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This paper presents a novel cognitive few-shot learning (CFSL) for the diagnosis of cleft lip and palate and
Parkinson’s diseases. The proposed method utilizes computational analysis of paralinguistic features to expedite
the diagnostic process. Unlike other methods that rely on complex and fragmented representations, CFSL trains
itself to recognize patterns that are easily interpretable by humans. Rather than learning a single, unstructured
metric space, CFSL combines the outputs of individual landmark (LM) learners by mapping LMs into semi-
formation spaces. In order to assess the effectiveness of CFSL, we conducted a comparative analysis with
seven distinct FSL-based models, including momentum contrastive learning for FSL (MCFSL), self-updating FSL
(SUFSL), mutual info multi-attention FSL (MAMIFSL), dual class representation FSL (DCRFSL), Improved FSL
(IFSL), meta-knowledge for FSL (MKFSL), and prototypical networks (ProtoNet), using three popular datasets,
namely GPRS, CIEMPIESS, and PC-GITA. The findings indicate that CFSL demonstrated superior performance
compared to the highest-performing baseline frameworks for the 5-shot (5-sh) and 1-shot (1-sh), having an
average enhancement of 4.39% and 4.49%, respectively. CFSL demonstrated better performance than the Pro-
toNet baseline in both 1-sh and 5-sh across all datasets, with an improvement of 12.966% and 11.033%,
respectively. In addition, we performed ablation tests to assess the effects of variables such as the density of LMs,
the structure of the network, the distance measure used, and the positioning of LMs. The CFSL approach, if
adopted in hospitals, has the potential to enhance the precision and efficiency of diagnosis for cleft lip and palate
as well as Parkinson’s disease.

1. Introduction

Cleft lip and palate (CP) and Parkinson’s disease (PAD) are two
widespread medical diseases. PAD is a neurological movement condition
characterized by tremors, stiffness, and problems with coordination and
balance (Zhuo, 2024). CP is a congenital abnormality affecting the lip
and/or top of the lip, which can cause speech, nutrition, and oral diffi-
culties (Song et al., 2024). Effective management and treatment of many
disorders require a precise and prompt diagnosis (Zou, 2024).

Conventional machine learning and deep learning techniques have
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proven effective in medical diagnosis, including CT image diagnosis (Xu
et al., 2022); cancer-related treatments (Wang, 2024); liver disease (Sun
et al., 2023; He, 2024); nervous system diseases (Hui et al., 2024);
covid19 diagnosis (Xu et al., 2022); and electroencephalograph (Borlea
et al., 2017; Zhao et al., 2021; Borlea et al., 2022). Nonetheless, these
algorithms have some restrictions, such as operations on small datasets
and the need for large amounts of labeled data to be functional (Jing,
2024; Mohammadzadeh et al., 2024; Mohammadzadeh et al., 2023).
Besides, these techniques tend to be black boxes, making it challenging
to explain what features of the model account for its predictions
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(Mohammadzadeh et al., 2024; Yan et al., 2023).

Both meta-learning (MeL) and few-shot learning (FSL) techniques are
promising since they do not require large volumes of data and allow the
model to solve new tasks. MeL is simply defined as a model’s capability
of acquiring a strategy for learning, whereas FSL allows models to
assimilate sufficient labeled data to be effective.

1.1. Motivation and research gaps

While there is ample evidence that MeL and FSL have yielded posi-
tive results in other areas (Sun et al., 202.3); few studies have specifically
explored their application in medical diagnostics for CP and PAD. More
importantly, the more traditional approaches of MeL are rather opaque,
which prevents users from establishing a basic understanding of the
factors that affect the model’s predictions.

The objective of this research is to demonstrate the flexibility and
applicability of the suggested Few-Shot Learning approach, CFSL, in the
field of medical diagnosis. The domain of medical diagnosis covers a
diverse array of disorders and diseases, each presenting distinct prob-
lems and diagnostic information. The objective of this research is to
illustrate how CFSL can easily relate to two completely opposite spe-
cializations: CP and PAD. Though it may sound odd, CP and PAD present
the best-case scenario in proving CFSL’s versatility in handling varied
medical data and performing different medical tasks. It is important to
elaborate at the outset that the coexistence of CP and PAD is not
indicative of their structural or clinical relationship. It rather serves the
purpose of demonstrating the potential of CFSL as an effective tool for
medical and scientific studies in various areas. With the help of the ex-
amples from these different fields, we aim to demonstrate that CFSL has
the potential to enhance the accuracy or efficiency of diagnosis in many
medical disciplines.

1.2. Objective and contributions

The objective of this study is to provide a unique approach for
diagnosing CP and PAD utilizing a CFSL. The suggested method lever-
ages the automated evaluation of paralinguistic features in voice signals
to facilitate early diagnosis. The generalization ability of CFSL is boosted
by obtaining the capacity for learning along LM qualities that are
interpretable by humans. CFSL produces abstractions of high-level LMs
into semi-formation metric space instead of learning in a single arbitrary
metric space, effectively integrating the outcomes of independent LM
learners.

The subsequent points delineate the principal contributions of the
paper:

e Cognitive FSL (CFSL)

The initial contribution is the development of a new framework
called CFSL, which uses few-shot learning approaches to diagnose PD
and CLP. CFSL integrates the outcomes of several autonomous LM
learners, hence improving the model’s ability to apply knowledge to
various datasets and clinical situations. The utilization of this composite
technique enables the model to generate precise predictions even in
scenarios when data are scarce, which is a frequently encountered
obstacle in medical diagnosis.

e Paralinguistic Features for Disease Diagnosis

The second contribution of this work is the application of para-
linguistic features, which are derived from speech signals, to medical
diagnosis contexts. Paralinguistic features, including pitch, prosody,
rhythm, etc., offer great insights into the speech of a person and hence
assist in determining their health condition. We introduce these char-
acteristics by integrating these general components into our CFSL
framework, thereby simplifying and revolutionizing the diagnostic
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process for medical professionals.
e Improved Diagnostic Accuracy

The final contribution is showcasing CFSL’s exceptional diagnostic
precision in comparison to established benchmark models. We perform
thorough assessments on three separate datasets, encompassing both
cases of CLP and PD, in order to demonstrate the strength and efficiency
of CFSL. CFSL has the potential to raise the speed and precision of
medical diagnosis in clinical settings by significantly improving accu-
racy compared to current models.

This research introduces the CFSL framework, which utilizes para-
linguistic aspects to enhance diagnostic accuracy for CLP and PD. The
organization of the paper is as follows: Section 2 provides an overview of
the studies that are relevant to the topic. Section 3 explains the tech-
nique that is proposed for this research. Section 4 focuses on the ex-
periments conducted. Finally, Section 5 summarizes and closes the
study.

2. Related works

Research on medical diagnosis utilizing machine learning (ML) and
deep learning (DL) approaches is already abundant (Latif et al., 2019);
especially concerning CP and PAD (Yao et al., 2022). Mei et al. (Mei
etal., 2021) focused on reviewing several studies related to the theme of
the use of ML detection tools in patients with PAD. They noted that a
different ML instrument had been implemented in the PAD diagnosis,
and it worked well. However, such approaches also face some chal-
lenges, such as the necessity of substantial quantities of annotated data
and engineered features.

In overcoming the shortcomings of traditional ML techniques, aca-
demic specialists have begun using DL in relation to PAD diagnosis. As
per the findings of the survey of Loh et al. (Loh, 2021); RNNs and CNNs
have been the most preferred DL models in this context. A notable merit
of DL is that it relies on its in-built capabilities to elevate features
extracted from primary data. All the same, these approaches still rely on
a lot of labeled data in order to achieve desired effectiveness.

