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thermoelectric compounds proficient of directly transform-
ing heat into power and vice versa, have emerged as a focal 
point for innovation in power generation and cooling sys-
tems [2]. The escalating demand for electrical appliances, 
coupled with rising greenhouse gas emissions from air 

1 Introduction

Over recent years, the quest for sustainable energy solutions 
and advanced energy conversion technologies has led to a 
surge in research across various sectors [1]. Among these, 
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Abstract
The structural, optoelectronic, and thermoelectric features of A2TlRhF6 (A = K, Rb) have been computed using the most 
versatile DFT-dependent FP-LAPW method. The calculated structural parameters, including formation energy, tolerance 
factor, and energy versus optimized volume plots, provide clear evidence of the structural and thermodynamic stability 
of the studied compounds. The results of band structure and density of states (DOS) reveal that studied compounds are 
semiconducting materials. The energy band gap of 2.98 eV and 2.97 eV has been found for K2TlRhF6 and Rb2TlRhF6 
respectively. The optical properties of the compounds are studied with incident photon energy. The maximum absorption 
and minimum reflectivity and loss explore its effective application in optical devices. The compounds absorption in the 
UV-visible range makes them ideal candidates for solar cells. In addition, transport properties are examined in detail, dem-
onstrating significant dependence on temperature and chemical potential as demonstrated by the assessed thermoelectric 
parameters. In order to evaluate the transport features versus the chemical potential and temperature, the power factor 
(PF), thermal conductivity, figure of merit, electrical conductivity, and Seebeck coefficient are computed. Our outcomes 
can be useful for future experimental studies to evaluate A2TlRhF6 (A = K, Rb) for applications involving energy from 
renewable sources.
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conditioners and refrigerators, has exacerbated the global 
energy crisis. In response, efforts have been made to explore 
alternatives that can address this growing energy demand 
and alleviate environmental concerns [3]. Renewable energy 
technologies, including solar panels, wind energy, hydro-
gen fuel cells, and biomass, have been recognized for their 
potential to tackle the twin challenges of energy scarcity and 
environmental degradation [4]. Thermoelectric materials, in 
particular, are attracting attention for their unique ability to 
harness waste heat from industrial processes and convert 
it into valuable electrical energy. This approach to power 
generation, leveraging thermoelectric technology, holds the 
promise of significantly enhancing the efficiency of energy 
conversion systems by repurposing otherwise discarded 
heat energy into a useful electrical form [5].These devices 
are pivotal in the direct conversion of heat into electricity 
and have been the focal point of extensive research aimed 
at addressing thermal pollution and mitigating energy scar-
city. They are seen as key contributors to fostering a sus-
tainable and comfortable future environment [6]. The role 
of thermoelectric-based power generation (TEG) is pivotal 
in transforming excess heat energy into electrical power. 
This alternative, eco-friendly technology is key to convert-
ing waste-heat energy into electricity, thereby boosting the 
overall efficiency of energy conversion systems [7]. A func-
tions by leveraging the Seebeck effect (S), which elucidates 
how a temperature differential (T) across a thermoelectric 
material creates a potential difference, propelling charge 
carriers within a circuit [8]. The efficiency of thermoelec-
tric materials is encapsulated by the figure of merit. This 
formula represents the balance between thermal and elec-
trical transport, where S denotes the Seebeck coefficient, σ 
is electrical conductivity, κ stands for thermal conductivity, 
and T represents temperature [9, 10]. The pursuit of high 
ZT values involves optimizing these variables to enhance 
material efficiency for thermoelectric applications. Thermo-
electric generators allow heat to converted directly into they 
have been the subject of extensive research on electricity 
[11–14]. TEGs are consequently anticipated to lessen ther-
mal pollution and energy shortages. They will contribute to 
creating a comfortable atmosphere going forward. A crucial 
phase in the production of clean, renewable energy is the 
conversion of heat into electrical energy using thermoelec-
tric genera tors. The Seebeck coefficient has been used to 
demonstrate the potential gradient between various thermo-
electric material interactions. [15–16].

