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A B S T R A C T

Solar cells are crucial in aerospace industries as they provide a reliable and sustainable power source for
spacecraft and satellites, enabling long-duration missions without relying on conventional fuel. This study in-
vestigates the propagation of nonlinear guided waves in improved silicon solar cells reinforced by graphene
platelet (GPL) nanocomposites. The microplate model of the solar cells is developed using the modified couple
stress theory (MCST) to capture size-dependent effects, and the sinusoidal shear deformation theory (SSDT) is
applied to account for realistic shear deformation behavior. Nonlinear governing equations describing the dy-
namic response of the system are derived using Hamilton’s principle. The equations are then solved numerically
using the Runge–Kutta method to analyze the phase velocity and wave characteristics under varying parameters.
The effects of GPL weight fraction, length scale parameter, and wavenumber on wave propagation are thor-
oughly examined. In this investigation, an intelligent model based on deep neural networks as an artificial
intelligent algorithm combined with a genetic algorithm (DNN-GA) as a bio-inspired optimization approach, is
employed to predict nonlinear phenomena in guided waves within the solar cell, using datasets generated from
mathematical simulations. The results demonstrate that the inclusion of GPL nanocomposites enhances the
mechanical properties of the silicon solar cells, leading to higher phase velocities and improved wave propa-
gation efficiency. Additionally, the influence of the length scale parameter on phase velocity is found to be
significant, particularly for low wavenumbers. This study provides valuable insights into the optimization of
advanced nanocomposite-reinforced silicon solar cells for applications requiring efficient guided wave propa-
gation. The findings offer a promising approach for the design and enhancement of next-generation solar cells.

1. Introduction

Solar cells are vital for the aerospace industry as they provide a
continuous and renewable energy source, essential for the operation of
satellites and spacecraft over extended periods [1,2]. Their ability to
function efficiently in the vacuum of space, where traditional energy
sources are impractical, makes them indispensable for powering systems
like communication, navigation, and scientific instruments [3]. The
high energy-to-weight ratio of solar cells reduces payload mass,
contributing to more cost-effective and fuel-efficient launches [4].
Moreover, advances in solar cell technology have enabled longer
mission durations, reducing the need for frequent maintenance or
replacement of power sources in space [5].

Silicon solar cells are of great importance to engineers due to their
high efficiency in converting sunlight into electrical energy, making
them a widely used technology in renewable energy systems [6,7]. As
one of the most mature and well-researched photovoltaic technologies,
silicon solar cells offer a reliable and scalable solution for generating
clean electricity [8]. Their long operational lifespan, often exceeding 25
years, provides engineers with a cost-effective energy source for
large-scale projects, reducing the need for frequent replacements or
repairs [9]. Silicon, being abundant in nature, ensures that these solar
cells can be produced at a relatively low cost, supporting the widespread
deployment of solar energy solutions [10]. Engineers also value silicon
solar cells for their structural durability and ability to withstand various
environmental conditions, including high temperatures and exposure to
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UV radiation [11]. This resilience makes them suitable for a wide range
of applications, from residential rooftop installations to utility-scale
solar farms [12]. Additionally, the well-established manufacturing
processes of silicon-based cells enable precise control over cell perfor-
mance and quality, ensuring consistent energy output [13]. Engineers
can integrate these cells into diverse energy systems, facilitating their
role in smart grids and hybrid energy networks [14]. Furthermore, the
modular nature of silicon solar cell arrays allows for easy scalability,
enabling flexible design solutions for both small and large energy de-
mands [15]. Finally, ongoing advancements in silicon cell technologies,
such as passivated emitter rear cells (PERC), enhance their efficiency,
making them even more attractive for engineers looking to optimize
energy conversion and system performance [16].

Stability analysis of structures is critical in engineering as it ensures
that buildings, bridges, and other infrastructures can withstand applied
loads without undergoing failure or collapse [17]. By assessing stability,
engineers can prevent structural buckling, which occurs when
compressive forces exceed the material’s capacity, leading to cata-
strophic failures [18]. It helps in identifying potential weak points in a
structure’s design, allowing for reinforcement before construction,
thereby improving overall safety [19]. Stability analysis also plays a
vital role in optimizing material use, ensuring that structures are
designed efficiently without being overly conservative or prone to fail-
ure [20]. Moreover, understanding the stability of structures allows
engineers to account for external factors like wind, seismic activity, and

temperature changes, which can induce additional stress on buildings
[21]. This is especially important for high-rise structures, long-span
bridges, and large-scale infrastructure projects, where stability con-
cerns are more pronounced due to complex load distributions [22].
Engineers rely on stability analysis to ensure compliance with safety
codes and standards, which are essential for protecting lives and prop-
erty [23]. It also aids in the design of more innovative structures, where
unconventional forms and materials are used, ensuring that they remain
secure under various load conditions [24]. Stability analysis supports
long-term sustainability byminimizing the risk of structural degradation
over time, reducing maintenance costs [25]. Finally, it provides a sci-
entific foundation for retrofitting existing structures to improve their
resistance to modern load demands and environmental conditions [26].

Machine learning algorithms are crucial for engineers as they enable
automation of complex tasks, increasing efficiency and productivity [27,
42]. They help in predictive maintenance, allowing engineers to antic-
ipate equipment failures and reduce downtime [28]. By analyzing vast
amounts of data, machine learning can optimize system designs and
processes, leading to cost savings and performance improvements [29].
It enhances decision-making by providing data-driven insights and
identifying patterns that may not be obvious [30]. Engineers can use
machine learning to develop smarter systems, such as self-driving cars or
automated manufacturing lines [31]. These algorithms also aid in sim-
ulations and modeling, improving accuracy and reducing testing time
[32]. Overall, machine learning empowers engineers to innovate and

Fig. 1. Multi-layer silicon solar cells under mechanical load.
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solve real-world problems more effectively [33].
The propagation of nonlinear guided waves in enhanced silicon solar

cells reinforced by graphene platelet nanocomposites is examined in this
work. In order to account for actual shear deformation behavior, the
microplate model of the solar cells is built utilizing the modified couple
stress theory to capture size-dependent effects and the sinusoidal shear
deformation theory. Using Hamilton’s principle, nonlinear governing
equations defining the system’s dynamic response are developed. The
phase velocity and wave properties under different parameter values are
then analyzed by numerical solution of the equations using the Run-
ge–Kutta technique. We investigate in detail how wavenumber, length
scale parameter, and GPL weight percentage affect wave propagation.
Using datasets produced from mathematical simulations, this study uses
an intelligent model based on deep neural networks as an artificial in-
telligence algorithm coupled with a genetic algorithm as a bio-inspired
optimization approach to predict nonlinear phenomena in guided waves
within the solar cell. The findings show that the addition of GPL nano-
composites improves the silicon solar cells’ mechanical characteristics,
which raises phase velocities and increases wave propagation efficiency.
Furthermore, it is discovered that the length scale parameter

significantly affects phase velocity, especially at low wavenumbers. This
work offers important new information on how to optimize sophisti-
cated silicon solar cells reinforced with nanocomposite materials for
uses needing effective guided wave propagation. The results provide a
viable strategy for the development and improvement of solar cells in
the future.

