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Abstract Mathematical modeling of infectious disease is essential for understanding the impact of various epidemiological factors
and stochastic influences on disease spread. In this study, we investigate a stochastic compartmental epidemic model with time delays,
featuring a Crowley–Martin (C-M) incidence rate alongside a holling type II (HT-II) treatment rate. Initially, we demonstrate the
existence and uniqueness of a positive global solution to the model. Subsequently, we establish sufficient conditions that lead to the
extinction of the disease. A suitability constructed Lyapunov function is used to confirm the presence of a stationary distribution
(SD). In epidemiology, the presence of a stationary distribution indicates that the disease will persist over the long term. Additionally,
the Fokker–Planck equation is solved to obtain the exact analytical form of the probability density function (PDF) that describes the
behavior of the stochastic model near its unique endemic quasi-equilibrium. In statistical analysis, the explicit density function can
capture and represent all the dynamical features of an epidemic model. Finally, a comprehensive simulation is provided to support
and illustrate our theoretical results, offering practical insights into the model’s behavior. This work contributes to the development
of more accurate predictive models that can assist public health policymakers in designing effective disease control strategies and
intervention plans to mitigate the spread of infectious diseases.

1 Introduction

Epidemic modeling is a crucial tool for understanding the transmission and effective control strategies of infectious diseases [1,
2]. The basic susceptible-infected-recovered (SIR) compartmental model, based on three population classes, was initially presented
by Kermack and McKendrick in 1927 [3] and remains one of the foundational models for analyzing disease transmission. The
fundamental SIR compartmental models have been widely formulated and serve as the foundation for numerous extensions, allowing
to capture the complexities of real-world disease dynamics and to simulate various epidemic outbreaks with high accuracy [4–6].

Recently, a vast literature has been developed on the extensions of the basic SIR transmission model and rigorously studied to better
capture the complexities of disease dynamics and their intervention strategies [7–9]. These studies are helpful for understanding
the disease spread, as they provide more sophisticated tools for simulating reported outbreaks and evaluating intervention measures
[10]. However, among these extensions, most have traditionally been formulated using classical differential equations, which assume
deterministic behavior and often overlook critical aspects such as memory effects, time delays, and stochasticity found in various
epidemics [11]. To capture a more realistic analysis of real-world epidemics, it is crustal to formulate mathematical models that
incorporate both time delays and stochastic phenomena as can be found in [12]. These models are more capable of reflecting the
unpredictable nature of an epidemic outbreak and the influence of various external factors. For instance, the incubation period
between initial infection and the onset of infectiousness as well as the time needed for treatment and recovery can be accurately
described using models with time delays. These delays play a pivotal role in shaping the progression of an epidemic and the timing of
control strategies for the infection incidence. In addition to this, stochastic effects capture the inherent randomness and uncertainties
associated with disease transmission, such as variations in contact rates, environmental factors, and individual immune responses.
Mathematical models based on stochastic differential systems allow for a more realistic representation of epidemics with real-word
scenarios specifically, where the outcomes are not purely deterministic but subject to fluctuations influencing the control and spread
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of infection. These considerations are crucial for developing more precise predictions and for designing optimal control measures
[13].

In epidemic modeling with classical differential systems, the treatment rate often considered to be either a fixed value or directly
proportional to the cumulative infected individuals in the community. Although, this assumption simplifies mathematical analysis
but it fails to account for the real-world constraints on healthcare systems, where treatment resources such as medical staff, hospital
beds, and medications are often limited. In a real sense, as the number of infected people increases, healthcare facilities may
experience shortages of resource, causing delays or restrictions in treatment availability to the patients. Ignoring these drawbacks
can lead to inaccurate predictions of disease spread and ineffective public health interventions. Consequently, it is important to adopt
a more realistic modeling approach that accurately represents specific conditions, accounts for resource constraints, and considers
the adaptive capacity of healthcare systems. To address these limitations, Wang et al. [14] explored a SIR epidemic model in which
the treatment rate is assumed to be constant, regardless of the number of infectious people. The treatment rate function of this type
is expressed by the following equation

H(I ) � b, for I > 0, and H(I ) � 0, for I � 0,

where b denotes a constant treatment rate. This assumption ensures that the available medical resources are either unlimited or
externally controlled, meaning that treatment is provided at a steady rate, independent of outbreak severity, or healthcare capacity.
This type of treatment rate function may be useful in theoretical studies, but it does not adequately capture the impact of resource
limitations that often arise during large-scale outbreaks. Keeping this shortcoming in mind, Zhang et al. [15] studied a more realistic
treatment function approach incorporating the nonlinearity relation between treatment availability and the number of infected cases.
They introduced the following continuously differentiable C1 function in their model:

H(I ) � aI

1 + bI
, a, b ≥ 0.

In the above function, the fraction a
b accounts the maximum treatment capacity that can be provided within a given time period.

This function, also called as the HT-II treatment rate, represents the saturation of medical resources as infection levels rise in a
region. Unlike the constant treatment rate assumption, which suggests unlimited treatment availability, the HT-II rate function
reflects the nature that treatment rate initially increases with the number of infected individuals but eventually plateau when medical
resources reach their available limit. The modified nonlinear rate function accurately represents the challenges faced by healthcare
officials during an epidemic outbreak, particularly in resource-constrained environments. Moreover, the HT-II treatment and
incidence rate functions have been applied in other epidemiological models to study diseases with limited medical resources. In [4],
researchers utilized the HT-II rate function to analyze the dynamical features of a vector-host disease model under constrained
treatment scenarios. Their findings indicate that incorporating nonlinear treatment and incidence rate function provide more and
epidemiologically feasible outputs into a disease transmission and control. Keeping in mind the situations with the limitations of
medical resources, these models offer more accurate predictions of outbreak progression and enable to develop more effective public
health interventions.

The function describing infection incidence in an epidemic model is a essential component representing the rate at which the
susceptible individuals become infected. Many classical models rely on the bilinear incidence rate of the form ζ SI , where ζ is the
transmission coefficient [16, 17]. The bilinear rate function fails to capture the complexities of real-world transmission dynamics
of an infection outbreak. The primary limitation of the bilinear incidence rate function is its failure to capture the saturation effects
which occur when the rate of newly infections does not continue to increase indefinitely as the number of infectious individuals rises.
This phenomenon arises due to various factors such as limited contact opportunities, changes in individual behavior in response
to the epidemic, and constraints on healthcare resources. To address these limitations, authors have presented various nonlinear
incidence functions that establish a better and accurate representation of infection transmission dynamics [18–21].

Crowley and Martin introduced the following generalized form of the functional response in [22]:

G(S, I ) � γ S(t)I (t)

(1 + α2 I (t))(1 + α1S(t))
, α1, α2 ≥ 0.

In this formulation, the authors incorporate saturation effects by reflecting the limitations in contact opportunities and behavioral
adaptations during an epidemic outbreak [23]. The parameters α1 and α2 control the saturation degree ensuring that as the number
of susceptible or infected individuals grows, the rate of new infections does not increase indefinitely. This is particularly important
in realistic case scenarios where factors such as immune responses, public health interventions, and social distancing influence the
spread of disease incidence. This approach offers a more realistic representation of diseases such as COVID-19, TB, and HIV where
resource constraints and behavioral changes significantly influence transmission dynamics.
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In [24], Wen et al. discussed the subsequent delayed epidemiological compartmental model with bilinear incidence rate

S′(t) � −γ I (t)S(t) + �− υS S(t) + δe−υR ι I (t − ι),

I ′(t) � γ I (t)S(t) − (υI + δ)I (t),

R′(t) � −υR R(t) + δ(I (t) − e−υR ι I (t − ι)).

