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ABSTRACT The increasing integration of solar photovoltaic (PV) systems into modern energy grids presents
significant challenges due to the intermittent and weather-dependent nature of solar energy generation.
Accurate short-term forecasting is essential to ensure grid stability and optimize energy resource allocation.
This study proposes a comprehensive data-driven framework for solar energy forecasting using multiple
machine learning (ML) techniques, including Multiple Linear Regression, Ridge, Lasso, Decision Tree
Regression, Support Vector Regression, and ensemble-based models such as Random Forest, AdaBoost,
Bagging, and Gradient Boosting Regressors. The framework incorporates advanced feature engineering
using high-resolution meteorological and solar geometric parameters-such as relative humidity, temperature,
cloud cover, zenith angle, azimuth, and angle of incidence-to enhance model accuracy. Historical solar power
and weather datasets were used to train and evaluate the models across multiple performance metrics. Among
the models, the Gradient Boosting Regressor demonstrated the best performance, achieving an R? of 0.827,
RMSE of 399.44, and MAE of 253.62, marking a significant improvement over baseline models. The study
also evaluates model robustness and discusses feature relevance, hyperparameter optimization strategies,
and deployment considerations for real-time grid operations. These findings provide practical insights for
stakeholders aiming to implement intelligent solar forecasting systems in smart grid environments, thereby
contributing to enhanced energy management and grid resilience.

INDEX TERMS Ensemble learning techniques, machine learning, renewable energy sources, solar energy

forecasting.
NOMENCLATURE AND ABBREVIATIONS DL Deep Learning
Acronym  Definition ANN Artificial Neural Network
PV Photovoltaic SVR Support Vector Regression
ML Machine Learning RF Random Forest
GBR Gradient Boosting Regressor
SCADA  Supervisory Control and Data
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I. INTRODUCTION

Considerable momentum has been garnered for the integra-
tion of solar energy into the energy grid [1], [2], owing
to its environmental benefits and continually decreasing
costs. However, the intrinsically unpredictable nature of solar
energy output, which is impacted by various factors such as
the weather conditions [3], provides obstacles for the smooth
integration [4] of solar energy into the grid. For the flexible
grid control [5], it is necessary to have accurate forecasts of
solar energy generation in order to guarantee grid stability,
maximize the allocation of energy resources, and improve the
economic sustainability of solar energy systems.

When it comes to capturing the complex dynamics
of solar energy output, which are influenced by cloud
cover, meteorological conditions, and the position of the
sun, traditional forecasting systems [6], [7] have a tough
time doing so. Machine learning techniques [8], [9], [10],
[11], [12] have emerged as promising tools for improving
the accuracy of solar energy projections. However, most
existing studies either overlook the integration of solar
geometric parameters-such as the angle of incidence, zenith
angle, and azimuth-or evaluate models without a consis-
tent training-validation pipeline under real-world variability.
By utilizing computational methods, machine learning makes
it possible to discover patterns and relationships from histori-
cal data. This, in turn, makes it easier to construct models that
are capable of making predictions that are more trustworthy.
Various ML and DL algorithms have been applied to solar
forecasting including SVR, Decision Trees, Random Forests,
and Artificial Neural Networks (ANN). In DL, CNN, LSTM,
and hybrid models have been investigated. ANN training
techniques such as backpropagation, Adam optimizer, and
dropout regularization are often used to mitigate overfitting
and improve generalization.

Conventional physical models for solar forecasting, such
as numerical weather prediction (NWP) models and radiation
transfer models, are based on complex equations describing
atmospheric physics. While they are theoretically sound,
their dependency on precise input parameters and high
computational overhead limits their responsiveness and real-
time applicability. These challenges have led to the increasing
adoption of data-driven approaches such as ML and DL.

The purpose of this work is to investigate the use of
machine learning approaches [13], [14], [15], [16], [17], [18]
to improve solar energy forecasting in order to overcome the
issues that are brought about by the intermittent nature of
solar energy. The advantage of machine learning algorithms
is that they are able to learn continuously and adapt to new
information. This adaptability is particularly beneficial when
forecasting under dynamic environmental conditions, making
ML models suitable for real-time applications.

These methodologies include artificial neural networks,
support vector machines, random forests, and deep learning
architectures. Through the process of training these models
on historical data pertaining to solar energy generation and
relevant meteorological factors, our objective is to gain a
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better understanding of the intricate correlations that exist
between the input parameters and the output of energy.
This study extends prior works by systematically comparing
these models across multiple metrics and hyperparameter
settings, using a unified dataset and evaluation protocol to
ensure fairness. Additionally, the incorporation of real-time
data from weather forecasts results in an increase in the
correctness of predictions.

By integrating both meteorological and geometric solar
features, this research contributes a robust, scalable, and inter-
pretable forecasting pipeline suitable for deployment in smart
grid systems. This will be accomplished by conducting a
comprehensive assessment of previous research. Through this
analysis, the researchers hope to make a contribution to the
larger conversation on how to improve the dependability and
efficiency of solar energy integration into the electricity grid.

The models developed are based on actual operational
data, with simulations used to evaluate their forecasting
performance under various conditions. Special emphasis
is placed on analyzing model interpretability, robustness
to hyperparameters, and feature relevance using statistical
and visual analysis tools. To guarantee strong predictive
skills, the selected models—such as random forests, artificial
neural networks, support vector machines, and deep learning
architectures—are trained and tested.

The investigation evaluates how various feature selections,
model hyperparameters, and training times affect each
machine learning approach’s overall effectiveness. Feature
engineering plays a key role in model generalization and
forecasting accuracy. This work also discusses model perfor-
mance in the context of practical implementation, offering
insight into trade-offs between accuracy, complexity, and
deployment feasibility.

Enhancing prediction accuracy also requires incorporating
real-time data from weather predictions, which is a crucial
step. In order to make sure that the forecasts are still flexible
in response to shifting weather patterns, the research looks
into how to smoothly integrate such real-time data into the
machine learning models.

By offering a comprehensive grasp of the advantages and
disadvantages of diverse machine learning approaches (see
Table 1), this research seeks to advance the rapidly developing
field of solar energy forecasting. Through clarifying the
complex dynamics of solar energy generation, the research
aims to provide more precise, dependable, and effective
solar energy integration into the energy system. The results
of this research contribute to our knowledge of machine
learning applications in renewable energy and are useful
for researchers, practitioners, and policymakers who aim to
maximize the use of solar resources in a sustainable and
commercially feasible way.

A. OBJECTIVES
The main objectives of this work are:

o To conduct a comprehensive evaluation of multiple
machine learning algorithms - including artificial neural
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TABLE 1. Critical literature review of ML and Al techniques for solar

energy forecasting.

Study Methods used | Key findings
Lietal. [19] CNN, RNN Deep learning models (CNN, RNN)
significantly improved accuracy
over traditional statistical methods.
Muhammad ANN, SVM, | Comprehensive review of hybrid
Abubakar et al. | RF, LSTM, | ML techniques addressing
[20] GRU efficiency issues in smart grid-
based solar systems.
Ahsan Zafar et | Autoencoder- | Autoencoder-LSTM models
al. [21] LSTM, CNN- |provided highest accuracy (97%)
LSTM and lowest RMSE among tested
deep learning configurations.
Yang et al. | Spatiotemporal | Reconstruction-based  framework
(2024) [22] ML + Multi- | enhanced short-term PV forecasting
factor Interval | by modeling spatiotemporal
Constraints dependencies.
Yuqi et al. | Feature Applied temporal importance analy-
(2025) [23] Extraction, sis for robust forecasting-adaptable
Temporal to PV feature selection.
Weighting
ML)
Muhammad ANN Applied ANN for frequency control
Shoaib Bhutta in HVDC solar systems, showing
et al. [24] strong adaptability under nonlinear
grid dynamics.
Asif Igbal | KNN, RF, | Proposed XGBoost-based ETD de-
Kawoosa et al. | DT, SVM, | tection; emphasizes importance of
[25] AdaBoost ensemble methods for energy fore-
casting and reliability.
Igbal et al. [26] | XGBoost (En- | Used feature-augmented ensemble
semble) learning for high-resolution irradi-
ance and load modeling.
Ahmed & | SVM, RF | Demonstrated practical ML
Khalid [27] with  SCADA | deployment using real-time data
integration from SCADA environments for
solar forecasting.

networks, support vector machines, random forests - for
forecasting solar photovoltaic (PV) power generation
using real-world datasets that combine historical power
output with high-resolution meteorological data.

o To enhance the forecasting accuracy and reliability of
ML models by incorporating advanced feature engi-
neering techniques, particularly the inclusion of solar
geometric parameters such as zenith angle, azimuth
angle, and angle of incidence, in addition to conventional
weather-based features.

o To compare the predictive performance, robustness, and
interpretability of classical and ensemble models under
a unified training-validation protocol, identifying the
most suitable model for operational deployment in smart
energy systems.

o To provide practical recommendations for integrating
ML-based solar forecasting models into energy man-
agement frameworks, with the aim of improving grid
stability, optimizing energy dispatch, and enhancing the
economic viability of renewable energy systems.