In their work, Oh et al. (Oh, 2020) developed a deep learning
approach for the diagnosis of PAD exploiting EEG signals. The authors
employed a CNN architecture that was fitted to a large collection of EEG
signals acquired by PAD patients and HLC subjects. The outcome was the
ability to diagnose with rather promising accuracy, but it required quite
a large amount of fully annotated evidence for training, and its com-
prehendibility was low.

Vinas et al. presented a DL model for CP diagnosis that utilized 3D
facial images (Vinas, 2022). The authors utilized a CNN architecture that
was trained on a sizable dataset of facial images collected from both CP
patients and healthy individuals. Despite the promising accuracy
demonstrated by the results, the approach required a significant amount
of labeled data for training and lacked interpretability.

Both traditional ML and DL techniques have been utilized to develop
predictive models for medical diagnosis. However, these methods
frequently encounter challenges when dealing with small datasets and
rely on a significant amount of labeled data for training. Also, one of
their obvious limitations is that they fail to explain the attributes that lay
behind the model’s output.

In this regard, two new approaches, MeL and FSL, have shown a lot of
promise in getting models to learn and adapt to new tasks with little data
(Xu et al., 2022). Wang et al. (Wang et al., 2021) developed a MeL
concept that was used in the diagnosis of pad based on an acoustic
investigative approach to the speech. The authors trained a deep neural
network structure with a small-sized voice dataset that was derived from
strokes as well as healthy PAD voice samples. The DNN was subse-
quently fine-tuned on a small set of new patients to enhance its gener-
alization ability. The results revealed promising accuracy in diagnosis,
but the approach had limited interpretability.
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Zhang et al. (Zhang et al., 2021) introduced a novel approach to the
diagnosis of Parkinson’s disease using speech data. Their method
involved using a CNN architecture, which was first trained on a small
dataset of facial images of patients with CP and controls, and then the
CNN was retrained on a new small cohort of patients to improve the
general applicability of the model. While the approach demonstrated
encouraging diagnostic accuracy, it was noted that it lacked
interpretability.

While previous studies have demonstrated promising results for the
application of MeL and FSL in medical diagnosis, there remains a scar-
city of research in this area, particularly in relation to CP and PAD.
Furthermore, existing MeL techniques often lack interpretability, which
can hinder understanding of the specific features contributing to the
model’s predictions.

Research on PD diagnosis has demonstrated that FSL is useful for
deciphering movement and speech data. Early detection of PD has been
dramatically facilitated by FSL models’ capacity to identify tiny changes
in speech, providing a non-invasive diagnostic tool (Ngo et al., 2022).
There needs to be better generality, though, because these models
frequently fail to account for the fact that speech habits vary among
demographics. Like other deep learning-based models, FSL applied to
movement data has identified early-stage PD with minimum training
data; however, this comes at the tradeoff of high computational re-
quirements (Hossain & Shorfuzzaman, 2023).

Using FSL to diagnose CLP brings its own unique set of advantages
and disadvantages. As an example, compared to conventional machine
learning methods, the requirement for large image datasets has been
drastically diminished when FSL is applied to 3D imaging for CLP
diagnosis. Nevertheless, a crucial consideration in clinical contexts is the
restricted interpretability of these models’ decision-making processes,
which somewhat dampens this progress (Aubreville, et al., 2023).

Genetic analysis in CLP cases is another area where FSL shows
promise; this is because it helps to grasp complicated genetic markers
with less data. Although this is a novel technique, the complexity and
diversity of genetic components typically limit the accuracy of these
models. This investigation shows a gap in the FSL framework’s ability to
provide improved accuracy in genetic analysis models (Wurfbain,
2023).

Adding FSL to MRIs for the purpose of diagnosing PD is another
exciting development. When it comes to distinguishing PD from other
forms of neurodegeneration, these models have proven to be very ac-
curate. Their effectiveness, however, is dependent on the quality of the
MRI scans; they can only handle low-quality pictures to a certain extent
(van der Hoek-Snieders et al., 2020).

There are significant and complex knowledge gaps in these in-
vestigations. An obvious need exists for computationally efficient,
interpretable, and flexible FSL models that can provide good results with
little training data. Essential issues that require fixing include how well
these models generalize to different populations, how well they handle
different types of data, and how efficiently they use computational re-
sources (Song et al., 2023).

It is worth noting that the proposed CFSL can bring a remarkable
advancement in this area. To compensate for these limitations, the
current approach describes a model that can work with various types of
information and manage different data quality more effectively. Such an
approach has the potential to revolutionize medical diagnostics,
particularly in complex and heterogeneous conditions involving CLP
and PD.

One major barrier to reaching the goal of achieving human-level
capabilities comparable to Maslow’s is building models that can accu-
rately predict all possible unknown problems with only a handful of
labeled examples. Humans can’t quickly acquire brand new skills or
hold credible beliefs about the world entirely unassisted because they do
not possess reusable, structured perceptions. Structures learned without
any constraints imposed on them by the current MeL methods enabled
MeL algorithms to learn quite complex concepts across many previously
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labeled tasks. Our proposed MeL method, PML, enhances generaliz-
ability by training itself to learn along perception dimensions that
humans can understand. As an alternative to learning a shared un-
structured metric space, PML efficiently merges the results of separate
perception learners by learning maps of high-level observations into
semi-structured metric areas.

3. Proposed methodology

The diagnosis of CP and PAD is based on two general steps that are
feature extraction and classification. Time-frequency analysis is a com-
mon practice used to speed up calculations in the short-time Fourier
transform (STFT). In contrast to this, our study utilized a different
approach whereby the CP and PAD signals were transformed into im-
ages, and categorization employed the spectrogram.

DNNs have gained popularity as a preferred method for identifying
CP and PAD signals. Nevertheless, the limited availability of samples can
present a substantial obstacle in this effort (Lu, et al., 2023). In order to
address this constraint, we have devised the CFSL model to achieve more
precise classification. The classification technique consists of three
central portions: initial processing, the extraction of LM, and classifying
(Li et al., 2022). Fig. 1 illustrates the components of our proposed
classification framework.

Fig. 1 illustrates the flow of the CFSL model from input-raw spec-
trogram to landmarks and classification. This figure illustrates how a
short-time Fourier transform processes the raw audio signals from the
datasets to obtain the spectrograms. The landmark extraction process,
which relates to significant features of the power thresholds, aims to
locate the points in the spectrogram. Using clustering algorithms, we
cluster the landmarks and embed each spectrogram into a semi-
formation metric space. We represent each landmark as a tuple (t,p),
where t represents the time when the power level exceeds the threshold,
and p represents the frequency of the power level. The final output of the
model is a class label, which defines the order of the proximity of the
query to the set of support in the landmark’s metric space.

3.1. Raw datasets

The proposed diagnostic model was trained and assessed using three

Raw Dataset

'

Preprocessing & Spectrogram

v

Data Augmantation

The Proposed CFSL @~

Landmark Extraction

Cognitive Few-Learning Approach

® 1 J

Accuracy

Fig.1. The schematic representation of the suggested system of classification.
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well-known datasets: PC-GITA, CIEMPIESS, and GPRS. The subsequent
subsections provide comprehensive descriptions of each dataset.

3.1.1. CIEMPIESS dataset'

The CIEMPIESS corpus was utilized as the dataset for the genesis of
the CFSL, as stated in (Hernandez-Mena & Herrera-Camacho, 2014). The
aforementioned corpus comprises 16-bit audio records at 16 kHz of
sampling rate. The audio files were sampled from a collection of 17 h of
Mexican-Spanish podcast material. The corpus lacks background sound,
music, or foreign accents. The corpus contains 96 males and 45 females
within the recorded files, making a total amount of 16,717 audio
records.

