−09 0.4033 3.00000 -3.8655 -3.2608 2.77E−02 3.13E−01 2.75E−02

p-value 0.0028 0.0073 0.0014 0.0032 0.0032 0.0073 0.0071 0.0042 0.0066 5.11E−09

NCHOA
Ave 0.9645 3.29E−04 -1.0384 0.3995 3.000042 -3.8622 -3.28876 -10.133 -9.4033 -10.510

Std 1.22E−14 4.02E−04 4.73E−15 4.49E−14 1.88E−14 2.68E−15 1.11E−10 2.66E−08 2.11E−02 5.11E−09

p-value 0.0044 0.0047 0.0021 0.0011 0.0025 0.0066 0.0025 0.0077 0.0065 0.0063

DLFCHOA
Ave 0.1033 3.21E−04 -1.0362 0.3925 3.00012 -3.7954 -3.19001 -7.544 -9.320 -9.6501

Std 1.22E−14 6.52E−04 6.09E−15 9.22E−14 1.88E−13 4.11E−15 1.59E−08 1.44E−02 1.23E−01 7.11E−02

p-value 0.0011 0.0033 0.0021 0.0011 0.0021 0.0066 0.0088 0.0077 0.0015 0.0063

ECHOA
Ave 1.1330 2.11E−06 -1.0352 0.3989 3.000045 -3.8636 -3.28654 -10.165 -10.421 -10.520

Std 2.8713 3.33E−04 2.38E−09 8.22E−13 1.99E−02 1.25E−14 1.79E−10 2.33E−05 2.77E−02 8.15E−03

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

TASR-CHOA
Ave 1.08E−05 3.01E−04 -1.03161 0.3972 3.000001 -3.8645 -3.0004 -10.165 -9.4077 -10.537

Std 1.09E−17 3.11E−15 4.11E−18 9.11E−15 1.33E−16 2.52E−15 1.22E−11 -2.09E−11 2.25E−09 3.62E−12

p-value NA NA NA NA NA NA NA NA NA NA

ARBGA
Ave 0.9333 3.02E−04 -1.0341 0.3996 3.000033 -3.8633 -3.2899 -10.122 -10.4041 -10.536

Std 2.33E−15 5.12E−04 5.12E−16 10.23E−15 1.46E−14 1.46E−14 1.14E−11 2.53E−11 2.38E−09 3.91E−11

p-value 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075 0.0088

ARWOA
Ave 1.0002 3.64E−04 -1.0357 0.3991 3.000033 -3.8644 -1.992 -6.144 -7.477 -6.5322

Std 1.0044 6.66E−04 6.85E−14 8.22E−13 1.32E−13 3.11E−13 1.13E−09 2.25E−02 2.38E−09 0.0033

p-value 0.0066 0.0047 0.0055 0.0011 0.0025 0.0066 0.0023 0.0057 0.0065 4.11E−06

SHADE

Ave 0.8827 1.25E−03 -1.0316 0.3983 3.000025 -3.8628 -3.0334 -9.1344 -10.414 -10.537

Std 3.39E−16 4.43E−03 3.3E−03 1.12E−15 4.14E−14 1.46E−14 4.66E−03 1.1325 3.63E−10 8.00E−10

p-value 0.054 0.0022 0.054 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.052

CMA-ES

Ave 1.0335 3.02E−04 -1.0316 0.3982 3.9900 -3.8628 -3.2903 -7.1410 -10.414 -10.537

Std 0.2044 1.19E−04 6.22E−17 0.0000 1.33E+01 2.51E−15 1.44E−11 3.4120 2.02E−11 5.11E−09

p-value 0.0033 0.0033 0.066 0.0577 0.0035 0.00001 0.00184 0.0003 0.0033 0.066

LSHADESPACMA

Ave 0.9044 1.44E−03 -1.0316 0.3988 3.000041 -3.8628 -3.0333 -9.1436 -10.435 -10.537

Std 3.21E−16 5.32E−03 0.0033 1.11E−16 3.22E−14 1.33E−14 5.77E−02 1.2269 2.44E−11 9.11E−11

p-value 0.054 0.0033 0.0025 0.0014 0.0032 0.0045 0.0073 0.0044 0.0042 0.0075

Table 4.  The FDM test functions’ outcomes. The best results are highlighted in bold.
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the average ranks of each of the chosen techniques for three different function categories: “Group 1,” “Group 
2,” and “Group 3,” represent respectively “unimodal,” “multimodal,” and “complex” functions, that apply two 
specific relevance levels each (0.1 and 0.05). Crosses on the figure represent the TASR-CHOA model, which is 
maintained at the threshold ranking above the line. A distinctive color denotes each demarcating line for each 
group. When given the graphical representation, TASR-CHOA has the highest orders in all classes and has 
properties that can exceed all comparison algorithms.

Techniques CHOA NCHOA ULCHOA ICHOA ECHOA DLFCHOA

Friedman value 11.29 10.075 5.8 10.94 6.87 8.87

Rank 12 10 6 11 7 9

Techniques
TASR-
CHOA SHADE ARBGA ARWOA LSHADESPACMA CMA-ES

Friedman value 2.14 3.65 4.36 8.59 5.82 2.68

Rank 1 3 4 8 5 2

Table 6.  Outcomes of Friedman mean rank-sum test.