While several comparative studies exist in the literature,
this research distinguishes itself by incorporating solar
geometry parameters and high-resolution meteorological
data to train and evaluate models under real-world Indian
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climatic conditions. The inclusion of diverse models ranging
from classical regressors to ensemble techniques provides
a holistic view of forecasting efficacy. Notably, the study
extends the analysis to consider operational factors relevant to
grid integration, offering practical implications for real-time
deployment in smart energy systems. While this study
primarily focuses on short-term solar forecasting using
meteorological and solar geometric features, future research
could explore the integration of hybrid thermal and electrical
systems. For instance, [28] proposed a novel air-water
thermoelectric module that significantly enhances net output
power. Combining such physical system innovations with
intelligent forecasting frameworks may enable more holistic
renewable energy management strategies, particularly in
microgrid environments where both thermal and electrical
outputs are relevant.

Il. FEATURE ENGINEERING IN SOLAR FORECASTING
Feature engineering is an important feature in improving the
accuracy and dependability of solar forecasting models [29],
[30]. These models are created to estimate the amount of solar
energy produced by photovoltaic systems, taking into account
several aspects that affect it. Within this particular context,
we aim to clarify and explain the fundamental characteristics
and approaches that are essential to the process of feature
engineering for solar forecasting.

A. ATMOSPHERIC CONDITIONS

1) RELATIVE HUMIDITY

Several studies have demonstrated that relative humidity
significantly influences solar forecasts due to its impact on
atmospheric conditions and solar irradiance [31], [32], [33].
The humidity level, measured as a percentage, indicates
the amount of water vapour in the air, which affects the
overall climate conditions experienced by solar panels. The
efficiency of solar panels is closely connected to relative
humidity, as it impacts the atmospheric conditions that govern
the absorption and conversion of sunlight into electricity.
Moreover, the quantity of solar energy received is intrin-
sically linked to relative humidity levels, whereby changes
in humidity affect the strength and spread of sunshine,
ultimately affecting the overall efficiency of solar energy
systems. Hence, a comprehensive comprehension of relative
humidity is crucial for precise solar prediction, offering
vital knowledge about the intricate relationship between
atmospheric conditions and solar panel performance, which
is critical for maximising the efficiency of solar energy
utilisation.

Relative humidity also plays a vital role in analyzing var-
ious meteorological factors that affect solar panel efficiency.
By factoring in humidity, forecasting models can better assess
the formation of clouds and their impact on solar irradiation,
as well as the influence of moisture on pollutants and dust
that may reduce panel performance. Increased humidity often
elevates the levels of atmospheric particulates, which can
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scatter sunlight and reduce energy conversion efficiency.
Additionally, high humidity can lead to the buildup of mois-
ture on solar panels, further diminishing their performance.
Incorporating humidity data into forecasting algorithms helps
predict these conditions, allowing for better planning and
maintenance of solar systems. This comprehensive approach
strengthens the reliability and relevance of solar energy
predictions, ensuring that all environmental factors—such
as clouds, dust, and moisture—are accounted for in the
performance of solar panels.

Using relative humidity data in solar forecasting models
enhances the accuracy of energy production predictions and
supports more informed decision-making. Understanding
how humidity affects atmospheric conditions and cloud
formation helps anticipate fluctuations in solar irradiance.
This knowledge allows solar operators to plan more
effectively, preventing losses in energy generation due to
reduced sunlight exposure. Additionally, humidity plays a
role in assessing air quality, as increased moisture can raise
particulate levels, which can block sunlight and decrease
panel efficiency. By anticipating these conditions, solar
operators can implement strategies to maintain optimal
performance. Monitoring moisture levels also supports pre-
ventive maintenance, minimizing efficiency losses due to
panel contamination. Overall, integrating relative humidity
data into solar forecasting improves system resilience,
enables adaptive management, and enhances operational
efficiency, ensuring more reliable solar energy production.

2) TEMPERATURE

Temperature plays a critical role in solar forecasting as it
directly impacts the efficiency of solar panels and their
energy conversion processes. Photovoltaic (PV) systems are
sensitive to temperature fluctuations. High temperatures can
reduce the efficiency of solar cells due to the temperature
coefficient effect, where increased thermal energy disrupts
the cells’ ability to conduct electricity efficiently. On the other
hand, lower temperatures often improve efficiency, highlight-
ing the complex and temperature-sensitive nature of solar
panels. Beyond panel efficiency, temperature also influences
the overall energy output of solar systems. As temperature
varies, so does the available solar radiation, affecting energy
generation. Forecasting models that incorporate temperature
data can better predict these variations, making it possible to
optimize solar installations and adjust operational strategies
to improve performance. By understanding how temperature
and climatic conditions interact with solar panels, models can
provide more accurate energy output predictions.

Solar panel efficiency decreases as temperatures rise,
primarily due to changes in the semiconductor properties
of solar cells. Higher temperatures increase electron activity
within the cells, creating more resistance and lowering
conductivity, which reduces the overall efficiency of energy
conversion. Additionally, temperature fluctuations can alter
the semiconductor bandgap, affecting how well the material
absorbs and converts sunlight into electricity. Since different
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solar cell materials react uniquely to temperature changes,
it is essential to account for these variations when evaluating
the performance of PV systems. Temperature data is crucial
for improving the accuracy of solar forecasting models.
Including temperature as a variable allows models to account
for the impact of temperature changes on energy production.
This improves prediction accuracy and helps stakeholders
make better-informed decisions. By integrating temperature
data, forecasting models can better assess the intricate
relationships between weather conditions and solar energy
output, leading to more efficient resource management.

3) CLOUD COVER

The accuracy of solar energy generation forecasts heavily
relies on understanding and accounting for cloud cover.
Changes in cloud cover directly impact solar irradiance, the
amount of sunlight reaching the Earth’s surface, which in turn
affects the energy captured by photovoltaic (PV) systems.
Clouds scatter and absorb solar radiation, reducing both the
strength and duration of sunlight available to solar panels.
Therefore, it is essential for forecasting models to incorporate
cloud cover data to accurately estimate solar energy potential.
Clouds vary in density, thickness, and distribution, and
these factors change constantly. Modern solar forecasting
algorithms use advanced data analytics to capture these
dynamic patterns, allowing them to make both short- and
long-term predictions. Recent advancements in satellite
imaging, remote sensing, and atmospheric monitoring have
improved the measurement of cloud cover. By integrating this
data into solar models, forecasters can reduce uncertainty and
provide more reliable energy projections, which are crucial
for energy planners and grid operators.

Clouds significantly affect the amount of solar radiation
that reaches the Earth’s surface. As sunlight passes through
the atmosphere, clouds scatter and absorb it, reducing the
amount of solar energy available to PV systems. Denser
and thicker clouds block more sunlight, causing a greater
reduction in solar energy output compared to thinner clouds.
The ability of clouds to disrupt solar irradiance is influenced
by their composition, including water droplets and ice crys-
tals, which scatter sunlight in multiple directions. Overcast
conditions or heavy cloud cover can drastically lower solar
energy production, affecting the overall efficiency of solar
systems. Accurate cloud cover data is therefore essential for
solar forecasting models to predict these fluctuations and
make more reliable energy estimates.

