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a b s t r a c t 

Global warming and dust pollutants endanger humans and the ecosystem. One very efficient way 

to reduce emissions of greenhouse gases and dust is to use plant biomass in a greenbelt. This 

study provides a mathematical model for how dust pollutants and climate change affect plant 

biomass dynamics. The proposed model is thoroughly described. The model’s analysis is centered 

on identifying prospective equilibrium positions. The study indicates that it is feasible to establish 

two steady states. The stability analysis illustrates that both steady states are consistently stable 

under the specified conditions. The local bifurcations at each steady state are derived; specifi- 

cally, transcritical bifurcation may occur if a plant’s growth rate is selected as a bifurcation point. 

The theoretical study is validated through numerical simulations. Desertification may arise if the 

intrinsic growth rate of plant biomass, the dust pollutants-induced plant biomass depletion coef- 

ficient, and the coefficient of natural depletion of dust contaminants are not effectively managed, 

according to the numerical simulation result. 

• This research describes how to make a nonlinear model and sets its parameters to simulate 

the risk of desertification caused by global warming and dust pollutants. 

• The proposed model’s behaviour is described using stability analysis theory as a methodology. 

• Numerical simulations confirm the performance of the proposed methodology. 
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Background 

Disease transmission estimates, future population projections, and other scientific and physical phenomena can be better under- 

stood and described using mathematical models [ 1 , 2–4 ]. Plant biomass is significantly impacted by global warming because the

conditions that plants need to grow and thrive are altered by rising temperatures, rising atmospheric CO2 levels, and shifting precipi-

tation patterns. The total mass of live plant matter in an ecosystem is known as plant biomass, and it is essential for biodiversity, soil

health, and carbon sequestration. Stress induced by global warming may affect a plant’s capacity to survive, develop, and produce

[ 5 ]. Global warming may disrupt plant communities in the long term, with certain species flourishing while others struggle. Changes

in the distribution and abundance of plant biomass could significantly impact ecosystems, including decreased food availability for 

herbivores, biodiversity shifts and altered carbon storage [ 6 , 7 ]. 

Global warming is recognized as one of the primary contributors to desertification, as the persistent rise in temperatures results

in altered weather patterns and reduced precipitation, which have a detrimental impact on the vegetation cover in verdant areas.

As temperatures rise and arid periods lengthen, plants become more susceptible to drought and stress, decreasing their growth, soil

degradation, and fertility loss. In addition, the distribution of groundwater and surface water is disrupted by changing weather patterns

as drought periods become more severe and prolonged in numerous previously verdant regions. This results in land degradation and

the progressive transformation of these areas into deserts [ 8 ]. 

Dust pollutants adversely impact vegetation since dust particles and other airborne contaminants compromise the health and 

development of plants. One of the most important impacts on plants is the impediment to photosynthesis: Accumulated dust on plant

foliage obstructs sunlight, which is essential for photosynthesis, diminishing the plant’s capacity to generate the sustenance and energy 

required for their growth. In addition, dust pollutants obstruct leaf stomata: Dust particles may obstruct leaf stomata, so restricting

gas exchange, which induces stress in plants and impairs their uptake of vital gases, such as carbon dioxide, and the release of oxygen

[ 9 ]. Furthermore, dust pollutants can contain harmful substances, including heavy metals and industrial contaminants, which may

impair leaf structure and alter plant growth. Dust pollutants could alter soil properties through the accumulation of dust on soil, which

can modify its physical and chemical characteristics, impairing the capacity of roots to absorb water and nutrients, hence detrimental

to plant growth. These impacts result in a deterioration of vegetation quality and health, potentially harming agriculture and natural

ecosystems, diminishing biodiversity, and heightening the risk of desertification [ 10 ]. Desertification refers to the deterioration of 

land in arid and semi-arid regions caused by natural factors like climate change and anthropogenic factors such as deforestation and

unsustainable agricultural practices. Desertification results in diminished agricultural output, precipitating food scarcity and elevated 

poverty levels, particularly in rural areas reliant on agriculture. It also exacerbates mass migration to urban areas, placing strain

on infrastructure and services. Environmentally, it results in less biodiversity, heightened sandstorms, and elevated temperatures 

due to the depletion of vegetative cover. It results in substantial government economic losses due to diminished agricultural output

and the elevated expenses associated with combatting desertification and restoring damaged regions [ 8 , 9 ]. Mathematical modeling

is vital in solving many life problems [ 11–20 ]. Mathematical models of desertification, forest biomass, climate change, and dust

pollutants are under-researched. For instance, Prabir has formulated a mathematical model that considers global warming and forest 

biomass as separate compartments. He has made the assumption that global warming influences the expansion of forest biomass.

He discovered that the rate of global warming will be brought down if the area of forest biomass is increased [ 21 ]. Previous studies

primarily concentrate on developing mathematical models for polluted environments. Dubey et al. [ 22 ] proposed a mathematical 

model to analyze the depletion of resource biomass in plants resulting from industrialization and pollution. It was observed that,

in small periodic influxes of pollutants into the environment, the resource biomass exhibits periodic behaviour when the depletion

rate coefficient of the environmental pollutant is low. However, resource biomass approaches equilibrium if this coefficient exceeds 

a threshold value. Further, Shyam et al. have considered the impact of particulate contaminants on plant biomass. Their model

considered three variables: the density of plant biomass, the concentration of dust, and the density of water droplets. They have

discovered that spraying water particles into the near-earth atmosphere is unnecessary when the concentration of dust contaminants 

is below its threshold concentration [ 23 ]. 

Therefore, in view of the above, there is a shortage of research on the influence of dust pollutants and global warming on the

density of plant biomass. Hence, this investigation is focused on examining the impact of dust pollutants and global warming on the

density of plant biomass. This research aims to investigate the dynamics of the dust pollutants– plant biomass-global warming model

via a nonlinear mathematical model. Considering these effects, we propose a DPG model of dust pollutants– plant biomass-global 

warming interaction. This paper’s findings provide additional context for Shyam et al. [ 23 ] by substituting the water spray equation

with the one for global warming. This alteration enables us to precisely determine the important role that plant biomass plays in

maintaining the balance of the ecosystem in the face of global warming and dust pollutants. Therefore, we believe it is essential to

investigate this phenomenon, as it helps mitigate desertification. 

Method details 

Using mathematical modelling, we endeavour to define the impact of global warming and dust pollutants on plant biomass

dynamics in the present study. This study might be beneficial in evaluating the key parameters that affect, prevent or control the

cause of desertification. Here is a concise summary of the paper’s main objectives: 

a) Recognize the causes of desertification and determine the management factors that may mitigate or prevent its emergence. 

b) Explore the model’s ability to predict and manage desertification by adopting various parameters. 
2



E. Hakeem, S. Jawad, A.H. Ali et al. MethodsX 14 (2025) 103259

Table 1 

Description of the DPG system’s parameters. 

Parameters Denotation Values Source 

𝑨 The rate of dust pollutants from diverse sources into the atmosphere. 10 [23] 

𝝁0 The coefficient of natural depletion of dust pollutants. 0.1 [23] 

𝜶 Plant biomass-induced dust pollutants depletion coefficient. 0.01 [23] 

𝒓 The growth rate of plant biomass. 0.22 [23] 

𝒌 Plant biomass’s carrying capacity. 30 [23] 

𝒄 Global warming-induced desertification. 0.01 [25] 

𝜷 Dust pollutants-induced plant biomass depletion coefficient. 0.001 [23] 

𝐐 Factors contributing to the rising of global warming. 0.821 [25] 

𝜸1 The depletion rate coefficient of global warming due to dust pollutants. 0.001 Estimated 

𝜸2 The depletion rate coefficient of global warming due to plant biomass. 0.003 [21] 

𝝁1 The depletion of global warming due to human interventions. 0.001 [21] 

 

 

 

 

 

 

 

 

 

c) Examine the well-posedness of our model’s solutions by applying the Banach fixed point theorem. 

d) Identify the potential equilibrium points and analyze their stability using the Routh-Hurwitz criterion. 

e) Simulate the behaviour of model (1) using the 4th-order Runge-Kutta method approximation. 

Structural configuration 

Let us examine a DPG system that puts forward the following hypothesis: dust pollutants 𝐷( 𝑡 ) , plant biomass 𝑃 ( 𝑡 ) , and global

warming phenomena 𝐺( 𝑡 ) . The modeling procedure has been predicated on the following assumptions: 

1. Suppose that the rate of dust particulate emission into the atmosphere is 𝐴 . The dust contaminants deplete naturally at a rate 𝜇0 
[ 24 ]. 

2. The plant biomass reduces the concentration of dust particles in the atmosphere, which functions as a dust scavenger. The de-

creasing concentration of dust particles is directly proportional to the amount of dust particles and the density of plant biomass

(i.e. 𝛼𝐷𝑃 ), where 𝛼 is a dust particle depletion rate coefficient [ 23 ]. 

3. Plant biomass is hypothesized to grow with the intrinsic growth rate 𝑟 and carrying capacity 𝑘 in the absence of the impact of

global warming and dust pollutants. 

4. It is assumed that desertification caused by climate change is considered a factor reducing carrying capacity by 𝑐𝑔, where 𝑐

accounts for a reduction rate in carrying capacity due to global warming phenomena [ 8 , 25 ]. 