(1)

In [25], a generalization of model (1) with a saturation incidence rate was proposed. The generalized model is summarized in the
following system

S′(t) � − γ S(t)I (t)

(1 + α2 I (t))
− υS S(t) + � + δe−υR ι I (t − ι),

I ′(t) � −(υI + δ)I (t) +
γ I (t)S(t)

(1 + α2 I (t))
,

R′(t) � −δe−υR ι I (t − ι) − υR R(t) + δ I (t),

(2)

where S(t), R(t), and I (t) denote the number of individuals in the population who are susceptible, recovered, and infected, respec-
tively. Additionally, γ is the contact,� is the birth rate, δ is the recovery rate from infection, υS , υI , and υR are the natural death rates
of the susceptible, infected, and recovered populations, respectively. In [26], the term δe−υR ι I (t − ι) was introduced, representing
individuals who have survived natural death in the recovery pool and become susceptible again, where ι denotes the duration of
immunity.

Furthermore, in [5], the following stochastic model was investigated:

dS(t) �
[

− γ S(t)I (t)

(1 + α2 I (t))
− υS S(t) + � + δ0e

−υR ι I (t − ι)
]
dt − η1S(t)dW1(t) − η4SI

1 + α2 I (t)
dW4,

d I (t) �
[

− (υI + δ)I (t) +
γ S(t)I (t)

(1 + α2 I (t))

]
dt − η2 I (t)dW2(t) +

η4SI

1 + α2 I (t)
dW4,

dR(t) �
[

− δ0e
−υR ι I (t − ι) − υR R(t) + δ I (t)

]
dt − η3R(t)dW3(t),

(3)

where η j and Wj (t), ( j � 1, 2, 3, 4) represent the white noise intensity and the independently Brownian motion, respectively, over
a complete probability space.

2 Main problem

Motivated by the work studied in [24, 25], and [5], we formulated a more general epidemic model by incorporating the Crow-
ley–Martin incidence function and the holling type II treatment function. In addition, the condition δ ≥ δ0 is consider in problem
formulation.

dS(t) �
[

− γ I (t)S(t)

(1 + α1S(t))(1 + α2 I (t))
+ �− υS(t) + δ0e

−υι I (t − ι)
]
dt + η1S(t)dW1(t),

d I (t) �
[

− (υ + δ + λ)I (t) +
γ S(t)I (t)

(1 + α1S(t))(1 + α2 I (t))
− aI (t)

1 + bI (t)

]
dt + η2 I (t)dW2(t),

dR(t) �
[

− υR(t) +
aI (t)

1 + bI (t)
+ δ I (t) − δ0e

−υι I (t − ι)
]
dt + η3R(t)dW3(t),

(4)

where λ and υ represent the mortality rates due to the disease and natural causes, respectively. The rest of the parameters are as
mentioned above. If η1 � η2 � η3 � 0, we recover the deterministic case of the above model.

In the remainder of this work, we first demonstrate the uniqueness and existence of the positive global solution. Sufficient
conditions for the disease’s extinction are presented in the next section, which is essential for understanding the long-term behavior
of the epidemic. Additionally, we construct a suitable Lyapunov function to prove the existence of a SD, providing insights into the
long-term behavior of the stochastic system. Finally, the theoretical findings are illustrated by numerical simulations, which serve
to confirm the results.

In the onward study, we consider a complete probability space denoted as (�, F , {Ft }t≥0, P), where {Ft }t≥0 adheres to the
standard conditions.

2.1 Existence and uniqueness of global positive solution

We proceed with the following theorem to obtain the desire results
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Theorem 1 For any (S(0), I (0), R(0)) ∈ R
3
+ with S(r ) ≥ 0, I (r ) ≥ 0, and R(r ) ≥ 0 for all r ∈ [−ι, 0[, the model (4) has a

unique positive solution (S(t), I(t), R(t)). Additionally, the solution remains in R
3
+ with probability one, which means that (S(t), I (t),

R(t)) ∈ R
3
+ ∀t ≥ 0 almost surely (a.s).

Proof Coefficients of the model are locally Lipshitz for all (S(0), I (0), R(0)) ∈ R
3
+ with S(r ) ≥ 0, I (r ) ≥ 0 and R(r ) ≥ 0,

∀r ∈ [−ι, 0[, we can find a unique solution shown by the set (S(t), I(t), R(t)) on t ∈ [−ι, ιe), where ιe is the explosion time.
We show that the solution is global, i.e., to validate ιe � ∞ a.s. Assume that we have a sufficiently large nonnegative number τ

such that S(0), I(0), R(0) and S(r), I(r), R(r) all in [ 1
τ

, τ ]. Let us defining the stopping time as follows

ιΓ � inf

{
t ∈ [0, ιe) : min

{
S(t), I (t), R(t)

}
≤ 1

Γ
, or max

{
S(t), I (t), R(t)

}
≥ Γ

}
∀Γ ≥ τ.

We set inf ∅ � ∞, where ∅ used for empty set. Clearly, ιΓ is increasing as Γ → ∞. Let
ι∞ � limΓ→∞ ιΓ , with ιe ≥ ι∞ a.s. Now we are going to prove that ι∞ � ∞, the proof goes by contradiction. We assume that

ι∞ < ∞, then exists T > 0 and ε ∈ (0, 1) where P{ι∞ ≤ T } ≥ ε. Therefore, there exists an integer Γ1 ≥ τ so that

P{ιΓ ≤ T } ≥ ε, ∀Γ ≥ Γ1. (5)

We consider a C2-function ℵ : R
3
+ → R+ defined as follows:

ℵ(S, I , R) � S + R + I − 3 − (ln S + ln I + ln R).

The nonnegativity of ℵ can be seen from ν − 1 − ln ν ≥ 0, ∀ν > 0. Applying the Itô formula, we get

dℵ(S, I , R) �
(

1 − 1

I

)
d I +

(
1 − 1

S

)
dS +

(
1 − 1

R

)
dR +

1

2S2 (dS)2 +
1

2I 2 (d I )2 +
1

2R2 (dR)2

�
(

1 − 1

S

)([
�− γ I (t)S(t)

(1 + α1S(t))(1 + α2 I (t))
− υS(t) + δ0e

−υι I (t)
]
dt + η1S(t)dW1(t)

)

+
1

2S2

([
�− γ I (t)S(t)

(1 + α1S(t))(1 + α2 I (t))
− υS(t) + δ0e

−υι I (t − ι)
]
dt + η1S(t)dW1(t)

)2

+

(
1 − 1

I

)([ γ S(t)I (t)

(1 + α1S(t))(1 + α2 I (t))
− aI (t)

1 + bI (t)
− (δ + υ + λ)I (t)

]
dt + η2 I (t)dW2(t)

)

+
1

2I 2

([ γ S(t)I (t)

(1 + αS(t))(1 + σ I (t))
− aI

1 + bI
− (δ + υ + λ)I (t)

]
dt + η2 I (t)dW2(t)

)2

+

(
1 − 1

R

)([ aI

1 + bI
− υR(t) + δ I (t) − δ0e

−υι I (t − ι)
]
dt + η3R(t)dW3(t)

)

+
1

2R2

([ aI

1 + bI
− υR(t) + δ I (t) − δ0e

−υι I (t − ι)
]
dt + η3R(t)dW3(t)

)2

� L�(S, I , R)dt + η1(S(t) − 1)dW1(t) + η2(I (t) − 1)dW2(t) + η3(R(t) − 1)dW3(t),

where Lℵ : R
3
+ → R+ is given by

Lℵ(S, I , R) ��− υ(S + I + R) − δ0e
−υι I (t − ι)

S
− �

S
+

γ (I (t) − S(t))

(1 + α1S(t))(1 + α2 I (t))
− λI (t)

+
a

1 + bI (t)
− aI

R(1 + bI )
− λI (t)

R(t)
+ δ0e

−υι I (t − ι)

R
+ 3υ + λ + δ +

η2
1 + η2

2 + η2
3

2

≤� + 3υ + a + λ + δ + δ0 +
γ

α2
+
η2

1 + η2
2 + η2

3

2
:� M̃ .