Recent advancements in TEG technology have high-
lighted the potential of vacancy-ordered double perovskites, 
such as K2PtCl6, as promising thermoelectric materials. 
These compounds are gaining attention as viable alterna-
tives to lead halide perovskites, offering non-toxicity, flex-
ibility, reliability, wide carrier diffusion lengths, tunable 

band gaps, and robust air stability [17, 18]. Their appeal is 
further magnified by their flat valence bands, which are con-
ducive to effective thermoelectric performance. Research 
into vacancy-ordered double perovskites has unveiled mate-
rials with outstanding thermoelectric properties. Investiga-
tions by Huma et al. [19] on Cs2SnI6 and Rb2SnI6, and by 
Mahmood et al. on Cs2GeCl/Br6 [20] have reported promis-
ing power factor (PF) and ZT values. Theoretical explora-
tions by Ullah et al. have proposed K2OsCl6 and K2OsBr6 
[21] as potential thermoelectric materials, alongside cal-
culations that underscore the thermoelectric virtues of 
Cs2NbI6 [22]. Lot of double perovskites was employed such 
as Rb2TlRhF6 [23], A2YAuI6 (A = Rb, Cs) [24], A2GeSnF6 
(A = K, Rb, Cs) [25] for thermoelectric applications. Qaid 
et al. explored the physical properties of Rb2XRhF6 (X = Li, 
Ag) employing DFT for renewable energy appliances [26]. 
A lot of perovskites, including Rb2ASbX6 (A = Tl, Cu & 
X = I, Cl) [27], AcXO3 (X = Cr, Fe) [28], Cs2BB’F₆ (B = Rb, 
In, Na and B’=Ir, As, Rh) [29], K2NaGaBr6 and K2RbTlBr6 
[30], and K2TlAsX6 (X = Cl, Br) [31], for optoelectronic and 
renewable applications by using density functional theory. 
Different perovskites compounds such as, RbMO3 (M = Np, 
Pu) [32], Cs2MGaBr6 [33], K2GeNiX6 (X = Br, I) [34], 
A3XN (A = Co, Fe; X = Cu, Zn) [35], K2GeMnX6 (X = Cl, 
Br, I) [36], A2CuMCl6 (A = K, Rb; M = Sb, Bi) [37], Ba2Al-
NbO6 [38], K2PtBr6 [39] were utilized for energy harvesting 
applications. Mishra et al. explore the structural and opto-
electronic features of Ca3SbCl3 halide perovskite by DFT 
for solar cell applications [40]. A number of composites are 
studied such as Cs2LiInBr6 [41], Ca3SbBr3 [42], Cs2CuSbH6 
(H = Cl, Br, I) [43], Ca3AsCl3 [44], Mg3AsCl3 [45], Sr3PnCl3 
(Pn = P, As, Sb) [46], Mg3AsBr3 [47] for energy applications 
using density functional theory.

This study explore A2TlRhF6 (A = K, Rb) double 
perovskite compounds, which have a comparable chemi-
cal composition and structure to previously reported double 
perovskites, to identify high-ZT materials. This indicates 
that our computed outcomes have comparable electrical 
and structural characteristics. These materials may have 
distinctive characteristics such as low effective masses and 
excellent carrier mobility, making them advantageous for 
electrical and thermoelectric uses. As per our understand-
ing very limited work on these compounds. The goal of this 
effort is to enhance the thermoelectric capabilities of dou-
ble perovskites by substituting the K and Rb atoms for the 
A atom. We have thoroughly explored the optoelectronic, 
structural and transport properties of A2TlRhF6 (A = K, Rb) 
by DFT. The studied compounds are categorized as Fluoro 
perovskites due to their fluoride-based anionic composi-
tion, specifically the presence of fluorine atoms in their 
crystal structure. Our results will inspire the researchers and 
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scientists to experimental manufacture the devices based on 
A2TlRhF6 (A = K, Rb) perovskites.

2 Computational Methodology

This study determined the structural, thermoelectric, and 
optoelectronic features for A2TlRhF6 (A = K, Rb) using the 
most versatile DFT-dependent FP-LAPW [48] approach, 
which has been utilized on the basis of the WEIN2K code 
[49]. Moreover, we have applied the generalized gradient 
approximation (GGA) through the Perdew-Burke-Ernzer-
hof (PBE) procedure to figure out the exchange-correlation 
capability of the double perovskite (DP) bulk structure [50]. 
To investigate their electronic structures, such as the bulk 
modulus, ground state lattice constants, and space group, 
the cubic phase of the materials under investigation has 
been adjusted. Ground-state characteristics might be com-
puted at the time optimization level by using energy dis-
charges in the Murnaghan equation of state [51]. Energy 
optimization in the 104 Ry range lowered the strain tensions 
between atoms. The mBJ potential with and without SOC 
has also been employed for analyses of the electronic char-
acteristics of the examined materials [52]. The waveform 
was generated using the basis of plane waves, an average 
number of the reciprocal mesh vector cut-off, and Rmin

MT , 
which denotes the minimum radius of the muffin-tin sphere 
(RMT). The RMT for atoms was set to the maximum value 
that could be achieved, i.e., R

K/Rb
MT  = 2.5, RT l

MT  = 2.2, 
RRh

MT  = 2, and RF
MT  = 1.8 to avoid atomic sphere overlap. 