5. Due to the increasing concentration of dust particles, it is presumed that the plant biomass is depleted ( 𝛽𝐷𝑃 ), where 𝛽 is a plant

biomass depletion rate coefficient [ 23 ]. 

6. Various human activities (i.e. 𝑄 ), including urbanization, industrialization, modern lifestyle, etc., contribute to the continuous 

increase in global warming’s effect on the atmosphere and earth’s surface [ 26 , 27 ]. 

7. Various studies indicate that global warming can be mitigated or reduced by implementing multiple control strategies, including 

reducing fuel consumption, plantation, etc. Therefore, we assume 𝜇1 is global warming depletion owing to human control strategies 

[ 21 ], and 𝛾2 , is the depletion rate of global warming due to plantation [ 28 , 29 ]. 

8. Various studies suggest that dust pollutants deflect part of the sun’s rays before they reach the earth’s surface, limiting the amount

of heat the planet receives and producing a cooling effect. This impact may alleviate certain consequences of global warming

[ 30 ]. Therefore, we assume 𝛾1 is the depletion rate of global warming due to the cooling effect of dust mass on the climate. 

Based on the assumptions above, we have developed the following DPG system.: 

𝑑𝐷 

𝑑𝑡 
= 𝐴 − 𝜇0 𝐷 − 𝛼𝐷 𝑃 = 𝐹1 ( 𝐷 , 𝑃 ) , 

𝑑𝑃 

𝑑𝑡 
= 𝑟𝑃

(
1 − 𝑃 

𝐾 − 𝐶 𝐺 

)
− 𝛽𝐷𝑃 = 𝐹2 ( 𝐷, 𝑃 , 𝐺 ) , 

𝑑𝐺 

𝑑𝑡 
= 𝑄 − 𝛾1 𝐷𝐺 − 𝛾2 𝑃 𝐺 − 𝜇1 𝐺 = 𝐹3 ( 𝐷, 𝑃 , 𝐺 ) , 

(1) 

with the initial conditions 𝐷(0) ≥ 0 , 𝑃 (0) ≥ 0 and 𝐺(0) ≥ 0 . The parameters of the DPG model are delineated in Table 1 below. 

In addition, the schematic sketch of the DPG model is explained in Fig. 1 . 

Positivity and boundedness 

The positivity and boundedness of all solutions of the DPG model in the positive orthant of 𝑅3 
+ are established by the subsequent

theorems., We refer to [ 17 , 31 , 32 ] for a detailed argument. 

Theorem 1. All solutions 𝐷( 𝑡 ) , 𝑃 ( 𝑡 ) , and 𝐺( 𝑡 ) of the DPG system with the initial conditions (𝐷(0) , 𝑃 (0) , 𝐺(0) ) ∈ 𝑅3 
+ remains non-negative .

Proof . Let 𝐷( 𝑡 ) , 𝑃 ( 𝑡 ) , and 𝐺( 𝑡 ) be the solution of the DPG system, with the initial condition (𝐷(0) , 𝑃 (0) , 𝐺(0) ) ∈ 𝑅3 
+ , we derive 

𝑃 ( 𝑡) = 𝑃 ( 0) exp 
{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑𝛿

} 

> 0 
3
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Fig. 1. Schematic diagram of the DPG model. 

 

From the dust pollutants equation of the DPG model, we obtain 

𝑑 𝐷 =
[
𝐴 − 𝐷

(
𝜇0 + 𝛼𝑝 

)]
𝑑 𝑡 

Then, after substituting the formula of 𝑃 ( 𝑡 ) and eliminating the non-negative term yields 

𝑑 𝐷 ≥
[ 
− 𝐷

( 

𝜇0 + 𝛼𝑃 ( 0) exp 
{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑𝛿

} ) ] 
𝑑 𝑡. 

Integrating the above equation for 𝐷( 𝑡 ) yields 

𝐷( 𝑡) ≥ 𝐷( 0) 𝑒𝑥𝑝
{ 

∫
𝑡 

0 

[ 
−𝜇0 − 𝛼𝑃 ( 0) exp 

{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑𝛿

} ] 
𝑑𝛿

} 

> 0 . 

From the global warming equation of the DPG system, we attain 

𝑑 𝐺 =
(
𝑄 − 𝛾1 𝐷𝐺 − 𝛾2 𝑃 𝐺 − 𝜇1 𝐺 

)
𝑑 𝑡 

𝑑 𝐺 ≥ − 𝐺
( 
𝛾1 𝐷( 0) 𝑒𝑥𝑝

{ 

∫
𝑡 

0 

[ 
𝜇0 + 𝛼𝑃 ( 0) exp 

{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑𝛿

} ] 
𝑑 𝛿

} 

+ 𝛾2 𝑃 ( 0) exp 
{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑 𝛿

} 

+ 𝜇1 

) 
𝑑 𝑡 

By integrating the above equation, we obtain 

𝐺( 𝑡) ≥ 𝐺( 0) 𝑒𝑥𝑝
{ 

∫
𝑡 

0 
−
( 

𝛾1 𝐷( 0) 𝑒𝑥𝑝
{ 

∫
𝑡 

0 

[ 
𝜇0 + 𝛼𝑃 ( 0) exp 

{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑𝛿

} ] 
𝑑𝛿

} 

+𝛾2 𝑃 ( 0) exp 
{ 

∫
𝑡 

0 

[ 
𝑟 − 𝑟𝑃 ( 𝛿) 

𝑘 − 𝑐𝐺( 𝛿) 
− 𝛽𝐷( 𝛿) 

] 
𝑑𝛿

} 

+ 𝜇1 

) 

𝑑𝛿

} 

> 0 . 

Therefore, any solution (𝐷( 𝑡 ) , 𝑃 ( 𝑡 ) , 𝐺( 𝑡 ) ) that starts in 𝑅3 
+ with the initial conditions (𝐷(0) , 𝑃 (0) , 𝐺(0) ) will remain in 𝑅3 

+ . 

Theorem 2. The DPG model’s solutions are uniformly bounded . 

Proof: let (𝐷(0) , 𝑃 (0) , 𝐺(0) ) ∈ 𝑅3 
+ be an initial condition for the DPG model. By applying the standard comparison theory [ 33 ] to

both the first and third equations of the DPG model, it is obtained 

𝑑𝐷 

𝑑𝑡 
= 𝐴 − 𝜇0 𝐷 − 𝛼𝐷𝑃 ≤ 𝐴 − 𝜇0 𝐷 ⇒ lim 

𝑡 →∞
𝑠𝑢𝑝[ 𝐷( 𝑡) ] ≤ 𝐴 

𝜇0 
. 

and 

𝑑𝐺 

𝑑𝑡 
= 𝑄 − 𝛾1 𝐷𝐺 − 𝛾2 𝑃 𝐺 − 𝜇1 𝐺 ≤ 𝑄 − 𝜇1 𝐺 ⇒ lim 

𝑡 →∞
𝑠𝑢𝑝[ 𝐺( 𝑡) ] ≤ 𝑄 

𝜇1 
= 𝐺𝑚 . 
4
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From the plant biomass equation of the DPG system, we get 

𝑑𝑃 

𝑑𝑡 
= 𝑟𝑃

(
1 − 𝑃 

𝑘 − 𝑐𝐺 

)
− 𝛽𝐷𝑃 ≤ 𝑟𝑃

(
1 − 𝑃 

𝑘 − 𝑐𝐺 

) ≤ 𝑟𝑃

( 

1 − 𝑃 

𝑘 − 𝑐𝐺𝑚 

) 

Again, by the standard comparison method, we have 

lim 

𝑡 →∞
𝑠𝑢𝑝[ 𝑝( 𝑡) ] ≤ 𝑘 − 𝑐𝐺𝑚 

Therefore, the attracting region for the DPG model is 

𝜓 =
{ 

( 𝐷, 𝑃 , 𝐺 ) ∈ 𝑅3 
+ ∶ 𝐷( 𝑡) ≤ 𝐴 

𝜇0 
, 𝑃 ( 𝑡) ≤ 𝑘 − 𝑐𝐺𝑚 , 𝐺( 𝑡) ≤ 𝑄 

𝜇1 

} 

. 

Equilibria analysis 

This section identifies and analyzes the potential equilibrium points and their stability. To accomplish this, we compute 𝑑𝐷 
𝑑𝑡 

= 

𝑑𝑃 

𝑑𝑡 
= 𝑑𝐺 

𝑑𝑡 
= 0 and obtain the following equilibrium 

1 The desertification point 𝑍1 = (𝐷1 , 0 , 𝐺1 ) , where 𝐷1 =
𝐴 

𝜇0 
and 𝐺1 =

𝑄𝜇0 
𝐴𝛾1 +𝜇0 𝜇1 

. 