Consequently,

dℵ(S, I , R) ≤ M̃dt + η1(S − 1)dW1(t) + η2(I − 1)dW2(t) + η3(R − 1)dW3(t).

Integration over [0, ιΓ ∧ T � min{ιΓ , T }] gives∫ ιΓ ∧T

0
dℵ(S, I , R) ≤

∫ ιΓ ∧T

0
(S(r ) − 1)A1dW1(r ) +

∫ ιΓ ∧T

0
M̃dr +

∫ ιΓ ∧T

0
η2(I (r ) − 1)dW2(r )

+
∫ ιΓ ∧T

0
η3(R(r ) − 1)dW3(r ).
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Taking expectation, we obtain

E

[
ℵ(S(ιΓ ∧ T ), I (ιΓ ∧ T ), R(ιΓ ∧ T )

]
≤ ℵ(S(0), I (0), R(0)) + E

[ ∫ ιΓ ∧T

0
Mdr

]

E

[
ℵ(S(ιΓ ∧ T ), I (ιΓ ∧ T ), R(ιΓ ∧ T )

]
≤ ℵ(S(0), I (0), R(0)) + M̃T .

Let �Γ � {ιΓ ≤ T } ∀ Γ ≥ Γ1 and utilizing (5) then P(�Γ ) ≥ ε. Fuhrer, noting that, ∀ ω ∈ �Γ there is S(ιΓ , ω) or I (ιΓ , ω) or
R(ιΓ , ω) that equal Γ or 1

Γ
, thus

ℵ(S(ιΓ , ω), I (ιΓ , ω), R(ιΓ , ω)) ≥ (Γ − 1 − lnΓ ) ∧ (
1

Γ
+ lnΓ − 1).

Therefore

ℵ
(
S(0), I (0), R(0)

)
+ M̃T ≥ E

[
1�Γ (ω)ℵ

(
S(ιΓ ∧ T ), I (ιΓ ∧ T ), R(ιΓ ∧ T )

)]

� E

[
1�Γ (ω)ℵ

(
S(ιΓ , ω), I (ιΓ , ω), R(ιΓ , ω)

)]

≥ E

[
1�Γ (ω)(Γ − 1 − lnΓ ) ∧

( 1

Γ
− 1 + lnΓ

)]

≥ E

[
1�Γ (ω)

]
(Γ − 1 − lnΓ ) ∧

( 1

Γ
− 1 + lnΓ

)

≥ ε(Γ − 1 − lnΓ ) ∧
( 1

Γ
− 1 + lnΓ

)
.

With 1�Γ (ω) representing as is indicator function of �Γ .

If Γ → ∞, then ∞ � ℵ
(
S(0), I (0), , R(0)

)
+ M̃T < ∞ yields a contradiction. It results that ι∞ � ∞ a.s �

2.2 Extinction criteria of infection

Our goal in this part is to find out sufficient conditions that are enough to make the disease disappear from the system (4).
Define a parameter

R0 � γ

α1(υ + λ + δ +
η2

2
2 )
.

Theorem 2 (S(t), I(t), R(t)) be a solution of the model (4) with (S(0), I (0), R(0)) ∈ R
3,

if R0 < 1 then lim
t→∞ sup

ln I (t)

t
< 0 a.s., namely I (t) −→ 0 exponentially a.s.

Proof Let us expressing the Martin–Crowley functional as follows

γ S

(1 + α1S)(1 + α2 I )
� γ�

υ + α1�
− γ υ

(υ + α1�)(1 + α1S)(1 + α2 I )
(
�

υ
− S)− γ�α2 I

(υ + α1�)(1 + α1S)(1 + α2 I )

− γ�α1α2SI

(υ + α1�)(1 + α1S)(1 + α2 I )

� γ�

υ + α1�
+

γ υS

(υ + α1�)(1 + α1S)(1 + α2 I )
− γ�

(υ + α1�)(1 + α1S)(1 + α2 I )

− γ�α2 I

(υ + α1�)(1 + α1S)(1 + α2 I )
− γ�α1α2SI

(υ + α1�)(1 + α1S)(1 + α2 I )

≤ γ�

υ + α1�
+

γ υ

α1(υ + α1�)
− γ�

(υ + α1�)(1 + α1S)(1 + α2 I )

− γ�α2 I

(υ + α1�)(1 + α1S)(1 + α2 I )
− γ�α1α2SI

(υ + α1�)(1 + α1S)(1 + α2 I )
.

(6)

Applying Itô formula, we get

d ln I �
[ γ S(t)

(1 + α1S(t))(1 + α2 I (t))
− a

1 + bI (t)
− (δ + υ + λ +

η2
2

2
)
]
dt + η2dW2(t).

By using (6), we obtain

d ln I ≤
[ γ�

υ + α1�
+

γ υ

α1(υ + α1�)
− (υ + δ + λ +

η2
2

2
)
]
dt + η2dW2(t)
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�
[ γ
α1

− (υ + δ + λ +
η2

2

2
)
]
dt + η2dW2(t).

Integrating over [0, t] and then diving by t yields

ln I (t)

t
≤ γ

α1
− (υ + δ + λ +

η2
2

2
) +

η2

t

∫ t

0
dW3(r ) +

ln I (0)

t
.

Moreover, 1
t

∫ t
0 dW2(r ) is a continuous local martingale. By lemma (strong law) presented in [27], we obtain

lim
t→∞

1

t

∫ t

0
dW2(r ) � 0 a.s.

Taking lim
t→∞ sup of and if R0 < 1 we get

lim
t→∞ sup

ln I (t)

t
≤ (υ + λ + δ +

η2
2

2
)(R0 − 1) < 0.

This confirms that lim
t→∞ I (t) � 0 a.s. �

2.3 Ergodicity and stationary distribution of the system

Here, we carried out the analysis setting the certain criteria under which the system (4) has a SD. Let Z(t) represents a homogeneous
Markov process in R

n explained by the SDE:

dZ(t) � b(Z)dt +
k∑

r�1

�r (Z)dBr (t)

The diffusion matrix is given by

A(x) �
(
ςi j (x)

)
; ςi j (x) �

k∑
r�1

�ir (x)� j
r (x).

Lemma 1 [10] The Markov process Z(t) admits a unique stationary distribution ρ(.) if there exists a bounded region V ⊂ R
n with

a well-defined boundary �∗ such that

(a) There exists a positive constant M such that
n∑

i , j�1

ςi j (x)ζiζ j ≥ M|ζ |2 x ∈ V, ζ ∈ R
n .

(b) There exists a nonnegative C2-function U and a neighborhood V such that, LU is negative for any R
n \ V.

Theorem 3 If

R̄0 :� γ

(υ +
η2

1
2 )(υ + δ + λ + a +

η2
2

2 )
> 1,

then the solution of (4) has a unique SD ρ(.), and further it possess the ergodicity.

Proof We will verify the conditions of lemma (1). Due the fact that the infectious class I in a local population randomly come
into touch with the susceptible or the recovered, and because the infected retain have no recollection of their previous contacts, the
solution of (4) shows a Markov process. Stated differently, there is no memory involved in the interactions between the infected and
the susceptible or recovered. Furthermore, as the future state is not influenced by the past state, and only depends on the current
state.

First, we show the condition (b). We will constructing a nonnegative C2-function U : R
3
+ −→ R+.