 

Algorithm CF1 (F24) CF2 (F25) CF3 (F26) CF4 (F27) CF5 (F28) CF6 (F29)

CHOA
Ave 63.2201 198.221 283.1423 392.2145 198.2214 807.3355

Std 75.2001 58.2214 60.07545 88.251 98.5213 100.07300

p-value 0.0033 0.0025 0.0043 0.0021 0.0013 0.0017

ULCHOA
Ave 37.5421 135.3258 212.521 266.3021 183.5566 699.4123

Std 50.1332 99. 1332 32.5514 89.03212 99.3256 99.85215

p-value 0.0019 0.0033 0.0011 0.0039 0.0022 0.0025

ICHOA
Ave 67.533 89.5213 115.521 311.365 60.3355 720.08236

Std 95.802 57.4412 38.2574 85.415 85.1444 197.3521

p-value 0.022 0.011 0.011 0.014 1.14E−05 1.1E−06

NCHOA
Ave 44.2255 111.222 232.321 295.6625 133.2541 690.07621

Std 43.3399 62.1241 77.5214 122.1358 20.5213 63.9631

p-value 1.02E−07 1.1E−06 1.22E−06 1.22E−06 0.0022 0.0021

DLFCHOA
Ave 67.5213 88. 2214 145.225 302.3521 49.5588 701.2014

Std 84.3322 44. 1332 41.2811 66.2569 33.7745 189.3026

p-value 1.1E−06 0.0025 1.22E−06 1.02E−04 1.1E−03 1.17E−05

ECHOA
Ave 32.4421 85.1152 198.3214 311.1111 132.447 729.204

Std 19.2136 63.2514 45.3321 101.5569 88.7541 88.2369

p-value 0.0017 0.0011 0.0033 0.0025 0.0022 0.0044

TASR-CHOA
Ave 6.1133 14.0021 137.852 273.133 2.1124 88.2145

Std 11.2211 22.0000 16.1021 24.1003 1.0114 39.5541

p-value NA NA NA NA NA NA

ARBGA
Ave 7.2222 21.2413 165.3352 288.651 2.1334 517.5541

Std 12.8453 27. 1344 45.3215 74.5621 1.1321 77.7541

p-value 0.0019 0.0045 0.0011 0.0019 0.0022 0.0025

ARWOA
Ave 22.2143 68.2514 235.114 401.321 98.3320 699.8142

Std 23.3300 66.2115 45.3325 92.5521 33.5784 120.07636

p-value 0.0019 0.0045 0.0011 0.0019 0.0022 0.0025

SHADE

Ave 8.3625 15.0142 144.911 269.902 4.324 444.3251

Std 8.1425 22.3321 33.1001 27.3333 1.531 65.74511

p-value 0.0022 0.082 0.0025 0.12 0.0044 0.0032

CMA-ES

Ave 6.4521 14.0021 152.214 281.552 19.025 99.3362

Std 8.2132 22.1133 22.3332 44.0741 12.906 66.0365

p-value 0.0057 0.54 0.0033 0.0025 0.0043 0.0021

LSHADESPACMA

Ave 6.3256 19.1325 151.6301 275.002 9.1223 412.7133

Std 6.2211 23. 1332 24.2001 26.1236 2.1123 87.5566

p-value 0.0033 0.0025 0.0022 0.0021 0.0013 0.0017

Table 5.  The outcomes of CF functions. The best results are highlighted in bold.
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Functions No. Metric ULCHOA CHOA NCHOA ICHOA ECHOA DLFCHOA