2 The non-desertification point 𝑍2 = (𝐷2 , 𝑃2 , 𝐺2 ) , where 𝐷2 =
𝐴 

𝜇0 + 𝛼𝑃 
, 𝐺2 =

𝑄 (𝜇0 + 𝛼𝑃 ) 
𝛼𝛾2 𝑃 2 +(𝜇0 𝛾2 +𝜇1 𝛼) 𝑃+(𝐴𝛾1 +𝜇0 𝜇1 ) 

and 𝑃2 is the root of 𝑓 ( 𝑃 ) , 
where 𝑓 ( 𝑃 ) is 

𝑓 ( 𝑃 ) = 𝑒1 𝑃
4 + 𝑒2 𝑃

3 + 𝑒3 𝑃
2 + 𝑒4 𝑃 + 𝑒5 = 0 , 

here, 

𝑒1 = − 𝑟𝛼2 𝛾2 

𝑒2 = 𝑟𝛼
(
𝑘𝛼𝛾2 − 2𝜇0 𝛾2 − 𝜇1 𝛼

)
𝑒3 = 𝑘𝛼𝛾2 

(
𝑟𝜇0 − 𝛽𝐴 

)
+ 𝑟

(
𝜇0 𝛾2 + 𝜇1 𝛼

)(
𝑘𝛼 − 𝜇0 

)
− 𝑟𝛼

(
𝐴𝛾1 + 𝜇0 𝜇1 + 𝑐𝑄𝛼

)
𝑒4 = 𝑘

(
𝜇0 𝛾2 + 𝜇1 𝛼

)(
𝑟𝜇0 − 𝛽𝐴 

)
− 𝑟

(
𝐴𝛾1 + 𝜇0 𝜇1 

)(
𝑘𝛼 − 𝜇0 

)
− 𝑐𝑄𝛼

(
2 𝑟𝜇0 − 𝛽𝐴 

)
𝑒5 =

(
𝑟𝜇0 − 𝛽𝐴 

)(
𝑘
(
𝐴𝛾1 + 𝜇0 𝜇1 

)
− 𝑐𝑄𝜇0 

)
Clearly, 𝑓 (0) = (𝑟𝜇0 − 𝛽𝐴 )(𝑘 (𝐴𝛾1 + 𝜇0 𝜇1 ) − 𝑐𝑄𝜇0 ) , and 𝑓 ( 𝑘 ) = 𝑒1 𝑘

4 + 𝑒2 𝑘
3 + 𝑒3 𝑘

2 + 𝑒4 𝑘 + 𝑒5 . 
So, 𝑓 ( 𝑃 ) has a unique positive root, say 𝑃2 , where 𝑃2 ∈ (0 , 𝑘 ) if one of the following cases is satisfied 

𝑓 ( 0) > 0 , 𝑓 ( 𝑘) < 0 and 𝑓 ′( 𝑃 ) < 0 , 
𝑓 ( 0) ⟨0 , 𝑓 ( 𝑘) ⟩0 and 𝑓 ′( 𝑃 ) > 0 . (2) 

Stability analysis of the DPG model 

To assess the linear stability of the DPG system, it is essential to compute the Jacobian matrix, which is defined as 

𝐽 =
⎡ ⎢ ⎢ ⎢ ⎣ 
−𝜇0 − 𝛼𝑃 − 𝛼𝐷 0 

− 𝛽𝑃 𝑟 − 2 𝑟𝑃 
𝑘 − 𝑐𝐺 − 𝛽𝐷 − 𝑟𝑐𝑃 2 

( 𝑘 − 𝑐𝐺 ) 2 

−𝛾1 𝐺 −𝛾2 𝐺 −
(
𝛾1 𝐷 + 𝛾2 𝑃 + 𝜇1 

)
⎤ ⎥ ⎥ ⎥ ⎦ . (3) 

Around the two equilibrium points indicated above, the local analysis of the DPC model is figured out as 

𝐽 (𝑍1 ) = 𝐽 (𝐷1 , 0 , 𝐺1 ) is given as: 

𝐽
(
𝑍1 
)
=
⎡ ⎢ ⎢ ⎢ ⎣ 

−𝜇0 − 𝛼𝐴 

𝜇0 
0 

0 𝑟 − 𝛽𝐴 

𝜇0 
0 

−𝜇0 𝛾1 𝑄 
𝛾1 𝐴 +𝜇0 𝜇1 

−𝜇0 𝛾2 𝑄 
𝛾1 𝐴 +𝜇0 𝜇1 

− 𝛾1 𝐴 
𝜇0 

− 𝜇1 

⎤ ⎥ ⎥ ⎥ ⎦ , (4) 

The characteristic equation of 𝐽 (𝑍1 ) is (−𝜇0 − 𝜆)(𝑟 − 𝛽𝐴 

𝜇0 
− 𝜆)(− 𝛾1 𝐴 

𝜇0 
− 𝜇1 − 𝜆) , and the eigenvalues of 𝐽 (𝑍1 ) are 𝜆1 = −𝜇0 < 0 , 𝜆2 =

𝑟 − 𝛽𝐴 

𝜇0 
and 𝜆3 = − 𝛾1 𝐴 

𝜇0 
− 𝜇1 < 0 . Therefore, 𝑍1 is asymptotic stable if 

𝑟 < 𝑟∗ , (5) 
5
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where, 𝑟∗ = 𝛽𝐴 

𝜇0 
. Condition 5 shows that desertification could happen when the intrinsic growth rate of plant biomass is less than the

plant biomass depletion rate coefficient due to dust pollutants. Conversely, for 𝑟 >
𝛽𝐴 

𝜇0 
, 𝑍1 is a saddle point. For 𝑟 = 𝛽𝐴 

𝜇0 
, then 𝐽 (𝑍1 )

has zero eigenvalue, creation 𝑍1 a nonhyperbolic point. 

3. 𝐽 (𝑍2 ) = 𝐽 (𝐷2 , 𝑃2 , 𝐺2 ) is given as: 

𝐽
(
𝑍2 
)
=
⎛ ⎜ ⎜ ⎜ ⎝ 
−
(
𝜇0 + 𝛼𝑃2 

)
− 𝛼𝐷2 0 

− 𝛽𝑃2 − 𝑟𝑃2 
( 𝑘 − 𝑐𝐺2 ) −

𝑟𝑐𝑃 2 
2 

( 𝑘 − 𝑐𝐺2 ) 2 
−𝛾1 𝐺2 −𝛾2 𝐺2 −

(
𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)
⎞ ⎟ ⎟ ⎟ ⎠ . (6) 

So, the eigenvalues of (𝑍2 ) are the roots of the following equation (
𝜆3 + 𝑆1 𝜆

2 + 𝑆2 𝜆 + 𝑆3 
)
= 0 (7) 

where: 

𝑆1 = −
(
𝑧11 + 𝑧22 + 𝑧33 

)
= 𝜇0 + 𝜇1 + 𝛾1 𝐷2 +

( 

𝛼 + 𝛾2 +
𝑟 (

𝑘 − 𝑐𝐺2 
)) 

𝑝2 > 0 , 

𝑆2 = 𝑧11 
(
𝑧22 + 𝑧33 

)
+ 𝑧22 𝑧33 − 𝑧23 𝑧32 − 𝑧12 𝑧21 =

(
𝜇0 + 𝛼𝑝2 

)( 

𝑟𝑃2 (
𝑘 − 𝑐𝐺2 

) + 𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

) 

+

( 

𝑟𝑃2 (
𝑘 − 𝑐𝐺2 

)) (
𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)
− 𝛾2 𝐺2 

( 

𝑟𝑐𝑃 2 
2 (

𝑘 − 𝑐𝐺2 
)2 
) 

− 𝛼𝛽𝐷2 𝑃2 , 

𝑆3 = 𝑧11 
(
𝑧23 𝑧32 − 𝑧22 𝑧33 

)
+ 𝑧12 (𝑧21 𝑧33 − 𝑧23 𝑧31 ) 

= −
(
𝜇0 + 𝛼𝑝2 

)[ ( 

𝑟𝑐𝛾2 𝐺2 𝑃
2 
2 (

𝑘 − 𝑐𝐺2 
)2 
) 

−
(
𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)
𝑟𝑃2 (

𝑘 − 𝑐𝐺2 
) ] 

− 𝛼𝐷2 

[ 
𝛽𝑃2 

(
𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)
−

𝑟𝑐𝛾1 𝐺2 𝑃
2 
2 (

𝑘 − 𝑐𝐺2 
)2 
] 
, 

𝑆1 𝑆2 − 𝑆3 =
(
𝑧11 + 𝑧22 

)(
𝑧12 𝑧21 − 𝑧2 33 

)
+
(
𝑧22+ 𝑧33 

)(
𝑧23 𝑧32 − 𝑧2 11 

)
− 𝑧2 22 

(
𝑧11 + 𝑧33 

)
− 2𝑧11 𝑧22 𝑧33 + 𝑧12 𝑧23 𝑧31 

= −

( 

𝜇0 + 𝛼𝑃2 +
𝑟𝑃2 (

𝑘 − 𝑐𝐺2 
)) (

𝛼𝛽𝑃2 𝐷2 −
(
𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)2 ) −

( 

𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 +
𝑟𝑃2 (

𝑘 − 𝑐𝐺2 
)) ( 

𝑟𝑐𝛾2 𝐺2 𝑃
2 
2 (

𝑘 − 𝑐𝐺2 
)2 − (𝜇0 + 𝛼𝑃2 

)2 ) 

+

( 

𝑟𝑃2 (
𝑘 − 𝑐𝐺2 

)) 2 (
𝜇0 + 𝛼𝑃2 + 𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)
+ 2

( (
𝜇0 + 𝛼𝑃2 

)( 

𝑟𝑃2 (
𝑘 − 𝑐𝐺2 

)) (
𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 

)) 

−
𝑟𝑐𝛼𝛾1 𝐺2 𝐷2 𝑃

2 
2 (

𝑘 − 𝑐𝐺2 
)2 

Thus, by the Routh-Hurwitz rule [ 34 ], 𝑍2 is asymptotically stable if 𝑆3 > 0 and 𝑆1 𝑆2 > 𝑆3 . 