To achieve convergence, a strongly dense mesh with 100k 
points was applied to the specimen in the Brillouin Zone 
(BZ). Specifically, the convergence of charge and energy 
among successive cycles produced values like 0.0001e and 
0.0001Ry, which improved the results. Optical properties 
have been evaluated using Kramers-Kronig relations which 
is given as,

ε1(ω) = 1 + 2p
π

∫ ∞
0

ώε2(ώ)( ′
ω2 −ω2

)dώ (1)

The optimized electrical configurations using mBJ and the 
convergent energy have been utilized to compute the charge 
transport features by means of the Boltztrap algorithm [53], 
which is based on Boltzmann-transport theory. A fine grid 
mesh (42 × 42 × 42) has been used for the thermoelectric 
characteristics computation. The thermoelectric figure of 
merit was computed by the given formula,

ZT = S2 σT
K  (2)

3 Results and Discussion

3.1 Structural Properties

The crystal structures of the compounds A2TlRhF6 (A = K, 
Rb) with space group Fm-3 m #225 were employed for all 
calculations. The atomic positions for A2TlRhF6 (A = K, Rb) 
are Rb/K (0.25, 0.25, 0.25), F (0, 0, 0.21850), Tl (0, 0, 0.5) 
and Rh (0, 0, 0). Figure 1 presents the crystal structure of 
A2TlRhF6 (A = K, Rb). It is made up of 12 stacked F atoms 
separating the two octahedra, TlF6 and RhF6. These octahe-
dra create spaces in which K/Rb atoms position themselves. 
Inside the structure, this octahedral spinning pattern remains 
constant. The parabolic energy versus volume plots, shown 
in Fig. 2, is the result of fitting data on energy into the Mur-
naghan equation [51] of state for determining the ground 
state energy. For structural stability, we have computed the 
tolerance factor of the examined compounds. The ground 
state energy and tolerance factor are represented as follows:

Etot (V ) = Eo (V ) + BoV

B́

(
B

′
− 1

)
[

B

(
1 − Vo

V

)
+

(
Vo

V

)B́

− 1

]

 (3)

To assess the ingredient’s stability while preserving overall 
stability, the tolerance factor ( τ ) is computed [54, 55].

τ = rA + rx√
2( rRh+rTl

2 + rx)  (4)

Here rA, rRh, rTl, and rX represent the radius of K/Rb, Rh, 
Tl and F atoms respectively. For stable cubic perovskites, 
Goldsmith’s criteria usually approach unity under ideal 
conditions. Specifically, the calculated tolerance factors 
for A₂TlRhF₆ (A = K, Rb) are 1.003 and 1.06, respectively, 
which confirm the structural stability of these compounds 
within the ideal range [56]. Our calculated values are dis-
played as lines in the aforementioned range in Table 1. The 
materials under consideration are therefore stable in their 
cubic configuration. The following equation was used to 
determine the formation energy in order to verify the ther-
modynamic stability:

EF =
EK/RbTlRhF6 −

(
2EK/Rb + ETl + ERh + 6EF

)
10

 (5)

It is evident from Table 1’s negative formation energy esti-
mates that the materials on the mentioned list are thermally 
stable and acceptable for synthesis [57, 58].
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Fig. 2 Energy versus volume optimization curves of a K2TlRhF6b Rb2TlRhF6

 

Fig. 1 Crystal structure of double perovskites A2TlRhF6 (A = K, Rb)
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energy charts show values between − 10 and 10 eV. States in 
the valence band (VB) are found at negative energy, whereas 
states in the conduction band (CB) are visible at positive 
energy. TDOS displays the total number of distinct states in 
both the conduction and valence bands. The valence band is 
enriched with the F states, as depicted in Fig. 4. From TDOS 
plots, most of the energy states are found in valance band 
VB. It is worth mentioning that the results of TDOS are in 
route with the band structure outcomes.

The computed outcomes of the partial density of states 
are illustrated in Fig. 5a, b. For K2TlRhF6, the valance band 
is formed due to the hybridization of Rh-4d and F-2p and 
the minimal contribution of Tl-6s states. The conduction 
band is formed with Rh-4d states and electrons from Tl-6p 
orbitals, and the energy states of K are found away from the 
Fermi level, as portrayed in Fig. 5a. Figure 5b demonstrates 
that Rh-4d orbitals, Rb-d, and Tl-6s states make up the con-
duction band of Rb2TlRhF6. Moreover, the V.B is formed 
owing to the hybridization of Tl-6s, Rh-4d, and F-2p states, 
as indicated in Fig. 5b.

3.3 Optical Properties

In order to comprehend the critical significance of the pro-
posed material for optoelectronics and its uses in solar cells, 
its optical characteristics were thoroughly investigated. We 
analyzed the optical enactment of the evolution between the 
valence and conduction bands. The optical characteristics 
that materials possess are revealed by their interaction with 
light.