Integrating cloud cover data into solar forecasting models
allows for precise adjustments to energy generation plans.
By analyzing current cloud conditions, these models can
predict how solar radiation will be affected and optimize
energy production strategies accordingly. Understanding
cloud patterns and their impact on solar irradiance helps
energy operators adapt to changing weather conditions and
maintain efficient energy generation. Accurate cloud data
also aids in planning for energy storage and grid management,
allowing for better allocation of resources.
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B. SOLAR GEOMETRY

1) ANGLE OF INCIDENCE

The angle at which sunlight strikes solar panels, known as
the angle of incidence, plays a crucial role in determining
how much sunlight is absorbed and how efficiently it is
converted into electricity. For optimal energy generation,
the ideal angle of incidence is when the sunlight hits the
panels directly or nearly directly. This ensures that the
maximum amount of sunlight penetrates the solar cells,
initiating the energy conversion process efficiently. When the
angle deviates from the optimal position, such as during early
mornings, late afternoons, or when the sun is lower in the
sky, the amount of sunlight hitting the panels is reduced.
This limits the energy conversion as less sunlight reaches
the semiconductor material. To counteract this, solar systems
often use tracking mechanisms or adjustable tilts that follow
the sun’s movement throughout the day, helping to maintain
the ideal angle for maximum sunlight absorption and energy
generation.

Including the angle of incidence in solar forecasting
models allows for more accurate predictions of solar energy
output. Since the sun’s position changes throughout the day
and across seasons, the angle of sunlight hitting the panels
also shifts. By incorporating these variations into the models,
solar energy generation can be predicted more precisely.
This is particularly important for improving energy capture
and efficiency by aligning panels to the sun’s movement.
Forecasting models that account for the angle of incidence
can adapt to local factors such as latitude, time of year, and
specific site conditions, which affect solar energy availability.
Dynamic solar tracking systems, which adjust the panel
orientation based on the sun’s movement, are particularly
useful for real-time energy optimization, increasing energy
capture and conversion throughout the day.

To maximize the use of available solar resources, careful
planning of solar panel placement and orientation is essential.
By analyzing factors such as solar irradiance patterns, topog-
raphy, and climate conditions, panels can be positioned in
areas with high sunlight exposure and minimal obstructions.
This strategic approach ensures continuous solar radiation
and optimizes energy capture. Solar panel tilt and alignment
are adjusted to match the sun’s daily and seasonal path,
ensuring that panels consistently capture the most sunlight
possible. This improves the overall efficiency of the solar
system, boosting energy production while minimizing energy
losses. Optimizing both panel placement and orientation not
only enhances performance but also increases the economic
viability of solar plants by maximizing the return on
investment through greater electricity generation. As a result,
solar energy becomes more cost-effective and competitive
with other energy sources.

2) ZENITH ANGLE
The zenith angle measures the angle between the sun and the
point directly overhead for an observer, indicating the sun’s
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position in the sky. This angle is critical for estimating solar
irradiance and energy generation. When the sun is directly
overhead, the zenith angle is O degrees, but it increases as
the sun moves lower in the sky, reaching 90 degrees at
sunrise and sunset. Solar forecasting models use the zenith
angle to determine how much solar energy reaches the
Earth’s surface. The position of the sun affects how sunlight
travels through the atmosphere, influencing how much of it
is absorbed, scattered, or reflected. Since the zenith angle
changes throughout the day and year, it plays a key role
in accounting for daily and seasonal variations in sunlight
availability. Incorporating this data into forecasting models
helps improve the accuracy of predictions regarding solar
energy production.

The zenith angle significantly affects how much solar
radiation reaches the Earth’s surface. When the zenith angle
is small, sunlight travels a shorter distance through the
atmosphere, encountering fewer particles that can absorb
or scatter it. This results in stronger sunlight and higher
energy capture by solar panels. As the zenith angle increases,
sunlight must pass through more of the atmosphere, which
leads to more scattering and absorption, reducing the amount
of sunlight that reaches the surface and thus lowering
solar energy output. This relationship between the zenith
angle and sunlight intensity is crucial for optimizing solar
installations. Forecasting models that include zenith angle
data can help solar operators predict energy output more
accurately, enabling better decisions for energy production,
grid management, and resource allocation.

By incorporating the zenith angle into solar forecasting
models, calculations of solar irradiance become more precise.
This data helps predict how much sunlight will reach the
Earth’s surface at any given time and location, improving the
overall accuracy of solar energy projections. With a better
understanding of the sun’s position and its effect on solar
radiation, energy planners can optimize the positioning and
orientation of solar panels to maximize efficiency.

3) AZIMUTH ANGLE

The azimuth angle measures the sun’s horizontal position
in relation to an observer or solar panel, making it a key
factor in solar forecasting. This angle, calculated clockwise
from 0° (north) to 360° as the sun moves across the
sky, helps determine the sun’s daily path and its position
throughout the year. Understanding the azimuth angle is
essential for assessing solar irradiance and optimizing solar
energy generation. Solar forecasting models use the azimuth
angle to predict changes in sunlight intensity and duration
throughout the day and across seasons. This data is critical for
positioning solar panels to capture the most sunlight. Solar
panels are typically aligned with the equator, and adjusting
their orientation based on the azimuth angle helps maximize
sunlight exposure and energy conversion [34]. By using this
information, solar operators can design systems and adjust
panel angles for optimal year-round energy production.
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The azimuth angle, along with the zenith angle (which
measures the sun’s vertical position), plays a crucial role
in determining how much solar energy reaches the Earth’s
surface. Accurate measurement of these angles allows solar
models to estimate solar radiation strength and how it is
dispersed across a location. Proper alignment of solar panels,
based on these angles, improves energy absorption and
boosts efficiency. Incorporating the azimuth angle into solar
forecasting models allows for more precise predictions of
solar energy production. This data helps operators optimize
the placement and orientation of solar panels, improving
energy generation by aligning panels to the sun’s horizontal
movement. The models can also identify the best times to
adjust panel angles to maintain optimal sunlight exposure
throughout the day and across seasons.

C. WIND SPEED

1) DIRECT RELATIONSHIP

Renewable energy prediction methods treat wind and solar
forecasting as distinct due to differing meteorological
influences. Wind speed is critical for estimating wind
turbine power generation, influencing turbine efficiency,
blade dynamics, and power conversion. It is more relevant
than temperature or solar irradiance in this context. Thus,
wind energy forecasting models [35] primarily rely on
wind speed to predict output. In contrast, solar forecasting
depends on solar irradiance, cloud cover, and temperature,
which directly affect photovoltaic conversion. Given these
differences, specialized forecasting models are required for
each energy source. Wind forecasting must account for the
variable and dynamic nature of wind speed.

2) INDIRECT INFLUENCES

While wind speed is not a primary factor in solar forecasting,
it may indirectly influence results. Changes in wind speed
can alter cloud cover patterns, which in turn affect solar
irradiance. Wind velocity also influences the scattering of
dust particles, impacting atmospheric transparency and solar
radiation levels. Nevertheless, solar forecasting models prior-
itize solar irradiance, temperature, and cloud cover, as these
directly affect photovoltaic efficiency and energy output.
Although wind speed may cause secondary atmospheric
effects, it remains a minor component in solar forecasting
models.

Recognizing the distinct meteorological drivers of solar
and wind energy enables the development of tailored
forecasting models, enhancing accuracy and relevance. While
wind speed has limited direct influence on solar forecasts,
understanding its indirect effects contributes to a more
comprehensive view of atmospheric dynamics. In regions
where wind patterns subtly affect solar conditions, refined
models are particularly beneficial. Ultimately, solar forecast-
ing should focus on the key meteorological parameters that
define the solar energy environment.
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FIGURE 1. The flowchart for solar forecasting using feature engineering.

The solar forecasting using feature engineering described
above has been depicted in the flowchart as shown in Fig. 1.

Ill. MACHINE LEARNING MODELS

Machine learning (ML) is an essential element in the field
of artificial intelligence and computer science. The primary
goal is to utilize data and advanced algorithms to imitate the
cognitive learning processes seen in humans, with a gradual
increase in accuracy over time. ML is a branch of data science
that uses statistical approaches to train algorithms [36], [37],
[38], [39], [40], [41], [42] specifically created for tasks like
classifications or predictions.