UM

F1
Ave 274.33 2741.28 166.33 9322.22 417.88 2433.22

Std 274.31 345.21 4.22E−06 5741.49 362.74 1952.112

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

F3
Ave 833.33 300 300 587.00 300 300

Std 25.031 1.95E−11 8.77E−07 125.33 2.12E−04 2.44E−07

p-value 0.0046 0.054 0.0014 0.0055 0.0021 0.0033

MM

F4
Ave 407.44 399.44 401.25 408.33 406.55 404.33

Std 7.652 4.1425 1.4521 2.22 1.4123 1.7412

p-value 0.0017 0.0018 0.0033 0.0011 0.0027 0.0044

F5
Ave 509.21 511.77 509.33 512.55 508.22 509.33

Std 7.9654 2.4563 4.5412 4.6523 3.5551 4.4169

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

F6
Ave 614.42 633.88 602.41 599.55 603.41 601.33

Std 9.3332 1.25E−01 5.11E−04 1.44E−02 2.3330 1.02E−04

p-value 0.0017 0.0018 0.0033 0.0011 0.0027 0.0044

F7
Ave 714.33 722.33 720.10 719.55 717.33 720.10

Std 1.2336 4.4174 3.0333 5.3625 3.4141 5.3201

p-value 0.07323 0.0014 0.0011 0.0024 0.0002 0.0036

F8
Ave 814.654 820.45 811.22 812.65 815.44 818.22

Std 2.4141 5.3333 2.3696 7.1523 5.9142 6.8585

p-value 0.0017 0.0018 0.0033 0.0011 0.0027 0.0044

F9
Ave 900.00 902.36 905.33 900.00 902.11 900.00

Std 0.00 5.33E−14 0.0044 5.98E−14 1.1236 0.0512

p-value 0.143 0.0044 0.0011 0.0024 0.0002 0.0036

F10
Ave 1677.33 1652.11 1355.24 1633.11 2566.33 1411.33

Std 198.475 199.222 134.258 233.11 223.252 259.546

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

Hybrid

F11
Ave 1110.33 1117.25 1103.33 1106.25 1110.36 1105.42

Std 7.5552 6.1425 2.33211 7.5533 9.3369 5.4414

p-value 0.0017 0.0027 0.0033 0.0015 0.0027 0.0044

F12
Ave 7.11E+05 1.38E+06 1.35E+03 3.55E+05 1.81E+06 1.03 E+05

Std 4.22E+05 1.22E+06 6.76E+01 3.33E+05 1.86E+06 9.79 E+03

p-value 0.0035 0.0024 0.0018 0.0044 0.0055 0.0019

F13
Ave 1.4E+03 2.14E+03 1.31E+03 1.03E+04 9.85E+03 8.02E+03

Std 25.3312 0.53E+03 7.33E+02 7.73E+03 2.14E+03 6.72E+03

p-value 0.0011 0.0024 0.0002 0.0036 0.0046 0.0021

F14
Ave 1.45E+03 7.47E+03 1.41E+03 1.45E+03 7.14E+03 1.46E+03

Std 54.33 8.15E+03 5.5221 82.33 1.49E+03 31.54214

p-value 0.0017 0.0018 0.0033 0.0011 0.0027 0.0044

F15
Ave 1.62E+03 9.7E+03 1.50E+03 1.29E+03 2.23E+03 1.50E+03

Std 2.333 285.69 1.4421 8.97 0.52E+03 1.3321

p-value 0.0025 0.0031 0.0044 0.0044 0.0061 0.0033

F16
Ave 1.64E+03 1.62E+03 1.60E+03 1.62E+03 1.82E+03 1.58E+03

Std 99.33 99.22 5.412 99.14 198.441 35.77

p-value 0.024 0.0011 0.0039 0.0036 0.0013 0.0014

F17
Ave 1.75E+03 1.77E+03 1.73E+03 1.74E+03 1.77E+03 1.74E+03

Std 29.1425 44.3321 6.4142 25.1245 27.2512 5.3365

p-value 0.0002 0.0047 0.0021 0.0032 0.0061 0.0054

F18
Ave 1.84E+03 1.85E+03 1.79E+03 1.83E+03 1.84E+03 1.83E+03

Std 15.1414 45.3636 2.4758 45.2312 1.29E+03 17.3656

p-value 1.1E−03 1.1E−03 1.2E−03 0.0036 1.4E−03 2.1E−03

F19
Ave 2.91E+03 2.96E+03 1.91E+03 2.41E+03 1.94E+03 1.95E+03

Std 74.1333 99.5454 1.1414 89.2552 41.3625 47.0021

p-value 0.024 0.0011 0.0039 0.0036 0.0013 0.0014

F20
Ave 2.03E+03 2.05E+03 2.01E+03 2.03E+03 2.27E+03 2.02E+03

Std 7.1421 46.5521 5.02586 44.4747 82.0125 23.0231
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Functions No. Metric ULCHOA CHOA NCHOA ICHOA ECHOA DLFCHOA

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

CFs

F21
Ave 2.21E+03 2.29E+03 2.20E+03 2.30E+03 2.28E+03 2.30E+03

Std 39.1421 42.1625 20.0202 44.3333 39.6363 21.1475

p-value 0.024 0.0011 0.251 0.0036 0.0013 0.0014

F22
Ave 2.03E+03 2.30E+03 2.51E+03 2.29E+03 2.30E+03 2.29E+03

Std 12.2200 13.4412 63.1425 19.3636 11.0120 17.1425

p-value 0.333 0.0017 0.024 0.0011 0.0039 0.0036

F23
Ave 2.61E+03 2.62E+03 2.61E+03 2.62E+03 2.72E+03 2.61E+03

Std 10.3325 9.5554 8.1245 7.3321 233.321 5.4141

p-value 0.0017 0.0011 0.0039 0.0036 0.0013 0.0014

F24
Ave 2.74E+03 2.74E+03 2.56E+03 2.74E+03 2.73E+03 2.74E+03

Std 5.4456 15.4412 42.4432 9.3321 64.0014 6.0021

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

F25
Ave 2.93E+03 2.95E+03 2.90E+03 2.94E+03 2.94E+03 2.93E+03

Std 15.3311 248.1414 19.5541 20.07644 23.3636 19.5252

p-value 0.0011 0.0024 0.0002 0.0036 0.0046 0.0021

F26
Ave 3.44E+03 3.45E+03 2.90E+03 3.00E+03 2.92E+03 2.96E+03

Std 632.7412 208.6541 25.3635 201.7474 32.3321 164.3321

p-value 0.024 0.0011 0.0039 0.0025 0.0013 0.0033

F27
Ave 3.11E+03 3.11E+03 3.09E+03 3.10E+03 3.09E+03 3.09E+03

Std 14.3321 11.0021 8.9987 7.9963 2.5521 2.5598

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

F28
Ave 3.30E+03 3.31E+03 3.10E+03 3.31E+03 3.21E+03 3.30E+03

Std 90.142 156.332 19.8521 112.444 113.001 132.212

p-value 0.011 0.0036 0.0039 0.0036 0.0013 0.0014

F29
Ave 3.20E+03 3.20E+03 3.15E+03 3.24E+03 3.21E+03 3.17E+03

Std 44.9630 36.6666 13.4120 43.8520 51.3366 23.6654

p-value 0.0011 0.0024 0.0002 0.0036 0.0046 0.0021

F30
Ave 4.99E+05 5.31E+05 3.50E+03 4.63E+05 3.01E+05 3.01E+05

Std 6.39E+05 4.89E+05 4.92E+03 4.92E+05 3.31E+05 4.52E+05

p-value 0.0025 0.0033 0.0044 0.0044 0.0061 0.0033

Type No. Metric
TASR-
CHOA ARBGA ARWOA SHADE CMA-ES LSHADESPACMA

UM

F1
Ave 100.00 100.00 109.99 100 100 100

Std 3.14E−07 2.55E−05 0.0021 0.000 0.000 4.33E−06

p-value NA 0.0041 0.0021 0.51 0.42 0.033

F3
Ave 300.00 300.00 300.00 300.00 300.00 300.00

Std 0.0000 9.94E−11 1.25E−03 0.000 0.000 1.11E−33

p-value NA 0.0011 0.0013 0.063 0.42 0.001
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Type No. Metric
TASR-
CHOA ARBGA ARWOA SHADE CMA-ES LSHADESPACMA