Let

U1(S, I , R) � S + R + I − c2 ln I − c1 ln S,

where c1, c2, are positive constants, we will define later.
Using the Itô formula, we have

L(S + I + R) � �− υ(S + I + R) − λI

L(ln S) � �

S
− γ I (t)

(1 + α1S(t))(1 + α2 I (t))
− υ + δ0e

−υι I (t − ι)

S
− η2

1

2
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L(ln I ) � γ S(t)

(1 + α1S(t))(1 + α2 I (t))
− a

1 + bI (t)
− (υ + δ + λ +

η2
2

2
)

L(ln R) � aI (t)

(1 + bI (t))R
− υ − η2

3

2
+ δ

I (t)

R
− δ0e

−υι I (t − ι)

R
.

Consequently,

LU1 � �− υ(S + I + R) − λI − c1�

S
+

c1γ I (t)

(1 + α1S(t))(1 + α2 I (t))
− c1δ0e

−υι I (t − ι)

S
+ c1

(
υ +

η2
1

2

)

− c2γ S(t)

(1 + α1S(t))(1 + α2 I (t))
+

c2a

1 + bI (t)
+ c2

(
υ + δ + λ +

η2
2

2

)

+ (1 + α1S(t))(1 + α2 I (t)) − (1 + α1S(t))(1 + α2 I (t)).

LU1 ≤ −3 3
√
γ�c1c2 + � + c1(υ +

η2
1

2
) + c2(υ + δ + λ + a +

η2
2

2
) + (1 + α1S(t))(1 + α2 I (t))

+
c1γ I (t)

(1 + α1S(t))(1 + α2 I (t))
.

Letting

� � c1

(
υ +

η2
1

2

)
� c2

(
υ + δ + λ + a +

η2
2

2

)
,

then

c1 � �

(υ +
η2

1
2 )

, c2 � �

(υ + δ + λ + a +
η2

2
2 )
.

As a result

LU1 ≤ − 3 3

√√√√ γ�3

(υ +
η2

1
2 )(υ + δ + λ + a +

η2
2

2 )
+ 3� + (1 + α1S(t))(1 + α2 I (t)) +

c1γ I (t)

(1 + α1S(t))(1 + α2 I (t))

≤ − 3�

(
3

√
γ

(υ +
η2

1
2 )(υ + δ + λ + a +

η2
2

2 )
− 1

)
+

γ�

α2(υ +
η2

1
2 )

+ (1 + α1S(t))(1 + α2 I (t))

� − 3�
[
(Rs

0)
1
3 − 1

]
+

γ�

α2(υ +
η2

1
2 )

+ (1 + α1S(t))(1 + α2 I (t)).

We define

U2(S, I , R) � c3(S + R + I − c2 ln I − c1 ln S) + S + R + I − ln S − ln I − ln R,

where c3 is constant satisfying the following condition

−3�c3
[
(Rs

0)
1
3 − 1

]
+ � +

γ

α2
+ a + 3υ + δ + λ +

η2
2 + η2

3

2
< −2.

Obviously

lim inf
q→+∞, (S, I , R)∈R3

+\Vq

U2(S, I , R) � +∞

where Vq �] 1
q , q[×] 1

q , q[×] 1
q , q[.

Since: when q → +∞, (S, I , R) ∈ R
3
+\Vq is exactly equal to

{0} × [0, +∞[×[0, +∞[∪[0, +∞[×{0} × [0, +∞[∪[0, +∞[×[0, +∞[×{0}.
Besides, we have

∂U2(S, I , R)

∂S
� c3 + 1 − c3c1 + 1

S
,

∂U2(S, I , R)

∂ I
� c3 + 1 − c3c2 + 1

I
,

∂U2(S, I , R)

∂R
� c3 + 1 − 1

R
,

the function U2 has unique stagnation point (S∗, I∗, R∗) �
(c3c1 + 1

c3 + 1
,
c3c2 + 1

c3 + 1
,

1

c3 + 1

)
The Hessian matrix of U2 at (S∗, I∗, R∗)

is given by
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H �

⎡
⎢⎢⎣

c3c1+1
S2∗

0 0

0 c3c2+1
I 2∗

0

0 0 1
R2∗

⎤
⎥⎥⎦.

H is positive definite and U2 is continues function; then, it is clear that U2 has a unique minimum (S∗, I∗, R∗) ∈ R
3
+.

Let

U(S, I , R) � U2(S, I , R) − U2(S∗, I∗, R∗).

Utilizing Itô criteria to obtain

LU(S, I , R) �LU2(S, I , R)

≤ − 3�c3
[
(Rs

0)
1
3 − 1

]
+

c3γ�

α2(υ +
η2

1
2 )

+ c3(1 + α1S(t))(1 + α2 I (t)) − υ(S + I + R) + �− λI

− �

S
+

γ I (t)

(1 + α1S(t))(1 + α2 I (t))
+ υ +

η2
1

2
− γ S(t)

(1 + α1S(t))(1 + α2 I (t))
− δ0e

−υι I (t − ι)

S

+
a

1 + bI (t)
+ (δ + υ + λ +

η2
2

2
) − aI (t)

(1 + I (t)b)R
+ υ +

η2
3

2
− δ

I (t)

R
+ δ0e

−υι I (t − ι)

R
.

Let εl > 0, l � 1, 2, ..., 5, we give a closed and bounded set

V �
{

(S, I , R) ∈ R
3
+ : ε1 ≤ S ≤ 1

ε2
, ε3 ≤ I ≤ 1

ε4
, ε2

3 ≤ R ≤ 1

ε5

}
.

We can choose εl , l � 1, 2, ..., 5 such that the subsequent criteria hold

• −�
ε1

+ �1 < −1

• −3�c3
[
(Rs

0)
1
3 − 1

]
+ c3(1 + α1S)(1 + α2ε3) + �2 < −1

• − δ
ε3

+ �1 < −1,
• − υ

ε2
+ �1 < −1,

• − υ
ε4

+ �1 < −1,
• − υ

ε5
+ �1 < −1,

where

�1 � sup

{
c3γ�

α2(υ +
η2

1
2 )

+ c3(1 + α1S)(1 + α2 I ) + � +
γ

α2
+ a + 3υ + δ + λ +

η2
2

2
+
η2

3

2

}
,

and

�2 � c3γ�

α2(υ +
η2

1
2 )

+ � +
γ

α2
+ a + 3υ + δ + λ +

η2
2 + η2

3

2
.

Next, we show that LU < 0 on R
3
+\V, R

3
+\V �⋃6

j�1 V j , where

V1 �
{

(S, I , R) ∈ R
3
+, 0 < S < ε1

}
, V2 �

{
(S, I , R) ∈ R

3
+, 0 < I < ε3, S > 0

}
,

V3 �
{

(S, I , R) ∈ R
3
+, 0 < R < ε2

3, I > ε3

}
, V4 �

{
(S, I , R) ∈ R

3
+, S >

1

ε2

}
,

V5 �
{

(S, I , R) ∈ R
3
+, I >

1

ε4

}
, V6 �

{
(S, I , R) ∈ R

3
+, R >

1

ε5

}
.

Case i. For (S, I , R) ∈ V1

LU(S, I , R) ≤ �1 − �

S
≤ �1 − �

ε1
< −1.

Case ii. For (S, I , R) ∈ V2

LU(S, I , R) ≤ − 3�c3
[
(Rs

0)
1
3 − 1

]
+ c3(1 + α1S)(1 + α2 I ) + �2

≤ − 3�c3
[
(Rs

0)
1
3 − 1

]
+ c3(1 + α1S)(1 + α2ε3) + �2 < −1.
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Case iii. For (S, I , R) ∈ V3

LU(S, I , R) ≤ �1 − δ
I

R
≤ �1 − δ

ε3
< −1.

Case iv. For (S, I , R) ∈ V4

LU(S, I , R) ≤ �1 − υS ≤ �1 − υ

ε2
< −1.

Case v. For (S, I , R) ∈ V5

LU(S, I , R) ≤ �1 − υ I ≤ �1 − υ

ε4
< −1.