One important variable that helps explain how a material 
reacts to electromagnetic radiation is the complex dielectric 
function ε (ω) [63]. It combines contributions from lattices 
and electronic systems. Dielectric function is given as,

ε (ω) = ε1 (ω) + iε2 (ω) (6)

The real portion accountable for enlightening the electronic 
polarizability is symbolized by 1 (), although the imaginary 
part associated to the materials electronic absorption of 
incident radiations is designated by ε2 (ω). The most well-
known Kramers-Kronig equations [64] link the dielectric 
function’s real and imaginary aspects.

The imaginary part is given as,

3.2 Electronic Properties

Electronic properties refer to the characteristics and behav-
iors of majority charge carriers in materials, including their 
energy levels, mobility, conductivity, and interactions. Elec-
tronic properties include the study of the band structures 
along with their density of states (DOS) [59]. The band 
structure describes the distribution of electronic bands in a 
material. It determines whether a material is an insulator, 
conductor and semiconductor. The distribution of available 
states of charged particles in a material at diverse energy 
levels can be described by its DOS. It provides details on 
how many states are present at a specific energy.

We have computed the band structure of A2TlRhF6 
(A = K, Rb) double perovskites by using the TB-mBJ and 
mBJ + SOC potentials to examine the electronic structure 
characteristics as shown in Fig. 3a–d. The band gaps of 
3.02 eV and 2.99 eV has been detected for K2TlRhF6 and 
Rb2TlRhF6, respectively, by Tb-mBJ potential. The pur-
pose of employing SOC is to get precise band gap measure-
ments in relation to experiment-derived values [60]. For 
this reason, we examined the band gaps corresponding to 
K2TlRhF6 (Eg = 2.98 eV) and Rb2TlRhF6 (Eg = 2.97 eV) by 
using mBJ + SOC. It is significant to note that both tested 
compounds have a direct band gap because conduction band 
minima CBM and valance band maxima VBM take place 
at the “L-L” symmetry points. Interestingly, direct band 
gap compounds are more favorable for solar cell applica-
tions. In another study the band gap of Rb2TlRhF6was found 
3.2 eV which is tabulated in Table 2. Therefore, the com-
pounds under consideration could be utilized to produce 
solar energy cells. As the atomic numbers of A (K, Rb) have 
grown, the band gap has been mitigated. This can be related 
to the familiar inter-site exchange interactions. The num-
ber of orbital overlaps that coincide has a direct correlation 
with this and scales inversely with the lattice constants [24]. 
While in another study, band gap of Rb2TiCl6 was found to 
be 2.99 eV by mBJ and 2.94 eV by mBJ + SOC potential 
[61]. Murtaza et al. found the indirect band gap of 0.9 and 
1.95 eV for RbInBr3 and RbInCl3 respectively [62].

The computed outcomes of the total density of states are 
portrayed in Fig. 4a, b. In order to confirm the results of 
the band structure, the total density of states (TDOS) has 
been calculated. For both the PDOS and TDOS diagrams, 
the Fermi level is represented by a vertical dashed line. The 

Table 1 Calculated lattice parameter a (A°), bulk modulus B, its derivative BP, the minimum total energy Etot, formation energy Ef and tolerance 
factor
XC a (Å) V (a.u3) B (GPa) B.P Etot(Ry) Ef(eV/atom) Tolerance factor
K2TlRhF6 9.18 1306.86 54.71 4.21 – 53756.148 – 2.35 1.003
Rb2TlRhF6 9.23 1328.03 54.68 4.24 – 63273.590 – 2.343 1.06
Others work [23] 9.26 1339.6 46.9 5 – 63273.500
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dielectric function are 4.89 at 3.11 eV for K2TlRhF6 and 
4.97 at 3.07 eV for Rb2TlRhF6. The static values ε1 (0) are 
found to be 2.17 and 2.21 for K2TlRhF6 and Rb2TlRhF6, 
respectively. Remarkably, static function value ε1 (0) and 
highest value of ε1 (ω) of Rb2TlRhF6 is superior owing to 
slighter energy band-gap as compared to K2TlRhF6 com-
pound. Several double perovskites exhibit comparable 
behaviour as reported [24, 25]. The energy band gaps and 
dielectric constant are correlated by Pens model [65] as 
given as;

ε2 (ℏω) = 2πe2

Ωεo

∑
|ψc

k| u.r |ψv
k |2 δ (Ec

k − Ev
k − E) (7)

The calculated results of the complex dielectric CD constant 
ε (ω) are represented in Fig. 6a, b. The peak values of real 

Table 2 Calculated energy bandgap (in eV) by different potentials mBJ 
and mBJ + SOC
Properties Tb-mBJ mBJ + SOC Others work [23]
K2TlRhF6 3.02 2.98
Rb2TlRhF6 2.99 2.97 3.2