Global stability 

This section will analyze global stability (GAS) around equilibrium points to investigate the dynamics of the DPC model in regions

distant from these points using the Lyapunov direct method [ 35 ]. 

Theorem 3. 𝑍1 = (𝐷1 , 0 , 𝐺1 ) is a GAS provided the following conditions hold: 

(𝛾1 𝐷+𝜇1 ) 
4 ≥ 𝑚𝑎𝑥

{ 

( 𝛾1 𝐺1 ) 2 
𝜇0 

,
𝛾2 

2 𝐺2 ( 𝑘 − 𝑐𝐺 ) 
𝑟 

} 

4( 𝑘 − 𝑐𝐺 ) ( 𝛼𝐷 ) 2 
𝜇0 

≤ 𝑟 < 𝛽𝐷 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(8) 

Proof: Let us define a Lyapunov function for the DPG model around 𝑍1 as: 

𝐿1 ( 𝑡) =
(
𝐷 −𝐷1 

)2 
+ 𝑃 +

(
𝐺 − 𝐺1 

)2 

2 2 

6
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where L1 ( t ) is a positive definite about Z1 . Thus, 

𝑑𝐿1 
𝑑𝑡 

= 

(
𝐷 −𝐷1 

)𝑑𝐷 

𝑑𝑡 
+ 𝑑𝑃 

𝑑𝑡 
+
(
𝐺 − 𝐺1 

)𝑑𝐺 

𝑑𝑡 
=
(
𝐷 −𝐷1 

)(
𝐴 − 𝜇0 𝐷 − 𝛼𝐷𝑃 − 𝐴 + 𝜇0 𝐷 

)
+
( 

𝑟𝑃 − 𝑟𝑃 2 

𝑘 − 𝑐𝐺 

− 𝛽𝐷𝑃 

) 

+
(
𝐺 − 𝐺1 

)(
𝑄 − 𝛾1 𝐷𝐺 − 𝛾2 𝑃 𝐺 − 𝜇1 𝐺 − 𝑄 + 𝛾1 𝐷1 𝐺1 + 𝜇1 𝐺1 

)
. 

Therefore, 

𝑑𝐿1 
𝑑𝑡 

=
(
𝐷 −𝐷1 

)(
−𝜇0 

(
𝐷 −𝐷1 

)
− 𝛼𝐷𝑃 

)
+
( 

𝑟𝑃 − 𝑟𝑃 2 

𝑘 − 𝑐𝐺 

− 𝛽𝐷𝑃 

) 

+
(
𝐺 − 𝐺1 

)(
−𝛾1 

(
𝐷𝐺 −𝐷1 𝐺1 

)
− 𝛾2 𝑃 𝐺 − 𝜇1 

(
𝐺 − 𝐺1 

))
. 

i.e., 

𝑑𝐿1 
𝑑𝑡 

= −𝜇0 
(
𝐷 −𝐷1 

)2 − 𝛼𝐷𝑃
(
𝐷 −𝐷1 

)
+ 𝑟𝑝 − 𝑟𝑃 2 

𝑘 − 𝑐𝐺 

− 𝛽𝐷𝑃 − (𝛾1 𝐷 + 𝜇1 )
(
𝐺 − 𝐺1 

)2 − 𝛾1 𝐺1 
(
𝐷 −𝐷1 

)(
𝐺 − 𝐺1 

)
− 𝛾2 𝑃 𝐺

(
𝐺 − 𝐺1 

)
. 

⇒
𝑑𝐿1 
𝑑𝑡 

= −

[ 
𝜇0 
(
𝐷 −𝐷1 

)2 
2 

+ 𝛼𝐷𝑃
(
𝐷 −𝐷1 

)
+ 𝑟 

2( 𝑘 − 𝑐𝐺 ) 
𝑃 2 + 𝑟 

2( 𝑘 − 𝑐𝐺 ) 
𝑃 2 + 𝛾2 𝑃 𝐺

(
𝐺 − 𝐺1 

)
+
(
𝛾1 𝐷 + 𝜇1 

)
2 

(
𝐺 − 𝐺1 

)2 
+
(
𝛾1 𝐷 + 𝜇1 

)
2 

(
𝐺 − 𝐺1 

)2 + 𝛾1 𝐺1 
(
𝐷 −𝐷1 

)(
𝐺 − 𝐺1 

)
+
𝜇0 
(
𝐷 −𝐷1 

)2 
2 

− 𝑃 ( 𝑟 − 𝛽𝐷 ) 

] 
. 

Consequently, 

𝑑𝐿1 
𝑑𝑡 

= −

( √ 

𝜇0 
2 
(
𝐷 −𝐷1 

)
+
√ 

𝑟 

2( 𝑘 − 𝑐𝐺 ) 
𝑃 

) 2 

−
⎛ ⎜ ⎜ ⎝ 
√ 

𝑟 

2( 𝑘 − 𝑐𝐺 ) 
𝑃 +

√ (
𝛾1 𝐷 − 𝜇1 

)
2 

(
𝐺 − 𝐺1 

)⎞ ⎟ ⎟ ⎠ 
2 

−
⎛ ⎜ ⎜ ⎝ 
√ (

𝛾1 𝐷 − 𝜇0 
)

2 
(
𝐺 − 𝐺1 

)
+
√ 

𝜇0 
2 
(
𝐷 −𝐷1 

)⎞ ⎟ ⎟ ⎠ 
2 

. 

So, 𝑑𝐿1 ∕𝑑𝑡 < 0 under condition (8) and hence 𝐿1 ( 𝑡 ) is a Lyapunov function. Thus, 𝑍1 = (𝐷1 , 0 , 𝐺1 ) is GAS in 𝑅3 
+ if 𝐷 and 𝐺 are

controlled as in condition (8) . 

Consequently, the desertification point satisfies the criteria for local stability, hence establishing its global stability. From a biolog-

ical standpoint, the increase in dust pollutants and global warming may lead to the eradication of green spaces and the transformation

into desertified regions if the specific criteria in (8) are satisfied. 

Theorem 4. 𝑍2 = (𝐷2 , 𝑃2 , 𝐺2 ) is a GAS provided the following conditions hold: 

(𝜇0 + 𝛼𝑃2 ) 
4 ≥ 𝑀𝑎𝑥

[ 
( 𝛼𝐷+ 𝛽) 2 ( 𝑘 − 𝑐𝐺 ) 

𝑟 
,

𝛾2 1 𝐺
2 
2 

𝛾1 𝐷+𝛾2 𝑃+𝜇1 

] 
(

𝑟𝑐𝑃2 
( 𝑘 − 𝑐𝐺 ) ( 𝑘 − 𝑐𝐺2 ) + 𝛾2 𝐺2 

)2 ≤ 𝑟( 𝛾1 𝐷+𝛾2 𝑃+𝜇2 ) 
𝑘 − 𝑐𝐺 

⎫ ⎪ ⎬ ⎪ ⎭ . (9) 

Proof : Let us define a Lyapunov function for the DPG model around 𝑍2 as: 

𝐿2 =
(
𝐷 −𝐷2 

)2 
2 

+ ( 𝑃 − 𝑃2 − 𝑃2 ln 
𝑃 

𝑃2 
) +

(
𝐺 − 𝐺2 

)2 
2 

, 

where 𝐿2 ( 𝑡 ) is a positive definite about 𝑍2 . Thus, 

𝑑𝐿2 
𝑑𝑡 

=
(
𝐷 −𝐷2 

)𝑑𝐷 

𝑑𝑡 
+
( 

𝑃 − 𝑃2 
𝑃 

) 

𝑑𝑃 

𝑑𝑡 
+
(
𝐺 − 𝐺2 

)𝑑𝐺 

𝑑𝑡 
, 

Therefore, 

𝑑𝐿2 
𝑑𝑡 

=
(
𝐷 −𝐷2 

)[
𝐴 − 𝜇0 𝐷 − 𝛼𝐷𝑃 − 𝐴 + 𝜇0 𝐷2 + 𝛼𝐷2 𝑃2 

]
+
(
𝑃 − 𝑃2 

)[ 
𝑟 − 𝑟𝑝 

𝑘 − 𝑐𝐺 

− 𝛽𝐷 − 𝑟 +
𝑟𝑃2 

𝑘 − 𝑐𝐺2 
+ 𝛽𝐷2 

] 
+
(
𝐺 − 𝐺2 

)[
𝑄 − 𝛾1 𝐷𝐺 − 𝛾2 𝑃 𝐺 − 𝜇1 𝐺 − 𝑄 + 𝛾1 𝐷2 𝐺2 + 𝛾2 𝑃2 𝐺2 + 𝜇1 𝐺2 

]
. 