MM

F4
Ave 400.00 400.21 403.55 400.00 400.00 400.00

Std 1.21E−15 2.35E−07 1.21E−05 0.000 0.000 1.02E−12

p-value NA 0.0017 0.0043 0.56 0.052 0.0037

F5
Ave 504.33 508.44 510.33 507.00 531.11 521.42

Std 1.000 4.001 4.2222 1.007 59.11 56.19

p-value NA 0.0011 0.0013 0.052 0.0033 0.0011

F6
Ave 600.00 600.00 602.88 604.00 606.99 624.96

Std 3.83E−07 5.53E−04 2.55E−05 5.28E−04 5.99E−04 2.44E−03

p-value NA 0.0021 0.0033 0.0046 0.0011 0.0033

F7
Ave 713.22 717.33 716.23 715.98 715.96 719.87

Std 1.033 2.0014 1.0014 1.541 1.632 1.7112

p-value NA 0.0021 0.0033 0.082 0.075 0.0033

F8
Ave 805.64 806.33 807.71 806.85 806.84 810.93

Std 1.845 2.5413 3.7831 1.8456 1.9863 2.1456

p-value NA 0.0021 0.0033 0.082 0.075 0.0043

F9
Ave 900.00 900.00 902.33 900.00 900.00 902.11

Std 0.000 1.64E−02 2.55E−02 0.000 0.000 1.44E−02

p-value NA 0.0025 0.0037 0.056 0.053 0.0028

F10
Ave 1189.38 1244.52 1355.33 1999.25 1195.26 1249.23

Std 79.33 123.11 129.65 109.57 101.32 134.56

p-value NA 0.0021 0.0033 0.0046 0.0011 0.0033

Hybrid

F11
Ave 1100.00 1102.01 1104.38 1102.56 1102.12 1104.11

Std 0.96 1.44 2.11 1.32 1.31 2.77

p-value NA 0.0077 0.0017 0.0018 0.082 0.0036

F12
Ave 1323.55 1365.25 1411.12 1322.55 1323.20 1351.01

Std 54.55 101.26 99.33 104.20 152.01 110.23

p-value NA 0.0021 0.0021 0.21 0.0046 0.0011

F13
Ave 1305.21 1305.31 1311.14 1306.77 1304.47 1309.25

Std 3.22 2.89 3.33 2.71 0.69 2.51

p-value NA 0.0033 0.0046 0.0011 0.32 0.0011

F14
Ave 1402.36 1404.22 1423.16 1409.82 1414.23 1449.38

Std 4.01 4.09 7.33 8.63 9.22 10.99

p-value NA 0.0023 0.0035 0.0046 0.0011 0.0033

F15
Ave 1500.75 1500.76 1532 1501.33 1502.11 1554.06

Std 0.53 0.53 1.11 0.59 057 2.11

p-value NA 0.075 0.0025 0.082 0.056 0.0041

F16
Ave 1601.01 1601.83 1614.23 1602.22 1603.25 1652.03

Std 0.88 0.99 22.99 2.19 3.22 7.65

p-value NA 0.0021 0.0033 0.0046 0.0011 0.0033

F17
Ave 1709.33 1714.33 1793.36 1716.36 1715.14 1792.55

Std 5.19 9.66 17.17 5.88 5.69 14.11

p-value NA 0.0017 0.0015 0.0046 0.0055 0.0033

F18
Ave 1801.17 1801.33 1817.38 1802.55 1800.00 1811.17

Std 1.88 1.17 1.23 0.99 0.34 2.43

p-value NA 0.0033 0.0046 0.0011 0.21 0.0066

F19
Ave 1900.21 1900.66 1912.33 1900.66 1900.67 1909.55

Std 1.35 0.66 2.77 0.31 1.62 2.77

p-value NA 0.0013 0.0046 0.012 0.0021 0.0033

F20
Ave 2013.33 2014.77 2037.21 2019.69 2019.99 2029.44

Std 8.21 9.71 24.88 0.01 29.66 48.55

p-value NA 0.0021 0.0033 0.133 0.0013 0.0046
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To summarize, from the results presented in Fig. 7, the performance and robustness of TASR-CHOA relative 
to most of the known optimizers is entirely satisfactory on the known functions. The ranks of the models, on 
average, differ from each other. Also, the graphs show that there is no extreme fall or rise in the mean rank of 
TASR-CHOA across the three groups. Still, some models have a consistent rank in all the classes, while others 
have inconsistent ones.

 Analysis of real-world problems
The twelve problems made use of in IEEE CEC2020 included (industrial heat exchanger synthesis (RC01) and 
reactor synthesis (RC04)), outlining and construction of process (RC11 and RC14), optimal industrial system 
designs (RC16 and RC23), problems on power systems (RC35 and RC37), electronics & power devices (RC45 
and RC49), optimization of nutrition for cattle beef (RC51 and RC52)51 are used for testing the effectiveness of 
the TASR CHOA. It should be noted that in this section, the most extensive description of the suite test for the 
simulations is provided by Kumar et al. IEEE CEC2020 can be found51. All the results are shown in Fig. 8.

We examined the mean and standard deviation results across different RCs to determine how long TASR-
CHOA takes in comparison to other algorithms. This unique viewpoint aids in evaluating the strengths and 
weaknesses of TASR-CHOA in collaboration with its co-researchers and identifying areas for improvement.

For specific RCs, mean values provide illustrative statistics of how different algorithms perform. The results 
of TASR-CHOA are inconsistent across the various RCs, with the mean values typically falling below those of 
the charting algorithms. For instance, in RC01, the average score of TASR-CHOA is 144, which is lower than 
the average score of 146 for the majority of algorithms available within the DLFCHOA. In spite of this, the 
performance of TASR-CHOA is observed to be consistent with the very low standard deviation of ± 0.002, 
meaning that the average scores produced are very close. Regarding RC04, TASR-CHOA achieves the lowest 
average score of -0.389, outperforming all other algorithms, particularly the last techniques. Performance was 
poorest with a mean score of TASR-CH5526, although the standard deviation in this instance, ± 1.02, was also 
reasonable.