3.1.2. GPRS dataset

The additional dataset utilized in this investigation was contributed
by the GPRS group of the Colombian National University (CNU). The
dataset comprises audio recordings of the speech of 58 children who
received HLC repair surgery and 135 children who underwent CP
correction surgery, spanning an age range of five to fifteen years.
Following cleft repair surgery, patients commonly have hypernasal
speech. The participants were instructed to articulate a sequence of
Spanish words that encompassed diverse phonemes, each indicating
distinct manners and places of articulation, such as /chuzo/, /bola/,
/papa/, /coco/, /susi/, /jugo/, /gato/, and /mano/. The database in-
cludes 130 hypernasality and 108 healthy control (HLC) recordings for
each vowel, with each child producing the vowels twice (Orozco-
Arroyave et al., 2016).

3.1.3. PC-GITA dataset

As a means of acquiring the necessary speech utterances associated
with PAD, we accessed the PC-GITA database (Orozco-Arroyave et al.,
2014). This database consists of audio files from 100 subjects who are
native speakers of Spanish from Colombia. Out of these individuals, 50
are in the HLC group, while the remaining 50 are in the PAD group. The
subjects were asked to read aloud a text that included a number of thirty-
six frequently used words. They were also asked to perform an un-
structured speech where they were required to talk about what they did
during the course of the day. The data was consistent and controlled for
such variables as age, level of education, and gender using MDS-
UPADRS-IIL. A complete characterization of the signal features of the
PAD, HLC, and CP groups was given in Table 1 by the authors. Such an
analysis incorporated minimum maximum, root mean square (RMS) and
mean, crest factor, dynamic range, signal length, and time of correlation,
amongst others. The purpose of this analysis was to gain a deeper un-
derstanding of the distinctions between these signals.

Although the characteristics of PAD, HLC, and CP signals have been
studied, it has been suggested that nonlinear effects may also play a role
in their classification. Abnormal vocal fold resonances and an inability
to extend the velum may be associated with CP, while PAD may result in
dysfunction of muscle control of the limbs and of the speech-making
muscles. For the purpose of speech synthesis, nonlinear parameteriza-
tion is a way of recovering the system dynamics that created a speech
signal by rebuilding the phase space. Inverse engineering graphical
methods for attractor analysis, also termed phase space plots, find their
practical application in various engineering disciplines to help visualize
and analyze complex systems over time. These types of graphs can be
found in the case of nonlinear dynamical systems, chaotic theory stress,
and complicated systems analysis. Studying how Parkinson’s disease,
epilepsy, or cardiac arrhythmias progress would be invaluable in
concentrating on their basic underlying dynamics. Attractor plots illus-
trate phenomena in motion, such as how physiological variables or brain
activity change over time. This plot is of help to understand the nature of
disease patterns as well as the state of the disease in the future. The

1 https://ciempiess.org/downloads.
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trajectories of attractors constructed in this space should help us greatly
to understand its underlying dynamics. Nonetheless, because these
phenomena are described by unknown equations, there is no other
strategy rather than an indirect approach employed based on Taken’s
embedding theorem (Takens, 1980). Fig. 2 shows the attractor plots of
the subjects with PAD, HLC, and CP using this methodology.

The figure shows three attractors plots, each for different datasets or
conditions:

a) HLC: This figure contains the attractor of healthy control patients.
The macroscopic phenomenon is labeled with a specific, focused, and
often repeating pattern in the phase space, which is interpreted as a
time-invariant regular behavior of the graph variables.

b) PAD: In that case the attractor plot of the diseased state with Par-
kinson’s disease is seen, which shows dispersion of pattern and lesser
regularity as compared to HLC, which again shows erratic pattern
lock dynamics. This plot may indicate the influence of Parkinson’s
disease on the measured system, suggesting a greater degree of un-
predictable behavior.

CP: The attractor plot for cleft lip and palate exhibits a distinct dis-

tribution of points that differs from both the healthy control and

Parkinson’s disease. The pattern has a greater level of complexity

and is distributed throughout the phase space, suggesting a distinct

form of dynamic behavior in the system as compared to the other two
circumstances.

—

C

In general, these attractor plots are employed to visually represent
the intricate dynamics of a system. They can uncover fundamental
patterns and disparities in the functioning of a system under different
circumstances or ailments, such as PAD and CP, in comparison to a
healthy state. Therefore, the following section aims to utilize the pre-
processing and spectrogram phases.

3.2. Preprocessing

A proper preprocessing method for CP and PAD analysis is time-
—frequency analysis. An often-employed method involves utilizing the
STFT on the signal x(t) in the following manner (Covell & Richardson,
1991):

00

STFT(x(t)) — / X(©)g(v — e T ™dy o)

—o0

The window function, denoted as ¢(t), must satisfy the following re-
striction:

@l =1 )

In the discrete domain, the formulation of the STFT is given by Eq. (3)
(Covell & Richardson, 1991).

STFT(x(n)) = ix(k)w(k — n)e Jmkr 3)

The STFT is commonly employed in the examination and manipulation
of signals related to CP and PAD because it can effectively capture the
temporal changes in frequency components. Its advantage lies in its
ability to be easily understood and its capability to produce signals with
complicated values. Nevertheless, due to the matrix output of the STFT
instead of a vector, visualizing the complex-valued information can
provide a challenge. In order to tackle this issue, the STFT is commonly
represented using a logarithmic spectrum 20loglO(STFT(n, k)). This
representation is then shown as a heatmap, also known as a spectro-
gram. This visualization method allows for the examination of crucial
signal characteristics in order to analyze CP and PAD. Fig. 3 illustrates
the spectrogram of the genuine CP and PAD signals acquired from the
datasets employed in this investigation.
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Table 1
The characteristics of PAD, HLC, and CP signals.
Metrics PAD men HLC men PAD women HLC women CP child HLC child
Maximum value 1 1 1 1 1 1
Mean value —7.77e-18 —8.75e-18 8.68e-19 1.36e-19 —3.49e-18 1.25e-18
Minimum value —0.84733 —0.84541 —0.91780 —0.66450 —0.83179 —0.92980
RMS value 0.15117 0.092909 0.11490 0.13819 0.15440 0.11164
Crest factor (dB) 16.4059 20.6390 18.7939 17.1890 16.2290 19.0429
Dynamic range (dB) 160.3821 145.1419 100.0169 97.7390 166.3511 107.471
correlation (s) 0.083579 0.018589 0.0559 0.03563 0.050859 0.03580
Signal length (s) 15.8699 16.9149 15.3220 14.7989 20.1810 15.6609
100
50
10 50 ‘
30 — . ‘
X; <% = o
20 ‘
10 = - 0 ‘ -
0 P
20 e ) g
0 T~ o 20 200 —20 50
X2 20 S~ " % . .0 <~ X
-40 40 X1 ) A 00 n 0 » X1
a) HLC b) PAD ¢) CP

Fig.2. PAD, HLC, and CP attractor plots.

The spectrogram diagram is utilized as input for the models in the
suggested classification framework developed in this research. The
spectrograms of PAD and CP are examined to identify significant fea-
tures. It is essential to consider that the time-frequency resolution of the
STFT is dependent on the choice of the time window x(t). It is necessary
to build a time-frequency accumulation window in order to acquire a
correct pattern for data in the combined time—frequency domain. As a
result of the fixed product of a signal’s bandwidth and its duration, the
energy density is constrained by the Heisenberg-Gabor uncertainty
principle.

Through a comparative study of signal properties in different do-
mains (time, spectral, and cepstral), it is clear that the differences be-
tween each group are tiny and challenging to identify with traditional
classification techniques, particularly in small datasets. This classifica-
tion challenge can be tackled using one of two methods: firstly, by uti-
lizing a more advanced and potentially deep learning network that can
accurately identify subtle distinctions with the aid of a significantly
larger dataset; secondly, by employing a model specifically designed to
isolate and highlight distinguishing characteristics within the data. The
latter technique relies on the model’s capacity to amplify the importance
of particular qualities that are highly indicative of variations across
groups. This technique allows for accurate classification even when
dealing with complicated signal characteristics and a limited number of
data points.