Thus, 

( 𝑑𝐿_2 ) ∕𝑑𝑡 = −( 𝜇_0 + 𝛼𝑃 _2 ) ( 𝐷 − 𝐷_1 ) 2 − 𝛼𝐷( 𝑃 − 𝑃 _2 ) ( 𝐷 − 𝐷_2 ) −
(
𝑟( 𝑃 − 𝑃 _2 ) 2 

)
∕( 𝑘 − 𝑐𝐺 ) − ( 𝑟𝑐𝑃 _2 ( 𝐺 − 𝐺_2 ) ( 𝑃 − 𝑃 _2 ) ) ∕

( 𝑘 − 𝑐𝐺 ) ( 𝑘 − 𝑐𝐺_2 ) − 𝛽( 𝐷 − 𝐷_2 ) ( 𝑃 − 𝑃 _2 ) − ( 𝛾_1 𝐷 + 𝛾_2 𝑃 + 𝜇_1 ) ( 𝐺 − 𝐺_1 ) 2 − 𝛾_1 𝐺_2 ( 𝐷 − 𝐷_2 ) ( 𝐺 − 𝐺_2 ) 
− 𝛾_2 𝐺_2 ( 𝑃 − 𝑃 _2 ) ( 𝐺 − 𝐺_2 ) . 

i.e., 

𝑑𝐿2 
𝑑𝑡 

= −
[ 
(𝜇0 + 𝛼𝑃2 ) 

2 
(
𝐷 −𝐷2 

)2 + ( 𝛼𝐷 + 𝛽) 
(
𝐷 −𝐷2 

)(
𝑃 − 𝑃2 

)
+ 𝑟 

2( 𝑘 − 𝑐𝐺 ) 
(
𝑃 − 𝑃2 

)2 
+ 𝑟 

2( 𝑘 − 𝑐𝐺 ) 
(
𝑃 − 𝑃2 

)2 +( 

𝑟𝑐𝑃2 

( 𝑘 − 𝑐𝐺 ) 
(
𝑘 − 𝑐𝐺2 

) + 𝛾2 𝐺2 

) (
𝑃 − 𝑃2 

)(
𝐺 − 𝐺2 

)
+
(
𝛾1 𝐷 + 𝛾2 𝑃2 + 𝜇1 

)
2 

(
𝐺 − 𝐺2 

)2 

7
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+
(
𝛾1 𝐷 + 𝛾2 𝑃2 + 𝜇1 

)
2 

(
𝐺 − 𝐺2 

)2 + 𝛾1 𝐺2 
(
𝐷 −𝐷2 

)(
𝐺 − 𝐺2 

)
+

(𝜇0 + 𝛼𝑃2 ) 
2 

(
𝐷 −𝐷2 

)2 ] 
. 

Therefore, 

𝑑𝐿2 
𝑑𝑡 

≤ −
⎡ ⎢ ⎢ ⎣ 
√ (

𝜇0 + 𝛼𝑃2 
)

2 
(
𝐷 −𝐷2 

)
+
√ 

𝑟 

2( 𝑘 − 𝑐𝐺 ) 
(
𝑃 − 𝑃2 

)⎤ ⎥ ⎥ ⎦ 
2 

−

[ √ 

𝑟 

2( 𝑘 − 𝑐𝐺 ) 
(
𝑃 − 𝑃2 

)
+
√ 

(𝛾1 𝐷 + 𝛾2 𝑃 + 𝜇1 
2 

(
𝐺 − 𝐺2 

)] 2 

−
⎡ ⎢ ⎢ ⎣ 
√ 

(𝛾1 𝐷 + 𝛾2 𝑃 + 𝜇1 
2 

(
𝐺 − 𝐺2 

)
+

√ (
𝜇0 + 𝛼𝑃2 

)
2 

(
𝐷 −𝐷2 

)⎤ ⎥ ⎥ ⎦ 
2 

Thus, 𝑑𝐿2 ∕𝑑𝑡 < 0 under condition (9) and hence 𝐿2 ( 𝑡 ) is a Lyapunov function. Consequently, 𝑍2 = (𝐷2 , 𝑃2 , 𝐺2 ) is GAS in 𝑅3 
+ if

𝐷, 𝑃 and 𝐺 are controlled as in condition (9) . 

From a biological perspective, condition (9) ensures that green spaces persist despite the increasing levels of dust pollutants and

global warming. 

Local bifurcation 

This section examines the local bifurcation around the steady states utilizing Sotomayor’s rule for local bifurcation; for instance,

see [ 19 , 36–38 ]. 

Theorem 5. For 𝑟∗ = 𝛽𝐴 

𝜇0 
, the DPG model, at 𝑍1 has a transcritical bifurcation ( TB ) . 

Proof. At 𝑟∗ = 𝛽𝐴 

𝜇0 
, 𝐽 (𝑍1 ) has a zero eigenvalue 𝜆1 2 = 0 . So, 𝐽 (𝑍1 ) at 𝑟∗ becomes 

𝐽 ∗ (𝑍1 
)
= −

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜇0 

𝐴𝛼

𝜇0 
0 

0 0 0 
𝑄𝜇0 𝛾1 

𝐴𝛾1 +𝜇0 𝜇1 
𝑄𝜇0 𝛾2 

𝐴𝛾1 +𝜇0 𝜇1 
( 𝐴𝛾1 +𝜇0 𝜇1 ) 

𝜇0 

⎤ ⎥ ⎥ ⎥ ⎦ 
Now, let 𝑊 [1] = (𝑤[1] 

1 , 𝑤
[2] 
2 , 𝑤

[3] 
3 ) 

𝑇 
and 𝑌 [1] = (𝑦[1] 1 , 𝑦

[2] 
2 , 𝑦

[1] 
3 ) 

𝑇 
are the eigenvectors corresponding to 𝜆1 2 = 0 of 𝐽 ∗ (𝑍1 ) and 𝐽 ∗ 𝑇 (𝑍1 ) 

respectively. The computations give 𝑊 [1] = (− 𝐴𝛼
𝜇2 0 

, 1 ,
− 𝑄 (𝐴𝛼𝛾1 −𝛾2 𝜇2 0 ) 

(𝐴𝛾1 +𝜇0 𝜇1 ) 2 
) 
𝑇 

and 𝑌 [0] = ( 0 , 1 , 0 ) 𝑇 . 

Now, let 𝑓 = (𝑓1 (𝐷, 𝑃 ) , 𝑓2 (𝐷, 𝑃 , 𝐺 ) , 𝑓3 (𝐷, 𝑃 , 𝐺 ) ) 𝑇 , then 

𝜕𝑓 

𝜕𝑟 
=
( 

𝜕𝑓1 
𝜕𝑟 

,
𝜕𝑓2 
𝜕𝑟 

,
𝜕𝑓3 
𝜕𝑟 

) 

=
( 

0 , 𝑃 − 𝑃 2 

𝑘 − 𝑐𝐺 

, 0 
) 

⇒ 𝑓𝑟 
(
𝑧1 , 𝑟

∗ ) = ( 0 , 0 , 0 ) . 

Hence, 

𝑌 [ 1] 𝑇 𝑓𝑟 
(
𝑍1 , 𝑟

∗ ) = ( 0 , 1 , 0 ) ( 0 , 0 , 0 ) 𝑇 = 0 . 

That means the (SNB) cannot happen at 𝑟∗ , while the first condition of TB is satisfied. 

Subsequently, 

𝑌 [ 1] 𝑇 [𝐷𝑓𝑟 (𝑍1 , 𝑟
∗ )𝑤[ 1] ] = ( 0 , 1 , 0 ) 

⎡ ⎢ ⎢ ⎣ 
0 0 0 
0 1 0 
0 0 0 

⎤ ⎥ ⎥ ⎦ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

− 𝐴𝛼
𝜇2 0 
1 

𝑄

(
𝐴𝛼𝛾1 −𝛾2 𝜇2 0 

)
( 𝐴𝛾1 +𝜇0 𝜇1 ) 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 1 ≠ 0 , 

𝑌 [ 1] 𝑇 [𝐷2 𝑓𝑟 
(
𝑍1 , 𝑟

∗ )(𝑤[ 1] , 𝑤[ 1] )] = ( 0 , 1 , 0 ) 
⎡ ⎢ ⎢ ⎣ −2

( 

𝛼𝑤
[ 1] 
1 𝑤

[ 1] 
2 , 𝑤

[ 1] 
2 

( 

𝛽𝑤
[ 1] 
1 +

𝑟∗ 𝑤[ 1] 
2 

𝑘 − 𝑐𝐺1 

) 

, 𝑤
[ 1] 
3 

(
𝛾1 𝑤

[ 1] 
1 + 𝛾2 𝑤

[ 1] 
2 

)) 𝑇 ⎤ ⎥ ⎥ ⎦ = −2𝑟∗ 
( 

𝛼

𝜇0 
+ 1 
𝑘 − 𝑐𝐺1 

) 

≠ 0 

According to Sotomayor’s theorem, the DPG faces TB at 𝑍1 for 𝑟∗ . 

Theorem 6. For 𝛼∗ =
(𝑧[2] 22 + 𝑧

[2] 
33 )(𝑧

[2] 
23 𝑧

[2] 
32 −[𝑧

[2] 
11 ] 

2 
)−[𝑧[2] 33 ] 

2 
(𝑧[2] 11 + 𝑧

[2] 
22 )−[𝑧

[2] 
22 ] 

2 
(𝑧[2] 11 + 𝑧

[2] 
33 )−2 𝑧

[2] 
11 𝑧

[2] 
22 𝑧

[2] 
33 

𝐷2 (𝑧
[2] 
11 𝑧

[2] 
21 + 𝑧

[2] 
22 𝑧

[2] 
21 + 𝑧

[2] 
23 𝑧

[2] 
31 ) 

, where 𝛼∗ > 0 , the DPG model, at 𝑍2 has SNB if 

(
𝑌 [ 2] )𝑇 [𝐷2 𝑓𝛼

(
𝑍2 , 𝛼

∗ )(𝑤[ 2] , 𝑤[ 2] )] ≠ 0 , (10) 

where the notation in (10) will be measured in the following proof and the formulas of 𝑧[2] 
𝑖𝑗 

are given in (6) . 