Type No. Metric
TASR-
CHOA ARBGA ARWOA SHADE CMA-ES LSHADESPACMA

CFs

F21
Ave 2.31E+03 2.32E+03 2.30E+03 2.20E+03 2.22E+03 2.24E+03

Std 42.66 39.44 44.77 22.66 21.55 39.77

p-value NA 0.024 0.0036 0.0039 0.0014 0.0013

F22
Ave 2.30E+03 2.30E+03 2.30E+03 2.31E+03 2.32E+03 2.30E+03

Std 17.77 21.55 21.44 12.33 11.77 11.66

p-value NA 0.07323 0.0011 0.024 0.0036 0.0039

F23
Ave 2.60E+03 2.61E+03 2.62E+03 2.61E+03 2.60E+03 2.74E+03

Std 2.01E−02 3.95E−02 2.88E−02 2.55E−02 2.44E−02 3.25E−02

p-value NA 0.0055 0.0013 0.0011 0.0017 0.0013

F24
Ave 2.55E+03 2.51E+03 2.53E+03 2.70E+03 2.71E+03 2.85E+03

Std 37.33 39.44 39.55 41.77 38.33 39.55

p-value NA 0.33 0.0021 0.0033 0.0046 0.0011

F25
Ave 2.89E+03 2.89E+03 2.92E+03 2.89E+03 2.83E+03 2.92E+03

Std 23.33 22.44 36.25 21.44 20.55 22.77

p-value NA 0.0021 0.0033 0.075 0.076 0.0044

F26
Ave 2.82E+03 2.89E+03 2.84E+03 2.90E+03 2.90E+03 2.91E+03

Std 12.02 44.22 33.25 34.11 11.44 33.77

p-value NA 0.0042 0.073 0.0033 0.0052 0.0042

F27
Ave 2.08E+03 3.08E+03 3.25E+03 3.09E+03 3.08E+03 3.10E+03

Std 0.055 1.11 7.31 2.20 1.65 2.44

p-value NA 0.073 0.0033 0.0046 0.073 0.0033

F28
Ave 3.10E+03 3.10E+03 3.25E+03 3.26E+03 3.25E+03 3.29E+03

Std 6.23E−06 6.34E−05 33.32 19.02 14.01 13.66

p-value NA 0.0017 0.0011 0.0046 0.0015 0.0033

F29
Ave 3.14E+03 3.15E+03 3.19E+03 3.14E+03 3.15E+03 3.20E+03

Std 11.18 12.55 19.02 12.33 15.44 19.52

p-value NA 0.0081 0.0017 0.077 0.0021 0.0033

F30
Ave 3.41E+03 3.41E+03 3.55E+03 3.20E + 03 3.20E+03 3.56E+03

Std 12.71 19.56 22.36 1.32 1.18 33.55

p-value NA 0.0033 0.0046 0.33 0.099 0.0011

Table 7.  Results for IEEE CEC-BC functions. The best results are highlighted in bold.
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Fig. 3.  Searching area, convergence curves, average fitness history, the trajectory of the first dimension, and 
search history associated with randomly selected test functions (i.e., F2, F5, F8, F11, F13, F14, F18, F24(CF1), 
and F26(CF3)).
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In RC11, TASR-CHOA’s mean value of 9.79 is the lowest among the other algorithms. Some of these systems 
demonstrate higher performance compared to others despite their relatively low performance. The standard 
deviation here is ± 1.30; that is, though the performance is low, it is steady. On the other hand, in RC14, TASR-
CHOA finally achieves a high mean value of 5221, which is lower than the best-performing algorithms, such 
as ICHOA, which has a mean value of 7330 but can be grouped with quite a few other algorithms. There was a 
low standard deviation of ± 1.02, revealing the extent to which the performance of TASR-CHOA was in this RC.

The mean values of TASR-CHOA in RC16, RC23, and RC37 are much lower at 0.004, 22.4, and 0.0221, 
respectively, indicating that performance is decreasing except for some destruction. The performance remained 
stable in these cases, with the standard deviations of the means falling within the unique performance limits 
of TASR-CHOA. The stability of performance across different RCs is a significant advantage of TASR-CHOA, 
especially when consistency is required.

In RC49 and RC51, even though the mean values of TASR-CHOA are lower (0.0235 and 4490) when 
compared with other algorithms, the standard deviations are still low (± 0.011 and ± 1.11, respectively). This 
reinforces the algorithm’s reliability. However, in RC52, the mean value reported for TASR-CHOA was 3392, 
which is less than most of the values of other methods, with a bottleneck standard deviation of ± 175 that 
suggests some performance.

The analysis indicates that TASR-CHOA, on average, performs pretty evenly among different RC TKIND 
customers, as the standard deviations are relatively low, making a solid case for this performance. This is 
undoubtedly an advantageous benefit, especially in cases where it is more important to have stable results 
than to seek perfection all the time. However, in terms of objective metrics, TASR-CHOA is one of the last 
algorithms against the majority of other algorithms. This indicates that while TASR-CHOA is a robust and steady 
algorithm, its overall performance is rather mediocre compared to other RCs. If one approaches the algorithm 
with the knowledge that no peak performance element will reveal any strength, then TASR-CHOA is an effective 
algorithm.

Real-world engineering problem: fire detection challenge
Fire warning systems are crucial in mitigating the damage and repercussions caused by fires, especially in urban 
areas and rural regions. The earlier systems made use of temperature sensors and computer vision algorithms; 
the current systems do not but rather depend solely on DCNNs, which have proven to be more sophisticated 
in detection tasks. Using the TASR-CHOA framework, we tackle the problem of applying the structure of the 
existing framework, DCNN, so as to enhance fire detection. In terms of examination, we performed tests on 
enhanced Alexnet and DarkNet in order to gather information about configuration aspects for their training and 
testing and the time taken for these tests. First, we deployed a more straightforward DCNN structure and then 
later built on it to develop more advanced structures. This was done so as to disprove the idea that fire detection 
is a sophisticated task that can be performed using simple approaches as well as simple models.

Employing the Fire-Detection-Image-Dataset allowed both authors to make a fair evaluation. Although the 
dataset contains only 651 images, this is large enough to indicate the speed and accuracy that can be attained by 
models based on photographs and the valuable information that can be derived from them. There are 549 images 
in the training set of the fire, drenched in a total of 49 fire and 490 non-fire images.

There was a deliberate imbalance on our part in that we wanted to create real-life situations since the 
probability of fire hazards occurring is relatively rare.

This design is suitable for evaluating the generalizability of the models due to the significant imbalance in the 
set used for training and the total equality in the testing set. The limited number of fire photographs contains 
enough data to effectively train a dependable model that can recognize the distinct traits. An adequately complex 
model is necessary to extract these characteristics from a dataset that has few instances of each feature.

Figure 3.  (continued)
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Fig. 4.  Comparison of convergence curves for various benchmark techniques.
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Some of the photographs not only lack balance, but they also cannot be easily categorized. The collection 
comprises images of fires in various environments, including residential buildings, lodgings, workplaces, and 
woodlands. The photos exhibit a diverse array of tones and intensities of illumination, spanning from yellow 
to orange and ultimately transitioning into red. Fires can occur at any time, regardless of their size. Non-fire 
imagery such as sunset pictures, houses and cars colored red, lights with a combination of yellow and red, and 
brightly illuminated rooms are challenging to distinguish from fire photos.