Fig. 3 Representations of the band structures of a K2TlRhF6 b Rb2TlRhF6 using the TB-mBJ and TB-mBJ + SOC approximation

 

1 3



Journal of Inorganic and Organometallic Polymers and Materials

The amount of light which can travel through a substance 
depends on its refractive index. A substance’s refractive 
index measures how light react with it [66]. Extraordinary 
refractive indices allow light to enter materials more gradu-
ally, which origins a correspondingly larger alteration in the 
route of the light inside the substance. Figure 5c displays 

ε1 (0) ≈ 1 + (ℏωp/Eg)2 (8)

Figure 6b shows the plot of the imaginary dielectric constant 
for the examined A2TlRhF6 (A = K, Rb) double perovskites. 
The extreme values of ε2 (ω) are 4.71 at 3.36 eV (K2TlRhF6) 
and 4.74 at 3.33 eV (Rb2TlRhF6).

Fig. 4 Representations of the TDOS of a K2TlRhF6b Rb2TlRhF6 using the Tb-mBJ approximation
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Fig. 7b. To find the absorption coefficient, use the following 
relation: 

I (ω) = 4πkω
λ  (10)

Figure 7b reveals that the maximum value of absorption 
for K2TlRhF6 is 109 × 104 cm-1 at 7.76 eV and Rb2TlRhF6 
116 × 104 cm-1 at 7.98 eV, as observed. The first absorption 
peak has been observed for both compounds near the visible 
region. As demonstrated in Fig. 7b, it has been revealed that 
the examined compounds are capable of absorbing electro-
magnetic energy from the (UV-visible) with wavelengths of 
160–522 nm for K2TlRhF6 and 155–523 nm for Rb2TlRhF6. 
This provides even more credibility to the applicability of 
these materials in the field of solar energy. According to 
optical absorption data, these compounds have the ability 
to absorb a broad spectrum of electromagnetic radiation, 
including UV-visible light, while maintaining their electri-
cal properties. These results suggest that these compounds 
are useful in solar cells and optoelectronic applications.

Reflectivity is a crucial optical characteristic that quan-
tifies the precise amount of incident light bounced off a 
material’s surface in relation to the incident power [67]. 
Reflectivity can be calculated as,

R (ω) = (n−1)2+k2

(n+1)2+k2  (11)

The anticipated reflectivity is presented in Fig. 7c. The 
reflectivity static values are tabulated in Table 3. Using 
this figure, the (R (0)) for A2TlRhF6 (A = K, Rb) have been 

the calculated refractive indices for the examined double 
perovskites. The static n(0) values are tabulated in Table 3. 
The maximum value of n (ω) is perceived to be 2.27 at 
3.15 eV (K2TlRhF6) and 2.29 at 3.13 eV (Rb2TlRhF6).

The computed results of the extinction coefficient K (ω) 
are displayed in Fig. 6d. We analyze the extinction coef-
ficient K (ω) of the A2TlRhF6 (A = K, Rb), with a focus on 
incoming photon energies in the range of 0 to 10 eV. The K 
() is a measurement that shows how well a substance reflects 
or absorbs light or radiation at a particular wavelength of 
light. The peak values of K () are witnessed at 3.55 eV and 
3.54 eV for K2TlRhF6and Rb2TlRhF6 respectively.

The simulated outcomes of conductivity σ (ω) are por-
trayed in Fig. 7a. The electronic conduction is due to optical 
conductivity σ (ω). The optical conductivity is given as, 

σ (ω) = ω
4π Imε (ω)  (9)

For K2TlRhF6, the supreme computed σ (ω) is 3554 (Ω.m)-1 
at 7.85 eV, for Rb2TlRhF6 3806 (Ω.m)-1 at 7.63 eV. Fig-
ure 7a indicates that σ (ω) values are zero underneath the 
optical band gap, indicating that charge carriers require 
greater anticipation to engage in electrical transport. The 
charge carriers become excited by the photon, whose energy 
equals the optical band-gap from which σ (ω) acquires its 
values. When photons of a suitable frequency happen on a 
material surface, σ (ω) likewise unveils the same pattern as 
ε2 (ω).