2. Mathematical modeling

We provide enhanced silicon solar cells using GPL nanocomposites in
Fig. 1. A silicon solar cell, as can be seen, is made up of eight layers, with
glass at the outermost and the GPLRC-reinforced metal layer at the
innermost. Fig. 1 displays the whole geometry of this structure together
with a three-dimensional schematic depiction.

2.1. Material properties

As seen in Fig. 2, three different patterns are used to mimic the
transverse dispersion of GPLs. To determine the effective elastic
modulus of the GPLR nanocomposite material, the following formula
was extracted using a modified formulation of the Halpin-Tsai correla-
tion [34]:

Ec(z) = −
3
8
1+ ξLηLVGPL

ηLVGPL − 1
× Em −

5
8
1+ ξWηWVGPL

ηWVGPL − 1
× Em, (1)

where ξL = 2 LGPL
tGPL , ξW = 2WGPL

tGPL , V∗
GPL =

WGPL(
ρGPL
ρm

)

(1− WGPL)+WGPL

, ηW = −

1−

(
EGPL
Em

)

ξW+

(
EGPL
Em

), and ηL =

(
EGPL
Em

)

− 1
(

EGPL
Em

)

+ξL

. The effective mass density and Poisson’s

ratio of the composite plate would be obtained as follows using the law
of mixtures [35]:

ρc(z) = ρGPLVGPL + ρm(1 − VGPL),

νc(z) = νGPLVGPL + νm(1 − VGPL).
(2)

while the effective shear modulus is defined as [36]

Gc(z) =
Ec(z)

2(1+ νc(z))
(3)

We choose three distinct GPL scattering patterns in the structure’s
thickness direction, as shown in Fig. 2 as well. These patterns’ analytical
expressions look like this.

Fig. 2. Various distribution patterns of GPL.

Table 1
The GPLs and metal layer’s geometry and material characteristics.

Source Symbol Value Unit

GPL vGPL 0.186 −

ρGPL 1.06 × 103 kg/m3

EGPL 1.01 × 109 Pa
lGPL 2.5 × 10− 6 m
wGPL 1.5 × 10− 6 m
tGPL 1.5 × 10− 9 m

Aluminum epoxy (matrix) vm 0.35 −

ρm 2601 kg/m3

Em 70 × 109 Pa

Table 2
An inventory of the properties of the ingredients that go into making the more
advanced, contemporary silicon solar cells [37].

Layey Material h E ρ ν

1 GPLRC 50 [μm] Ec ρc νc
2 Back Reflector 350 [nm] 69 [GPa] 2700 0.33
3 P-type Silicon Layer 5 [μm] 75 [GPa] 2330 0.3
4 Intrinsic (i-layer) Silicon 250 [nm] 75 [GPa] 2330 0.3
5 N-type Silicon Layer 35 [nm] 75 [GPa] 2330 0.3
6 Transparent Conductive

Oxide
200 [nm] 120 [GPa] 7140 0.25

7 Anti-Reflective Coating 70 [nm] 200 [GPa] 3170 0.28
8 Top Metal Contact 150 [nm] 83 [GPa] 10,490 0.37
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GPL − X : VGPL = 4V∗
GPL

⃒
⃒
⃒
⃒z +

h
2
−

h1
2

⃒
⃒
⃒
⃒

h1
,

GPL − O : VGPL = 2V∗
GPL

⎛

⎜
⎝1 − 2

⃒
⃒
⃒
⃒z +

h
2
−

h1
2

⃒
⃒
⃒
⃒

h1

⎞

⎟
⎠,

GPL − UD : VGPL = V∗
GPL.

(4)

Where z =
(k− 1)h1
NL − 1 − h

2, k = 1,…,NL.
Table 1 lists the characteristics of the materials that were used.
Table 2 also provides a summary of the characteristics of the mate-

rials used to create the contemporary, enhanced silicon solar cells.

2.2. Kinematic relations

The studied plate at micro size is taken for granted in this work.
According to Fig. 1, the lattice plate is h in thickness and a, b, and c in
length and breadth, respectively. The mechanical analysis of the
enhanced silicon solar cell is done in this work using modified couple
stress theory and sinusoidal shear deformation theory. Based on the si-
nusoidal shear deformation theory (SSDT), the displacement compo-
nents of the designated enhanced silicon solar cell may be expressed as
follows:

U (x,y, z, t) = U 0(x,y, t) − z
∂wW 0(x,y, t)

∂x

+
h
π sin

(πz

h

)(∂W 0(x,y, t)
∂x

− Fx(x,y, t)
)

, (5a)

V (x,y, z, t) = V 0(x,y, t) − z
∂W 0(x,y, t)

∂y

+
h
π sin

(πz

h

)(∂W 0(x,y, t)
∂y

− Fy(x,y, t)
)

, (5b)

W (x,y, z, t) = W 0(x,y, t). (5c)

where Fx and Fy are the angles of rotation of the cross sections about the
y and x axes of any point on the mid-plane of the microplate, respec-
tively, and U , V , and W are the x-, y-, and z-components of the
displacement vector. Additionally, U 0, V 0 and W 0 are the mid-plane
displacements of the microplate in x, y, and z directions. The strain
components are represented as [38] in accordance with the introduced
displacement.

E xx =
∂U (x,y, z, t)

∂x
+
1
2

(
∂W (x,y, z, t)

∂x

)2

, (6a)

E yy =
∂V (x,y, z, t)

∂y
+
1
2

(
∂W (x,y, z, t)

∂y

)2

, (6b)

E xy =
1
2

∂
∂x

V (x,y, z, t) +
1
2

∂
∂y

U (x,y, z, t)

+
1
2

∂W (x,y, z, t)
∂x

∂W (x,y, z, t)
∂y

, (6c)

E xz =
1
2

(
∂W (x,y, z, t)

∂x
+

∂U (x,y, z, t)
∂z

)

, (6d)

E yz =
1
2

(
∂W (x,y, z, t)

∂y
+

∂V (x,y, z, t)
∂z

)

. (6e)

The constitutive relations [38] of the silicon solar cell is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T xx

T yy

T yz

T xz

T xy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y11 Y12 0 0 0
Y21 Y22 0 0 0
0 0 Y44 0 0
0 0 0 Y55 0
0 0 0 0 Y66

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E xx

E yy

2E yz

2E xz

2E xy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (7)

Fig. 3. A MATLAB implementation of the hybrid algorithm combining a deep neural network with a genetic algorithm for predicting nonlinear wave propagation.
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where T xx and T yy are the normal stress factor, T yz, T xz and T xy are
the shear stress factor, Yij is the stiffness coefficient of the silicon solar
cell, and there are

Y11 =
Ei

1 − ν2i
, Y12 = Y21 =

νiEi

1 − ν2i
, Y22 =

Ei

1 − ν2i
, (8a)

Y66 =
Ei

2(1+ νi)
, Y44 =

Ei

2(1+ νi)
, Y55 =

Ei

2(1+ νi)
, i = 1,…,8. (8b)