Case vi. For (S, I , R) ∈ V6

LU(S, I , R) ≤ �1 − υR ≤ �1 − υ

ε5
< −1.

Next, we prove the criteria stated in (a). The diffusion matrix corresponds to (4) is as follows

⎡
⎣
η2

1S
2 0 0

0 η2
2 I

2 0
0 0 η2

3R
2

⎤
⎦,

and

3∑
i , j�1

ςi j (S, I , R)ζiζ j � η2
1S

2ζ 2
1 + η2

2 I
2ζ 2

2 + η2
3R

2ζ 2
3

≥ M|ζ |2 for all (S, I , R) ∈ V, ζ ∈ R
3
+,

where M � min{η2
1S

2, η2
2 I

2, η2
3R

2}.
From what has been shown above, we conclude that model (4) has a unique ergodic SD ρ(.). �

3 Probability density function (PDF) analysis

Since the statistical features of system (4) cannot be reflected by the existence of a stationary solution, the purpose of this section
is to determine the corresponding PDF with regard to the stationary solution to system (4). Prior to doing so, we must provide two
equivalent system (4) transformations.

Consider the n-dimensional stochastic differential equation defined as follows:

dX (t) � f (X (t))dt + g(X (t))dW (t), t ≥ 0.

where f (X(t)) is function in R
n and g(X(t)) is a n × m matrix.

If there is a point X∗ ∈ R
n
+/{0} such that the following equation is satisfied:

f (X∗) � 0,

we say that X∗ is a quasi-endemic equilibrium point.
Let (v1, v2, v3) � (ln S, ln I , ln R), by Ito’s formula, model (4) can be written as

dv1(t) �
[
�e−v1 − γ ev2

(1 + α1ev1 )(1 + α2ev2 )
− υ + δ0e

v2(t−ι)−v1−υι − η2
1

2

]
dt + η1dW1(t),

dv2(t) �
[ γ ev1

(1 + α1ev1 )(1 + α2ev2 )
− a

1 + bev2
− (υ + δ + λ) − η2

2

2

]
dt + η2dW2(t),

dv3(t) �
[ aev2−v3

1 + bev2
− υ + δev2−v3 − δ0e

v2(t−ι)−v3−υι − η2
3

2

]
dt + η3dW3(t),

(7)
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then, we can find a unique and quasi-endemic equilibrium point E∗ � (S∗, I ∗, R∗) :� (ev
∗
1 , ev

∗
2 , ev

∗
3 ), which is determined by the

following: evaluate at ι � 0

0 � �e−v∗
1 − γ ev

∗
2

(1 + α1ev
∗
1 )(1 + α2ev

∗
2 )

− υ + δ0e
v∗

2 (t)−v∗
1 − η2

1

2
,

0 � γ ev
∗
1

(1 + α1ev
∗
1 )(1 + α2ev

∗
2 )

− a

1 + bev
∗
2

− (δ + υ + λ) − η2
2

2
,

0 � aev
∗
2−v∗

3

1 + bev
∗
2

− υ + δev
∗
2−v∗

3 − δ0e
v∗

2 (t)−v∗
3 − η2

3

2
.

(8)

We obtain

S∗ � (δ + υ + λ +
η2

2
2 )α2bI ∗2

+ [(δ + υ + λ +
η2

2
2 )(α2 + b) + aα2]I ∗ + (υ + δ + λ +

η2
2

2 ) + a

(υ + δ + λ +
η2

2
2 )α1α2bI ∗2 + [γ b − (δ + υ + λ +

η2
2

2 )α1(α2 + b) − aα1α2]I ∗ + γ − (δ + υ + λ +
η2

2
2 )α1 − aα1

,

R∗ � (δ − δ0)bI ∗2
+ (δ − δ0 + a)I ∗

(υ +
η2

3
2 )bI ∗ + (υ +

η2
3

2 )
,

and I ∗ satisfies eq. (9)

�1 I
∗5

+ �2 I
∗4

+ �3 I
∗3

+ �4 I
∗2

+ �5 I
∗ + �6 � 0, (9)

with

�1 � γ A2
2α1α

2
2b

2 + ψ1δ0α1α2 + ψ2δ0α2,

�2 � −2A1A2α
2
2bα1(A2α2 + A2b + aα2) + ψ1(δ0α1 + � + α1α2 − γ − A1α2) + ψ2(δ0 + �α2)

+ δ0α1α2(�1ξ3 + �2ξ2 + �3ξ1) + δ0α2(2ξ1ξ3 + ξ2
2 ),

�3 � −2A1A2α2bα1(A2α2 + A2b + aα2) + ψ1(�α1 − A1) + ψ2�− A1(2�1�3 + �
2
2)α1α2

+ (�1ξ3 + �2ξ2 + �3ξ1)(δ0α1 + �α1α2 − γ − A1α2) + (δ0α1α2(�2ξ3 + �3ξ2)) + 2ξ2ξ3δ0α2

+ (δ0 + �α2)(2ξ1ξ3 + ξ2
2 ),

�4 � −A1(2�1�3 + �
2
2)α1 + �(2ξ1ξ3 + ξ2

2 ) + (�1ξ3 + �2ξ2 + �3ξ1)(�α1 − A1) − 2A1�2�3α1α2

+ 2ξ2ξ3(δ0 + �α2) + (�2ξ2 + �3ξ2)(δ0α1 + �α1α2 − γ − A1α2) + �3ξ3δ0α1α2 + ξ2
3 δ0α2,

�5 � −A1�
2
3α1α2 + ξ2

3 (δ0 + �α2) + �3ξ3(δ0α1 + �α1α2 − γ − A1α2 ) − 2A1�2�3α1 + (�2ξ3

+ �3ξ2)(�α1 − A1) + 2ξ2ξ3�,

�6 � −A1�
2
3α1 + �3ξ3(�α1 − A1) + �ξ2

3 ,

and

A1 � υ +
η2

1

2
, A2 � υ + δ + λ +

η2
2

2
, A3 � υ +

η2
3

2
,

ψ1 � A2α2b(γ b − A2α1α2 − A2α1b − aα1α2) − A2α1α2b(A2α2 + A2b + aα2),

ψ2 � −2A2α1α2b(γ b − A2α1α2 − A2α1b − aα1α2),

�1 � A2α2b, �2 � A2α2 + A2b + aα2, �3 � A2 + a,

ξ1 � −A2α1α2b, ξ2 � γ b − A2α1α2 − A2α1b − aα1α2, ξ3 � γ − A2α1 − aα1.

According to Descarte’s rule of signs [28], we obtain the following:

• �i > 0, f or i � 1, ..5, and �6 < 0.
• �i > 0, f or i � 1, ..4, and �5 < 0, �6 < 0.
• �i > 0, f or i � 1, ..3, and �4 < 0, �5 < 0, �6 < 0.
• �1 > 0, �2 > 0, �3 < 0, �4 < 0, �5 < 0, �6 < 0.
• �1 > 0, �i < 0, f or i � 2, ..6.

If either condition mentioned above is fulfilled, then eq. (9) has a unique root I ∗ > 0. Thus, there exists a unique E∗.
Next, let yi � vi − v∗

i , for i � 1, 2, 3, , then system obtained by the linearization of the model (7) around E∗ as follows

dy1(t) � (−a1y1 − (a2 + a3)y2)dt + η1dW1(t),

dy2(t) � (a4y1 − a5y2)dt + η2dW2(t),

dy3(t) � ((a6 + a7)y2 − a8y3)dt + η3dW3(t),

(10)
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where

a1 � −α1γ S∗ I ∗

(1 + α1S∗)2(1 + α2 I ∗)
+

(� + δ0 I ∗)

S∗ , a2 � γ I ∗

(1 + α1S∗)(1 + α2 I ∗)
, a3 � −δ0 I ∗

S∗ ,

a4 � γ S∗

(1 + α1S∗)2(1 + α2 I ∗)
, a5 � −abI ∗

(1 + bI ∗)2 +
α2γ S∗ I ∗

(1 + α1S∗)(1 + α2 I ∗)2 , a6 � aI ∗

R∗(1 + bI ∗)2 +
δ I ∗

R∗ ,

a7 � −δ0

R∗ , a8 � aI ∗

R∗(1 + bI ∗)
+
δ I ∗ − δ0

R∗ .