The absorption coefficient α () of a substance indicates 
how much light it absorbs. The estimated results of absorp-
tion coefficient of A2TlRhF6 (A = K, Rb), are presented in 

Fig. 5 Representations of the PDOS of a K2TlRhF6b Rb2TlRhF6 using the Tb-mBJ approximation
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estimated to be 5%. Values below 35% are found in the R 
(ω) observable range. This shows that the highest amount 
of visible photons may be absorbed by the investigated 
double perovskites A2TlRhF6 (A = K, Rb). Therefore, these 
compounds are suitable for the usage in solar cell tenders. 
The energy that a fast moving electron loses when passing 
through an ingredient is calculated using the loss function. 
The computed fluoro A2TlRhF6 (A = K, Rb) perovskites 
loss function is demonstrated in Fig. 7d. The region where 
absorption is most significant has very little energy loss. 
Two peaks have been identified in the specified energy 
range of 0–10 eV. In the visible zone, there is no energy loss. 
The greatest maximum levels of K2TlRhF6 and Rb2TlRhF6 
are regarded as 8.93 eV and 8.73 eV, respectively.

Table 3 Calculated optical and transport properties by Tb-mBJ poten-
tial

Material property K2TlRhF6 Rb2TlRhF6 Oth-
ers 
work 
[23]

Optical 
properties

ε1(0) 2.18 2.21 2.12
n(0) 1.47 1.48 1.45
R(0) 0.037 0.038

Transport 
properties 
(300 K)

σ/τ(Ωms)−1(1018) 1.80 1.86
S(µVK) 247 244
kl(W/mK) 0.99 1.02
Ke (W/mKs)(1015) 0.043 0.043
ktot (W/mKs)(1015) 1.03 1.06
PF(1011W/K2ms) 1.10 1.11
ZT 0.031 0.03

Fig. 6 The calculated energy dependent optical parameters a real part of the dielectric function b imaginary part of the dielectric function c refrac-
tive index coefficient and d extinction coefficient forA2TlRhF6 (A = K, Rb)
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pollution. The computed thermoelectric parameters at room 
temperature are tabulated in Table 3.

The Seebeck effect, which was discovered in 1821 by 
German scientist Tomas Joan Seebeck, is used to power 
thermoelectric generators. When a gradient of temperature is 
established between the two intersections, the Seebeck coef-
ficient is used to measure the potential difference between 
both of the distinguishing conductors or semi-conductors. 
The Seebeck effect occurs when an object experiences a tem-
perature gradient because charge carriers from the warmer, 
more heated region go to the colder, more concentrated area, 
increasing electron concentrations. The thermoelectric effi-
ciency of the material is influenced by the potential gradient, 
which is determined by using the Seebeck coefficient (S) as 
a result of the two distinct contacts of metal temperatures. 
The simulated results of Seebeck coefficient against temper-
ature are displaced in Fig. 8a. At room temperature, the val-
ues of Seebeck coefficients are 247µVK-1 and 244µVK-1 for 

3.4 Thermoelectric Properties

It is possible to convert excess heat into useful electri-
cal energy by using thermoelectric materials. Perovskites 
are more appealing because of their affordability, low 
cost, excellent electrical conductivity, and environmental 
friendliness [68–70]. Therefore, in order to calculate the 
thermoelectric variables for A2TlRhF6 (A = K, Rb) double 
perovskites, which include power factor, lattice and thermal 
conductivities, figure of merit ZT, electrical conductivity 
and Seebeck coefficient. The BoltzTraP code coupled with 
Wien2k software has been employed to simulate the trans-
port properties of the examined perovskites. The A2TlRhF6 
(A = K, Rb) double perovskites thermoelectric TE character-
istics are investigated in order to evaluate how well thermal 
energy can be transformed into electrical power. Employ-
ing TE materials, wasted heat energy can be changed into 
electricity to help solve the energy crisis and minimize 

Fig. 7 The calculated energy dependent optical parameters a optical conductivity b absorption coefficient c optical reflectivity and d energy loss 
function forA2TlRhF6 (A = K, Rb)
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the electronic thermal conductivity of K2TlRhF6 and 
Rb2TlRhF6 increases as the temperature goes up, reaching 
its highest value of 0.65 × 1015 W/mKs and 0.63 × 1015 W/
mKs, respectively, at 1200 K. Interestingly, both double 
perovskites reveal similar values of κe at room tempera-
ture, as presented in Table 3. These estimated high values of 
electronic thermal conductivity are in line with the literature 
[72].

The Slacks model has been used to determine κl because 
the BoltzTraP algorithm considers that the phonon influence 
on thermal conductivity (κl) is negligible [73]. According to 
this model, one can determine κl in the following way:

κl = B
Mδn1/3Θ3

D

T γ2  (12)

Where, γ  represents Grüneisen parameter, M is molar 
mass, A is constant having value 3 × 10− 8, V is volume, Θ

K2TlRhF6 and Rb2TlRhF6 respectively. Seebeck coefficient 
values below zero indicate n-type electrical transportation, 
while Seebeck coefficient values above zero indicate p-type 
behavior [63]. Because both examined compounds have a 
positive Seebeck coefficient (S > 0), the results indicate that 
they are p-type materials [71].