Figure 4.  (continued)

Fig. 5.  The three-dimensional IEEE CEC06 functions’ search space.

 

Algorithm AFEs ACDs SR

CHOA 16,319 44.33 78.22

ULCHOA 16,103 45.25 76.33

ICHOA 14,219 51.22 92.25

ARWOA 15,501 47.66 83.66

NCHOA 18,031 39.33 46.34

DLFCHOA 16,222 45.31 72.36

ECHOA 15,419 48.41 82.55

TASR-CHOA 13,888 61.21 100

SHADE 16,300 44.77 78.52

CMA-ES 17,430 41.35 57.34

PGBM + DN-1 17,118 41.47 54.23

LSHADESPACMA 16,502 45.22 77.36

ARBGA 13,956 60.67 100

Table 8.  The outcomes of the suggested models addressing the issue of fire detection.
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Figure 9 displays instances of fires in different environments. In addition, Fig. 10 displays non-fire photos that 
are difficult to classify. Fire detection can pose difficulties due to the characteristics of the dataset.

The research focuses on algorithms designed to solve fire detection problems. The key goal is to determine 
the complexity and robustness of these algorithms. The methods employed should look for practical solutions 
in Max(T) time, making Min(T) as small as possible. After the experimentation phase of each fire detection 
problem, three metrics are computed: SR, AFEs, and ACDs. These parameters measure the effectiveness and 
performance of the processes and are based on what has been done in earlier works. For finding various metrics, 
including ACDs, SR, and AFEs, we employ Eqs. (12) to (14):

	
AF Es = 1

NSS

NSS∑
i=1

F Esi� (12)

	
SR = NSS

L
� (13)

	
ACDs = 1

NSS

NSS∑
i=1

calculation_Durationi� (14)

NSS is the number of successful searching out of K iterations in a trustworthy experiment that is completed 
K times. It is anticipated that algorithms will discover a viable solution in every iteration. The outcomes of the 
proposed models can be observed in Table 8.

Fig. 7.  Bonferroni Dunn analysis (threshold values 0.1and 0.05).

 

Fig. 6.  IEEE CEC06 challenge results.
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Using AFEs, ACDs, and SR to look at the algorithms gives us a better idea of how well they work, how much 
work they require, and how successful they are.

AFEs  Out of the three methods considered, TASR-CHOA again records the lowest number of AFEs at 13,888, 
implying that it reaches convergence in fewer evaluations on average and is, therefore, the most efficient in this 
case. ARBGA is close behind at 13,956, or, in other words, is also very efficient. On the other hand, the form 

Fig. 9.  Real fire images.

 

Fig. 8.  The results of comparison techniques for the IEEE CEC2020 test function: (a) AVE and (b) STD.
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of the algorithm NCHOA has the highest AFEs of 18,031, meaning that it is less efficient because it takes more 
evaluations to come up with the same results as other forms.

ACDs  ACDs help in giving information on the computational cost incurred in any given algorithm. Once again, 
TASR-CHOA takes the lead with the highest ACD of 61.21. This indicates that AFEs are less before the algo-
rithm’s performance, but the algorithm requires more computations and time. Correspondingly, ARBGA once 
again has a total ACD and, in this case, a high ACD of 60.67. Mainly on the extreme side, NCHOA and CMA-ES 
show low ACDs of 39.33 and 41.35, respectively, which suggests that they may be faster but may call for many 
evaluations, as noted in NCHOA, where AFEs were higher.

SR  In the success rate assessment, TASR-CHOA and ARBGA recorded a perfect SR of 100. Such FVP systems 
can work under all restrictions and return a positive outcome. ICHOA is also good, with an SR of 92.25, but 
because he needs an AFE of 14,219 instead of the 11,798 and 9214 of TASR-CHOA and ARBGA, respectively, it 
falls below them. In sharp contrast, NCHOA, on the global scale, has the lowest score in measuring the success 
rate of finding a solution, which stands at 46.34.

Overall Analysis: TASR-CHOA is a highly efficient algorithm in terms of performance and processing expenses; 
however, more computational operations are needed. ARBGA also shares the same features; thus, it is a perfect 
solution. In contrast, although NCHOA appears to be less computationally expensive, its turn-out performance 
(low SR) and operational cost (high AFE) do not appear to be suitable for use, especially in applications that 
require fast and regular solutions. Operating ICHOA yields good results, but it falls short of the superior 
performance outcomes achieved with TASR-CHOA and ARBGA. In general, TASR-CHOA is also optimal due 
to its good efficiency and SR, albeit at a slightly higher computational cost.

Analysis of sensitivity
In order to test the efficiency and flexibility of the TASR-CHOA algorithm, we now turn to a sensitivity analysis 
in which we evaluated two relevant parameters 1 and 2, respectively, with changing sizes of the population. 
In this case, 1 and 2, ​ were varied within the limits of 0.1–1.0 at intervals of 0.05, and population sizes of the 
algorithm from 20 to 100 were tested. Table  9 presents the best fitness obtained within the bounds of the 
conducted sensitivity analysis for selected values of 1 and 2, and population sizes.

Table 9 outlines the findings of the study concerning the dependence of the efficiency of the TASR-CHOA 
algorithm on the parameter settings quite dynamically. For instance, one could say that a rise in both 1 and 2 
would, in general, improve the optimized outputs that when these parameters are increased to their highest 
values, the best fitness values are decreased.

For a population size of 50, the algorithm managed to obtain the best fitness value of 0.18 for 1=2 = 1.0. 
This observation is crucial since it shows how these values help in the tradeoff between the exploratory and 

Population size 1 2 Best fitness value

20 0.10 0.10 12.29

20 0.50 0.50 0.44

20 1.00 1.00 0.31

50 0.10 0.10 15.10

50 0.50 0.50 0.21

50 1.00 1.00 0.17

100 0.10 0.10 18.44

100 0.50 0.50 0.09

100 1.00 1.00 0.08

Table 9.  Best fitness obtained within the bounds of the conducted sensitivity analysis for selected values of 1 
and 2, and population sizes.