3.3. Data augmentation

In order to create the input power spectrum for the suggested
framework, we utilized a setup consisting of 126 temporal intervals and
128 frequency bins based on the Mel scale. The STFT was computed
using a window duration of 32 ms and a step duration of 4 ms, yielding a
total of 126 time steps. The input spectrogram was generated by con-
verting 512 frequency points to the Mel-scale using 128 filters. This
conversion preserved the fundamental frequency profile, even with
substantial frame sizes and a high number of Mel filters. The input power
spectrum was created by employing time shifts of 250 ms between each
500 ms segment.

In order to improve the model’s capacity to generalize and overcome
the constraints of the dataset, we utilized data augmentation methods
that involve temporal and frequency modifications (Park, et al., 2019).
This data augmentation entailed implementing a time-stretched additive
noise with a variance of 1 inside the specified parameter range of [0.8,
1]. Additionally, pitch shifting was performed within the specified
parameter range of [-2, 2]. In addition, we employed time masking and
frequency masking techniques by masking a sequence of t consecutive
time steps and f subsequent frequency bins, respectively, using the mean
value.

We integrated the previously described changes into a unified
time-frequency spectrogram, which was then inputted into the network.
Our methodology is resilient and capable of managing partial loss of
frequency data and temporal distortions. In order to obtain the Mel-
feature power spectrum and feed it into the network, we subjected the
input signal to temporal stretching, Gaussian noise, and pitch shifting, as
illustrated in Fig. 4. Further outcomes of arbitrarily masking the time-
—frequency elements of the initial signal can be seen in the figure.

Fig. 4 illustrates the impact of different audio augmentation methods
on a spectrogram, which is a graphical depiction of the frequency
spectrum of a sound stream as it changes over time. Each panel exhibits
the spectrogram of the signal following the application of a specific type
of augmentation:

Original: the original spectrogram without any augmentation,
assisting as the control for comparison, which is formulated as Eq. (4).

Soriginal(tvf) = ‘STFT(X(t))l

x(t) : Original Signal )

Row-Resampling: Modification of the signal’s sampling rate, which can
impact the temporal resolution of the spectrogram as Eq. (5).

t
xresampled(t) = x(a)

Sresampled(taf) = !STFT(xresampled(t)) |

)

Where a denotes the time stretching or compressing coefficient.
Noise: The introduction of extraneous sound into the signal, result-
ing in a granular appearance throughout the spectrogram, which can be
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Fig.3. The typical signal and its spectrogram.
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mathematically expressed as Eq. (6).

(t) +n(t)
\S);"FT (xlm(t)) | 6)

Xnoise (t) =

Snaise(tyf) =

Where n(t) denotes the noise term.
Clipping: The process of reducing the amplitude of a signal, which
leads to the flattening of peaks on the spectrogram, as presented in Eq.

7).

Aifx(t) > A
clipped (t) = ¢ —xAifx(t) <A
. @)
x(t)otherwise
Sctipped(t, f) = |STFT (Xeippea(t)) |

Clipping restricts the peaks of the signal to a maximum amplitude of A,
thereby creating a ‘flat top’ effect.

Speed Up: Enhancing the playing speed, resulting in the compres-
sion of the spectrogram horizontally and the upward shift of frequencies,
which is expressed as Eq. (8).

Xpeea () = X()

p (8)
speed t f |STFT xspeed ( )){
Where f denotes the speeding-up coefficient.

Harmonic Distortion: The addition of harmonic overtones that
modify the frequency components of the signal, which can be mathe-
matically expressed as Eq. (9).

x(t) + ¢(x(1))
|STFT(xhﬂnnonic (t)) | (9)

Xharmonic (t) =
shammnic(tvf) =

Where ¢(x(t)) denotes harmonic distortion function.

Gain: The augmentation of the signal’s amplitude is reflected by
enhanced colors on the spectrogram, which can be mathematically
expressed as Eq. (10).

Xgam(t) = x(t) + G(x(t)) 10)
gam tf |STFT xgam(t))}
Where gain increases the strength of a signal by G coefficient.

Rand Time Shift: Over time, the signal undergoes random variations
which can be depicted as horizontal displacement in the spectrogram.
This can be represented mathematically as illustrated in Eq. (11).

Xshifeea(£) = X(t — 7)
Sshifted (t f [STFT (Xshiea(t)) | an
: Shift Factor

Sound Mix: The process of superimposing or mixing one sound with
another, replacing or modifying existing frequencies, is defined mathe-
matically in Eq. (12).

Xmixed(t) = X(t) + Mix(t)
Smixed(t, f) = |STFT (Xmixea(t))| 12
Mix(t) : Another Sound

Dynamic Range: The result of signal expansion or compression’s effect
on the spectrogram’s dynamic range of contrast is presented in Eq.(13).

= Comp(x(t)) = sgn(x(t))-|x(t)"
{Compress ify <1

Xeomp (t)

. 13)
Expand if y > 1

Scomp(£,f) = |STFT (Xcomp (1))

Pitch Shift: Shifting the spectrogram by changing the frequency of the
sound while still preserving the time, can be written mathematically as
Eq. (14).

Pich_Shift(x () 2)
|STFT (xpieen (£))]

xpm:h ( )

pztch t f (14)

The time period is stable, but the fundamental frequency of the signal
has been changed which has the impact of A on its frequency content.
Lowpass Filter: To get rid of the former high-frequency elements,
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the lowpass filter is implemented so that the spectrogram would only
display the lower frequencies as seen mathematically in Eq. (15).

Xioupass(t) = STFT (H(f).STFT(x(t))
Stowpass (t:f) = | STFT (Xiowpass (£)) | (15)
H(f) : Filter Transfer Function

These enhancements are usually used to increase the tolerance of audio-
processing systems to a wider environment of sound conditions and thus
improve their ability to generalize beyond training data. Each method
produces specific changes that can be readily seen in the spectrogram
and therefore provide useful feedback concerning the possible benefits
of such enhancements in the performance of audio classification or
recognition systems.

3.4. Perceptual approach

Section 2 highlighted the challenge of effectively classifying CP and
PAD using DNNs due to the limitations posed by short datasets. In order
to address this constraint, we suggest employing the CFSL technique,
which consists of two stages: the identification of LM points and the
classification of CP/PAD.

The suggested CFSL framework utilizes LM points taken from the
spectrogram of CP and PAD data to classify them into several groups
accurately. The LM spots are acquired by detecting the spots where the
power exceeds a specific threshold and subsequently grouped into
distinct categories based on their proximity through clustering. The
categorization is executed by calculating the distance between the LM
point of each signal and the centroid of each cluster and then allocating
it to the category with the nearest centroid.

The suggested method for identifying LMs from the spectrograms of
HLC, CP, and PAD signals entails the identification of two parameters:
time points and thresholds. This LM facilitates the identification of the
precise location where the power transitions beyond the threshold at a
certain point. The CFSL approach is employed to extract and save the
precise coordinates of LM points as LMs. The approach considers both
the spectrogram count (A) and the total spectrogram count (TOT) in the
dataset. The LM point is marked by the coordinates (t,; p,), where t, is
time and p;, is the time-specific instant when power cuts the threshold.

Such methodology gives a complete way of accumulating important
information from the CP or PAD signal spectrogram. Using the LM points
clustering process, such patterns and features of the diseases can be
highlighted, and they can also help in more accurately classifying these
diseases.

3.5. Few-shot learning

Generating separate measuring regions for each LM attribute from a
small set of labeled real-world data is a key component of the CFSL
process. The CFSL approach allows for the identification of minor var-
iances by utilizing LM merging functions as learners and LM prototypes
as markers for every measurement space of the higher-level dimension.
The CFSL paradigm improves the base learner’s generalization capa-
bilities by integrating many accurate LM learners.