The elevated electrical conductivity of both examined 
perovskite materials against temperature can be observed in 
Fig. 8b, which further indicates that the compound σ/ rises 
with temperature. Thermionic emission induces thermal 
energy to surpass the work function of substances in semi-
conductors, which explains why their electrical conductiv-
ity usually rises with temperature. The value of electrical 
conductivity rises with temperature, and both compounds 
show similar values of electrical conductivity up to 1200 K.

Figure 8c,d shows the simulated results of the electronic 
and lattice thermal conductivity of the analyzed A2TlRhF6 
(A = K, Rb) perovskite compounds. According to Fig. 8c, 

Fig. 8 Computed results of ofA2TlRhF6 (A = K, Rb) with temperature using the TB-mBJ approximation a seebeck coefficients b electrical conduc-
tivity c electronic thermal conductivity d lattice thermal conductivity
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from 300 to 1200 K, this value of S reduces. The value of S 
at 700 K is 2053 µV/K at 1.31 eV, and 1165 µV/K at 1.21 eV 
has been found for K2TlRhF6. The values of S for n-type 
Rb2TlRhF6 are 2846 µV/K (0.76 eV) at 300 K, 2024 µV/K 
(1.27 eV) at 700 K, and 1148 µV/K (1.20 eV) at 1200 K. 
The optimum Seebeck coefficient value has been observed 
by both of these materials around 300 K, and as temper-
ature rises, this value starts to drop because of a surge in 
holes and electron conductivity caused by growing thermal 
energy [69]. The power factor plots for A2TlRhF6 (A = K, 
Rb) perovskite with respect to chemical potential can be 
seen in Fig. 10c, d. The graphs demonstrate that the small-
est power factor for the compounds under consideration 
occurs at 300 K. The values of PF at 300 K are 4.29 × 1011 
W/mK2s and 4.26 × 1011 W/mK2s for n-type K2TlRhF6 and 
Rb2TlRhF6, respectively. For the p-type region, the value 
of PF increases from 300 K to 1200 K. Interestingly, the 
n-type region shows a greater value of PF as compared to 
the p-type region, as depicted in Fig. 10c, d.

Moving electrons from hot to cold places results in the 
creation of electric current. Good-quality TE substances 
should have high electrical conductivity [80]. Figure 11a, b 
exhibits the electrical conductivity for K2TlRhF6 and Rb2Tl-
RhF6 at 300 K, 700 K, and 1200 K in order to draw attention 
to their thermoelectric capabilities. For n-type K2TlRhF6, 
the values of electrical conductivity are 6.64 × 1019(Ωms)−1 
(3.19 eV) at 300 K, 5.84 × 1019(Ωms)−1 (3.25 eV) at 700 K, 
and 4.97 × 1019(Ωms)−1 (3.30 eV) chemical potential at 
1200 K. While Rb2TlRhF6 has electrical conductivity val-
ues of 6.42 × 1019 (Ωms)−1 (3.12 eV), 5.64 × 1019(Ωms)−1 
(3.17 eV), and 4.74 × 1019(Ωms)−1(3.22 eV) at 300 K, 700 K, 
and 1200 K, respectively. Moreover, our computed results 
show the values of electrical conductivity are higher for the 
n-type zone as compared to the p-type region, as depicted in 

D is Debye temperature and N is number of atoms in the 
unit cell. Figure 8d depicts that both compounds have a 
declining trend in lattice thermal conductivity with the rise 
in temperature. The value of κl is decreasing with tempera-
ture owing to the inversely relationship between tempera-
ture and lattice conductivity, which can be seen in Fig. 8d. 
At room temperature, the values of κl are 0.99 W/Km and 
1.02 W/Km for K2TlRhF6 and Rb2TlRhF6, respectively.

One important thermoelectric property for figuring out 
the thermal performance of an ingredient is its power fac-
tor. Compounds that have a greater power factor (PF) often 
release less heat. The computed values of PF at room tem-
perature are tabulated in Table 3. Moreover, with the rising 
temperature, the value of PF increases for both examined 
compounds, as depicted in Fig. 9a.The figure of merit (ZT) 
is a basic property of materials that is used to assess their 
thermoelectric performance [70, 74–81]. Greater ZT values 
imply thermoelectric properties that are more effective. The 
computed values of power factor at room temperature are 
presented in Table 3.

Figure 9b makes it evident that ZT values increase with 
temperature, and it is reasonable to assume that compounds 
with greater temperatures should have better thermoelectric 
properties. Interestingly, both examined compounds exhibit 
a similar value of ZT at room temperature.