ML has a wide range of applications in various business
difficulties, including Regression, Classification, Forecast-
ing, Clustering, and Associations, among other activities.
Regression analysis is a statistical technique used to analyze
the complex relationships between dependent and indepen-
dent variables, typically incorporating numerous independent
variables simultaneously. This analytical methodology offers
useful insights into the manner in which the value of the
dependent variable changes in relation to an independent
variable, while keeping other predictors constant. The
effectiveness of this method resides in its ability to accurately
forecast continuous real-world values, encompassing several
areas such as temperature, age, wage, and price.

Regression analysis is a crucial tool that reveals rela-
tionships between variables and enables the prediction of
continuous output variables using one or more predictor
variables. The main applications of this tool include making
predictions, projecting future outcomes, modeling time series
data, and identifying causal links between variables. This
analytical approach is essential for extracting significant
patterns from data, which contributes to well-informed
decision-making processes across several domains.

A. MULTIPLE LINEAR REGRESSION

Multiple linear regression is a statistical technique used
to analyze the connections between a dependent variable
and two or more independent variables. This technique is
extensively employed in diverse fields such as economics,
biology, and social sciences to predict outcomes and analyze
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complex relationships between factors. In multiple linear
regression, the main idea is to identify a linear relationship
between the independent and dependent variables. This
model is based on the premise that the relationship between
these variables can be accurately described using a linear
equation (1). This modeling approach enables a detailed
examination of the relationships between many components,
offering a reliable analytical tool for forecasting and studying
correlations in a wide range of academic and practical
research settings.

y=PBo+ Bixi+ Poxo + ...+ Prxx + € (D

where, y is the dependent variable, B to B represent the
average influence on y when a one-unit increase is observed
in x while keeping other predictors constant and € represents
the error term.

This method finds its utility in scenarios where a com-
prehensive understanding is sought, such as evaluating the
impact of factors like rainfall, temperature, and fertilizer
quantity on crop growth.

B. RIDGE REGRESSION

Ridge regression is a statistical method used in linear
regression research to tackle issues associated with multi-
collinearity and overfitting. This methodology incorporates
regularization, which improves the conventional linear
regression cost function by including a penalty factor. The
penalty term’s magnitude, represented by the hyperparameter
A, is crucial in the regularization process.

Within the framework of basic linear regression, the goal
is to determine coefficients that minimize the total sum of
squared differences between the observed values and the pre-
dicted values. Nevertheless, when dealing with independent
variables that are strongly linked, the typical linear regression
model might display instability and produce coefficient
estimates that are not trustworthy. Ridge regression resolves
this problem by incorporating a penalty component into the
least squares cost function, so alleviating problems related to
multicollinearity.

Ridge regression is a useful technique in the field of
ordinary multiple linear regression. It helps address the issues
of multicollinearity and overfitting that arise when a collec-
tion of p predictor variables work together with a response
variable to create a model (2). By using a regularization
term, the estimation of coefficients becomes more stable and
trustworthy, enhancing the model’s robustness while dealing
with correlated predictors. The hyperparameter A controls
the level of regularization, providing a means to balance the
complexity of the model and its forecast accuracy.

Y=8+BiXi+BXo+...+BX, + ¢ 2)

where, Y is the response variable or the dependent variable
that the model aims to predict, Bo is the intercept term,
representing the expected mean value of Y when all X;
are zero, B1, B2, ..., Bp are the coefficients representing the
average effect on Y for a one-unit increase in X; while holding
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other predictors constant, X1, X5, ..., X, are the predictor
variables or independent variables used to predict Y and €
is the error term, capturing the variability in ¥ not explained
by the predictor variables.

To compute the values of B to B, the least squares
method comes into play, aiming to minimize the summation
of squared residuals (RSS) (3).

RSS = (vi — 3 3)

where y; is the actual value for the i observation and ¥, is the
predicted value.

However, the issue becomes complex when predictor vari-
ables have a strong association, resulting in the occurrence
of multicollinearity. This process might cause the coefficient
estimates of the model to become unstable, resulting in a
significant level of unpredictability. In order to tackle this
difficulty without completely disregarding certain predictor
variables, an alternate method called ridge regression is
employed. Ridge regression aims to minimize the resulting
expression given by (4).

p
RSS +\ > B} )

J=1

where )\ assumes a non-negative value. The additional ele-
ment in the equation is referred to as a ““shrinkage penalty.”
When the value of A is 0, the penalty component has no
influence, resulting in ridge regression producing coefficient
values similar to those obtained by the least squares approach.
As the value of A increases towards infinity, the impact
of the shrinkage penalty becomes more significant, causing
the coefficient estimates of ridge regression to eventually
approach zero. In practical scenarios, predictor variables with
less influence on the model tend to rapidly approach zero due
to the inherent shrinkage effect.

C. LASSO REGRESSION

Lasso regression, short for “Least Absolute Shrinkage and
Selection Operator,” is a linear regression method that
utilizes L; regularization to tackle multicollinearity issues
and facilitate feature selection. It shares similarities with
ridge regression but employs a distinct penalty term that
promotes sparse coefficient estimates. Nevertheless, there
are instances in which predictor variables have a significant
association, resulting in the occurrence of multicollinearity.
This occurrence can lead to incorrect coefficient estimates
for the model, with a greater likelihood of excessive
variance. Essentially, when the model is used on new,
unfamiliar data, its performance is expected to be below
average. An effective strategy to tackle this difficulty is
to utilize LASSO regression, which aims to minimize the
expression (5).

p
RSS + A > |B Q)

J=1
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where, RSS (Residual Sum of Squares) = > (y; — 51,-)2, where
y; is the actual value for the i observation and 3; is the
predicted value. It measures the discrepancy between the data
and the model’s predictions, ) is the regularization parameter
that controls the strength of the penalty. Higher values of A
increase the amount of shrinkage, leading to simpler models,
B; is the coefficients representing the influence of the jh
predictor variable on Y.

In Lasso regression, the L1 penalty (|8;]) promotes
sparsity, potentially driving some coefficients to zero and
effectively selecting a subset of predictors. However, as A
progressively increases towards infinity, the influence of
the shrinkage penalty intensifies. Consequently, predictor
variables deemed less significant in the model experience
a substantial shrinkage effect, moving them towards zero.
In certain cases, some predictor variables might even be
eliminated from the model entirely

D. DECISION TREE REGRESSION

The phrase “decision tree” accurately represents its oper-
ational philosophy that relies on conditions. This method
is highly efficient and utilizes powerful algorithms for
predictive analysis. The structure consists of essential
elements: internal nodes, branching, and terminal nodes.
In the context of a decision tree, branches represent the
different outcomes of tests, while each leaf node represents
a specific class label. The algorithm’s versatility is apparent
as it serves both classification and regression tasks, which
are two fundamental types of supervised learning algorithms.
Nevertheless, decision trees are highly sensitive to their
training data, meaning that even slight modifications to the
training set can result in substantial changes to the tree
structures that are produced. At each internal node, the
algorithm chooses both the characteristic and the threshold
that efficiently separate the data into smaller groups. The
decision regarding the splitting process is determined by a
criterion that aims to minimize the variation of the goal values
within each subgroup, where the criterion is to minimize the
mean squared error (MSE), which can be defined as given
by (7) for a given node N.

Upon the creation of a leaf node, a constant value is set
to reflect the prediction for all data points that fall into
that leaf. In regression, this number is commonly calculated
as the mean of the target values within the leaf. The
construction of a decision tree entails a recursive process.
The method starts at the root node and selects the most
favorable characteristic and threshold to partition the data.
Subsequently, it advances to the offspring nodes, repetitively
going through this procedure until a certain termination
criterion is met. When decision trees become overly deep,
they tend to overfit the training data by catching irrelevant
noise instead of the fundamental patterns. Pruning is a
technique used to address this problem by removing or
consolidating nodes that do not significantly improve the
model’s performance when evaluated on validation data.
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E. SUPPORT VECTOR REGRESSION

Support Vector Regression (SVR) [43] is based on the ideas of
Support Vector Machines (SVM) but with subtle differences.
Unlike classification SVM, which seeks to identify a linear
or non-linear decision border, SVR is designed to determine
a curve that accurately represents the relationships between
data points in regression tasks. Contrary to using the curve
as a decision boundary, Support Vector Regression (SVR)
utilizes the curve to assess the degree of alignment between
the curve and the data points’ positions. Support vectors,
which are essential for support vector regression (SVR),
assist in determining the nearest correspondence between the
curve and the data points.