CFSL operates using three types of data: support set (8), query dataset
(D@), and training dataset (D). In contrast to the training and query sets,
which use different label spaces, the support set uses the same label
space across all labeled datasets. A tuple (¢, p) is used to indicate an LM
data point, and t serves as the label. By drawing on the annotated
training and support sets, the CFSL method attempts to label the query
set.

Standard FSL is a widely used machine learning that focuses on
effectively adjusting to novel challenges. During the training process,
this method utilizes small subsets of data called episodes. Each episode
consists of a selection of classes from the training data, and the data
points inside each episode are appropriately labeled. Two sets of marked
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data points are created: one for use in calculating the prediction error
(the query set) and another for use in providing support (the support
set). The objective of the CFSL is to optimize the loss within the query set
to ensure a consistent sample set across each episode. This strategy is
extremely helpful for enhancing the framework’s potential to generalize
to novel data during the testing phase, especially when there is a scarcity
of available data. The common name for training sets utilized in the
process is “balanced episodes,” with “f shot” denoting the number of
support samples per class and “a way” indicating the number of classes
in each episode.

The CFSL approach incorporates non-linearly parametric LM merg-
ing functions, also known as LM learners EFf. The average observed
integration of the data from the support set is used to build one LM
prototype CPj; for every # LM. By using this method, the model is able to
improve its generalizability by obtaining a better representation of each
class.

a 1 o 0 a
CPy = > EF(t,u") 16)

P (tnpn)eTy

The LM number is denoted by the a, and the Hadamard product is
represented by the symbol °. As a result, for each of the three classes

N

(represented by the numbers # and {CPZ} L= 1), a set of N feature
a=

prototypes is used. Furthermore, {p“}gzl =T represents the total num-

ber of “N” LMs that were retrieved using the proposed approach of LM
extraction. These LMs provide the model with background information
that it can use to represent each category better. In Fig. 5, we can see
how CFSL compares individual LM learners and LM prototypes to learn
about integrating LMs in every dimension and how it rates the impor-
tance of each dimension.

CFSL utilizes a technique that assigns significance ratings to global
and local LMs for every class with the aim of enhancing interpretability.

e Local importance grades

The local importance grades are determined by evaluating the sim-
ilarity between a query data point and LM prototypes and assigning
higher grades to LMs that have a more significant impact on the clas-
sification of the query point. The “local importance grades” can be
mathematically modeled as Eq. (17):

1

local _
WD) = Grg iy a7

where g denotes the query point, LM; represents the landmark model
prototype for a given class, and d(q,LM;) denotes the distance (e.g.,
Euclidean distance) between the query point and the prototype.

¢ Global importance grade

By employing the local grades, CFSL is able to provide precise rea-
sons for each forecast. The model computes the mean distance between
the prototype of an LM and the integrating query points to provide a
measure of the “global importance grade” of the LMs, which is formulated
in Eq. (18).

1
Wgobal _ 18
C IS (g (e

¢ Integration of local and global grades

The importance of a particular LM can be expressed as the sum of the
local importance grade and the global importance grade. One of the
methods of combination points out taking a linear combination of the
local grade and the global grade with a specified weight 6, as shown in
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Eq. (19):

wi(q) = 0w (q) + (1 - Owi™ 19

e Ranking query points based on resemblance to a predetermined
reference point

CFSL can rank points according to their similarity to a predetermined
reference point (r). This helps to identify instances that are similar to
others within or outside the same category. In order to rank the query
points gj with respect to a single point reference point r, we compute the
distance d(g;,r) for all query pointsj = 1,2,..., N and sort the query points
in ascending order based on this distance. The ranking function Rank(q;)
for the query point gj can be defined as Eq. (20).

Rank(q;)argsort;(d(g;,7)) (20)

10
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This distance is representative of the distance between query point g;
and a reference point as defined in the overall ranking. This hierarchy
classifies query points relative to the referenced location, with lower
ranks indicating similarity and higher ranks showing dissimilarity.

o Interpretability and Insights

CFSL can put the classification into perspective by assigning rates to
each LM and ranking query points in relation to reference points. Local
scores, or graduations, present arguments for LMs that were decisively
active in the prediction of the outcome under investigation. On the other
hand, global grades address the issue of the importance of all LMs in the
dataset examined.

This enhances the model’s interpretability by allowing for the logical
and comprehensible explanation of all predictions, as well as the easy
establishment of significant landmarks that characterize a class or a
patient’s case.

4. Experimentation and discussion

In order to carry out our study, we utilized the CFSL approach on
three separate datasets: GPRS, CIEMPIESS, and PC-GITA. Each dataset
comprises 25 individual sections or LMs. Nevertheless, a portion of the
photos in the databases lacked specific markers. In these cases, we
replaced the absent LM with a usual one. Using part coordinates, we
created an LM mask that completely encompassed the bounding box of
the surrounding area.

4.1. Description of the experiment’s configuration

The efficacy of CFSL was evaluated through a comparative analysis
of its performance with seven distinct FSL-based models, including
SUFSL (Xu et al., 2023); MCFSL (Chen et al., 2021); DCRFSL (Singh &
Mazumder, 2022); MAMIFSL (Wang et al., 2022); IFSL (Oreshkin et al.,
2018); ProtoNet (Snell et al., 2017); and MKFSL (Tian et al., 2021).

In this study, the evaluation methodology revolves around the most
common classification task, which contains two stages: the one that
involves a k-way classification with k shots. This task calls for k instances
to represent every category in the support set, where k is called the
number of shots. The construction of the query had five unlabeled
samples, where each sample was taken from one of the classes. In order
to assess the best model, a test set of novel classes is used, and the se-
lection of the best model is based on validation accuracy. To ensure
consistency, we followed the evaluation protocol outlined in (Luo et al.,
2023); and the dataset was partitioned using the same split method,
consisting of twenty-five percent validation, twenty-five percent test,
and fifty percent baseline sets.

For the implementation, we followed the advice in (Snell et al., 2017)
and used the Conv-4 design, which has four layers of convolution and an
input dimension of 84 x 84. The Adam optimizer with an initial learning
rate of 10 and a weight decay of 0 is employed for all datasets. In
contrast to the 60,000 episodes used to train the 1-sh tasks, we con-
ducted 40,000 episodes of training on the 5-sh tasks, following the
methodology described in the literature (Luo et al., 2023).

In order to accelerate the training operation of the CFSL, we
distributed the system characteristics among LM learners. More pre-
cisely, the convolutional network processes the entire picture t,,
resulting in a merged feature EF*(t,). This merged feature is then used to
produce the j-th LM merging EF*(t,°u®). There is minimal performance
variation when the mask is put at the start or finish of the procedure.
Nevertheless, the latter method dramatically accelerates the duration of
training. When there are unannotated parts, we substitute the missing
landmark with the archetypal landmark that corresponds to the com-
plete image.

We utilized the implementations derived from RelationNet, IFSL,



P. Yin et al.

MCEFSL, ProtoNet, and SUFSL (Luo et al., 2023). We utilized the imple-
mentations outlined in the corresponding papers for DCRFSL and
MKEFSL. We present the average accuracy that was utilized by selecting
600 episodes at random throughout the meta-testing or fine-tuning
phase.

4.2. Evaluation of results and performance

Table 2 summarizes the results of the analysis of the performance for
the PC-GITA, CIEMPIESS, and GPRS datasets, utilizing LMs as previous
domain knowledge. CFSL consistently outperforms all comparison
classifiers on all datasets. The CFSL exhibits a mean improvement of
4.43 % and 4.50 % in the 5-sh and 1-sh tasks, accordingly, when
compared to the most superior baseline systems. CFSL outperforms
ProtoNet’s scores by 11.033 % and 12.966 % in the 5-sh and 1-sh tasks,
respectively, for all datasets.