3. Modified couple stress formulation

The additional term is added to the classical strain energy to intro-
duce the modified pair stress theory. According to the modified couple
stress theory, the plate’s strain energy is defined as follows [39]:

U =

∫

V

{(
T xxE xx + T yyE yy + 2T xzE xz + 2T xyE xy + 2T yzE yz

)

+
(
mxxχxx + myyχyy + mzzχzz + 2mxyχxy + 2myzχyz + 2mxzχxz

)}
dV,

(9)

In which:

χij =
1
2
(
θi,j + θj,i

)
, (10a)

θi =
1
2
eijkU k,j. (10b)

where eijk is permutation symbol. Also, the non-classical term of stress
(
mij

)
is presented as [20]:

mij = 2μl2χij, (11)

where μ is the shear modulus and l is the extra material length scale
parameters important to rotation gradient. As a result:

μ =
Ei

2(1+ νi)
, (12)

The set of governing equations of motion is given by Eq. (9), which
also involves carrying out mathematical operations and the initial
variation of the kinetic energy and the variation of the strain energy.
Where A is area of the plate. By operating dz on T ij and mij the resultant
components are defined as:

∫
h
2

−
h
2

dz =

∫−
h
2+h1

−
h
2

dz +

∫−
h
2+h1+h2

−
h
2+h1

dz +

∫− h4

− h3 − h4

dz +

∫0

− h4

dz +

∫h5

0

dz +

∫h5+h6

h5

dz

+

∫h5+h6+h7

h5+h6

dz +

∫
h
2

h
2− h8

dz.

(13a)

{
Nij,Mij,Vij,V

∗

ij,Qij

}
=

∫ h
2

−
h
2

(

1, z,
h
π sin

(πz

h

)
,
π
h
sin

(πz

h

)
, cos

(πz

h

))

T ijdz,

(13b)

{
Hij,Kij,K

∗

ij,Lij

}
=

∫
h
2

−
h
2

(

1,
h
π sin

(πz

h

)
,
π
h
sin

(πz

h

)
, cos

(πz

h

))

mijdz. (13c)

When the consequent components from Eqs. (13b-c) are substituted,
the strain energy takes on the following final variation form:

δU = δU1 + δU2 =

∫ ∫ {((

−
∂Nxx

∂x
−

∂Nxy

∂y

)

δU +

(

−
∂Nxy

∂x

−
∂Nyy

∂y

)

δV +

(

−
∂2Mxx

∂x2 +
∂2Vxx

∂x2 − 2
∂2Mxy

∂y∂x
+ 2

∂2Vxy

∂y∂x
−

∂Qxz

∂x

−
∂2Myy

∂y2 +
∂2Vyy

∂y2 −
∂Qyz

∂y
+

∂
∂x

(

Nxx

∂W
∂x

)

+
∂

∂y

(

Nyy

∂W
∂y

)

+
∂

∂y

(

Nxy

∂W
∂x

)

+
∂

∂x

(

Nxy

∂W
∂y

))

δW +

(
∂Vxx

∂x
+

∂Vxy

∂y
− Qxz

)

δFx

+

(
∂Vxy

∂x
+

∂Vyy

∂y
− Qyz

)

δFy) +

((

−
∂2Hyz

2∂y2 −
∂2Hxz

2∂y∂x

)

δU +

(∂2Hyz

2∂y∂x

+
∂2Hxz

2∂x2

)

δV +

(

−
1
2

∂K
∗

xz

∂y
+
1
2

∂K
∗

yz

∂x
−

∂2Hyy

∂y∂x
+

∂2Hxy

∂y2 +
∂2Hxx

∂y∂x

−
∂2Hxy

∂x2 +
∂2Lyy

2∂y∂x
−

∂2Lxy

2∂y2 +
∂2Lxy

2∂x2 −
∂2Lxx

2∂y∂x

)

δW +

(
1
2

∂2Kxz

∂y∂x
+

∂Lyy

2∂y

+
∂Lxy

2∂x
−

∂Lzz

2∂y
+

K
∗

yz

2
+
1
2

∂2Kyz

∂y2

)

δFx +

(

−
1
2

∂2Kxz

∂x2 −
K

∗

xz

2
−
1
2

∂2Kyz

∂y∂x

−
∂Lxx

2∂x
−

∂Lxy

2∂y
+

∂Lzz

2∂x

)

δFy

)}

dA,

(14)

where U1 denotes the strain energy’s classical component and
U2 denotes its non-classical component. The kinetic energy fluctuation
is written as:

δT =

∫ ∫ {(

− J 0
∂2U
∂t2 + J 1

∂3W
∂x∂t2 − J 3

∂3W
∂x∂t2 + J 3

∂2Fx

∂t2

)

δU +

(

− J 0
∂2V
∂t2 + J 1

∂3W
∂y∂t2 − J 3

∂3W
∂y∂t2 + J 3

∂2

∂t2Fy

)

δV

+

(

− J 1
∂3U
∂x∂t2 + J 3

∂3U
∂x∂t2 + J 2

∂4W
∂x2∂t2 − 2J 5

∂4W
∂x2∂t2 + J 5

∂3Fx

∂x∂t2

+ J 4
∂4W
∂x2∂t2 − J 4

∂3Fx

∂x∂t2 − J 1
∂3V
∂y∂t2 + J 3

∂3V
∂y∂t2 + J 2

∂4W
∂y2∂t2

− 2J 5
∂4W
∂y2∂t2 + J 5

∂3Fy

∂y∂t2 + J 4
∂4W
∂y2∂t2 − J 4

∂3Fy

∂y∂t2 − J 0
∂2W

∂t2 )

δW +

(

J 3
∂2U
∂t2 − J 5

∂3W
∂x∂t2 + J 4

∂3W
∂x∂t2 − J 4

∂2Fx

∂t2

)

δFx

+

(

J 3
∂2V
∂t2 − J 5

∂3W
∂y∂t2 + J 4

∂3W
∂y∂t2 − J 4

∂2Fy

∂t2

)

δFy

}

dA,
(15)

where the integration constants are defined as:

∫
h
2

−
h
2

dz =

∫
−
h
2+h1

−
h
2

dz +

∫
−
h
2+h1+h2

−
h
2+h1

dz +

∫− h4

− h3 − h4

dz +

∫0

− h4

dz +

∫h5

0

dz +

∫h5+h6

h5

dz

+

∫h5+h6+h7

h5+h6

dz +

∫
h
2

h
2− h8

dz.

(16a)

Table 3
Comparison of present results for the circular frequencies (ω) with the results of
Ref. [41] for various wave number.

Kx = Ky

2 5 8 11 14

Present 128.24 800.81 2047.45 3862.81 6239.88
Ref. [41] 128.26 800.97 2047.55 3863.09 6240.55

L. Chang et al. Aerospace Science and Technology 156 (2025) 109726 

5 



Also, the virtual work done by external forces δW of the system can
be expressed respectively as

δW =

∫ ∫

FδW dA. (17)

In which, F = Psin(Ωex t t) where P is the load intensity and Ωex t de-
notes the excitation frequency.