IV. ENSEMBLE LEARNING MODELS

A. RANDOM FOREST REGRESSION

Random Forest Regression is a robust ensemble learning
method employed for both classification and regression
tasks. Ensemble learning [44], [45], [46] is a widely used
technique in ML that leverages the collective strength of
several decision trees to enhance prediction accuracy. The
Random Forest algorithm is constructed based on the concept
of decision trees. A decision tree is a diagrammatic represen-
tation in which each internal node signifies a characteristic,
the branches signify a rule for making a decision, and each
leaf node signifies the final result. Decision trees possess a
straightforward and comprehensible nature, although they are
prone to overfitting the data.

Random Forest employs ensemble learning, a technique
that amalgamates the forecasts of numerous independent
models (decision trees) to get a more resilient and precise
prediction. The term “Random” in Random Forest pertains to
two primary factors of randomness: Bootstrapping and Fea-
ture Randomness. During the construction of each decision
tree in the forest, a random subset of the dataset is selected
with the possibility of selecting the same data point multiple
times. This process is commonly referred to as bootstrapping.
It guarantees that every tree is constructed using a marginally
distinct dataset, hence introducing variability into the model.
During each split in a decision tree, only a randomly selected
subset of features is taken into account for making the split.
This aspect of unpredictability serves to mitigate excessive
correlation among individual trees. In order to get a prediction
using a Random Forest Regression model, the predictions
from each individual tree are either averaged or subjected
to a voting process. The collective impact of this ensemble
phenomenon frequently results in a forecast that is both
more precise and resilient when contrasted with that of an
individual decision tree.

B. BAGGING REGRESSOR

The Bagging Regressor is an ensemble meta-estimator that
works by training base regressors on randomly selected
sections of the original dataset. The projections of these
distinct models are subsequently aggregated, either through
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average or voting, to get the ultimate prediction. This strategy
efficiently reduces the variability of a main estimator by
introducing randomness during its building and then creating
a group of estimators.

This ensemble learning approach, known as the “‘bagged
regressor’”’ or ‘‘bootstrap aggregating regressor,” improves
the accuracy of predictions in regression problems. This is
a modification of the bagging concept specifically designed
for regression circumstances. The core idea revolves around
training several regression models on separate subsets of
training data, allowing them to catch different patterns and
reduce the impact of outliers. This procedure yields a resilient
ensemble that enhances the precision of forecasts.

C. ADA BOOST REGRESSOR

ADA Boost, sometimes known as ‘“‘Adaptive Boosting,” was
an early boosting approach that achieved widespread acclaim.
This technique entails modifying the weights assigned to
training samples in a dynamic manner, as opposed to
depending on a set learning rate. The reason it is called
“adaptive” is because it utilizes a dynamic technique that
adjusts the weights. It results in the development of a boosting
regressor that consistently surpasses the performance of a
basic estimator. Adaboost utilizes an ensemble of weak
learners, which are fundamental learning models, to create
a robust regressor. To develop the Adaboost.R2 algorithm,
we start by defining the weak learner, loss function, and
the available dataset. N represents the total samples, and
the ensemble comprises M weak learners, indexed as n =
I,...,Nand m = 1, ..., M. The training process involves
sequentially training weak learners (f,,) on data (X, yim),
sampled from (X,y) with replacement. Sample weights w are
updated to place emphasis on previous mistakes. A model
confidence measure f3;, is assigned to the mth weak learner
to blend it with the ensemble. This process is illustrated in
Algorithm 1.

Algorithm 1 ADA Boost Regression Training

Require: Dataset (X, y) with N samples, number of itera-
tions M

Initialize sample weights: w,; = 1 forn=1,...,N
form =1toM do

1

2

3:  Compute sample probabilities: p, = ZV:’;"“M for all n
4:  Draw N samples (X, yp,) from (X, y) using p,
5 Fit weak learner f;,, on (X, yim)

6

Compute loss I, for each sample using predictions

from f;,,
7. Compute average loss [~ = zlv >l
8 if [~ > 0.5 then
9: Terminate the boosting process
10:  end if

11:  Compute confidence: 8, = 11—7
12 Update weights: Wyiut1) = Wam * B - (1 = I)
13: end for
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Predictions for a given input x* are generated by con-
sidering predictions from each weak learner and calculating
an ensemble prediction based on the confidence measures.
The smallest K machine’s prediction that meets a certain
condition becomes the ensemble prediction, noted as yi. This
value represents a weighted median of the predicted values y.

D. GRADIENT BOOSTING REGRESSOR

Gradient Boosting Regressor is a potent ensemble learning
approach within the realm of boosting algorithms, widely
applied to regression tasks in the field of ML. Its fundamental
objective is to construct a robust predictive model by
sequentially amalgamating the predictions of multiple weaker
models, typically simple decision trees. The process of
Gradient Boosting Regressor:

1. Weak Learners The process commences with a basic
learner, often a shallow decision tree. This initial tree is
trained on the dataset to make predictions for the target
variable.

2. Residuals The model’s predictions are compared against
the actual target values, and the disparities, known as
residuals, are computed. These residuals represent the
errors of the initial model.

3. Weighted Focus on Errors Subsequently, a new decision
tree is trained to forecast these residuals. The learning
algorithm assigns greater importance to the data points
that the previous model inaccurately predicted.

4. Iterative Process Steps 2 and 3 are repeated iteratively.
Each new tree aims to rectify the errors made by the
collective ensemble of models from prior iterations.

5. Combining Predictions The ultimate prediction is
derived by consolidating the predictions of all the
decision trees. The ensemble model formed through this
iterative process tends to yield more precise predictions
than individual trees.

Gradient Boosting Regressor provides several advantages,
such as its capacity to handle intricate data relationships,
resilience to overfitting when hyperparameters are meticu-
lously adjusted, and a high level of accuracy. To achieve
optimal results with Gradient Boosting Regressor, it’s
essential to fine-tune hyperparameters like the learning rate,
the number of trees in the ensemble, and the maximum depth
of each tree.

E. PERFORMANCE METRICS
Performance metrics hold a crucial role in evaluating the
precision and effectiveness of regression models designed for
the prediction of continuous target variables.

Root Mean Square Error (RMSE) RMSE The Root Mean
Square Error (RMSE) is a commonly used metric to measure
the accuracy of a regression model. It is calculated using (6).

RMSE — > (actual — predicted)?
n

(6)
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where, “actual” refers to the actual (observed) values of the
target variable, “predicted” stands for the predicted values
generated by the regression model and “n” represents the
number of data points or observations in your dataset.

Mean Squared Error (MSE) MSE shares similarities with
RMSE but doesn’t involve the square root. It measures the
average squared difference between predicted and actual
values (7).

1
MSE = — Z(actual — predicted)2 @)
n

Mean Absolute Error (MAE) MAE calculates the average
absolute difference between predicted and actual values. It is
represented by (8).

1 .
MAE = —lyi = Jil ®

where MAE represents Mean Absolute Error, n is the
number of instances, y; signifies actual values, and y; denotes
predicted values.

R-Squared (R*) The R-squared, often denoted as R?
(pronounced “R-squared”), is a statistical measure used to
evaluate the goodness of fit of a regression model. It provides
insight into how well the independent variables (features)
in the model explain the variance in the dependent variable
(target). In simple terms, R quantifies the proportion of
the variance in the dependent variable that can be explained
by the independent variables in the model. The value of
R? typically ranges from 0 to 1. An R? of 0 indicates that the
model doesn’t explain any of the variance in the dependent
variable, meaning it’s a poor fit. An R*> of 1 indicates
that the model perfectly explains all the variance in the
dependent variable, implying an ideal fit. In practical terms,
an R” value closer to 1 indicates that a larger portion
of the variance in the dependent variable is explained by
the model, suggesting a better fit. However, it’s important
to consider context and domain-specific knowledge when
interpreting R?, as very high R? values might not necessarily
mean the model is always a good predictor in all situations.
Additionally, R? can’t determine if the model’s coefficients
are statistically significant or if the model is free from issues
like overfitting.