We performed further analysis to evaluate the influence of using a
more intricate Conv-6 framework on CFSL’s efficiency. The results of our
study confirm that significant improvements in performance are still
present. To ascertain that the enhancements in performance are solely

Table 2
The outcomes (average + standard deviation) of the 1-sh and 5-sh challenges for
the GPRS, CIEMPIESS, and PC-GITA.

Dataset Model 5-sh (%) 1-sh (%)

ProtoNet (Snell et al., 2017) 83.60 + 65.60 +
0.68 0.98

MAMIFSL (Wang et al., 2022) 84.44 + 69.99 +
0.67 0.99

GPRS IFSL (Oreshkin et al., 2018) 84.09 + 69.84 +
0.68 1.01

DCRFSL (Singh & Mazumder, 89.76 + 79.17 £
2022) 0.68 0.98

MKEFSL (Tian et al., 2021) 89.23 + 79.15 +
0.68 0.99

SUFSL (Xu et al., 2023) 87.50 + 76.60 +
0.68 0.98

MCFSL (Chen et al., 2021) 89.05 + 79.76 +
0.67 0.99

CFSL (Proposed) 92.80 + 80.11 +
0.36 0.97

ProtoNet (Snell et al., 2017) 76.19 + 57.18 +
0.88 1.10

MAMIFSL (Wang et al., 2022) 84.79 + 68.95 +
CIEMPIESS 0.88 1.10

IFSL (Oreshkin et al., 2018) 83.30 + 66.90 +
0.88 1.08

DCRFSL (Singh & Mazumder, 84.83 + 68.78 +
2022) 0.87 1.08

MKEFSL (Tian et al., 2021) 84.12 + 68.15 +
0.87 1.08

SUFSL (Xu et al., 2023) 82.49 + 64.28 +
0.87 1.07

MCFSL (Chen et al., 2021) 83.68 + 67.69 +
0.87 1.07

CFSL (Proposed) 86.30 + 69.29 +
0.79 1.04

ProtoNet (Snell et al., 2017) 76.19 + 59.58 +
0.80 1.02

MAMIFSL (Wang et al., 2022) 80.09 + 64.80 +
PC-GITA 0.77 1.01

IFSL (Oreshkin et al., 2018) 80.99 + 65.01 +
0.77 1.01

DCRFSL (Singh & Mazumder, 80.46 + 64.98 +
2022) 0.76 1.00

MKEFSL (Tian et al., 2021) 81.26 + 65.07 £
0.76 1.00

SUFSL (Xu et al., 2023) 87.14 + 67.07 +
0.76 1.00

MCFSL (Chen et al., 2021) 80.87 + 64.78 +
0.76 1.00

CFSL (Proposed) 90.27 + 72.63 +
0.72 1.00
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Table 3
Comparative evaluation of ensemble prototypical networks and CFSL models
with shared weights across LMs.

Technique CIEMPIESS GPRS PC-GITA
1-sh 5-sh 1-sh 5-sh 1-sh 5-sh
PML (Shared 68.2 + 85.9 + 80.0 + 91.9 + 69.9 + 90.0 +
weight) 1.1 0.61 0.9 0.7 0.8 0.5
Ensemble 66.2 + 84.0 + 68.3 + 84.7 + 63.5 + 80.4 +
ProtoNet 1.1 0.68 1.1 0.8 0.8 0.5
PML 69.3 86.2 + 80.0 92.8 72.6 90.3
+ 1.0 0.60 + 1.0 + 0.6 + 0.8 + 0.4

attributed to LM learners and not extra supplementary weights, an
evaluation between CFSL and a conglomerate of ProtoNets is carried
out. In addition, we assessed the efficacy of CFSL when utilizing shared
weights for all LMs. According to the data in Table 3, CFSL outperforms
the ProtoNet ensemble, even when the weights are shared among LMs.
Using standard weights across LMs has a minimal impact on CFSL’s
efficiency.

4.3. The impact of LM quantity

Fig. 6 evaluates the impact of the quantity of LMs on the performance
of CFSL on GPRS, CIEMPIESS, and PC-GITA. The investigation com-
mences by examining the outcomes of ProtoNet, which uses a solitary
reference point in CFSL that encompasses all input dimensions. Subse-
quently, the quantity of LMs is systematically augmented, and the CFSL
model is trained and evaluated using the specified number of LMs. The
findings indicate that CFSL consistently enhances performance across all
datasets as the number of LMs is augmented.

When a single LM is introduced, ProtoNet’s efficiency on CIEMPIESS
demonstrates an enhancement of 6 % and 11 % in the 5-sh and 1-sh
tasks, respectively. This enhancement is equivalent to a 10-decibel
threshold for the entire picture luminance map. CFSL outperforms all
models in GPRS by utilizing just 8 LMs, resulting in an enhancement of 8
% and 18 % above ProtoNet in the 1-sh and 5-sh, respectively. In order to
showcase the resilience of CFSL against a substantial number of repeti-
tive LMs, we increased the total count of LMs to 50 by gathering all
thresholds, leading to a significant number of duplicate associations.
According to Fig. 6, the performance improvement of CFSL is minimal
while using 50 LMs compared to 25 LMs. These data suggest that CFSL is
superior to other approaches, even in scenarios with few LMs, insuffi-
cient annotations, and a high number of redundant and overlapping
LMs.

The figure provides an illustration of the effectiveness of a model in
accuracy for three datasets: CIEMPIESS, GPRS, and PC-GITA. In the
graphs, the x-axis demonstrates the number of perceptions, while the y-
axis demonstrates the value portrayed in the percentage of the model
performance. Two settings were compared in the experiment: a 1-shot
scenario and a 5-shot scenario with a black line and diamond markers,
respectively, and a blue line and circular markers, respectively. Such
settings indicate the minimal number of training examples per class,
with the 5-shot situation being less restrictive than the 1-shot case in this
respect.

Regarding the CIEMPIESS dataset, it is noted that the performance of
the models on perceptions increases with the increase in perceptions. It
can be said that the 5-shot model will always dominate the 1-shot model.
The former almost always exceeds the latter across all ranges. After
approximately 30 perceptions, the 5-shot accuracy climbs to about 95 %
and remains at that level, while the 1-shot, in comparison, settles at
about 85 % as well but at a different pace. This means that, indeed, more
training examples allow a more accurate model to be created, but to an
extent, as does the other setting, rendering such a model also to have
little return on getting more assets, such as 30 perceptions or raising
once the model is trained.
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Fig.6. The Impact of LM quantity.

The trend captured in the GPRS dataset is almost similar to the trend
observed in previous models and datasets. In general, the 5-shot model
has outperformed all others from the onset; however, the accuracy level
of the model experiences a steep rise initially, followed by a plateau of
sorts. At the 50 perceptions mark, the 5-shot model has nearly 90 %
accuracy, while the 1-shot model dies at a sketchy 80 %. While one can
observe an increase in the level of both models when more perceptions
are tested, the rise in the level of the models is relatively slow after the
initial steep rise, particularly in the case of the five-shot model.

In the case of the PC-GITA dataset, however, the situation is quite the
opposite; the overall accuracy is generally lower in the initial stages in
comparison to the other datasets, but the overall trend remains the
same. The general trend is, however, consistent; the 5-shot model
managed to overshadow the 1-shot model by fully utilizing its potential
in this dataset, too, with over 80 % accuracy after 50 perceptions, while
the 1-shot model remained limited at 70 %. The nature of dataset GITA is
quite distinct; the rate of improvement is unlike the other datasets; the 5-
shot model has improved steadily to higher accuracy levels than the 1-
shot model.

To conclude, the figure shows that as the number of perceptions
increased, the model’s performance was improved on all three data sets.
It has also been shown that the marginal benefit from adding the sub-
sequent perception decreases after approximately thirty or forty per-
ceptions. Furthermore, what matters the most is that when taking into
account the 5-shot scenario, this situation 5-shot scenario tends to be
more beneficial in terms of accuracy than the 1-shot scenario for every
single dataset, suggesting that it is beneficial to have a more significant
number of images per class when training the model. In spite of these
general observations, the dataset CIEMPIESS has the best performance,
followed by the GPRS and PC-GITA datasets.