According to the Hamilton’s principle, five equations of motion that
govern the problem are obtained as:

− J 0
∂2U
∂t2 + J 1

∂3W
∂x∂t2 − J 3

∂3W
∂x∂t2 + J 3

∂2Fx

∂t2 +
∂2Hyz

2∂y2 +
∂2Hxz

2∂y∂x
+

∂Nxx

∂x

+
∂Nxy

∂y

= 0,
(18a)

J 3
∂2Fy

∂t2 + J 1
∂3W
∂y∂t2 − J 0

∂2V
∂t2 − J 3

∂3W
∂y∂t2 −

∂2Hyz

2∂y∂x
−

∂2Hxz

2∂x2
+

∂Nxy

∂x

+
∂Nyy

∂y

= 0,
(18b)

J 3
∂3U
∂x∂t2 − J 1

∂3U
∂x∂t2 + J 3

∂3V
∂y∂t2 − J 1

∂3V
∂y∂t2 − 2J 5

∂4W
∂x2∂t2 − J 0

∂2W
∂t2

+ J 4
∂4W
∂y2∂t2 + J 2

∂4W
∂y2∂t2 − 2J 5

∂4W
∂y2∂t2 + J 2

∂4W
∂x2∂t2 + J 4

∂4W
∂x2∂t2 −

∂2Vxx

∂x2

−
2∂2Vxy

∂y∂x
−

∂2Vyy

∂y2 + J 5
∂3Fy

∂y∂t2

− J 4
∂3Fy

∂y∂t2 − J 4
∂3Fx

∂x∂t2 + J 5
∂3Fx

∂x∂t2 +
∂

∂x

(

Nxx

∂W
∂x

)

+
∂

∂y

(

Nyy

∂W
∂y

)

+
∂

∂y

(

Nxy

∂W
∂x

)

+
∂

∂x

(

Nxy

∂W
∂y

)

+
∂2Myy

∂y2 +
2∂2Mxy

∂y∂x
+

∂2Mxx

∂x2 +
∂Qyz

∂y

+
∂Qxz

∂x
+

∂K
∗

xz

2∂y
−

∂K
∗

yz

2∂x
−

∂2Lyy

2∂y∂x
−

∂2Lxy

2∂x2 +
∂2Lxx

2∂y∂x
+

∂2Lxy

2∂y2 −
∂2Hxx

∂y∂x

+
∂2Hxy

∂x2 +
∂2Hyy

∂y∂x
−

∂2Hxy

∂y2 + F

= 0,
(18c)

J 3
∂2U
∂t2 − J 5

∂3W
∂x∂t2 − J 4

∂2Fx

∂t2 + J 4
∂3W
∂x∂t2 −

∂2Kyz

2∂y2 −
∂2Kxz

2∂y∂x
−

K
∗

yz

2
−

∂Lxy

2∂x

+
∂Lzz

2∂y
−

∂Lyy

2∂y
−

∂Vxx

∂x
−

∂Vxy

∂y
+ Qxz

= 0,
(18d)

− J 4
∂2Fy

∂t2 + J 3
∂2V
∂t2 + J 4

∂3W
∂y∂t2 − J 5

∂3W
∂y∂t2 +

∂2Kxz

2∂x2 +
∂2Kyz

2∂y∂x
+

K
∗

xz

2

+
∂Lxy

2∂y
−

∂Lzz

2∂x
+

∂Lxx

2∂x
−

∂Vxy

∂x
−

∂Vyy

∂y
+ Qyz

= 0,
(18e)

4. Solution method

4.1. Forced nonlinear wave propagation responses

In this section, the Runge–Kutta technique is used to solve the
nonlinear forced wave propagation characteristics of the silicon solar
sell. Additionally, the following formulae characterize the displacement
components:

U 0 = U 0(t)ei(Kxx+Kyy),

V 0 = V 0(t)ei(Kxx+Kyy),

W 0 = W 0(t)ei(Kxx+Kyy),

Fx = Fx(t)ei(Kxx+Kyy),

Fy = Fy(t)ei(Kxx+Kyy). (19)

in which U 0(t), V 0(t), W 0(t), Fx(t) and Fy(t) stand for five undeter-
mined functions of time. Also, i =

̅̅̅̅̅̅̅
− 1

√
, Kx, and Ky indicates wave

number in x-, and y- directions. By substituting Eqs. (13b), (13c), (16b),
and (19), into Eqs. (18a-e), a system of ordinary differential equations
can be derived.

k11U 0(t) + k12V 0(t) + k13W 0(t) + k14W
2
0(t) + k15Fx(t) + k16Fy(t)

= m11
¨
U 0(t) + m12

¨
V 0(t) + m13

¨
W 0(t) + m14

¨
Fx(t) + m15

¨
Fy(t),

(20a)

k21U 0(t) + k22V 0(t) + k23W 0(t) + k24W
2
0(t) + k25Fx(t) + k26Fy(t)

= m21
¨
U 0(t) + m22

¨
V 0(t) + m23

¨
W 0(t) + m24

¨
Fx(t) + m25

¨
Fy(t),

(20b)

k31U 0(t) + k32V 0(t) + k33W 0(t) + k34W
2
0(t) + k35W

3
0(t) + k36Fx(t)

+ k37Fy(t) + F(t)

= m31
¨
U 0(t) + m32

¨
V 0(t) + m33

¨
W 0(t) + m34

¨
Fx(t) + m35

¨
Fy(t),

(20c)

k41U 0(t) + k42V 0(t) + k43W 0(t) + k44W
2
0(t) + k45Fx(t) + k46Fy(t)

= m41
¨
U 0(t) + m42

¨
V 0(t) + m43

¨
W 0(t) + m44

¨
Fx(t) + m45

¨
Fy(t),

(20d)

{J 0, J 1, J 2, J 3, J 4, J 5} =

∫
h
2

−
h
2

ρ
{

1, z, z2,
h
π sin

(πz

h

)
,
h2

π2 sin2
(πz

h

)
,
hz

π sin
(πz

h

)
}

dz, (16b)
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k51U 0(t) + k52V 0(t) + k53W 0(t) + k54W
2
0(t) + k55Fx(t) + k56Fy(t)

= m51
¨
U 0(t) + m52

¨
V 0(t) + m53

¨
W 0(t) + m54

¨
Fx(t) + m55

¨
Fy(t),

(20e)

The present analysis makes the assumption that the plate’s initial
displacements and velocities from nonlinear forced vibration are zero,
hence one obtains

T|t=0 = 0,T,t
⃒
⃒
t=0 = 0.

(
T=U 0, V 0, W 0, Fx, Fy

)
. (21)

By resolving Eqs. (20a)–(20e), the composite plate’s nonlinear forced
vibration behaviors may be obtained. It is discovered that Eqs. (20a)–
(20e) include the in-plane, rotational, and transverse inertia terms. The
analytical solutions to Eqs. (20a)–(20e) are very challenging, if not
impossible, to acquire. Consequently, the Runge–Kutta technique [40] is

used, which is an effective approach, to get the numerical solution of
Eqs. (20a)–(20e).