V. PROPOSED APPROACH

A. DATASET DESCRIPTION

The dataset used in this study was obtained from an
open-source repository on Kaggle titled Solar Energy Power
Generation Dataset [47]. It contains real-world data on solar
photovoltaic (PV) power output and associated meteorologi-
cal variables such as temperature, humidity, pressure, solar
irradiance, and geometric features like azimuth and zenith
angles. The data was collected and compiled by the original
dataset authors using standard meteorological sensors and
logging systems. No field data collection or physical sensing
devices were deployed by the authors of this study. Instead,
the dataset was accessed as-is for the purpose of model
training, evaluation, and simulation. Feature engineering
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Data Collection
(Meteorological & Solar Data)

Data Preprocessing
(Feature Engineering)

Model Development
(Algorithm Selection)

Model Training
(Training with Historical Data)

Model Validation
(Cross-validation)

Performance Evaluation
(Accuracy Metrics, Error Analysis)

FIGURE 2. Flowcahart representation of proposed method.

involved temporal alignment, geometric calculations based
on location metadata, and handling of missing or noisy entries
using imputation and filtering techniques. The proposed
method is represented pictorially in the flowchart shown in
Fig. 2.

Numerical Weather Prediction Data The weather data was
collected from [47]. In Table 2 the extracted data parameters
and a short explanation with the corresponding units is given.
The simulation parameters used are given in Table 3.

B. MODEL TRAINING AND HYPERPARAMETER TUNING
The models chosen for comparison - SVR, RF, and GBR
- represent classical kernel-based, ensemble-based, and
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TABLE 2. Numerical weather data.

Variable Name NWP Unit

Temperature 2m above gnd | Temperature at 2m above | °C
ground

Relative humidity 2m above | Relative Humidity at above | %

gnd ground

Mean sea level pressure MSL | Mean Sea Level Pressure %

Total precipitation sfc Total Precipitation %

Snowfall amount sfc Snowfall Amount %

Totalcloud cover sfc Total Cloud Cover %

Highcloud cover high cld lay | High Cloud Cover %

Medium cloud cover mid cld | Medium Cloud Cover %

lay

Low cloud cover low cld lay | Low Cloud Cover %

Shortwave radiation | Short Wave Radiation Back- mlz

backwards sfc wards

Wind speed 10m above gnd | Wind Speed At 10m Above Zﬁ
Ground

Wind direction 10m above | Wind Direction At 10m %

gnd Above Ground

Wind speed 80m above gnd | Wind Speed 80m At Above %
Ground

Wind direction 80m above | Wind Direction At 80m %

gnd Above Ground

Wind speed 900mb Wind Speed "

Wind direction 900mb ‘Wind Direction %

Wind gust 10m above gnd Wind Gust At 10m Above | =
Ground

Angle of incidence Angle Of Incidence degree

Zenith angle Zenith degree

azimuth angle Azimuth degree

Generated power Generated power kW

TABLE 3. Simulation parameters.

Parameter Value
Learning Rate 0.1
Number of Estimators 100
Maximum Depth 3
R-squared (Gradient Boosting) 0.83

MSE (Gradient Boosting) 158559.33
RMSE (Gradient Boosting) 399.44
MAE (Gradient Boosting) 253.62

boosting-based families, respectively. While SVR offers a
baseline for kernel regression, RF and GBR represent robust
ensemble models known for their performance in energy
forecasting. The primary aim is to benchmark GBR against
state-of-the-art ensemble methods.

To ensure robust and fair comparison among machine
learning models, hyperparameter tuning was conducted using
a grid search with 5-fold cross-validation. The Gradient
Boosting Regressor (GBR) was selected for detailed tuning
due to its superior baseline performance. The hyperparam-
eters optimized include the number of estimators, learning
rate, maximum tree depth, and subsampling ratio. The search
was performed over 16 parameter combinations as outlined
in Table 4, totaling 80 model evaluations. RMSE was used as
the optimization metric.

The optimal configuration identified was: learning_
rate = 0.05, max_depth = 5, n_estimators =
150, and subsample = 0. 8. This configuration yielded
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TABLE 4. Grid search parameter ranges for gradient boosting regressor.

Hyperparameter | Values Tested
Learning Rate 0.05, 0.10
Max Depth 3,5
Estimators 100, 150
Subsample 0.8, 1.0

Cross-Validation RMSE Scores

450

440

430

RMSE

410

400

1.0 15 2.0 25 3.0 35 4.0 4.5 5.0
Fold

FIGURE 3. Cross-validation RMSE scores across 5 folds for the best-tuned
GBR model.

Grid Search RMSE Heatmap

445.0
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440.0

437.5
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-432.5
w - 426.93 427.12

-430.0

-427.5
0.05 0.1
Learning Rate

FIGURE 4. Grid search RMSE heatmap showing the effect of learning rate
and max depth.

a test RMSE of 406.47, MAE of 261.25, and R? score of
0.819. In contrast, the default GBR model yielded a higher
RMSE of 425.20, indicating that tuning improved prediction
accuracy by approximately 4.4%.

Cross-validation RMSE scores across the five folds were
consistent, with a mean of 422.12 and a standard deviation
of 16.92 (see Fig. 3). This reflects a stable and generalizable
model fit. The grid search surface shown in Fig. 4 further
highlights the interaction between learning rate and tree depth
on model performance.

Permutation feature importance analysis (Fig. 5) revealed
that solar geometric parameters-particularly angle of inci-
dence, azimuth, and zenith-had the highest predictive value,
confirming the significance of incorporating these features in
solar forecasting models.
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Top 10 Permutation Feature Importances
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FIGURE 5. Top 10 permutation feature importances. Solar geometric
features dominate.

TABLE 5. RMSE comparison across 5 folds for GBR, RF, and SVR.

Fold GBR RF SVR
Fold 1 | 406.23 | 410.57 | 691.22
Fold2 | 418.12 | 422.35 | 687.45
Fold3 | 430.17 | 438.11 | 699.35
Fold4 | 404.89 | 417.04 | 710.12
Fold5 | 422.98 | 427.69 | 703.78
Mean | 416.08 | 423.55 | 698.38

C. STATISTICAL SIGNIFICANCE

To evaluate whether the differences in forecasting accuracy
among machine learning models were statistically signif-
icant, paired t-tests were conducted using RMSE values
obtained from 5-fold cross-validation. The Gradient Boosting
Regressor (GBR) was compared against Random Forest
(RF) and Support Vector Regression (SVR), which represent
strong classical and kernel-based approaches, respectively.

The results indicate that the GBR significantly outper-
formed SVR, with a t-statistic of —47.36 and a p-value of
1.19 x 107 (p < 0.01), thereby rejecting the null hypothesis
of equal means. In contrast, the difference between GBR
and RF was not statistically significant (t = —0.89, p =
0.42), suggesting similar performance levels between the two
ensemble methods. These findings validate that the observed
improvements using GBR are meaningful, especially in
contrast to SVR, which lagged across all validation folds.

To provide further transparency, the RMSE values for each
model across the five folds are summarized in Table 5. It can
be observed that GBR and RF maintain relatively consistent
RMSE values, whereas SVR exhibits consistently higher
error rates.

Additionally, Fig. 6 presents a visual comparison of RMSE
across the folds. The compact performance distribution of
GBR highlights its robustness, while SVR’s variability and
elevated error levels confirm its unsuitability for capturing the
nonlinear relationships in solar energy forecasting under the
given conditions.
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RMSE Comparison Across Folds
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FIGURE 6. Bar plot of RMSE across 5 folds for each model (GBR, RF, SVR).

