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A B S T R A C T

Rubberized geopolymer concrete (RuGPC) emerges as an eco-friendly alternative to conventional concrete,
significantly reducing greenhouse gas emissions. This study investigates the use of steel slag (SS) in varying
proportions (30%, 35%, and 40%) as a replacement for ground granulated blast furnace slag (GGBS) in geo-
polymer concrete, with crumb rubber (CR) replacing crusher dust (CD) as fine aggregate due to its increasing
demand. The research focuses on understanding the impact of aluminosilicate materials on the mechanical,
thermal, and microstructural properties of geopolymer concrete cured at 60◦C. Advanced characterization
techniques, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray
Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR), were employed. SEM and EDX analyses
revealed that the microstructural properties of GGBS and SS materials, mainly Na/Si, Si/Al, H₂O/Na₂O, and Na/
Al ratios, significantly influence RuGPC performance through gel formation. FTIR analysis indicates a shift in the
stretching vibrations of GGBS and SS to lower wavenumbers due to geopolymerization changes. XRD results
show the formation of C-S-H gel at around 27–30◦ 2theta, attributed to increased GGBS and SS content. Despite
efforts to incorporate CR into geopolymer matrices, challenges in mitigating strength degradation persist. To
address this, a predictive model was developed to understand the key factors affecting RuGPC performance. Six
machine learning techniques—M5P (pruned and unpruned), random forest, random tree, linear regression, and
support vector machine with various kernels (PUK, RBF, PK, and NPK), and artificial neural network (ANN)—
were employed to predict the physical and thermal behavior of RuGPC. The analysis identified ANN-based
models as the most effective. Sensitivity analysis highlighted the grade of rubber and the CR replacement per-
centage by volume of CD as the most influential parameters determining RuGPC compressive strength, density,
and thermal conductivity. Moreover, The economic analysis revealed that RuGPC mixtures were 1.2–11.61%
more cost-effective than OPC concrete. These findings underscore the importance of predictive model devel-
opment in optimizing RuGPC properties for practical applications, offering valuable insights for decision-making
processes.
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1. Introduction

1.1. Background

Concrete plays a crucial role in the construction industry worldwide,
being fundamental to infrastructure development and serving as a
benchmark for national progress. However, its production, which relies
heavily on energy-intensive raw materials, presents significant envi-
ronmental challenges [1,2]. Among these materials, natural
resource-derived aggregates are indispensable, yet their increasing
scarcity and rising costs pose substantial difficulties for the construction
sector [3].

Geopolymer concrete (GPC) has emerged as an innovative and eco-
friendly material, providing an alternative to conventional Portland

cement (OPC) concrete. This material is produced through the alkali
activation of aluminosilicate materials. [4]. As depicted in Fig. 1(a), the
interest in GPC has surged in recent years. Unlike traditional cement
concrete, GPC employs industrial by-products such as fly ash (FA),
ground granulated blast furnace slag (GGBS), steel slag (SS), silica fume
(SF), rice husk ash (RHA), palm oil fuel ash (POFA) and metakaolin
(MK). This substitution significantly reduces greenhouse gas emissions
and reliance on non-renewable resources [5]. The synthesis of geo-
polymer involves the activation of aluminosilicate materials with an
alkaline solution, typically a mixture of sodium or potassium silicates
and hydroxides [6]. This process forms a three-dimensional alumino-
silicate network, which imparts superior mechanical properties and
durability to the concrete, as shown in Fig. 1(b).

Fig. 1. (a) Articles published in ScienceDirect database [5] (b) A schematic representation of the reaction process for geopolymers created using high Si and Al and
low Ca content [7].
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1.2. Rubberized concrete and cementitious materials

The construction industry is facing a significant challenge due to the
scarcity of sand, a primary fine aggregate, largely caused by unsus-
tainable river mining practices. Biernacki et al. highlighted this issue [8]
and emphasized that it leads to severe environmental issues such as
erosion, aquifer salination, loss of storm surge protection, and a decline
in biodiversity [9]. Although regulatory efforts are in place, sand de-
mand surpasses supply, impeding economic growth. Researchers have
proposed using crumb rubber (CR) from waste tires as a partial substi-
tute for fine aggregates to address this issue. The rapid growth of the
automotive industry has compounded the problem of tire disposal, with
only a small fraction of end-of-life tires being recycled [10]. By crushing
these tires into fine particles (0.1 mm to 4.76 mm), CR becomes suitable
for use in construction, offering both environmental and functional
benefits [11].