Chemical potential is the amount of energy required for 
electrons in a circuit to overcome coulomb potential. The 
chemical potential is negative as well as positive. At Fermi 
level, this value is 0. The negative portion shows p-type 
behavior, and the positive portion shows the n-type response 
[78–79]. The computed Seebeck results against chemical 
potential are displaced in Fig. 10a, b. Figure 10a shows that 
the maximum value of S at 300 K for n-type K2TlRhF6 is 
2849 µV/K at 0.77 eV. Moreover, when temperature rises 

Fig. 9 Computed results ofofA2TlRhF6 (A = K, Rb) with temperature using the TB-mBJ approximation a power factor b figure of merit ZT
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conductivity values are higher in n-type zone as compared 
to p-type region as portrayed in Fig. 11c, d. The predicted 
outcomes show that these compounds have relatively 
small thermal conductivity amounts at 300 K, which prog-
ress with temperature, and look at their optimum level at 
1200 K. This implies that these compounds are appropriate 
for room-temperature use in thermoelectric devices. It also 
indicates that electron energy improves with temperature.

The predicted results of figure of merit ZT are displaced 
in Fig. 12a, b for A2TlRhF6 (A = K and Rb) perovskites. Fig-
ure 12 reveals that the value of ZT increases with the rise 
in temperature from 300 K to 1200 K. The value of the fig-
ure of merit of 0.99 at a chemical potential of 0.66 eV and 
0.99 (2.35 eV) for K2TlRhF6 and Rb2TlRhF6, respectively, 
at 300 K has been found. It is worth mentioning that for both 
compounds, the value of ZT reaches (~ 1) at 300 K, 700 K, 
and 1200 K.

Fig. 11a, b. Furthermore, the findings conclusively demon-
strate that electrical conductivity rises with chemical poten-
tial, verifying the previously published literature [81].

The ability of a material to transport heat via the trans-
port of electrons and lattice vibrations is known as thermal 
conductivity. Low thermal conductivity with respect to the 
large temperature differences is a requirement for resources 
used in high-performance TE gadgets. Figure 11c, d pres-
ents the thermal conductivity for K2TlRhF6 and Rb2TlRhF6 
as a function of chemical potential. The value of thermal 
conductivity rises with an increase in temperature. For 
K2TlRhF6, its values are 0.44 × 1015 W/mKs with a chemi-
cal potential of 3.27 eV, 0.76 × 1015 W/mKs (3.32 eV), and 
0.78 × 1015 W/mKs (2.97 eV) at 300 K, 700 K, and 1200 K, 
respectively. For Rb2TlRhF6, thermal conductivity values 
of 0.43 × 1015 W/mKs (3.21 eV) for 300 K, 0.72 × 1015 W/
mKs (3.24 eV) for 700 K, and 0.75 × 1015 W/mKs (2.90 eV) 
for 1200 K have been observed. Remarkably, the thermal 

Fig. 10 Computed results ofA2TlRhF6 (A = K, Rb) with chemical potential using the TB-mBJ approximation a seebeck coefficients of K2TlRhF6b 
seebeck coefficients of Rb2TlRhF6c power factor of K2TlRhF6d power factor of Rb2TlRhF6
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Regarding the optical aspects, Rb2TlRhF6 absorb a wide 
range of absorption of 155–523 nm UV-Visible radiation, 
which makes it suitable materials for solar cells and opto-
electronic applications. The elevated values of ZT, PF, and 
Seebeck coefficient at room temperature of 300 K, along 
with the ultralow value of lattice vibration, are very advan-
tageous for thermoelectric generator applications. The value 
of the figure of merit ZT of 0.99 at a chemical potential of 
0.66 eV for K2TlRhF6 and 0.99 (2.35 eV) for Rb2TlRhF6, 
at temperature of 300 K has been found. These compounds 
will give the experimental community a profound under-
standing of how to apply them in order to boost optoelec-
tronic and solar cell industry.

4 Conclusion

The structural, optoelectronic, and thermoelectric character-
istics of A2TlRhF6 (A = K, Rb) have been ascertained using 
the most versatile DFT-dependent FP-LAPW technique, 
which is performed on the basis of the WEIN2K code. Tb-
mBJ potential has been employed for evaluating all proper-
ties of the examined materials. The structural stability has 
been confirmed using the minimum energy tolerance factor, 
and formation energy. The compounds are confirmed to be 
semiconducting by the band structure and TDOS results, 
with a direct band gap of 2.98 eV and 2.97 eV at the “L-L” 
symmetry sites for K2TlRhF6 and Rb2TlRhF6, respectively. 

Fig. 11 Computed results of A2TlRhF6 (A = K, Rb) with chemical potential using the TB-mBJ approximation a electrical conductivity of K2Tl-
RhF6b electrical conductivity of Rb2TlRhF6c electronic thermal conductivity of K2TlRhF6d electronic thermal conductivity of Rb2TlRhF6
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