4.2. Linear wave propagation

We assume the following expression

U 0 = U 0ei(Kxx+Kyy− ωt),

V 0 = V 0ei(Kxx+Kyy− ωt),

W 0 = W 0ei(Kxx+Kyy− ωt),

Fx = Fxei(Kxx+Kyy− ωt),

Fig. 4. The impact of GPLs’ distribution pattern on the W − t, Ẇ − W , and Ẅ − Ẇ diagrams of the improved silicon solar cells under external excitation.
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Fy = Fyei(Kxx+Kyy− ωt). (22)

where U 0, V 0, W 0, Fx, and Fy introduces for the wave amplitudes; ω
represents the wave frequency; Kx, and Ky are defined to determine the
wave numbers. The eigenvalue equation is obtained by substituting Eq.
(22) into Eqs. (18a–e) and then eliminating the nonlinear components
and external load.
(
[m] − ω2[k]

)
{Δ} = 0, (23)

where {Δ} =
{

U 0 V 0 W 0 Fx Fy

}T , the stiffness matrix and
mass matrix are characterized by [k] and [m], respectively.

Also, the phase velocity can be calculated by Eq. (24)

Phase velocity =
ω
Kx

(24)

5. DNN Combined with GA as a bio-inspired optimization
approach to predict nonlinear wave propagation in silicon solar
cells

The demand for more efficient energy conversion devices has
sparked significant interest in understanding the behavior of silicon
solar cells under various conditions, including nonlinear wave propa-
gation. In photovoltaic systems, nonlinearities arise from multiple fac-
tors, including material properties, geometrical configurations, and
operational conditions. Accurate prediction and analysis of nonlinear
wave propagation in silicon solar cells are critical for improving their
performance, durability, and operational efficiency. Traditional
computational methods, although effective in capturing linear wave
behavior, often fall short in predicting the complexities involved in
nonlinear wave propagation. This limitation has driven researchers to-
ward advanced modeling techniques, particularly artificial intelligence

Fig. 5. The impact of GPLs’ weight fraction on the W − t, Ẇ − W , and Ẅ − Ẇ diagrams of the improved silicon solar cells under external excitation.
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(AI) approaches. DNN has emerged as powerful tools in handling com-
plex nonlinear systems due to their ability to learn intricate patterns and
relationships from data. When combined with a genetic algorithm (GA),
which is a bio-inspired optimization technique, these two methods offer
a synergistic approach for solving nonlinear wave propagation prob-
lems. A DNN-GA hybrid algorithm leverages the learning capabilities of
DNN and the evolutionary search mechanisms of GA to optimize the
parameters governing wave propagation in silicon solar cells. The ge-
netic algorithm mimics natural selection processes, making it an effec-
tive optimization tool for navigating large and complex search spaces. It
enhances the predictive accuracy of DNN by iteratively refining its
weights and biases based on fitness evaluation, mutation, and crossover
techniques, thus optimizing the model to capture nonlinear behaviors
with greater precision. The DNN-GA approach is particularly useful in
predicting nonlinearities in the wave propagation of silicon solar cells,
where traditional physics-based models may struggle. By combining the
best of AI and evolutionary algorithms, this bio-inspired optimization
method facilitates the accurate prediction of nonlinear wave behavior.

The approach not only reduces computational costs but also improves
prediction accuracy, offering a more efficient means of analyzing and
optimizing the performance of solar cells under various environmental
and operational conditions. The DNN-GA hybrid algorithm offers several
advantages over traditional algorithms and other artificial intelligence
methods, particularly in the context of predicting nonlinear wave
propagation in silicon solar cells:

1. Enhanced Accuracy for Complex Nonlinear Systems
Traditional methods such as finite element analysis or classical

machine learning models often struggle with capturing highly
nonlinear behavior, especially in complex systems like wave propa-
gation in solar cells. The DNN-GA algorithm can better handle such
nonlinearity by leveraging deep learning’s ability to learn complex
patterns and genetic algorithms’ ability to optimize solutions across
large search spaces.

2. Optimization of Model Parameters
One of the major advantages of combining DNN with GA is the

Fig. 6. The impact of wave numbers along with various directions on the W − t, Ẇ − W , and Ẅ − Ẇ diagrams of the improved silicon solar cells under
external excitation.
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ability to optimize the neural network’s architecture and hyper-
parameters. GA helps find the optimal weights, biases, and network
configurations, improving the predictive performance of the model
and ensuring that it captures essential nonlinear dynamics more
effectively than standard optimization techniques such as gradient
descent alone.

3. Bio-Inspired Adaptability
The genetic algorithm component of DNN-GA is bio-inspired and

mimics the process of natural selection. This adaptability allows it to
explore a broader solution space and avoid local minima traps that
other optimization algorithms, like gradient-based approaches,
might encounter. It is particularly useful in dynamic or multi-
objective environments, making it more robust for complex solar
cell models where nonlinear interactions vary significantly with
changing conditions.

4. Faster Convergence in High-Dimensional Spaces
When working with high-dimensional data, such as in wave

propagation scenarios, traditional methods may struggle with slow
convergence and high computational costs. The DNN-GA algorithm,
by intelligently selecting and evolving promising candidates, can
find near-optimal solutions faster than many other algorithms,
reducing the computational time and resources required for complex
simulations.

5. Handling of Multi-Modal Solutions
Nonlinear wave propagation problems often exhibit multiple so-

lutions or modes of behavior. The genetic algorithm is designed to
handle multi-modal optimization problems effectively, ensuring that
the DNN-GA hybrid can find global optima where other algorithms
might converge prematurely to suboptimal solutions.

6. Scalability and Flexibility
The DNN-GA algorithm is highly scalable and can be adapted to

Fig. 7. The impact of length scale parameter on the W − t, Ẇ − W , and Ẅ − Ẇ diagrams of the improved silicon solar cells under external excitation.
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various problem sizes and configurations. Whether the system in-
volves small-scale wave propagation in microstructures or large-
scale solar arrays, the algorithm’s flexibility makes it suitable for a
wide range of applications, unlike more rigid or problem-specific
models.

7. Improved Generalization
By combining DNN’s capacity for learning complex, generalized

representations of data with GA’s optimization abilities, the hybrid
algorithm tends to generalize better on unseen data compared to
purely data-driven models. This is crucial for accurately predicting
the performance of solar cells under diverse operating conditions
that were not explicitly included in the training data.

8. Reduced Risk of Overfitting
Overfitting is a common problem in deep learning, where models

perform well on training data but poorly on new, unseen data. The
evolutionary search process of the GA can help mitigate this by
regularly introducing variations during the optimization process,
preventing the model from becoming too fine-tuned to specific data
sets.

These advantages make the DNN-GA algorithm particularly well-
suited for complex, nonlinear problems like wave propagation in sili-
con solar cells, where other algorithms might fall short in terms of ac-
curacy, convergence, or adaptability. Fig. 3 shows a MATLAB
implementation of the hybrid algorithm combining a deep neural
network with a genetic algorithm for predicting nonlinear wave prop-
agation. This code demonstrates how the GA optimizes the weights and
biases of a simple neural network model.