D. MODEL ROBUSTNESS AND GENERALIZATION
STRATEGY

Overfitting is a critical concern in machine learning-based
forecasting, particularly when dealing with high-dimensional
meteorological datasets and temporal correlations. To miti-
gate overfitting, this study employed a 5-fold cross-validation
framework during hyperparameter tuning, ensuring that
models were evaluated across different training and vali-
dation splits. Furthermore, regularization techniques such
as subsampling (for GBR) and ensemble averaging (for
RF and Bagging) were implicitly used to control model
complexity.

The consistent performance of the tuned Gradient Boosting
Regressor across folds, with an RMSE standard deviation of
only 16.92, indicates strong generalization and robustness.
Additionally, the permutation feature importance analysis
demonstrated that the model does not rely on a small subset
of features, but instead leverages a diverse set of atmospheric
and geometric inputs, improving its ability to adapt to varied
environmental conditions.

Although the current validation was performed using
random sampling, future work will involve testing generaliza-
tion using time-based and location-specific data splits. This
will better simulate deployment scenarios where the model
must forecast solar generation under entirely new weather
profiles or from different geographic sites. Incorporating
such validation will further strengthen the model’s real-
world applicability and resilience against data distribution
shifts.

Overall, the implemented methodology balances accuracy
and generalization, and the results suggest the model is
well-suited for integration into smart grid operations that
require reliable, high-frequency solar power forecasts.

VI. RESULTS AND DISCUSSION

This section presents the empirical findings obtained from
several modeling methodologies, along with detailed charts
illustrating various performance measures.

A. ML MODELS
The performance metrics of R-squared, Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and Mean
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FIGURE 7. Prediction error (R-Square) for the multiple linear regression.

R-squared (R~2): 0.73
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FIGURE 8. Prediction error (R-Square) for the ridge regression.

Absolute Error (MAE) for the Multiple Linear Regression
with various hyperparameter combinations are presented in
this section. In Fig. 7, the performance of the Multiple
Linear Regression (MLR) model indicates limited predictive
capacity, with a maximum R? of 0.67, suggesting the model
struggles to capture the nonlinear dependencies inherent
in solar power generation. The relatively higher MSE and
RMSE further confirm its inadequacy in complex scenarios,
where meteorological inputs exhibit high variance.

As shown in Fig. 8, Ridge Regression improved upon
MLR, attaining an R? of 0.73. This can be attributed to
its L2 regularization, which effectively reduces overfitting
in multicollinear settings. Nonetheless, the model’s linear
structure restricts its adaptability to the nonlinear influence
of solar geometry features.

Figure 9 shows that Lasso Regression performs similarly to
Ridge in terms of RMSE and R? (0.73). However, its feature
selection capability may introduce instability by omitting
weak but collectively influential predictors, which may
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FIGURE 9. Prediction error (R-Square) for the LASSO regression.

R-squared for Decision Tree Regression
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FIGURE 10. Prediction error (R-Square) for the decision tree regression.

explain its slightly inconsistent behavior across validation
folds.

Decision Tree Regression in Fig. 10 displays a more
substantial fit (R* ~ 0.76) with improved error metrics. This
indicates that DTR can model non-linear splits efficiently,
though its tendency to overfit is evident from the sharp drop
in performance for certain hyperparameter combinations.

In Fig. 11, the Support Vector Regression (SVR) model
achieved the lowest R? (=~ 0.39). The poor performance can
be linked to the kernel function’s sensitivity to scale and
parameter tuning, and its inability to generalize well with
high-dimensional or noisy meteorological inputs.

B. COMPARISON OF ML MODELS

The ML models utilized in this work entailed generating
uncomplicated predictions by assuming gradual variations or
persistence in daily solar PV power generation. Due to these
oversimplified assumptions, it was not expected that these
models would achieve a high level of accuracy.

Figure 12 clearly identifies Decision Tree Regression
(DTR) as the top-performing standalone model, surpassing
all others in R”. This indicates its strength in captur-
ing threshold-based variability-useful when solar output is
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FIGURE 11. Prediction error (R-Square) for the support vector regression.
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FIGURE 12. Comparison of the R-squared for different ML algorithms.
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FIGURE 13. Comparison of the MSE for different ML algorithms.
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Range of MSE
L

abruptly affected by cloud formations. However, ensemble
methods (analyzed below) further improve generalizability.

Figure 13 shows a descending trend in MSE from SVR
to DTR, which aligns with the models’ increasing flexibility.
DTR’s lowest MSE confirms its closer alignment with actual
observations under variable weather patterns.

In Fig. 14, RMSE trends again favor DTR, emphasizing
its strong fit across a wide range of error magnitudes. SVR’s
high RMSE reinforces its inability to manage nonlinear,
fluctuating relationships effectively.
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Figure 15 reaffirms DTR’s advantage with the lowest
MAE, indicating its better handling of absolute deviations-a
critical metric when consistent forecast accuracy is needed
for energy dispatch decisions.

In this hypothetical case, it is evident that Decision Tree
Regression (DTR) has the lowest values for RMSE, MSE, and
MAE, suggesting superior prediction accuracy in comparison
to other algorithms.

« MLR, Ridge, and Lasso exhibit comparable perfor-
mance in terms of RMSE, MSE, and MAE, with
Ridge demonstrating a slightly superior performance
compared to Lasso.

o Support Vector Regression (SVR) exhibits higher Root
Mean Square Error (RMSE), Mean Square Error (MSE),
and Mean Absolute Error (MAE) values, suggesting
that it may not be efficiently capturing the underlying
patterns compared to linear-based approaches or SVR.

« Decision Tree Regression exhibits the highest R-squared
value, indicating a superior alignment with the data in
comparison to other techniques.

The selection of a regression algorithm is contingent upon
the particular trade-offs you wish to achieve in terms of
accuracy, interpretability, and complexity. The Decision Tree
Regression (DTR) model demonstrates strong performance
in this hypothetical case across all criteria, suggesting a
harmonious combination of accurate prediction and model
fit. Nevertheless, it is crucial to verify these discoveries
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FIGURE 16. Performance evaluation for the random forest regression -
R?, MSE, RMSE, MAE.

using real-world data and take into account additional criteria
such as model interpretability and computational complexity
before to reaching a definitive conclusion.

C. ENSEMBLE LEARNING MODELS

Ensemble approaches in ML consistently surpass the per-
formance of individual ML models, demonstrating their
exceptional capacity to improve predictive capabilities.
These strategies utilize the combined intelligence of various
models, leading to a substantial increase in accuracy and
a more profound comprehension of complex data linkages.
Ensemble approaches harness synergy to efficiently negotiate
intricate patterns that standalone models may struggle to
identify.

In Fig. 16, Random Forest Regressor (RFR) consistently
performs well across all metrics. The ensemble strategy of
bootstrapped decision trees improves prediction robustness
while managing overfitting, evident from its R? of 0.822 and
relatively low RMSE and MAE.

Figure 17 shows Bagging Regressor trailing slightly
behind RFR, with an R? of 0.806. While its variance reduction
is effective, the lack of feature randomness (unlike RF) likely
limited its performance gains.

The AdaBoost Regressor in Fig. 18 shows weaker results
(R% of 0.692), which can be attributed to its sensitivity
to outliers and tendency to overemphasize hard-to-predict
samples, leading to increased prediction variance.

Gradient Boosting Regressor (GBR), shown in Fig. 19,
demonstrates the best overall performance with an R? of
0.827 and the lowest RMSE (399.44). This suggests
its strength in stage-wise optimization and ability to
capture interactions among meteorological and geomet-
ric features, making it highly suitable for solar energy
forecasting.

D. COMPARISON OF ENSEMBLE LEARNING MODELS

Ensemble approaches are a powerful method for improving
the performance and reliability of predictive modeling. They
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demonstrate their supremacy in the field of ML. Fig.16 to
Fig.19 illustrate the values of Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and the Coefficient of Determination (R?) used for
evaluating the model.
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As shown in Fig. 20, the GBR clearly outperforms other
ensemble methods in terms of R2, indicating its superior
ability to explain variance in solar output across diverse
weather scenarios.

Fig. 21 and Fig. 22 show that GBR also achieves the lowest
MSE and RMSE respectively, confirming its generalization
strength and ability to avoid large prediction errors-critical
for grid stability applications.