 

Fig. 10.  Non-fire images.
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exploitative nature of the algorithm. However, low values of 1 and 2 (0.1), for instance, were associated with 
significant deterioration of performance, especially with regard to population size, which implies that the 
population was exploring too little to allow escaping of a local optimum.

Also, it is seen that the increase in performance enhancement is less apparent with the larger sizes of 
the populations, indicating that the performance of the algorithm is beginning to plateau. To conclude, this 
sensitivity analysis further confirms the reliability of TASR-CHOA, showing that an appropriate modification of 
exact  1 and λ 2 is significant in the various optimization situations undertaken. Future plans will include seeking 
adaptive strategies that will dynamically change these parameters during the optimization, aiming to improve 
performance even further.

Discussion
This section contains a critical review of graphical processing units-based model parallelism (TASR-CHOA) 
research challenges in the context of comparative evaluation of the benefits and limitations of this algorithm and, 
performance-wise, how they would affect future work and application. The first one would be how the adversary 
tactics can be explained and supplemented in the context of the purpose of the study and underline the critical 
impact of pursuing this direction where the discerning and experimental tasks were pointed out in general 
and success factors related to goals. Then, we will look at the possible constraints of the algorithm and suggest 
possible means of making the algorithm better. Further, we consider the implications of the theoretical bases 
and complexity of computation constitutive of TASR-CHOA on the effectiveness and scope of its deployment. 
Finally, issues relating to the further development of TASR-CHOA and its utilization in future research in view 
of optimization theory, in particular IT technologically advanced means, are addressed. The goal is to present the 
crucial features of the TASR-CHOA visualization algorithm as well as the optimization prospects—bottlenecks 
and development directions.

Complexity analysis of the computation
The computation of TASR-CHOA has a complexity that is directly proportional to the dimensionality referred to 
occasionally as the number of variables (NV), the number of individuals (NI), and the evaluation limit (ME). The 
number of iterations (t) is defined by ME/2×NI, where ME is the maximum number and size of the evaluation 
function, among others. In the second paragraph of the subsection, the analysis will be able to describe the 
temporal complexity as given by Eq. (15):

	 O (TASR − CHOA) = O (initialization) + O (computation of the initial performance and selection) + O (stochastic replacement technique) + O (creating dual weights for chimp position updating)� (15)

The complexity of initialization is O(NI×NV) as well. Initialization within the new practical method to replace 
old data experienced from sanitary attacks appears to be deterministic complexity O(NI×NV + 2×NI×NV). The 
position of the population of chimpanzees is revised by adding two weights in O(NI×NV×2 × 2 × 2) operations. 
Therefore, the general complexity can be defined in the following way:

	 O (TASR − CHOA) = O (NI × NV) + O (NI × NV × 6) + O (NI × NV + 2 × NI × NV )� (16)

Basic elements of TASR-CHOA
To increase both the convergence speed and the thoroughness of search in the process of optimization, it is 
suggested that the method of TASR-CHOA uses stochastic weight balancing. TASR-CHOA provides an efficient 
solution to a problem along three basic principles, theoretically speaking.

Stochastic reinforcement is a technique. The optimization procedure of TASR-CHOA incorporates a 
stochastic reinforced strategy, which introduces unpredictability by replacing the optimal solution in each 
dimension during each iteration. Incorporating stochastic aspects into the search space helps broaden its scope 
and decreases the chance of an algorithm being stuck at a local solution. The technique of approaching the 
solution involves the angle of the stochastic activity. Internal stochasticity of the optimization algorithm allows 
for constant variability to avoid convergence at a local optimum and instead steer the solution to the global one.

TASR-CHOA uses two adaptive weighting methods, which are λ1 and λ2. These methods are employed to 
effectively alter the biases toward exploration and exploitation at still different times during the optimization 
process. In the first part, however, 1 does this in order to explore the entire solution space. Later on, two 
shifts focus to exploitation, such that it tries to make use of the good places that have been identified in the 
course of the exploration phase. Computational resource allocation in TASR-CHOA is done using an adaptive 
weighting approach in order to respond to the changing characteristics of the optimization landscape. This aids 
in enhancing the system’s response to the global optimal solution while avoiding early and unintentional fixation 
along the local optimal solutions.

Problems of the optimal ratio and balance between exploring and exploiting: The core reason for including 
stochastic reinforcement and adaptive weighting in TASR-CHOA is to “balance” between the exploitation and 
exploration of the problem at every step in the optimization process. In its early stages of optimization, TASR-
CHOA manages to explore a lot of the solution space and utilizes solutions out of exploration in later stages of 
optimization through a careful balance of these two components of optimization techniques. As a result of this 
refined approach, the optimization environment and processes are well handled by TASR-CHOA irrespective 
of their complexity and dimensionality, which results in improved rapid convergence and improved quality of 
the solution.

The theoretical background of TASR-CHOA is primarily based on the concepts of robustness and generalization 
and incorporates these features to ensure that they are applicable to different optimization problems. Because of 
the addition of stochastic reinforcement and adaptive weighting, effectiveness and flexibility have improved even 
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further, making them very useful for solving complex optimization problems met in practice. The principles 
underlying the construction of the TASR-CHOA algorithm allow us to combine stochastic research and adaptive 
attack in order to solve complex and multidimensional problems.

The foundational concept of TASR-CHOA is implemented, turning to a sequence of stochastic reinforcement 
and adaptive weighting leading to a sufficient equilibrium of exploring and exploiting. In this way, the speed and 
quality of solutions in a multilevel optimization problem are enhanced.

The limitations of TASR-CHOA
Despite the fact that TASR-CHOA already has several optimizations concerning the efficiency of using 
optimization algorithms, it is essential to state or accept some of its stream examples as threats.

Sensitivity to parameter tuning The performance of a predictive model using TASR-CHOA can very much 
depend on the fine-tuning of specific parameters, such as the adaptive weighting factors (λ1 and λ2) and the 
stochastic reinforced technique parameters, the same with other optimization algorithms. If configuration space 
definition is done poorly, the cases of convergence might be rather slow or not satisfactory with a solution with 
the mentioned concern focusing on proper calibration of the parameters, where calibration may turn out to be 
very cumbersome and time-wasting.