The hybrid algorithm combining a DNN with a GA, referred to as
DNN-GA, can be mathematically formulated by integrating the princi-
ples of both methods.

5.1. Neural Network Formulation

A feedforward neural network (DNN) maps an input vector x ∈ Rn

to an output vector y ∈ Rm. The neural network consists of multiple
layers, each containing a set of neurons. The relationship between the
input and output is defined by weights and biases, optimized using the
GA.

Let’s consider a simple feedforward network with L layers.

• Wl and bl represent the weights and biases of the l − th layer.
• σ(⋅) represents the activation function (e.g., ReLU, sigmoid).
• hl is the output of the l − th layer (also referred to as activations).

For the l − th layer, the transformation can be written as:

hl= σ(Wlhl− 1 + bl (25)

where:

• h0 = x is the input vector.
• hL = y is the predicted output.

The final predicted output ypred of the DNN after L layers is given by:

ypred = hL = WLσ(WL− 1σ(…σ(WLx+ b1)…)+ bL− 1) + bL. (26)

The loss function, typically Mean Squared Error (MSE), measures the
difference between the predicted output ypred and the true output ytrue:

Loss =
1
N

∑N

i=1

(
ypred,i − ytrue,i

)2
. (27)

where N is the number of training samples.

Fig. 8. The impact of GPLs’ weight fraction on the phase velocity information of the improved silicon solar cells under external excitation for various wave numbers.
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5.2. Genetic Algorithm Formulation

The Genetic Algorithm (GA) is a bio-inspired optimization technique
used to minimize the loss function by optimizing the weights and biases
WL and bL of the neural network.

The GA operates as follows:

a. Chromosome Representation
Each individual in the GA population represents a set of neural

network weights and biases, encoded as a chromosome. The chro-
mosome ci for the i − th individual is a flattened vector that combines
all weights and biases:

ci = [W1, b1,W2, b2,…,W1, b1]. (28)

b. Fitness Function
The fitness function evaluates the performance of each individual

(chromosome) based on how well the neural network predicts the
output. The fitness is inversely related to the loss function (e.g.,
MSE):

Fitness(ci) =
1

Loss(ci) + ϵ
. (29)

where ϵ is a small number to avoid division by zero.
c. Selection

The GA selects the best-performing individuals (chromosomes)
based on their fitness scores. The selection can be done using tech-
niques such as roulette wheel selection or tournament selection.

d. Crossover
Crossover generates new offspring by combining the genetic in-

formation (weights and biases) from two parent chromosomes ci and
cj. The most common crossover technique is single-point crossover,
where a random crossover point is selected, and the chromosomes
are split and recombined:

coffspring= [ci
(
1 : cross point

)
, cj

(
cross point+ 1 : end

)
. (30)

e. Mutation
Mutation introduces small random changes to the genes (weights

and biases) of the offspring, ensuring diversity in the population and
helping the algorithm escape local minima. Each gene in the chro-
mosome has a small probability Pmut of being mutated:

cmutated(k) = coffspring(k) + δ. (31)

where δ is a small random perturbation.
f. Next Generation

After crossover and mutation, a new population of chromosomes is
generated, and the process is repeated for several generations until
convergence or a maximum number of generations is reached.

5.3. DNN-GA Algorithm Flow

The overall DNN-GA algorithm combines the deep learning model
(DNN) with GA optimization and follows these steps:

⋅ Initialization:

Fig. 9. The impact of length scale parameter on the phase velocity information of the improved silicon solar cells under external excitation for various
wave numbers.
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• Randomly initialize the population of chromosomes C =
{
c1, c2,…,

cpop size
}
.

• Set the number of generations and other GA parameters (e.g., mu-
tation rate).

⋅ Evaluate Fitness:

• For each chromosome ci, set the neural network weights and biases
using ci.

• Calculate the fitness using the loss function on the training dataset.

⋅ Selection:

• Select the best-performing individuals (parents) based on their
fitness scores.

⋅ Crossover:

• Perform crossover between selected parents to generate offspring.

⋅ Mutation:

• Mutate some genes in the offspring chromosomes to introduce
diversity.

⋅ Create Next Generation:

• Replace the old population with the new population of parents and
offspring.

⋅ Repeat:

Fig. 10. The performance of a predictive model in terms of its estimated data versus measured data across three different scenarios.
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• Repeat steps 2 to 6 for a fixed number of generations or until
convergence.

⋅ Final Solution:

• The best chromosome in the final population represents the opti-
mized neural network with the best weights and biases.

6. Result and discussion

6.1. Validation

Table 3 presents a comparative analysis of circular frequency (ω)
results between the current study and those reported in Ref. [41], for
various wavenumbers. The wavenumbers evaluated range from 2 to 14,
providing insight into how the circular frequencies behave across
different propagation conditions. The first row, labeled "Present," lists
the results from the current study. For a wavenumber of 2, the circular
frequency is 128.24, increasing progressively with the wavenumber to
reach a value of 6239.88 at Kx = Ky = 14. These results are compared
with those from Ref. [41], shown in the second row. The circular fre-
quencies in Ref. [41] are similar to the present study, with a circular
frequency of 128.26 at a wavenumber of 2, and 6240.55 at a wave-
number of 14. The small discrepancies between the values are likely
attributable to numerical precision or slight methodological differences
in calculating the circular frequencies. However, the close agreement
across all wavenumbers confirms the accuracy and reliability of the
present results. This table reinforces that the model and approach
adopted in the current study are consistent with established methods in
the literature for analyzing the dynamic behavior of wave propagation
in advanced materials, such as those used in improved silicon solar cells.

6.2. Parametric study

Fig. 4 presents the analysis of nonlinear guidedwaves in improved

silicon solar cells under external excitation, focusing on the impact of
GPLs distribution patterns on system response. The figure is divided into
three subplots. Subplot 4a illustrates the variation of W over time. It
shows the system’s response under three different distribution patterns
of GPLs, labeled as GPL-X, GPL-0, and GPL-UD. The x-axis represents
time, while the y-axis shows the displacement W in meters. The
displacement exhibits a periodic behavior with peaks and valleys,
highlighting the effect of external excitation. The response for each GPL
distribution pattern varies slightly, with GPL-UD showing the highest
amplitude, followed by GPL-0 and GPL-X. This variation demonstrates
how the GPL distribution affects the mechanical response of the solar

Fig. 11. The phase velocity predictions obtained from DNN-GA and mathematical modeling across different testing samples.

Table 4
Key parameters used in both the neural network and the genetic algorithm.