4.4. Ablation study for the distance function

Fig. 6 examines how the number of LMs affects the performance of
CFSL on GPRS, CIEMPIESS, and PC-GITA. The study begins with a
consideration of the results of ProtoNet, which considers a single point
of reference in CFSL that encapsulates all image input dimensions.
Thereafter, the number of LMs is gradually increased, and the specified
number of LMs is used to train and assess the CFSL model. The findings
indicate that CFSL consistently enhances performance across all datasets
as the number of LMs is augmented.

When a single LM is incorporated, ProtoNet’s performance on
CIEMPIESS improves by 6 % and 11 % in the 5-shot and 1-shot,
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respectively. This enhancement equates to a 10-decibel threshold for
the entire picture luminance map. CFSL outperforms all benchmark
models in GPRS with only 8 LMs, leading to an enhancement of 18 % and
8 % over ProtoNet in the 5-sh and 1-sh, respectively. In order to show-
case the resilience of CFSL against a substantial number of repetitive
LMs, we increased the total count of LMs to 50 by gathering all
thresholds, leading to a significant number of duplicate associations.
According to Fig. 6, the performance improvement of CFSL is minimal
when 50 LMs are used compared to 25 LMs. These data suggest that
CFSL is superior to other approaches, even in scenarios with few LMs,
insufficient annotations, and a high number of redundant and over-
lapping LMs.

e Euclidean distance: The formula for calculating Euclidean distance
for u and v vectors is shown below (Yuan, 2023):

dpe(v,u) = > (v —w)?

i

(21)

e Manhattan distance: As a measure of distance, the city block dis-
tance—sometimes called the Manhattan distance—is calculated by
adding together the absolute differences of two points’ coordinates,
as follows (Chang et al., 2024):

dyan (v, w) =Y _|vi — u

i

(22)

e Cosine distance: This kind of distance can be calculated using Eq.
(23) (Qian et al., 2024).

v-u DUV

Vil ~ \/ZT \/g

(23)

deos(v,u) =1 —

e Mahalanobis distance: This distance is calculated by taking the
square root of the sum of the squared differences between the two
vectors. Specifically, given two vectors u and v, and the distribu-
tion’s covariance matrix Cov, the Mahalanobis distance between
them is computed as (Li et al., 2023):
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Table 4
Exploring the effects of various similarity benchmarks on the performance of
CFSL models.
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Table 6
Comparative analysis of performance: stochastically selected masks versus
human-established thresholds.

distance CIEMPIESS GPRS PC-GITA Technique GPRS CIEMPIESS PC-GITA
1-sh 5-sh 1-sh 5-sh 1-sh 5-sh 5-sh 1-sh 5-sh 1-sh 5-sh 1-sh
Cosine 67.1 + 84.2 + 76.6 + 91.5 + 70.9 + 88.1 + Chosen 90.1 71.2 90.9 78.3 87.4 69.3
1.0 0.7 1.1 0.7 0.8 0.5 stochastically +0.5 +1.0 + 0.6 +1.1 +0.9 +1.2
Mahalanobis  66.4 + 83.2 + 76.3 + 91.1 + 69.9 + 68.4 + masks
1.0 0.8 1.2 0.8 0.9 0.5 Human- 91.0 72.7 930 79.9 90.0 70.0
Manhattan 68.2 + 86.1 + 79.6 + 92.6 + 71.4 + 90.2 + established + 0.4 + 0.7 + 0.5 + 0.9 + 0.8 + 1.1
1.0 0.8 1.0 0.7 0.8 0.5 threshold
Euclidean 69.3+ 862+ 805+ 928+ 726+ 90.3+
1.0 0.6 1.0 0.6 0.8 0.4
different datasets—GPRS, CIEMPIESS, and PC-GITA—on the task of
differentiating between human-created masks and randomly selected
dyan(v, 1) = \/ (v — u)"-inv(Cov)-(v — u) 24 ones. The table shows the results of each method’s accuracy in detecting

A study was done to analyze the influence of various distance measures
on the efficiency of CFSL. The results of this investigation are displayed
in Table 4. The Euclidean distance continuously demonstrated higher
accuracy than other measures.

4.5. Ablation study for backbone network

An ablation investigation was performed on the leading network to
assess the efficacy of CFSL compared to comparison models (Seow &
Qian, 2024). To identify LMs, CIEMPIESS applied a Conv-6 backbone
and not a Conv-4 one or part-based identifiers. Results from 600 epi-
sodes can be seen in Table 5 along with the average and the variance
values. The results indicate that the CFSL is better than all other models’
architecture even if complex backbone is used. The effect of the
commonly used LM of 20 dB limit and the complete vision LM on the
ProtoNet’s efficiency increased it by 5.5 % for the 5-sh job and 5.6 % for
the 1-sh task.

4.6. Assessing the effect of the location of LMs

Following the guidelines in (Zhang et al., 2018); we employed the
auto-encoding method for feature discovery to assess how well CFSL
performed when applied to the datasets in the query in order to extract
information using visual LMs. We used the setup and default parameters
recommended by the authors, choosing a set of 25 features. An LM mask
is built using the encoding component, which generates an enclosure
that contains the observed characteristics. The parameters for training
the auto-encoder were identical to those listed in (Zhang et al., 2018).
We performed a comparative examination of the results obtained from
1-shot and 5-shot classification methods on three datasets. This analysis
involved the utilization of randomly generated masks as well as human-
defined LMs. The statistics presented in Table 6 consist of the AVE and
STD calculated from a sample of 600 randomly selected episodes. Fig. 7
displays retrieved features for six distinct photos across all datasets.

The table shows the outcomes of an experiment that compared three

Table 5

Results obtained using the Conv-6 on the CIEMPIESS.
Technique CIEMPIESS

1-sh 5-sh

IFSL 68.0+1.1 80.0 £ 0.8
SUFSL 66.8 £1.1 78.9 £0.8
MCFSL 669 £ 1.1 80.0 £ 0.8
MKFSL 66.6 + 1.3 84.2+ 0.9
MAMIFSL 65.5 + 1.0 81.5+0.7
DCRFSL 67.9 £ 1.0 82.3+0.8
ProtoNet 67.7 £ 1.1 83.1 £0.7
CFSL/1 LM 70.0 £ 1.0 84.9 £0.7
CFSL 73.3+ 1.0 88.8 + 0.6
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the masks employing two different protocols, namely 1-sh and 5-sh. As
predicted, human-defined masks outperformed arbitrarily produced
masks in every single example. Human-defined masks exhibited higher
accuracy compared to random masks across all three approaches and
both 1-shot and 5-shot procedures. Statistically significant variations
were observed in certain circumstances, as evidenced by the standard
deviations.

4.7. Computational efficiency

The time complexity of the suggested CFSL model is estimated in this
section, and it is contrasted with that of various baseline models. It is
crucial to highlight that these estimations are derived from the mathe-
matical properties of the models and may not accurately represent real
execution times, as they can differ based on hardware and software
configurations.

4.7.1. Time complexity estimations

We analyze CFSL with particular focus on its training and testing
phases, outlining their time complexity. Time complexity may be rep-
resented using Big O notation, informally referred to as O notation,
which describes computational time devoted to a specific algorithm (Yu
et al., 2024; Zhang et al., 2024; Cai, 2023). The method allocates
computation resources based on the size of its input.

e Training Time Complexity (0): CFSL involves the learning of
deep neural networks used in few-shot learning. The number of episodes
and the model’s learning speed determine the training time. A rough
estimation could be due to O (E x N): E for the number of episodes, N for
the number of data points per episode.

e Testing Time Complexity (O): In tests, CFSL computes similarity
scores between query samples and the support set. Such metrics are
complex numbers dependent on the volume of support samples and the
size of the feature vectors and can be approximated as O (S x D), where S
is the volume of the support samples and D is the size of the feature
vector.