3.1 PDF of SD analysis

Lemma 2 [29] Consider the three-dimensional equation as follows

A2
0 + M0Q0 + Q0M

T
0 � 0,

where

A0 �
⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠, M0 �

⎛
⎝

−b1 −b2 −b3

1 0 0
0 1 0

⎞
⎠.

If M0 is a Hurwitz matrix, that is b1 > 0, b3 > 0, and b1b2 − b3 > 0, then Q0 is positive definite, and

Q0 � 1

2(b1b2 − b3)

⎛
⎝
b2 0 −1
1 1 0

−1 0 b1
b3

⎞
⎠.

Clearly, b1, b2 and b3 are the coefficient of the characteristic polynomial PM0 (�) � �3 + b1�
2 + b2� + b3

Lemma 3 [29] Consider the equation given below

A2
0 + H0�0 + �0H

T
0 � 0

where

A0 �
⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠, H0 �

⎛
⎝

−�1 −�2 −�3

1 0 0
0 0 h33

⎞
⎠.

If�1 > 0 and�2 > 0, then �0 is semi-positive definite, and

�0 �
⎛
⎝

1
2�1

0 0
0 1

2�1�2
0

0 0 0

⎞
⎠.

Remark 1 From [29], M0 and H0 are called standard R1 and R2 matrices, respectively.

Lemma 4 [30] For the following three-dimensional equation

D2
0 + D1L0 + L0D

T
1 � 0,

where L0 is symmetric matrix D0 � diag(d0, 0, 0) and (d0 �� 0),

D1 �
⎛
⎝
d1 d2 d3

0 d4 d5
0 d6 d7

⎞
⎠.

If d1 < 0, then L0 is a positive semi-definite matrix in the form L0 � diag(
−d2

0
2d1

, 0, 0).

Theorem 4 Let be (S(0), I(0), R(0)) ∈ R
3
+ an initial value, if

min

{
υα1α2

γ
,

γ

(1 + α1
�
υ

)(1 + α2
�
υ

)δ0
�
υ

,
α2γ

a(1 + α1
�
υ

)(1 + α2
�
υ

)2
,
δ

δ0

}
> 1. (11)

then model (4) posses a PDF

ϕ(S, I , R) � (2π )−
3
2 |Q|− 1

2 exp(−1

2
(ln

S

S∗ , ln
I

I ∗ , ln
R

R∗ )Q−1(ln
S

S∗ , ln
I

I ∗ , ln
R

R∗ )T ).

The special structure of matrix Q which is positive definite is given below.
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Proof For simplicity, let W (t) � (W1(t), W2(t), W3(t))T , A � diag(η1, η2, η3), and

M �
⎛
⎝

−a1 −(a2 + a3) 0
a4 −a5 0
0 a7 + a6 −a8

⎞
⎠.

Therefore, system (10) can be rewritten as dY � MY + AdW (t). By Gardiner [31] (in page 96), a unique DF ϕ(Y ) at the quasi EE
fulfills the following Fokker–Planck equation:

−
3∑
j�1

η j

2

∂2ϕ

∂y2
j

+
∂

∂y1
([−a1y1 − (a2 + a3)y2]ϕ) +

∂

∂y2
([a4y1 − a5y2]ϕ) +

∂

∂y1
([(a6 + a7)y2 − a8y3]ϕ) � 0,

based on Roozen [32], that can be approximated via the Gaussian distribution

ϕ(Y ) � ce− 1
2 Y HY T

,

where c > 0 which is determined from ∫

R3
ϕ(Y )dY � 1,

and H is a symmetric matrix satisfying

H A2H + HM + MT H � 0.

If H represents the inversion matrix, let Q � H−1, then we get

A2 + MQ + QMT � 0. (12)

Moreover, the corresponding constant value is calculated as c � (2π)− 3
2 .

Next, to show that matrix Q is positive definite it sufficient to prove that M has eigenvalues with negative real parts. Further, the
characteristic polynomial is constructed as below

PM (r ) � r3 + p1r
2 + p2r + p3,

where

p1 � a1 + a5 + a8, p2 � a1a5 + a4(a2 + a3) + a8(a1 + a5), p3 � a8a1a5 + a8a4(a2 + a3).

By (11) it can be shown that

− a1 � α1γ S∗ I ∗

(1 + α1S∗)2(1 + α2 I ∗)
− (� + δ0 I ∗)

S∗ ≤ γ

α1α2
− υ < 0, (13)

− (a2 + a3) � δ0 I ∗

S∗ − γ I ∗

(1 + α1S∗)(1 + α2 I ∗)
≤ δ0

�

υ
− γ

(1 + α1
�
υ

)(1 + α2
�
υ

)
< 0, (14)

− a5 � abI ∗

(1 + bI ∗)2 − α2γ S∗ I ∗

(1 + α1S∗)(1 + α2 I ∗)2 ) ≤ a − α2γ

(1 + α1
�
υ

)(1 + α2
�
υ

)2
< 0, (15)

a6 + a7 � aI ∗

R∗(1 + bI ∗)2 +
δ I ∗

R∗ − δ0

R∗ ≥ δυ

�
− δ0

�

υ
> 0, (16)

− a8 � −aI ∗

R∗(1 + bI ∗)
− δ I ∗ − δ0

R∗ ≤ δ0
�

υ
− δυ

�
< 0. (17)

Consequently, from (13) to (17), we obtain

pi > 0, i � 1, 2, 3 and

p1 p2 − p3 � a2
8(a1 + a5) + (a1 + a5)(a1a5 + a4(a2 + a3) + a8(a1 + a5)) > 0.

(18)

So, by (18) and using Lemma (2.6) in [30], then Q of eq.(12) is positive definite.
Based on the finite independent superposition principle [33], eq. (12) can be written as follows:

A2
j + MQ j + Q jM

T � 0, ( j � 1, 2, 3, ) (19)
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where

A1 � diag(η1, 0, 0), A2 � diag(0, η2, 0), A3 � diag(0, 0, η3), Q � Q1 + Q2 + Q3, and A2 � A2
1 + A2

2 + A2
3.

Next, the special formula of Q is obtained by the following steps
Step 1. For eq. (20)

A2
1 + MQ1 + Q1M

T � 0. (20)

Let

M1 � B1MB−1
1 .

Letting M1 � B1MB−1
1 , where

B1 �
⎡
⎣
a4(a6 + a7) −(a5 + a8)(a6 + a7) a2

8
0 a6 + a7 −a8

0 0 1

⎤
⎦,

is the standard transform matrix, can be derived using the method (I) presented in [29], according to the uniqueness of the standard
R1 matrix of M, we have that

M1 �
⎡
⎣

−p1 −p2 −p3

1 0 0
0 1 0

⎤
⎦,

where p1, p2 and p3 are the same as we mentioned above.
Next, eq. (20) can be written as follows

B1A
2
1B

T
1 + M1B1Q1B

T
1 + B1Q1B

T
1 MT

1 � 0. (21)

Letting

�1 � 1

q2
1

B1Q1B
T
1 , q1 � a4(a6 + a7)η1,

eq. (21) becomes

A2
0 + M1�1 + �1M

T
1 � 0.

By Lemma (2), �1 is positive definite, it is given in the following form

�1 � 1

2(p1 p2 − p3)

⎛
⎝

p2 0 −1
1 1 0

−1 0 p1
p3

⎞
⎠.