Proof. According to 𝐽 (𝑍2 ) , it is observed that 𝑆1 𝑆2 − 𝑆3 = 0 gives 𝛼∗ and 𝐽 ∗ (𝑍2 ) = 𝐽 (𝑍2 , 𝛼
∗ ) , becomes : 

𝐽 ∗ (Z2 
)
=
⎡ ⎢ ⎢ ⎣ 
𝜙11 𝜙12 0 
𝜙21 𝜙22 𝜙23 
𝜙31 𝜙32 𝜙33 

⎤ ⎥ ⎥ ⎦ 

8
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here, 

𝜙11 = −(𝜇0 + 𝛼∗ 𝑃2 ) , 𝜙12 = −𝛼∗ 𝐷2 , 

𝜙21 = −𝛽∗ 𝑃2 , 𝜙22 = −
𝑟𝑃2 (

𝑘 − 𝑐𝐺2 
) , 𝜙23 = −

𝑟𝑐𝑃 2 
2 (

𝑘 − 𝑐𝐺2 
)2 , 

𝜙31 = −𝛾1 𝐺2 , 𝜙32 = −𝛾2 𝐺2 , 𝜙33 = −(𝛾1 𝐷2 + 𝛾2 𝑃2 + 𝜇1 ) . 

Now, let 𝑊 [2] = (𝑤[2] 
1 , 𝑤

[2] 
2 , 𝑤

[2] 
3 ) 

𝑇 
and 𝑌 [2] = (𝑦[2] 1 , 𝑦

[2] 
2 , 𝑦

[2] 
3 ) 

𝑇 
represent the eigenvectors corresponding to 𝜆3 1 = 0 of 𝐽 ∗ (𝑍2 ) and 

𝐽 ∗ 𝑇 (𝑍2 ) respectively. The computations give W[2] = (−𝜙12 
𝜙11 

, 1 , 𝜙11 𝜙22 −𝜙12 𝜙21 
𝜙11 𝜙33 

) 
𝑇 

and 𝑌 [2] = ( 𝜙23 𝜙31 −𝜙21 𝜙33 
𝜙11 𝜙33 

, 1 , −𝜙23 
𝜙33 

) 
𝑇 

. 

Subsequently, 

𝑌 [ 2] 𝑇 𝑓𝛼
(
𝑍2 , 𝛼

∗ ) = ( 

𝜙23 𝜙31 − 𝜙21 𝜙33 
𝜙11 𝜙33 

, 1 ,
−𝜙23 
𝜙33 

) (
−𝐷2 𝑃2 , 0 , 0 

)𝑇 = 𝜙23 𝜙31 − 𝜙21 𝜙33 
𝜙11 𝜙33 

𝐷2 𝑃2 ≠ 0 , 

(
𝑌 [ 2] )𝑇 [𝐷2 𝑓𝛼

(
𝑍2 , 𝛼

∗ )(𝑤[ 2] , 𝑤[ 2] )] = ( 

𝜙23 𝜙31 − 𝜙21 𝜙33 
𝜙11 𝜙33 

, 1 ,
−𝜙23 
𝜙33 

) 

−2
⎛ ⎜ ⎜ ⎜ ⎝ 𝛼

∗ 𝑤[ 2] 
1 𝑤

[ 2] 
2 , 𝑤

[ 2] 
2 

( 

𝛽𝑤
[ 2] 
1 +

𝑟𝑤
[ 2] 
2 

𝑘 − 𝑐𝐺2 

) 

+
𝑟𝑐𝑃 𝑤

[ 2] 
3 

(
2
(
𝑘 − 𝑐𝐺2 

)
+ 𝑐𝑃 𝑤

[ 2] 
3 

)
(
𝑘 − 𝑐𝐺2 

)3 , 𝑤
[ 2] 
3 

(
𝛾1 𝑤

[ 2] 
1 + 𝛾2 𝑤

[ 2] 
2 

)⎞ ⎟ ⎟ ⎟ ⎠ 
𝑇 

= −2
⎛ ⎜ ⎜ ⎜ ⎝ 𝛼

∗ 𝑤[ 2] 
1 

( 

𝜙23 𝜙31 − 𝜙21 𝜙33 
𝜙11 𝜙33 

) 

+
⎡ ⎢ ⎢ ⎢ ⎣ 𝛽𝑤

[ 2] 
1 + 𝑟 

𝑘 − 𝑐𝐺2 
+
𝑟𝑐𝑃2 𝑤

[ 2] 
3 

(
2
(
𝑘 − 𝑐𝐺2 

)
+ 𝑐𝑝𝑤

[ 2] 
3 

)
(
𝑘 − 𝑐𝐺2 

)3 
⎤ ⎥ ⎥ ⎥ ⎦ + 𝑤

[ 2] 
3 

(
𝛾1 𝑤

[ 2] 
1 + 𝛾2 

)( 

−𝜙23 
𝜙33 

) 

⎞ ⎟ ⎟ ⎟ ⎠ . 
Therefore, condition (10) guarantees that the SNB is taken place at 𝑍2 with the parameter 𝛼∗ . 

Theorem 7. Under the following assumptions 

𝑆𝑖 > 0 , 𝑖 = 1 , 2 (11) 

𝛾∗ 1 > 0 (12) 

where 𝑆𝑖 , 𝑖 = 1 , 2 are specified in Eq. (7) with 𝛾1 = 𝛾∗ 1 and the formulation of 𝛾∗ 1 is given in the following proof. Then, the DPG system

undergoes a Hopf bifurcation (HB) for 𝑍2 at 𝛾1 = 𝛾∗ 1 . 

Proof: To find the bifurcation parameter 𝛾∗ 1 , we set 𝑆1 (𝛾∗ 1 )𝑆2 (𝛾∗ 1 ) − 𝑆3 (𝛾∗ 1 ) = 0 . This gives: 

𝛾∗ 1 =
2𝑧11 𝑧22 𝑧33 + 𝑧2 22 

(
𝑧11 + 𝑧33 

)
−
(
𝑧22 + 𝑧33 

)(
𝑧23 𝑧32 − 𝑧2 11 

)
−
(
𝑧11 + 𝑧22 

)(
𝑧12 𝑧21 − 𝑧2 33 

)
𝐺2 𝑧12 𝑧23 

. 

Clearly, 𝛾∗ 1 > 0 if condition (12) holds. At 𝛾1 = 𝛾∗ 1 , Eq. (7) can be written as (
𝜆 + 𝑆1 

)(
𝜆2 + 𝑆2 

)
= 0 . 

The above equation has the following roots: a negative root 𝜆1 = −𝑆1 and two purely imaginary roots 𝜆2 , 3 = ± 𝑖
√
𝑆2 if condition

(11) is satisfied. In a neighbourhood of 𝛾∗ 1 , the roots have the following forms: 𝜆1 = −𝑆1 , 𝜆2 , 3 = 𝜒1 (𝛾1 ) ± 𝑖𝜒2 (𝛾1 ) . 
The following are calculated to denote the conditions for HB to occur at 𝛾1 = 𝛾∗ 1 : 

1. 𝑅𝑒 ( 𝜆2 , 3 )|𝛾1 = 𝛾∗ 1 = 𝜒1 (𝛾∗ 1 ) = 0 
2. To calculate the transversality condition, Θ(𝛾∗ 1 ) 𝜓(𝛾

∗ 
1 ) + Γ(𝛾∗ 1 ) 𝜙(𝛾

∗ 
1 ) ≠ 0 , we substitute 𝜒1 (𝛾1 ) ± 𝑖𝜒2 (𝛾1 ) into Eq. (7) , where the form

of Θ(𝛾1 ) , 𝜓(𝛾1 ) , Γ(𝛾1 ) and 𝜙(𝛾1 ) are 

𝜓
(
𝛾1 
)
= 3 𝜒2 

1 
(
𝛾1 
)
+ 2𝑆1 

(
𝛾1 
)
𝜒1 
(
𝛾1 
)
+ 𝑆2 

(
𝛾1 
)
− 3 𝜒2 

2 
(
𝛾1 
)
, 

𝜙
(
𝛾1 
)
= 6𝜒1 

(
𝛾1 
)
𝜒2 
(
𝛾1 
)
+ 2𝑆1 

(
𝛾1 
)
𝜒2 
(
𝛾1 
)
, 

Θ
(
𝛾1 
)
= 𝜒2 

1 
(
𝛾1 
)
𝑆1 

′(𝛾1 ) + 𝑆2 
′(𝛾1 )𝜒1 (𝛾1 ) + 𝑆3 

′(𝛾1 ) − 𝑆1 
′(𝛾1 )𝜒2 

2 
(
𝛾1 
)
, 

Γ
(
𝛾1 
)
= 2𝜒1 

(
𝛾1 
)
𝜒2 
(
𝛾1 
)
𝑆′
1 
(
𝛾1 
)
+ 𝑆′

2 
(
𝛾1 
)
𝜒2 
(
𝛾1 
)
. 
9
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Now at 𝛾1 = 𝛾∗ 1 , substitution 𝜒1 = 0 and 𝜒2 =
√
𝑆2 , the following is obtained: 

𝜓
(
𝛾∗ 1 
)
= −2𝑆2 

(
𝛾∗ 1 
)
, 

𝜙
(
𝛾∗ 1 
)
= 2𝑆1 

(
𝛾∗ 1 
)√ 

𝑆2 
(
𝛾∗ 1 
)
, 

Θ
(
𝛾∗ 1 
)
= 𝑆′

3 
(
𝛾∗ 1 
)
− 𝑆′

1 
(
𝛾∗ 1 
)
𝑆2 
(
𝛾∗ 1 
)
, 

Γ
(
𝛾∗ 1 
)
= 𝑆′

2 
(
𝛾∗ 1 
)√ 

𝑆2 
(
𝛾∗ 1 
)
, 

where, 

𝑆′
1 
(
𝛾∗ 1 
)
= 0 , 

𝑆′
2 
(
𝛾∗ 1 
)
= 0 , 

𝑆′
3 
(
𝛾∗ 1 
)
= 𝐺2 𝑧12 𝑧23 . 