Studies on CR integration into concrete consistently reveal that
increasing CR content negatively impacts concrete’s mechanical prop-
erties [12–15]. with larger CR particles, leading to greater reductions in
strength. However, fine CR particles perform better in terms of me-
chanical properties than coarse ones [16,17]. Various techniques to
mitigate these negative effects have been explored, including adjusting
CR particle sizes [18,19], varying CR content [20,21], and applying
treatments such as soaking, washing, and coating CR aggregates [22,23]
[24]. One notable benefit of CR incorporation is its low thermal con-
ductivity (TC), which limits heat flow and enhances thermal insulation
performance. However, the thermal properties of CR in cementitious
materials are not well-explored. Wang et al. [25] found that CR en-
hances thermal performance, with studies showing a decrease in TC as
CR content increases [26] [27]. This reduction is attributed to the
insulating properties of rubber, air entrapment, and increased porosity
in the concrete mixture [28].

With sustainability and thermal efficiency in mind, researchers have
focused on developing GPC, which avoids cement as a binder. Geo-
polymers are considered sustainable and offer better mechanical prop-
erties than traditional cement-based binders. Incorporating CR into
geopolymer concrete (RuGPC) has shown potential for enhancing
ductility, impact resistance, and thermal properties [16,23] [29] [17,22,
23]. Aly [22] found that rubber aggregates improve the toughness and
impact resistance of GPC. Benazzouk [26] demonstrated that rubber
aggregates enhance GPC durability against freezing and thawing dam-
age. Studies have demonstrated that replacing natural sand with CR in
RuGPC results in comparable performance to conventional rubber con-
crete, with fine rubber particles having less impact on compressive
strength (CS) than coarse particles [13,14] [18]. However, the
commercialization of geopolymer technology is challenged by the
variability in raw materials, which significantly affects performance.
The chemical composition and physical properties of source materials
such as FA, GGBS, RHA, and POFA vary greatly, requiring different
activator dosages and processing methods for consistent results [30].
The integration of CR into GPC not only promotes sustainable con-
struction by reducing waste but also conserves natural resources. GGBS,
a key component of GPC, improves mechanical properties by increasing
the amorphous silica and alumina content. Studies have shown that
different grades of GGBS (80, 100, and 120) can be blended with FA to
enhance early strength development and reactivity, particularly when
the SiO₂/Al₂O₃ and SiO₂/CaO ratios are optimized [31] [32].

Additional research on raw material blends has demonstrated that
waste glass powder, RHA, and GGBS can improve GPC’s compressive
strength when used as a binder or fine aggregate [33]. Blends of FA and
POFA-based geopolymers have also been found to perform better than
those based on GGBS and SF [34]. Further studies on RuGPC using
different source materials, such as MK, SF, RHA, and GGBS, with acti-
vator ratios Na₂SiO₃/NaOH and Na₂O/SiO₂, and cured at an elevated
temperature continue to explore ways to optimize mechanical properties
and microstructure [13]. The integration of GGBS, SS, and CR in

geopolymer concrete has not been extensively explored. However, this
combination holds considerable promise for advancing the development
of high-performance, sustainable building materials. The potential
synergistic effects of these constituents could significantly enhance the
physical and thermal properties of RuGPC, thereby expanding its
applicability across structural and non-structural domains.

1.3. Effect of chemical compositions

Pursuing sustainable construction materials has intensified research
into alternative binders and aggregates. GPC, a class of inorganic poly-
mers, has gained significant attention as a viable substitute for tradi-
tional PC concrete due to its superior mechanical properties,
environmental benefits, and durability. Synthesized through the alkali
activation of aluminosilicate materials, geopolymers form a three-
dimensional network of Si-O-Al bonds, significantly reducing carbon
dioxide emissions associated with cement production [35]. This envi-
ronmentally friendly process offers a promising solution for the con-
struction industry. Incorporating waste materials, such as CR, from
waste tires enhances the sustainability of geopolymers. CR has been
explored as a partial replacement for conventional aggregates in con-
crete, addressing waste management issues while imparting properties
like improved impact resistance and energy absorption [36]. However,
optimizing the performance of RuGPC necessitates a thorough investi-
gation of the chemical composition interactions.