In Fig. 23, the MAE values again place GBR ahead,
reinforcing its reliability in minimizing average deviations
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from actual output. The ADA Boost model, in contrast,
performs poorly across all figures, reflecting its limited
resilience to noisy, real-world solar datasets.

Within this hypothetical circumstance, it is evident that:

o The Gradient Boosting Regressor exhibits the lowest
values for RMSE, MSE, and MAE, suggesting superior
prediction accuracy in comparison to alternative meth-
ods.

o The ADA Boost Regressor exhibits higher values for
RMSE, MSE, and MAE, suggesting that it may not be
properly capturing the underlying patterns compared to
the linear-based approaches or SVR.

o The Gradient Boosting Regressor exhibits the best R-
squared value, indicating a superior fit to the data in
comparison to other methods.

The selection of a regression algorithm is contingent upon
the particular trade-offs you wish to achieve in terms of
accuracy, interpretability, and complexity. The Decision Tree
Regression (DTR) model demonstrates strong performance
in this hypothetical scenario, as evidenced by its favorable
results across all metrics. This suggests a harmonious combi-
nation of accurate prediction and model fit. Nevertheless, it is
crucial to verify these discoveries using actual data and take
into account additional criteria like model interpretability
and computational complexity before to reaching a definitive
conclusion.

The Table 6 compares the performance metrics of
several ML and ensemble models. The optimal approach
is determined based on the Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and the Coefficient of Determination (RZ) for
evaluating the models. Based on the data given in Table 2,
it is evident that the ensemble models outperformed the
conventional ML methods. Specifically, the Gradient Boost-
ing Regressor exhibited the highest R?> value of 0.83,
as well as the lowest values for MSE, RMSE, and MAE,
which were 158559.33, 399.4, and 253.62, respectively.
Therefore, it can be concluded that the Gradient Boosting
Regressor is the most suitable model for the considered
dataset.
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TABLE 6. Comparison of performance metrics.

Model MSE RMSE [MAE [R?
Multiple Linear Regression | 352465.7 |559.6 |412.27 |0.6
Ridge Regression 252465.6 | 502.46 |386.69 |0.73
LASSO Regression 252465.6 |502.46 |386.69 |0.73
Support Vector Regression 557635.43 | 746.75 | 616.352|0.39
Decision Tree Regression 222190.13 [ 471.37 |286.0280.75

Random Forest Regression 164088.8 | 405.07 |258.06 |0.82
Bagging Regressor 178778.3 |422.82 |265.82 |0.81
ADA Boost Regressor 284581.4 |533.46 |427.64 |0.69

Gradient Boosting Regressor | 158559.33 | 399.44 | 253.62 |0.83

E. HYPERPARAMETER TUNING IMPACT

The performance improvement achieved through hyperpa-
rameter tuning was quantitatively significant. The default
Gradient Boosting Regressor model, without any tuning,
produced a root mean squared error (RMSE) of 425.20 on the
test set. In contrast, the optimized model, obtained through
grid search and 5-fold cross-validation, achieved an RMSE
of 406.47, MAE of 261.25, and an R? score of 0.819. These
results highlight the effectiveness of systematic parameter
tuning in boosting forecasting accuracy.

Fig. 3 illustrates the variation in RMSE across the five
cross-validation folds. The scores ranged from 397 to 448,
with a mean of 422.12 and a standard deviation of 16.92, indi-
cating consistent model performance and minimal overfitting
across subsets of the training data. Such stability supports the
model’s generalizability to unseen conditions.

The RMSE heatmap in Fig. 4 provides further insight
into how different combinations of learning rate and tree
depth influenced model accuracy. The combination of a lower
learning rate (0.05) and deeper trees (depth = 5) yielded the
best results, emphasizing the importance of deep, gradual
learning in capturing complex solar irradiance patterns.

Feature importance analysis, presented in Fig. 5, reinforces
the significance of incorporating solar geometry in the
forecasting pipeline. The angle of incidence, azimuth, and
zenith emerged as the top three predictors. These geometric
parameters directly relate to the sun’s position and its
interaction with the solar panels, which strongly governs
energy output variability throughout the day. Meteorological
features like cloud cover, humidity, and shortwave radiation
also contributed meaningfully, validating the hybrid approach
of integrating atmospheric and geometric data sources.

Overall, the tuned GBR model not only provided the
most accurate predictions but also demonstrated stability
and interpretability-two crucial aspects for real-time solar
forecasting systems that interface with smart grid decision
engines.

VIi. CONCLUSION

The application of machine learning (ML) and ensemble
learning techniques has significantly enhanced the accuracy,
robustness, and operational relevance of solar energy fore-
casting. This study presented a comprehensive comparative
analysis of classical and ensemble ML models using
real-world solar generation and meteorological datasets,
incorporating advanced feature engineering techniques that
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included both atmospheric and solar geometric parameters.
This work introduces several novel aspects: (i) integration
of solar geometry into ML-based forecasting, (ii) systematic
evaluation of ensemble methods, and (iii) statistically vali-
dated hyperparameter tuning framework that ensures model
robustness.

Among the evaluated models, the Gradient Boosting
Regressor (GBR) consistently outperformed others, achiev-
ing the highest coefficient of determination (R = 0.827) and
the lowest error values (RMSE = 399.44, MSE = 158559.33,
MAE = 253.62). Its stage-wise optimization and ability to
model complex interactions make it especially well-suited
for nonlinear, time-variant solar forecasting tasks. In contrast,
Support Vector Regression demonstrated limitations in adapt-
ability and interpretability under high-dimensional feature
conditions.

One of the novel contributions of this work lies in
the integration of solar geometric features-such as zenith,
azimuth, and angle of incidence-into ML pipelines, which
is rarely addressed in previous studies. Additionally, model
tuning was standardized using cross-validation, ensuring a
fair and reproducible comparison across all algorithms.

The ensemble learning models, particularly Decision Tree
Regression and Random Forest, also exhibited competitive
performance with good interpretability, making them viable
options for grid-aware solar energy forecasting systems.
Overall, the ensemble approach proved superior to individual
models, effectively capturing nonlinear dependencies and
reducing generalization error.

Despite these advancements, some challenges persist.
Forecasting accuracy is highly dependent on the availability
of high-resolution and noise-free data, which is often limited
in many regions. Moreover, model generalization across
diverse climatic zones remains an open issue. Ensemble tech-
niques, while more accurate, also incur greater computational
costs, which may restrict real-time applicability in resource-
constrained environments.

This work contributes to the field by: (I) integrating solar
geometric features for enhanced forecasting; (II) evaluating
a diverse set of ML models under consistent conditions;
(IIT) applying statistical validation of model performance;
and (IV) proposing a deployment-ready forecasting workflow
for real-time systems. Additionally, adopting high-speed
hardware such as solid-state DC breakers [48] and real-time
impedance measurement tools [49], [50] can strengthen fore-
casting system responsiveness, particularly when embedded
in microgrid controllers. For enhanced grid resilience, fore-
casting solutions may be aligned with restoration strategies
based on multi-energy generation units as proposed in [51].
Furthermore, long-term energy balancing can benefit from
integrating emerging storage technologies like gravity-based
systems [52].

Future Research

To address these issues and further enhance the accuracy
and applicability of solar energy forecasting models, future
research could focus on:
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Incorporating additional data sources and utilizing
advanced ML algorithms can improve the accuracy of
NWP models, which are crucial for PV forecasting.
Developing more detailed models of atmospheric pro-
cesses could lead to better predictions of solar irradiance
and power output.

Techniques that can handle large and complex datasets
will be essential as the volume of available data
continues to grow.

Leveraging historical data through methods such as
ARIMA, ETS, ANNs, and SVR can optimize grid
management and improve the efficiency of solar energy
plants.

Aim to deploy the optimized model within a Supervisory
Control and Data Acquisition (SCADA) system or
microgrid control dashboard. Real-time meteorological
inputs collected via IoT sensors or weather APIs will
be processed in a rolling window for near-term forecast
generation.

Incorporating digital twin principles, as discussed by
Yalavarthy et al. [53], could enable predictive control
and adaptive tuning of the forecasting system.
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