Therefore,

Q1 � q2
1 B

−1
1 �1(BT

1 )−1,

is positive definite
Step 2. Consider the following equation

A2
2 + MQ2 + Q2M

T � 0. (22)

Similarly, taking

C2 � (B3B2)M(B3B2)−1,

where the matrix B2 and B3 are given by

B2 �
⎡
⎣

0 1 0
0 0 1
1 0 0

⎤
⎦, B3 �

⎡
⎣

1 0 0
0 1 0
0 (a2+a3)

(a6+a7) 1

⎤
⎦.

By simple computation, we show

C2 �
⎡
⎣

−a5
−a4(a2+a3)

(a6+a7) a4

(a6 + a7) −a8 0
0 n −a1

⎤
⎦,
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where n � (a2+a3)(a1−a8)
(a6+a7) .

Based on the value of n, we classify two cases.
Case 1. if n �� 0,
Let

M2 � B4C2B
−1
4

where

B4 �

⎡
⎢⎢⎢⎣

(a2 + a3)(a1 − a8)
−(a2+a3)(a2

1−a2
8 )

(a6+a7) a2
1

0 (a2+a3)(a1−a8)
(a6+a7) −a1

0 0 1

⎤
⎥⎥⎥⎦,

is the corresponding standard transform matrix.
Utilizing the similarity transformation criteria, we have that M2 � M1. Further, we transform (22) into eq. (23)

(B4B3B2)A2
2(B4B3B2)T + M2(B4B3B2)Q2(B4B3B2)T + (B4B3B2)Q2(B4B3B2)T MT

2 � 0. (23)

Letting

�2 � 1

q2
2

(B4B3B2)Q2(B4B3B2)T , q2 � (a2 + a3)(a1 − a8)η2.

Therefore, (23) becomes

A2
0 + M2�2 + �2M

T
2 � 0.

As highlighted in the first Step, �2 is positive definite. Therefore,

Q2 � q2
2 (B4B3B2)−1�2((B4B3B2)T )−1.

Case 2. if n � 0,
Let

M2n � B4nC2B
−1
4n ,

where the standard transform matrix

B4n �
⎡
⎣

(a6 + a7) −a8 0
0 1 0
0 0 1

⎤
⎦,

which can be obtained by the method (II) in [29], by the uniqueness of the standard R2 matrix of M then we obtain

M2n �
⎡
⎣

−�1 −�2 −�3

1 0 0
0 0 −a1

⎤
⎦.

As the polynomial shown above is similarity invariant, therefore we obtain

PM (r ) � r3 + p1r
2 + p2r + p3 � PM2n (r ) � r3 + (�1 + a1)r2 + (�2 + �1a1)r + (�2a1).

Consequently

�1 � p1 − a1 � a5 + a8 > 0

�2 � p2 −�1a1 � p2 − a1(a5 + a8) � a4(a2 + a3)a8a5 > 0.
(24)

In a similar way, we proceed as

(B4n B3B2)A2
1(B4n B3B2)T + M2n(B4n B3B2)Q2(B4n B3B2)T + (B4n B3B2)Q2(B4n B3B2)T MT

2n � 0. (25)

Letting

�̄2 � 1

q̄2
2

(B4n B3B2)Q2(B4n B3B2)T , q̄2 � (a6 + a7)η2,

algebraic equation (25) becomes

A2
0 + M2n�̄2 + �̄2M

T
2n � 0.
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By Lemma (3) and (24), �̄2 is semi-positive definite, it is given in the following form

�̄2 � diag

(
1

2�1
,

1

2�1�2
, 0

)
.

Therefore,

Q2 � q̄2
2 (B4n B3B2)−1�2((B4n B3B2)T )−1.

Step 3.
For the equation that follows,

A2
3 + MQ3 + Q3M

T � 0. (26)

Let

M3 � B5MB−1
5 ,

where B5 is given by

B5 �
⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦.

By simple calculation, we find

M3 �
⎡
⎣

−a8 0 a6 + a7

0 −a1 −(a2 + a3)
0 a4 −a5

⎤
⎦.

Further, (26) can be transformed into eq.(27)

B5A
2
3B

T
5 + M3B5Q3B

T
5 + B5Q3B

T
5 MT

3 � 0. (27)

Letting

�3 � 1

η2
3

B5Q3B
T
5 ,

eq. (27) becomes

D2
0 + M3�3 + �3M

T
3 � 0.

By Lemma (4), �3 is semi-positive definite, it is given in the following form �3 � diag( 1
2a8

, 0, 0). Thus

Q3 � η2
3B

−1
5 �3(BT

5 )−1.

Therefore, the real symmetric matrix Q � Q1 + Q2 + Q3 in eq. (12) is positive definite, then there is a local and approximately
log-normal density function ϕ(Y ) near E∗. �

4 Numerical results

In this section, we carry out numerical simulation to illustrate the theoretical results.

4.1 Milstein method

The Milstein method is an approach used to obtain approximate numerical solutions for SDEs. Originally introduced by
Grigori N. Milstein in [34], this method offers an effective way to solve SDEs of the form:

dX(t) � g(t ,X(t))dt + h(t ,X(t))dW (t), X(0) � X0. (28)

Using the Milstein method as follows:

Xn+1 � Xn + g(Xn , tn)!t + h(Xn , tn)!Wn + 0.5h(Xn , tn)h′(Xn , tn)((!Wn)2 −!t), (29)
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Fig. 1 Computer simulation of the deterministic and stochastic path of solution of model (4) using parameters of example 1

where h′(x , t) denotes the derivative of h(x, t) w.r.t x and !W � W (tn+1) − W (tn) is the Brownian increment on [tn , tn+1]. Now,
we will use this method (29) to solve the system (4) numerically as follows:

Sn+1 � Sn +
[
�− γ Sn I n

(1 + α1Sn)(1 + α2 I n)
− υSn + δ0e

−υκ I n−κ]!t + η1S
n!Wn + 0.5 η2

1S
n(!Wn

1 )2 −!t)

I n+1 � I n +
[ γ Sn I n

(1 + α1Sn)(1 + α2 I n)
− aI n

1 + bI n
− (υ + δ + λ)I n

]
!t + η2 I

n!Wn
2 + 0.5 η2

2 I
n((!Wn

2 )2 −!t)

Rn+1 � Rn +
[ aI n

1 + bI n
− υRn + δ I n − δ0e

−υκ I n−κ]!t + η3R
n!Wn

3 + 0.5 η2
3R

n((!Wn
3 )2 −!t).

(30)
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Fig. 2 Compartment S, I, and R in the deterministic and stochastic system are simulated in the left hand column. The frequency histogram and marginal
density function graphs for S, I, and R are displayed in the right hand column, using parameters of example 2

Also, the explicit solutions can be written as follows:

Sn+1 � Sn +
[
�− γ Sn I n

(1 + α1Sn)(1 + α2 I n)
− υSn + δ0e

−υκ I n−κ]!t + η1S
n
√

(!t)ς1(n) + 0.5 η2
1S

n(
√

(!t)ς1(n))2 −!t)

I n+1 � I n +
[ γ Sn I n

(1 + α1Sn)(1 + α2 I n)
− aI n

1 + bI n
− (υ + δ + λ)I n

]
!t + η2 I

n
√

(!t)ς2(n) + 0.5 η2
2 I

n((
√

(!t)ς2(n))2 −!t)

Rn+1 � Rn +
[ aI n

1 + bI n
− υRn + δ I n − δ0e

−υκ I n−κ]!t + η3R
n
√

(!t)ς3(n) + 0.5 η2
3R

n((
√

(!t)ς3(n))2 −!t),

(31)

where ςi (n), i � 1, 2, 3, represents independent Gaussian random variables with N (0, 1), and !t shows the increment in time.