Limited robustness to the Problem types The performance of the TASR-CHOA in relation to the various forms 
of optimization tasks may not be similar, therefore suggesting limited robustness. It might be noted that the 
model performs well when benchmarked on specific functions or engineering problems, but when it comes to 
solving optimization problems that are incredibly nonlinear, multimodal, or not severely constrained, the model 
may not perform optimally. The generalization of this algorithm to different types of problems might encounter 
challenges owing to its use of particular strategies during exploration and exploitation.

Risk of premature convergence One of the disadvantages encountered with TASR-CHOA lies with the fact 
that there is a very high chance that the search will halt at an optimal solution too soon, which is most probably 
towards the beginning of the search, especially with complicated optimization goals, even when it is the objective 
to achieve a suitable balance between exploration and exploitation. There is a risk that the dopamine-based 
adaptive weighting used in the algorithm may not achieve the desired outcome of appropriate exploration 
strategies, optimally moving to high-reward locations, effectively solving all the tasks. This is likely to cause 
premature termination of the search operations and consequently stagnation during the search process.

Addressing limitations To address these limitations and improve the efficiency of TASR-CHOA, future 
research efforts could prioritize the following.

•	 Performing sensitivity analysis and robustness evaluations across many problem domains to determine the 
most suitable parameter combinations and algorithmic setups.

•	 The objective is to enhance the algorithm’s robustness and scalability by devising sophisticated approaches for 
adaptive parameter tuning and dynamic adjustment mechanisms.

•	 In order to enhance the capabilities of TASR-CHOA and mitigate its limitations, such as premature con-
vergence or limited exploration ability, hybridization techniques or metaheuristic combinations should be 
investigated.

In conclusion, although TASR-CHOA demonstrates encouraging performance in optimization tasks, it is 
imperative to recognize and rectify its inherent limitations in order to augment its efficacy and suitability in 
real-world situations.

Conclusion
In an effort to demonstrate the innovations behind the concept, we developed a novel twofold adaptive stochastic 
reinforced version of the Chimp Optimization Algorithm (CHOA) termed TASR-CHOA. Being an improved 
version of the original CHOA, which suffers from convergence issues in multidimensional optimization 
problems and gets stuck to local optima, the work added some stochastic reinforcement terms to improve the 
convergence rate coupled with a dual adaptive weighting for exploration-exploitation balance. Employing two 
modifications in the CHOA structure, so increasing its performance—that is, achieving faster convergence and 
more thorough exploration of searched space—TASR-CHOA improved across the benchmark functions more 
than many up-to-date optimization strategies.

TASR-CHOA was robust and efficient using benchmark evaluations such as 29 conventional optimization 
benchmark functions, 10 IEEE CEC-06 benchmarks, 30 complex IEEE CEC-BC benchmark functions, and 10 
real-world engineering problems. The algorithm proved to cover the highest positions in 51 out of 70 evaluation 
functions and demonstrated performance APP1 similar to the top-ranked algorithms SHADE and CMA-ES. 
Excellent stability and reliability of the TASR-CHOA have also been observed in engineering applications such 
as fire detection through deep convolutional neural networks.

It is worth noting that despite these conflicting outcomes, oASR, on balance, involves a much more 
computational burden compared to the same modern algorithms. Still, what is optimistic about the TASR-
CHOA is its capability to keep the success rates very high and the average number of failures per event shallow 
when enforcing complex optimization tasks.

Future research directions
Even though TASR-CHOA has outperformed the standard CHOA, it would be great future work if the possibility 
of blending it with other advanced optimization algorithms, such as genetic or particle swarm optimization 
algorithms, were to be explored. In this regard, such hybrid models could take advantage of the capabilities 
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of different optimization techniques while simultaneously tackling even more complex and high-dimensional 
problems.

With the practical complexity of the algorithm, such as TASR-CHOA, there are possibilities of laying down 
future work that would design and implement TASR-CHOA-based real-time optimization techniques. This 
will involve looking to improve the effectiveness of the algorithm when it comes to time-critical tasks such as 
autonomous systems that require real-time decisions to be made.

The applications of TASR-CHOA have primarily been in optimization problems that depict a relatively 
constant environment. Therefore, it is only logical that future work on TASR-CHOA would aim at exploring its 
effectiveness in more complex optimization problems over time, that is, in time-varying optimization landscapes. 
It would, therefore, be essential to seek the possibility of developing a dynamic model of TASR-CHOA since it 
would increase its possibilities of being used in the real world where the parameters are not fixed.

While TASR-CHOA has been used successfully in multidimensional problems, further research should 
investigate the method’s scaling and efficiency within the scope of very high-dimensional problems that are 
already prevalent in machine learning and big data analysis. Potential avenues of research could, for example, 
aim at modifying TASR-CHOA to ensure greater computational efficiency and lower costs of high-dimensional 
analyses.

The present, successful use of TASR-CHOA for fire detection indicates at least one further possible use of this 
approach for other complex engineering problems. Future work could validate its efficiency in fire detection by 
applying it in diverse domains such as robotic engineering, structural design, and energy systems management.

Considering the current interest in performing large-scale optimization problems, the TASR-CHOA could 
be adapted for use in parallel and distributed computing in future works. It will require devising approaches to 
perform the parallelization of the algorithm so that the overall optimization time would be less.

As this paper presented a preliminary complexity assessment of TASR-CHOA, the other scope of improvement 
in the future includes a theoretical understanding of the method in terms of its convergence metrics and possible 
enhancements to the method. It might also be that better hydrodynamics and convergence rates could be 
obtained by using more elaborate adaptive or stochastic techniques.

In following these research directions, TASR-CHOA can also be enhanced and adapted to address the changing 
requirements of optimization problems in a number of other domains, including science and engineering.

Data availability
The resource data and material can be downloaded using the following links and references. ​h​t​t​​​​p​s​​:​​/​/​​w​​w​w​​3​.​n​t​​u​.​​e​
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