Parameter Description Value

Input Size Number of input features 6
Output Size Number of outputs 3
Number of Hidden
Layers

Layers between input and output 4

Neurons per Hidden
Layer

Number of neurons in each
hidden layer

64

Activation Function Nonlinear function applied at
each neuron

ReLU

Population Size Number of chromosomes in GA
population

20

Number of
Generations

Iterations of evolution 50

Number of Parents Number of top performers
selected as parents

10

Crossover Rate Probability of crossover 0.8
Mutation Rate Probability of mutation 0.1
Crossover Type Method of combining parent

genes
Single-point crossover

Mutation Type Method of introducing random
changes

Add small
perturbations

Fitness Function Inverse of loss function (MSE) 1/MSE
Termination Criteria Condition to stop GA evolution Fixed number of

generations
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cell under dynamic loading. Subplot 4b is a phase-space plot, repre-
senting the relationship between the W and its Ẇ . The trajectories
form closed loops, typical of nonlinear oscillatory systems. Each loop
corresponds to a different GPL distribution pattern, and the differences
in the loop shapes show how the system’s energy dissipation and dy-
namic response are influenced by the GPL configuration. The GPL-UD
configuration produces the largest loop, indicating a more significant
dynamic response compared to the other patterns. Subplot 4c shows the
phase-space plot of the Ẅ versus velocity Ẇ . The intertwined loops for
the different GPL patterns further illustrate the nonlinear characteristics
of the system. Again, the GPL-UD pattern results in the largest loop size,
indicating a more pronounced effect on the system’s acceleration.

Fig. 5 illustrates the dynamic behavior of silicon solar cells in the
presence of graphene platelets under external excitation. This figure is
divided into three subplots. Subplot 5a demonstrates the temporal
response of the deflection of the solar cells, with respect to time, for
different weight fractions of GPLs (0.1, 0.2, 0.3, and 0.4 wt%). Each
colored curve corresponds to a specific GPL weight fraction. The graph
shows increasing oscillatory behavior as the GPL fraction rises, indi-
cating that the nonlinear guided wave responses become more complex
with higher fractions of GPLs. The peak amplitudes of deflections are
slightly amplified with increasing GPL content, suggesting a more sig-
nificant dynamic influence on the system’s response. Subplot 5b pre-
sents a phase-space diagram showing the relationship between velocity
and displacement. The closed, oval-shaped trajectories indicate periodic
motion, with distinct loops corresponding to different GPL weight
fractions. The figure highlights that increasing the GPL content affects
the overall shape and size of these loops, suggesting an alteration in the
system’s energy dissipation and stability behavior. Subplot 5c illustrates
the relationship between acceleration and velocity), revealing the sys-
tem’s vibrational dynamics. The overlapping elliptical curves reflect
nonlinear interactions, where higher GPL content leads to broader, more
complex trajectories. In summary, this figure captures the nonlinear
dynamic responses of improved silicon solar cells, showing that an in-
crease in GPLs’ weight fraction leads to more pronounced and complex
vibrational characteristics under external excitation.

Fig. 6 illustrates the dynamic response of silicon solar cells subject to
different wave numbers along multiple directions under external exci-
tation. The figure consists of three subplots. Subplot 6a shows the
temporal response of the deflection of the solar cells with respect to time
for varying wave numbers. The oscillations presented by each colored
curve reflect how different wave numbers influence the dynamic
response of the system. As the wave numbers increase, the deflection
patterns exhibit heightened complexity, suggesting that higher wave
numbers amplify the system’s oscillatory behavior under the applied
external excitation. Subplot 6b presents a phase-space diagram that
explores the relationship between velocity and displacement. The graph
shows various elliptical orbits, indicating periodic or quasi-periodic
motion within the system. The size and shape of the ellipses vary
based on the wave numbers, showing a noticeable shift in the dynamical
properties of the system as wave numbers increase, likely due to changes
in energy dissipation and wave propagation characteristics. Subplot 6c
depicts the relationship between acceleration and velocity, showing
complex overlapping curves. This phase-space diagram shows how the
interplay between acceleration and velocity evolves with different wave
numbers, leading to more intricate trajectories as the wave numbers
increase. The denser loops indicate stronger nonlinearities in the
response. In summary, the figure illustrates that varying wave numbers
significantly influence the nonlinear dynamic behavior of improved
silicon solar cells, with higher wave numbers resulting in more pro-
nounced and complex oscillatory patterns under external excitation.

Fig. 7 highlights the effect of varying length scale parameters on the
dynamic behavior of silicon solar cells. The figure contains three sub-
plots. Subplot 7a shows the time evolution of deflection for different
length scale. The curves indicate how the response of the solar cells

varies over time under external excitation. As the length scale increases,
the oscillatory behavior becomes more amplified, with the magnitude
and frequency of deflection increasing, indicating stronger wave prop-
agation and interaction. Subplot 7b is a phase-space plot that correlates
velocity with displacement. The elliptical trajectories change in size and
shape as the length scale parameter increases, demonstrating how this
parameter influences the periodicity and energy distribution in the
system. Subplot 7c shows the relationship between acceleration and
velocity. The denser, more complex curves with increasing length scales
suggest a more pronounced nonlinearity in the system’s vibrational
response. Overall, the figure demonstrates that larger length scale pa-
rameters lead to more complex, amplified dynamic behaviors in the
improved silicon solar cells under external excitation.

Fig. 8 illustrates the relationship between phase velocity and wave-
number for improved silicon solar cells with varying graphene platelets
weight fractions, ranging from 0.1 wt% to 0.4 wt%. The phase velocity is
plotted on the y-axis, while the wavenumber Kx = Ky is on the x-axis,
ranging from 0 to 104. As the weight fraction of GPLs increases, the
phase velocity increases as well, indicating that the incorporation of
GPLs enhances the material’s ability to support faster wave propagation.
Initially, all curves exhibit a steep rise in phase velocity for small
wavenumbers, reaching a peak before experiencing a significant drop as
wavenumber increases. This indicates a resonance-like behavior at low
wavenumbers. Beyond this drop, the phase velocity starts to increase
again with further increases in wavenumber, showing a stabilization
trend at higher values of wavenumber. The magnitude of the peak and
the subsequent values of phase velocity are higher for samples with
larger weight fractions of GPLs, which indicates the strengthening effect
of GPL reinforcement on the silicon solar cells. The results suggest that a
higher concentration of GPLs enhances the stiffness and the dynamic
response of the composite, resulting in greater phase velocities. This
behavior is critical for applications where guided wave propagation
plays a role, as faster phase velocities can improve the efficiency of
energy transfer in the solar cells, making them more effective under
external excitations. This figure emphasizes the importance of GPL
weight fraction in optimizing the performance of these improved silicon
solar cells.

Fig. 9 demonstrates the effect of the length scale parameter on the
phase velocity of improved silicon solar cells under external excitation
for different wavenumbers. The phase velocity is shown on the y-axis,
while the wavenumber is plotted on the x-axis. Various curves represent
different length scale parameters l, normalized by the plate thickness h,
with values ranging from l = h/20 to l = h/8. Similar to the previous
figure, all the curves exhibit an initial rise in phase velocity at small
wavenumbers, followed by a rapid drop, after which the phase velocity
gradually increases as the wavenumber continues to rise. The magnitude
of both the peak and subsequent phase velocities is influenced by the
length scale parameter. Larger length scale parameters, such as l =

h/8, result in higher phase velocities across the entire wavenumber
range, suggesting that the size of the structural elements in relation to
the thickness of the cell plays a critical role in determining the wave
propagation characteristics. The curves indicate that as the length scale
parameter increases, the material becomes stiffer, allowing for faster
wave propagation at both low and high wavenumbers. The resonance-
like peak observed at lower wavenumbers shows a shift in amplitude
based on the length scale, indicating that the cell’s dynamic response is
highly sensitive to its geometry. These results highlight the importance
of optimizing the length scale parameter when designing silicon solar
cells for applications involving guided waves, as it directly impacts the
efficiency of wave propagation within the material.