Hence, 

Θ
(
𝛾∗ 1 
)
𝜓
(
𝛾∗ 1 
)
+ Γ

(
𝛾∗ 1 
)
𝜙
(
𝛾∗ 1 
)
= −2𝐺2 𝑧12 𝑧23 𝑆2 

(
𝛾∗ 1 
) ≠ 0 . 

So, the HB has occurred at 𝛾∗ 1 . 

The stability condition of the stable limit cycle in 𝑅3 
(𝐷,𝑃 ,𝐺 ) is presented in the following theorem by using the coefficient of curvature

of the limit cycle [ 39 ]. 

Theorem 8. The DPG model has a stable limit cycle in 𝑅3 
(𝐷,𝑃 ,𝐺 ) if the following condition is true: 

𝑘 − 𝑐
(
𝑥3 + 𝐺2 

)
> 0 . (13) 

Proof: by shifting 𝑍2 = (𝐷2 , 𝑃2 , 𝐺2 ) to (0 , 0 , 0 ) by using the following transformations 𝐷 = 𝑥1 +𝐷2 , 𝑃 = 𝑥2 + 𝑃2 , 𝐺 = 𝑥3 +𝐷2 . 

Then, the DPG system becomes: 

𝑑𝑥1 
𝑑𝑡 

= − 𝛼𝑥1 𝑥2 

𝑑𝑥2 
𝑑𝑡 

= −
𝑟
(
𝑥2 + 𝑃2 

)2 
𝑘 − 𝑐

(
𝑥3 + 𝐺2 

) − 𝛽
(
𝑥1 𝑥2 

)
𝑑𝑥3 
𝑑𝑡 

= −𝛾1 𝑥1 𝑥3 − 𝛾2 𝑥2 𝑥3 . 

The following matrix offers the nonlinear part of the above system: 

𝜂 =
⎛ ⎜ ⎜ ⎝ 
𝜂1 
𝜂2 
𝜂3 

⎞ ⎟ ⎟ ⎠ = −
⎛ ⎜ ⎜ ⎜ ⎝ 

𝛼𝑥1 𝑥2 
𝑟( 𝑥2 +𝑃2 ) 2 
𝑘 − 𝑐( 𝑥3 +𝐺2 ) + 𝛽

(
𝑥1 𝑥2 

)
𝛾1 𝑥1 𝑥3 + 𝛾2 𝑥2 𝑥3 

⎞ ⎟ ⎟ ⎟ ⎠ 
From the above matrix, we derive the following quantities: 

𝑔0 20 =
1 
4 

{ 

𝜕2 𝜂1 

𝜕𝑥2 1 

−
𝜕2 𝜂1 

𝜕𝑥2 2 

+ 2
𝜕2 𝜂2 

𝜕𝑥1 𝜕𝑥2 
+ 𝑖

( 

𝜕2 𝜂2 

𝜕𝑥2 1 

−
𝜕2 𝜂2 

𝜕𝑥2 2 

− 2
𝜕2 𝜂1 

𝜕𝑥1 𝜕𝑥2 

) } 

= −1 
2 

{ 

𝛽 +

( 

𝑟 

𝑘 − 𝑐
(
𝑥3 + 𝐺2 

) − 𝛼

) 

𝑖 

} 

, 

𝑔0 11 =
1 
4 

{ 

𝜕2 𝜂1 

𝜕𝑥2 1 

+
𝜕2 𝜂1 

𝜕𝑥2 2 

+ 𝑖

( 

𝜕2 𝜂2 

𝜕𝑥2 1 

+
𝜕2 𝜂2 

𝜕𝑥2 2 

) } 

= −1 
2 

{ 

𝑟 

𝑘 − 𝑐
(
𝑥3 + 𝐺2 

) 𝑖 } 

, 

𝐺0 
110 =

1 
2 

{ 

𝜕2 𝜂1 
𝜕𝑥1 𝜕𝑥3 

+
𝜕2 𝜂2 

𝜕𝑥2 𝜕𝑥3 
+ 𝑖

( 

𝜕2 𝜂2 
𝜕𝑥1 𝜕𝑥3 

−
𝜕2 𝜂1 

𝜕𝑥2 𝜕𝑥3 

) } 

= −

{ 

𝑟𝑐
(
𝑥2 + 𝑃2 

)[
𝑘 − 𝑐

(
𝑥3 + 𝐺2 

)]2 
} 

, 

𝐺0 
101 =

1 
2 

{ 

𝜕2 𝜂1 
𝜕𝑥1 𝜕𝑥3 

−
𝜕2 𝜂2 

𝜕𝑥2 𝜕𝑥3 
+ 𝑖

( 

𝜕2 𝜂2 
𝜕𝑥1 𝜕𝑥3 

+
𝜕2 𝜂1 

𝜕𝑥2 𝜕𝑥3 

) } 

=

{ 

𝑟𝑐
(
𝑥2 + 𝑃2 

)[
𝑘 − 𝑐

(
𝑥3 + 𝐺2 

)]2 
} 

, 

𝑊 0 
11 = − 1 

4𝜆3 (𝑎1 ( 𝑘∗ ) 

( 

𝜕2 𝜂3 

𝜕𝑥2 1 

+
𝜕2 𝜂3 

𝜕𝑥2 2 

) 

= 0 , 
10
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Fig. 2. The coexistence of the desertification point with the data given in Table 1 when 𝑟 = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

𝑊 0 
20 = − 1 

4𝜆3 (𝑎1 ( 𝑘∗ ) 

( 

𝜕2 𝜂3 

𝜕𝑥2 1 

+
𝜕2 𝜂3 

𝜕𝑥2 2 

− 2 𝑖
𝜕2 𝜂3 

𝜕𝑥1 𝜕𝑥2 

) 

= 0 , 

𝐺0 
21 =

1 
8 

{ 

𝜕3 𝜂1 

𝜕𝑥3 1 

+
𝜕3 𝜂1 

𝜕𝑥1 𝜕𝑥
2 
2 

+
𝜕3 𝜂2 

𝜕𝑥3 2 

+
𝜕3 𝜂2 

𝜕 𝑥2 1 𝜕𝑥2 
+ 𝑖

( 

𝜕3 𝜂2 

𝜕𝑥3 1 

+
𝜕3 𝜂2 

𝜕𝑥1 𝜕𝑥
2 
2 

−
𝜕3 𝜂1 

𝜕𝑥3 2 

−
𝜕3 𝜂1 

𝜕 𝑥2 1 𝜕𝑥2 

) } 

= 0 , 

The coefficient of the curvature of the limit cycle of the DPG system is 

𝜎0 1 = 𝑅𝑒

{ 

𝑔0 20 𝑔
0 
11 

4 
𝑖 + 𝐺0 

110 𝑊
0 
11 +

𝐺0 
21 + 𝐺0 

101 𝑊
0 
20 

2 

} 

, 

𝜎0 1 = 𝑅𝑒

{ 

1 
16 

( 

− 𝛽𝑟 (
𝑘 − 𝑐

(
𝑥3 + 𝐺2 

)) − 𝑟2 𝑖 (
𝑘 − 𝑐(𝑥3 + 𝐺2 

)
) 2 

+ 𝑟𝛼𝑖 

𝑘 − 𝑐
(
𝑥3 + 𝐺2 

)) } 

= − 𝛽𝑟 

16
(
𝑘 − 𝑐

(
𝑥3 + 𝐺2 

)) . 
Thus, 𝜎0 1 < 0 provided condition (13) is satisfied; therefore, the DPG model has a stable limit cycle. 

Numerical simulation and discussion 

In this section, the dynamics of the DPG model are explored numerically using MATLAB. The simulations are conducted us-

ing data specified in Table 1 . Figs. 2 and 3 illustrate the existence of the desertification and non-desertification equilibriums,

respectively. 