4.7.2. Experimental train and test time comparison

We estimated the average training and testing times of the CFSL
model using a standard computer platform together with the benchmark
model in order to have a clearer view of resource consumption for the
proposed solution. Table 7 displays the average test times for the GPRS,
CIEMPIESS, and PC-GITA datasets, aligning them with the deep learning
few-shot techniques used against CFSL.

CFSL demonstrates superior time complexity compared to most
comparison algorithms except ProtoNet. Despite CFSL’s higher accu-
racy, it operates within a timeframe of 0.012, 0.0023, and 0.0011 s,
while ProtoNet achieves slightly lower time complexity at 0.019,
0.0101, and 0.0011 for GPRS, CIEMPIESS, and PC-GITA datasets,
respectively.

CFSL consistently exhibited competitive inference times across all
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Fig.7. Exemplary instances of retrieved perceptions for six distinct images across all datasets.
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Fig.7. (continued).

Table 7
Average inference time for the 5-sh.
Dataset Model Training Test Time
Time (second)

ProtoNet (Snell et al., 2017) 39.01 min 0.0019
IFSL (Oreshkin et al., 2018) 50.11 min 0.0032
MAMIFSL (Wang et al., 50.01 min 0.0031
2022)

GPRS MKFSL (Tian et al., 2021) 43.21 min 0.0027
DCRFSL (Singh & 41.33 min 0.0025
Mazumder, 2022)
MCFSL (Chen et al., 2021) 42.41 min 0.0026
SUFSL (Xu et al., 2023) 40.01 min 0.0025
CFSL (Ours) 39.81 min 0.0023
ProtoNet (Snell et al., 2017) 3 h 02 min 0.0101
IFSL (Oreshkin et al., 2018) 3 h 54 min 0.0152
MAMIFSL (Wang et al., 4 h 25 min 0.1701

CIEMPIESS  2022)
MKEFSL (Tian et al., 2021) 4h 11 min 0.0167
DCRFSL (Singh & 3 h 47 min 0.0143
Mazumder, 2022)
MCFSL (Chen et al., 2021) 3 h 44 min 0.0142
SUFSL (Xu et al., 2023) 3 h 26 min 0.0121
CFSL (Ours) 3 h 24 min 0.0120
ProtoNet (Snell et al., 2017) 18.12 min 0.0011
IFSL (Oreshkin et al., 2018) 24.45 min 0.0021
MAMIFSL (Wang et al., 22.13 min 0.0017

PC-GITA 2022)
MKEFSL (Tian et al., 2021) 21.04 min 0.0014
DCRFSL (Singh & 20.11 min 0.0014
Mazumder, 2022)
MCFSL (Chen et al., 2021) 20.03 min 0.0013
SUFSL (Xu et al., 2023) 20.03 min 0.0013
CFSL (Ours) 19.01 min 00.0011

datasets while preserving comparatively shorter training durations
compared to numerous other models. The results highlight the effec-
tiveness of CFSL in performing inference tasks for few-shot learning on
various datasets, indicating its potential for real-time applications where
efficiency is paramount. Nevertheless, ProtoNet exhibited marginally
reduced inference times in certain instances, highlighting the inherent
trade-offs between the duration of training and the efficiency of infer-
ence that are characteristic of any model.

4.8. Discussion

This study is limited in scope since only two protocols, that is, 1-shot
and 5-shot, have been studied, and the applicability of the findings to
other protocols remains unknown. The study further did not probe the
variable factors that have the potential to affect the efficacy of the
different techniques, such as the size and complexity of the masks or the
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expertise of the human annotators.

In conclusion, human masks achieve high efficiency, whereas
randomly selected masks do not perform as effectively. Other factors,
such as resource availability and work demands, may influence the
chosen decision-making strategy. We need to conduct further studies to
investigate the success determinants of various methodologies and
expand the findings to encompass other processes and procedures.

We carried out an extensive evaluation of our CFSL model on three
datasets: GPRS, CIEMPIESS, and PC-GITA. The efficiency of CFSL was
then compared with that of comparison models, and from the results,
CFSL outperformed all the comparison models by a wide margin, as seen
in Table 2. CFSL demonstrated a notable average enhancement of 4.50 %
and 4.43 % compared to the top competitors in the 1-sh and 5-sh tasks,
respectively. Furthermore, CFSL outperformed the most cutting-edge
framework, ProtoNet, by a margin of 13.004 % in the 1-sh examina-
tion and 10.929 % in the 5-sh challenge.

We evaluated CFSL’s efficiency to see how using a more sophisti-
cated Conv-6 basis would affect things. The findings indicated that
CFSL’s significant enhancements were maintained. Table 3 shows the
results of comparing CFSL’s efficiency to a set of typical networks.
Additionally, we assessed CFSL’s performance while using shared
weights in every LM. Despite the distribution of weights among LMs,
CFSL outperformed the combined set of ProtoNets. Moreover, the effi-
ciency of CFSL was only slightly impacted when employing standard
weights across language models.

Our investigations focused on understanding how the performance of
CFSL (Context-Free Syntax Learning) varies with changes in the number
of LMs on three datasets: GPRS, CIEMPIESS, and PC-GITA. A represen-
tation of the results appears in Fig. 6 and illustrates that increasing the
number of LMs gives a relatively better CFSL performance for all data-
sets. Adding a single LM, which represents a 10 dB threshold for the
complete LM, improved ProtoNet’s performance for CIEMPIESS in 5-sh
tasks by 6 % and in 1-sh tasks by 11 %. CFSL demonstrated exceptional
performance on the GPRS, surpassing all benchmarks with just 8 LMs. It
surpassed ProtoNet by 8 % and 18 % in the 1-sh and 5-sh challenges,
respectively. Our CFSL model exhibited exceptional performance
compared to the latest models on three distinct datasets, thereby
concluding our proposal. According to the results, CFSL shows potential
as a framework for classification problems and is robust against changes
in the number of LMs and backbone design.

5. Conclusion

The present study developed a new approach for detecting and
diagnosing CP and PAD in early stages with the help of CFSL which
employs machine-assisted evaluation of paralinguistic aspects of speech.
A major strength of the CFSL method is that it enhances the
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generalization of models by learning from human-consistent LM features
that allow it to integrate takeaway from independent LM learners. Seven
benchmark models were utilized to compare CFSL’s performance on
three famous datasets respectively. CFSL also posted a good average
improvement of 4.50 % and 4.43 % over the competition in the 1-sh and
5-sh tasks as compared to the best competitors. Besides, there was an
overall improvement over the most advanced framework, ProtoNet, by
13.004 % in the first and 10.929 % in the fifth challenge when tested
using a 1-sh method. In conclusion, the application of CFSL provides a
method for improving the accuracy of diagnosis of these diseases.

The presented CFSL approach in this work has its own inadequacies
that need to be looked into. Paralinguistic features in speech signals are
essential to their functionality but may not necessarily be available in a
real life situation. Furthermore, CFSL has been evaluated with only three
data sets, which may be insufficient to reach any conclusive statements
regarding the efficacy of the model in other environments. The future
research can impose itself to search the limits of generalization of CFSL
to more comprehensive and more heterogeneous datasets and to check
its effectiveness with various sorts and modalities of information as well.
As well, there is a need to improve the comprehensibility of the repre-
sentations acquired in the course of CFSL training for such will be critical
to comprehending the performance of the model in the first place.

Lastly, it could be useful to combine CFSL with other already known
methods, for example deep learning or transfer learning, in order to
increase the diagnostic possibilities of the first one — this direction can be
turned to in further research.
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