6.3. The outcomes of the mentioned algorithm

Fig. 10 provided shows the performance of a predictive model in
terms of its estimated data versus measured data across three different
scenarios. Each plot includes the coefficient of determination, R2, which
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quantifies how well the estimated values fit the measured data. The
R2 values in these plots—0.91512, 0.9396, and 0.9652—indicate that
the model performs well in all cases, with a higher R2 value representing
a stronger fit between the predicted and measured data. This perfor-
mance suggests that the model in question is highly capable of making
accurate predictions. In this context, the algorithm used is a combina-
tion of a DNN and a GA, referred to as DNN-GA, which integrates ma-
chine learning with bio-inspired optimization. How the algorithm
works:

1. DNN: The DNN is the core predictionmodel, structured with an input
layer, multiple hidden layers, and an output layer. It learns patterns
from the input data through nonlinear transformations in the hidden
layers. Each layer applies a weighted combination of inputs followed
by an activation function (e.g., ReLU, sigmoid), gradually adjusting
weights through the training process to minimize error.

2. In this algorithm, the DNN is trained to approximate nonlinear
functions—such as predicting the response of a solar cell under
nonlinear wave propagation. The neural network learns the rela-
tionship between the input features (e.g., physical parameters of the
solar cell, wave properties) and the output (e.g., displacement, stress,
or energy response).

3. GA: GA is an evolutionary optimization technique used to improve
the performance of the DNN. The GA optimizes the weights and
biases of the neural network by mimicking natural selection. It starts
with an initial population of random weight configurations, and
through selection, crossover, and mutation, it generates new pop-
ulations over successive generations. The fitness of each individual
(chromosome) is evaluated based on how well the corresponding
neural network performs on the task, as measured by its R2 value or
mean squared error (MSE).

4. Optimization Flow:
○ Initialization: The GA initializes the weights and biases randomly.
○ Training DNN: For each set of weights, the DNN is trained and
evaluated.

○ Fitness Evaluation: The GA calculates the fitness of each chro-
mosome based on the error between the predicted and real data (in
this case, visualized in the plot).

○ Selection and Reproduction: The best-performing networks
(those with higher R2) are selected as parents to produce offspring
through crossover and mutation. These new weight configurations
are then tested in the next generation.

○ Convergence: This process continues for several generations until
the model reaches an optimal configuration of weights and biases
that minimizes the error.

As mentioned in Fig. 10, the high R2 values in the plots reflect the
model’s predictive capability, showing that the DNN-GA algorithm
effectively captures the underlying nonlinear behavior of the system
being modeled. For instance, the R2 values of 0.91512, 0.9396, and
0.9652 suggest that the majority of the variance in the measured data is
explained by the model’s predictions, indicating a high level of accuracy
in estimating the system’s response. By combining the learning power of
deep neural networks with the optimization strength of genetic algo-
rithms, this approach leverages both gradient-based learning and
evolutionary search, allowing for highly accurate predictions in complex
systems like nonlinear wave propagation in silicon solar cells.

Fig. 11 compares the phase velocity predictions obtained from DNN-
GA and mathematical modeling across different testing samples. The x-
axis represents the testing sample number (ranging from 0 to 150), and
the y-axis represents the phase velocity in a range from 1000 to 1400
units. The red circles in the plot indicate the results from mathematical
modeling, while the blue plus signs represent the predictions from the
DNN-GA model. The two sets of points are plotted together, allowing a
comparison of how closely the DNN-GA model predicts phase velocity

compared to the results from traditional mathematical models. From a
general observation of the figure, it is clear that the predictions made by
the DNN-GA are very close to those derived from mathematical
modeling. In most cases, the blue crosses overlap with or are very close
to the red circles, suggesting that the DNN-GA has learned the under-
lying relationship between the input variables and the phase velocity
with high accuracy. The scattered nature of the points reflects the
variability in phase velocity across different samples, likely due to dif-
ferences in the properties of the system (e.g., wave properties or material
characteristics) being modeled. This comparison demonstrates the
effectiveness of DNN-GA as a predictive tool for phase velocity in
complex systems, where it can approximate results from well-
established mathematical models. The ability of DNN-GA to capture
nonlinearity and generalize from training data allows them to provide
accurate predictions, as shown in the figure. It also highlights the DNN-
GA’s potential to be used as a surrogate model, capable of performing
real-time predictions with reduced computational effort compared to
more traditional methods. Thus, the figure effectively demonstrates the
alignment between DNN-GA predictions and mathematical modeling,
suggesting that the DNN-GA can be a reliable tool in predicting phase
velocity for complex physical systems.

In the DNN-GA algorithm for predicting nonlinear wave propaga-
tion, the key parameters used in both the neural network and the genetic
algorithm are outlined in Table 4. These parameters influence both the
structure of the neural network and the performance of the optimization
process.

7. Conclusion

In this study, the nonlinear guided wave propagation in improved
silicon solar cells reinforced by graphene platelet nanocomposites was
comprehensively analyzed. The microplate model of the silicon solar
cells was developed using the modified couple stress theory, incorpo-
rating size-dependent effects, while the sinusoidal shear deformation
theory was employed to accurately represent shear deformation.
Nonlinear equations governing the dynamic response of the
nanocomposite-reinforced solar cells were derived, and the Run-
ge–Kutta method was applied to solve these equations numerically. The
study revealed that the inclusion of GPL nanocomposites significantly
enhanced the mechanical performance of the silicon solar cells, which
resulted in higher phase velocities for guided waves across various
wavenumbers. It was demonstrated that increasing the GPL weight
fraction improved the material stiffness and overall wave propagation
efficiency. The results also highlighted the strong dependence of the
phase velocity on the length scale parameter, particularly at low
wavenumbers, showing that larger length scale parameters led to a
noticeable increase in phase velocity. The findings confirmed that the
nonlinear behavior of the guided waves was effectively captured by the
coupled framework of MCST and SSDT. Additionally, the Runge–Kutta
method proved to be a robust and reliable tool for solving the complex
nonlinear equations of motion. In this investigation, an intelligent model
based on deep neural networks as an artificial intelligent algorithm
combined with a genetic algorithm as a bio-inspired optimization
approach, was employed to predict nonlinear phenomena in guided
waves within the solar cell, using datasets generated from mathematical
simulations. Overall, this research offered important insights into the
design and optimization of next-generation silicon solar cells using GPL
nanocomposites. By enhancing the phase velocity and improving wave
propagation characteristics, the study provided a solid foundation for
further developments in solar cell technologywhere guided waves play a
crucial role in performance enhancement. Future work could focus on
refining the models to include more complex boundary conditions and
additional material properties, expanding the potential applications of
these nanocomposite-reinforced solar cells in energy harvesting systems.
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