Further, Fig. 4 was generated by employing the parametric values in Table 1 . This Figure indicates that dust pollutants, plant

biomass and global warming are edging toward the non-desertification equilibrium 𝑍2 = (𝐷2 , 𝑃2 , 𝐺2 ) = (29 . 51 , 23 . 91 , 8 . 07 ) . More- 

over, the solution approaches the non-desertification equilibrium asymptotically despite the initial values. This behaviour shows that 

the global stability conditions stated in Theorem 4 have been satisfied. On the other hand, Fig. 5 shows the global stability of the

desertification equilibrium 𝑍1 = (𝐷1 , 0 , 𝐺1 ) = (99 . 51 , 0 , 9 . 01 ) in the absence of vegetation cover. This behaviour indicates that the 

global stability criteria outlined in Theorem 3 have been fulfilled. 

The solution of the DPG system has been plotted in Fig. 6 , reflecting changes in the intrinsic growth rate 𝑟 of plant biomass. The

Figure indicates that an increase in 𝑟 i,e, when 𝑟 > 0 . 1 , corresponds with a gradual decrease in dust pollutants and global warm-

ing. Therefore, it can be concluded that an increase in plant plantations may help control dust pollutants and global warming. On

the contrary, it could be observed that desertification is exacerbated by global warming and dust pollutants, which are exacer-

bated by the decrease in plant growth rate when 𝑟 ≤ 0 . 1 . Plants are crucial in preventing soil erosion, as their roots stabilize the

soil, avoiding the desertification resulting from erosion. Additionally, plants contribute to the preservation of soil moisture and the 

regulation of environmental temperature through processes such as transpiration and evaporation. The plant biomass cover deteri- 

orates due to the soil becoming dryer as temperatures increase due to global warming, and apertures on the plant leaves’ surface
11
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Fig. 3. The coexistence of the non-desertification point with the data given in Table 1 . 

Fig. 4. The dynamics of the DPG model with the data given in Table 1 . 

 

 

 

 

 

 

 

 

are sealed, hindering the plants’ breathing process due to dust pollutants. As a result, the soil becomes exposed and susceptible to

erosion by wind and precipitation as the cover diminishes, which leads to desertification. It is clear from Fig. 6 that for a small

value of 𝑟 = 0 . 1; the DPG system settles down asymptotically to the desertification equilibrium 𝑍1 = (100 . 08 , 0 , 8 . 12 ) . Moreover, if

we raise the value of 𝑟, i.e. (say 𝑟 = 0 . 2 ), we observe that the DPG system approaches asymptotically to the non-desertification equi-

librium 𝑍2 = (92 . 12 , 8 . 51 , 6 . 91 ) . Therefore, Theorem 6 is satisfied, and the DPG system faces a transcritical bifurcation at 𝑟 = 0 . 1 .
See Fig. 6 . 

The temporal change of dust pollutant concentration for various values of 𝛼 is illustrated in Fig. 8 . The statistics clearly

indicate that when the interaction rate of dust pollutants with plant biomass increases, the concentration of dust pollutants

diminishes. 

Fig. 9 demonstrates the relationship between plant biomass density and dust pollutant concentration across different 𝛽 values. 

The Figure indicates that an increase in the depletion rate coefficient of plant biomass due to dust pollutants is associated with
12
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Fig. 5. The global stability of the desertification equilibrium. 

Fig. 6. The dynamics of the DPG model with different values of r. 

 

 

 

 

 

 

 

 

a rise in atmospheric dust pollutant concentration and a decrease in plant biomass density. The density of plant biomass reaches

its maximum, corresponding to carrying capacity, in the absence of dust pollutants (i.e., when (𝛽 = 0 ) , leading to the minimum

equilibrium concentration of dust pollutants ( Fig. 9 ). The augmented plant biomass density in the greenbelt, which remains unaffected

by dust pollutants, will effectively decrease the concentration of dust pollutants in the atmosphere. Conversely, an increase in beta

leads to a rapid increase in the concentration of dust pollutants, as observed when 𝛽 = 0 . 01 . This negatively affects vegetation, resulting

in the desertification of green areas, and the solution of the DPG model will stabilize at the desertification equilibrium. 

The effect of the rising global warming-induced desertification rate 𝑐 on the decrease of vegetation cover is depicted in Fig. 10 .

It is observed that increasing global warming can limit plant growth since rising temperatures harm the vegetation cover in verdant

areas. As temperatures increase and arid periods prolong, plants become more vulnerable to drought. This causes land deterioration

and the progressive transformation of these areas into deserts. 
13
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Fig. 7. Transcritical bifurcation with respect to 𝑟 . 

Fig. 8. The dynamics of the concentration of dust pollutants with different values of 𝛼. 

Fig. 9. The dynamics of the DPG model with different values of 𝛽. 

14
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Fig. 10. The dynamics of the DPG model with different values of 𝑐. 

Fig. 11. The dynamics of the DPG model with different values of 𝛾1 . 

 

 

 

 

 

 

 

 

Figs. 11 and 12 consider different values of 𝛾1 and 𝛾2 i.e., the depletion rate of global warming due to dust pollutants and

plant biomass, respectively. These figures show that plant biomass increases gradually with the rising depletion rates of global

warming. 

Finally, changes in the coefficient of natural depletion of dust pollutants, i.e., 𝜇0 is drawn in Fig. 13 . It is seen that the decrease

in 𝜇0 , causes a gradual increase in the concentration of dust particles. Further, vegetation will be adversely affected by an increase

in dust, which may result in the mortality or deterioration of plants in certain instances. The consequences consist of obstruction of

sunlight: Dust deposition on plant leaves reduces the amount of light that reaches them, affecting the process of photosynthesis, which

is the foundation of plant growth. Further, clogged pores: Plant leaves possess pores that are employed to absorb carbon dioxide and

release oxygen. The gas exchange essential for growth can be impeded by dust obstructing these apertures. Consequently, vegetation

may be adversely affected in environments where dust accumulates substantially and continuously, resulting in its deterioration. In 
15
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Fig. 12. The dynamics of the DPG model with different values of 𝛾2 . 

Fig. 13. The dynamics of the DPG model with different values of 𝜇0 . 

 

 

 

 

 

 

 

 

addition, it can be realized that the solution for the DPG system is stabilized at the desertification equilibrium 𝑍1 = (247 . 47 , 0 , 3 . 31 )
when 𝜇0 = 0 . 04 . 

On the other hand, equilibrium points signify the steady or long-term behaviour a system may achieve under particular condi-

tions. Consequently, sensitivity analysis of equilibrium points in dynamic systems has substantial importance in research. It aids in

comprehending the variations in the system’s behaviour and stability under diverse parameter settings. By examining the system’s 

reaction to parameter fluctuations, we may ascertain the critical parameters that exert the greatest influence on system performance, 

allowing their optimization to improve performance and stability. We employ partial rank correlation coefficients (PRCCs) to exam- 

ine the sensitivity of the DPG system coexistence equilibrium points. The parameters 𝐴, 𝛼, 𝛽, 𝑟, 𝑘, 𝑐, 𝑄, 𝜇0 , 𝜇1 , 𝛾1 and 𝛾2 serve as

input parameters, while the output variables 𝐷2 , 𝑃2 , and 𝐺2 are determined through system (1). Subsequently, using the parameter 

set in Table 1 , we generate Fig. 14 . Fig. 14 indicates that dust pollutants exhibit heightened sensitivity to the resource input of dust

pollutants from diverse sources, i.e., 𝐴 , which strongly influences 𝐷2 . Whereas 𝑘 and 𝛼 significantly reduce dust pollutants. Further,

global warming is strongly affected by resource input that is rising global warming, i.e., 𝑄 , while 𝛾2 and 𝑘 have a big role in reducing

global warming. It could be concluded that the carrying capacity of the plant biomass is a key parameter that affects the coexistence

of the non-desertification point 𝑍 = (𝐷 , 𝑃 , 𝐺 ) . 
2 2 2 2 

16
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Fig. 14. The sensitivity of parameters relative to the DPG system for the non-desertification point. 

 

 

 

 

 

 

 

 

Conclusions 

Dust pollutants and global warming significantly endanger the environment. This may result in the progressive transformation 

of green spaces into unsustainable areas. This paper introduces and evaluates a mathematical model that investigates the impact of

global warming and dust contaminants on plant biomass growth. The stability theory of differential equations is employed to conduct

the model analysis. The model analysis indicates that the system has two equilibrium points: non-desertification equilibrium and 

desertification equilibrium. Some intriguing findings regarding equilibrium points’ stability are presented in the model analysis. The 

model analysis yields intriguing findings regarding certain types of bifurcations, including transcritical and Hopf bifurcation around 

the equilibrium points. In addition, the following results were observed from the numerical simulation: 

1. The concentration of dust pollutants in the atmosphere decreases as the interaction rate between dust pollutants and plant biomass

increases. 

2. The plant biomass faces the danger of transferring the green space into desertification if the intrinsic growth rate of plant biomass,

the dust pollutants-induced plant biomass depletion coefficient and the coefficient of natural depletion of dust pollutants cannot 

be controlled. 

3. It could avoid desertification if the conditions stated in Theorem 4 guarantee that plant biomass can coexist with global warming

and dust pollutants in a stable state. 

4. From the sensitivity analysis of the non-desertification equilibrium point, the results show that the carrying capacity of plant

biomass is a critical parameter which plays a significant role in decreasing the negative impact of dust pollutants and global

warming. Thus, increasing vegetation through the following reforestation policy is crucial in preventing desertification and influ- 

encing coexistence at the non-desertification point. 

In the future, we will investigate how to expand the model to incorporate interactions with other ecological factors, such as animal

populations, particularly those that consume plants. 
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