4.2 Numerical simulation

The following aspects will be highlighted through a number of empirical examples:

• The dynamical behavior of model (4) if R0 < 1.
• The existence of stationary distribution of (4), and the special expression of the unique density function if R̄0 > 1.
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Fig. 3 Computer simulation for S, I, and R, the marginal density curves are represented by the green lines. At 1500000 iteration and 1000000 iteration, the
frequency histogram fitting trajectories of S, I, and R represented by the lines red and blue, respectively

• The impact of changing the delay time ι on the epidemic dynamics.
• Effect of saturated treatment rate and Crowley–Martin incidence rate parameters on the epidemic dynamics.

Example 1 To illustrate extinction of disease in the two models: deterministic and stochastic, the following parameters values are
assumed (some parameters are taken from [5] ): � � 15, γ � 0.014, υ � 0.03, ι � 1, η1 � 0.12, η2 � 0.25, η3 � 0.05,
α1 � 0.21, α2 � 0.21, δ � 0.25, δ0 � 0.023, a � 0.3, b � 0.1, λ � 0.03, then R0 � 0.1954 < 1, and S(0) � 2.5, I (0) � 5.5,
R(0) � 1.7. (See Fig. 1).

From Fig. 1, we observe that the number of infected people becomes zero over time, which means that the epidemic will become
extinct from the population.

Example 2 We choose the following parameters: � � 35, γ � 0.659, υ � 0.096, ι � 0, η1 � 0.0399, η2 � 0.0573, η3 � 0.029,
α1 � 0.029, α2 � 0.4897, δ � 0.0458, δ0 � 0.0081, a � 0.1, b � 0.001, λ � 0.02, then R̄0 � 25.9318 > 1, with S(0) � 5.8,
I (0) � 6.5, R(0) � 3.3. By theorem (3), the system (4) possesses a unique SD (see left column in Fig. 2). Biologically, this means
that the disease will persist in the population and will not be naturally eliminated under the present condition.

By theorem (4), SD around E∗ has unique log-normal density ϕ(S, I , R); in addition, the calculation shows that (S∗, I ∗,
R∗) � (64.66, 118.43, 156.81) and n � 0.7199 �� 0, thus
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Fig. 4 Computer simulation for solution of model (4) with different values of time delay ι and intensity white noise η1 � η2 � η3 � 0.02

Q �

⎛
⎝

0.0125 −0.0126 −0.0022
−0.0126 0.0130 0.0010
−0.0022 0.0010 0.0051

⎞
⎠.

The marginal density function of S, I , and R can be determined by the following

∂ϕ

∂S
� N (64.66, 0.0125);

∂ϕ

∂ I
� N (118.43, 0.0130);

∂ϕ

∂R
� N (156.81, 0.0051)

the results can be viewed in Fig. 3, and the right column in Fig. 2 that shows the corresponding density function and frequency
histogram.

Example 3 We use the following parameters [5]:� � 15, α1 � 0.1, α2 � 0.1, γ � 0.2, δ � 0.25, δ0 � 0.23, υ � 0.3, a � 0.3,
b � 1, λ � 0.4, and the following initial conditions: S(0) � 2.5, I (0) � 0.5, R(0) � 5.7. Also, we use different values of time
delay ι, and η1, η2, η3. Fig 4, 5, show the solution behavior for the considered model (4) with different values of time delay ι, and
η1, η2, η3.

From our observations, the number of infected individuals is highest when ι � 0 compared to when ι � 0.2,0.5 and 1. This
indicates that as the duration of immunity increases, the overall prevalence of infection decreases. The parameter ι represents the
duration of immunity, with higher values corresponding to a longer period of immunity following recovery. When immunity is

123



  365 Page 20 of 23 Eur. Phys. J. Plus         (2025) 140:365 

Fig. 5 Computer simulation for
solution of model (4) with
different values of time delay ι and
intensity white noise η1 � 0.45,
η2 � 0.65, η3 � 0.5

short-lived, recovered individuals quickly become susceptible again, leading to a higher number of reinfections and a sustained
high level of infection in the population. However, as ι increases, recovered individuals remain immune for a longer duration,
reducing the pool of susceptible individuals and consequently lowering the rate of new infections. This trend suggests that extending
immunity—whether through natural infection, vaccination, or booster doses—can significantly contribute to controlling disease
transmission and reducing the burden of infection within a population.

Example 4 In Figs. 6, 7, and 8, the effect of the parameters of saturated treatment rate and Crowley–Martin incidence is shown, by
using the parameters of example 1 and example 2.

Fig. 6 displays the impact of cure rate a and treatment availability limitation rate b on infected individuals for different values
of a and b and R0 < 1. The right side of Fig. 6 shows that increasing cure rate a leads to a decrease in the number of infected
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Fig. 6 Computer simulations for the numbers of infected people of model (4) with different HT-II treatment rate parameters a and b

Fig. 7 Computer simulation for
the number of infected people with
and without HT-II treatment rate

individuals. The left side of Fig. 6 shows that with an increase in the value of b an increase in the number of infected population is
due to the limited resources in the community.

The difference in the infected population at with and without treatment rate H(I) is depicted in Fig. 7. It is evident that if HT-II
treatment is administered to the sick population will substantially decrease the number of infected individuals.

The infected population at different values of α1 and α2 is depicted in Fig. 8. It is evident that an increase in α1 and α2 corresponds
with a decrease in the infected population. It demonstrates that greater values of α1 and α2, respectively, will prevent the illness
from spreading. Therefore, it may be said that susceptible and infectious individuals who adopt preventive actions will help to slow
the spread of illness.

Through the integration of theoretical analysis and numerical simulations, we discovered that smaller white noise enables model
(4) to exhibit a unique ergodic SD when R̄0 > 1. Conversely, larger white noise can lead to disease extinction in model (4) when
R0 < 1. In comparison with the deterministic model, the inclusion of random white noise and time delay in the epidemic model
significantly influences the persistence and extinction of the disease, thereby enriching the dynamic behavior of the epidemic model.
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Fig. 8 Computer simulations for the numbers of infected people of model (4) with different C-M rate parameters α1 and α2

5 Conclusion

This study has thoroughly explored a time-delayed stochastic SIR model that incorporates HT-II treatment and Crowley–Martin
incidence, allowing us to investigate the dynamics of disease spread under realistic conditions. By rigorously establishing the stability,
uniqueness, and existence of solutions, we provide a solid theoretical foundation for understanding the behavior of the model over
time. This framework ensures that the model maintains biological consistency, which is essential for making reliable predictions
about epidemic outcomes. We further identified the critical parameters that govern disease extinction and highlighted the roles of
various factors, including transmission rates, treatment effectiveness, and time delays, which can influence whether an epidemic is
eradicated. The probability density function is analytically derived, offering a deeper insight into the model’s stochastic behavior,
particularly near the endemic equilibrium. This analytical formulation is crucial for evaluating the likelihood of disease persistence
and predicting potential fluctuations in infection rates. Further to this, the theoretical results were rigorously verified through a
comprehensive numerical simulation. The simulation underscores the significant impact of nonlinear incidence and treatment rates
as well as the role of temporal delays on the dynamics and control of the disease. Furthermore, the numerical experiments highlight
the importance of both deterministic and stochastic effects for accurate modeling of real-world disease transmission. In conclusion,
this study not only advances our theoretical understanding of epidemic dynamics under time delays and stochastic influences
but also offers practical tools for improving epidemic forecasting and intervention planning. The incorporation of more realistic
epidemiological assumptions into the modeling efforts represents an important step toward more robust and reliable predictions,
ultimately aiding in the global effort to control infectious diseases. Moreover, we believe this study helps in providing public health
interventions, serving as a foundation for targeted strategies to minimize disease incidence and prevent future outbreaks.
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