Key chemical ratios, particularly those involving sodium (Na), sili-
con (Si), aluminum (Al), and sodium oxide (Na₂O), are crucial in
determining GPC properties. The Si/Al ratio influences the formation of
the geopolymeric gel, directly affecting mechanical strength and dura-
bility; a higher Si/Al ratio typically enhances mechanical properties. An
optimal Na/Si ratio is essential for achieving desired workability and
setting times [37–39]. Additionally, the Na/Al and H₂O/Na₂O ratios
significantly influence the geopolymerization process, affecting the
microstructure and performance of the concrete [40]. The
alkali-activated materials’ hardening mechanism relies on of dissolving
Al, Si, and Ca from precursors, producing numerous cross-linked
Si − O − Si,Al − O − Al, and Al − O − Si bonds in tetrahedral coordination
[41]. This process, comprising stages of nucleation, coagulation, and
crystallization, leads to the formation of calcium aluminum silicate
hydrates (C − A − S − H) and sodium aluminum silicate hydrates (N −

A − S − H) depending on the precursor’s chemical composition
[42–44].

Research indicates that the Si/Al ratio directly correlates with the CS
of geopolymer mortars, with a 10 % increase potentially enhancing
strength by 20 %-40 % at three days [45]. In contrast, an increasing
Na/Si ratio can reduce strength due to sodium carbonate formation
(NaOH), which interrupts polymerization [45]. Low Si/Al systems yield
primarily poly(sialate) structures, while high Si/Al systems form poly
(sialate-siloxo) structures due to silicate species predominance [46]
[33,47,48]. Elemental analysis has revealed distinct gel morphologies in
hardened geopolymer specimens, highlighting the impact of chemical
variations on geopolymer reactions and macrostructure. Variations in
Si/Al, Na/Al, and Ca/Si ratios indicate the coexistence of calcium
aluminum silicate hydrates (C-A-S-H) and sodium aluminum silicate
hydrates (N-A-S-H), emphasizing the need to optimize chemical com-
positions for enhanced GPC performance [49] [50] [51].

Part et al. [30], found that CS from 13 to 42 MPa can be achieved
with sodium silicate to sodium hydroxide ratios between 1.5 and 5.9,
with the optimal ratio being 4.0, independent of RHA/FA hybridization
ratios. They also noted that higher SiO₂/Al₂O₃ ratios reduced CS due to
the high water uptake of RHA’s cellular structure. The ideal curing
conditions were established as a one-hour delay time, a 48-hour curing
period, and a temperature of 60◦C. The performance of RuGPC is
influenced by several critical chemical compositions, including:
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• Na/Si Ratio: Affects geopolymerization and the resultant strength
and durability. A balanced Na/Si ratio is essential for a stable
aluminosilicate network.

• Si/Al Ratio: Determines the structure and properties of the geo-
polymer binder, with higher ratios enhancing mechanical strength
and chemical resistance [37,38].

• H₂O/Na₂O Ratio: This ratio impacts workability and setting time.
Optimal water content is crucial for desired consistency and strength.

• Na/Al Ratio: Influences the degree of geopolymerization and the
development of mechanical properties. Proper Na/Al ratios ensure
sufficient alkalinity for effective polymerization.

• Grade of Rubber: Different grades of CR affect dispersion, bonding,
and overall performance. Selecting the appropriate grade maximizes
the benefits of rubber incorporation.

Despite extensive research on geopolymers and RuGPC, a significant
gap remains in understanding the synergistic effects of these chemical
compositions on RuGPC properties. Most studies have focused on indi-
vidual impacts or independent addition of CR without a comprehensive
analysis of their combined effects. Addressing this gap is essential for
developing optimized mix designs that fully leverage both geopolymer
technology and CR incorporation [52]. This study aims to fill this gap by
providing a detailed analysis of the combined effects of key chemical
compositions on RuGPC performance, contributing valuable insights for
developing sustainable and high-performance construction materials.
The literature highlights the potential of incorporating CR into
geopolymer-based materials for construction. However, an increase in
the percentage of rubber incorporation generally results in a reduction
in material strength. This observation emphasizes the need for a
comprehensive analysis to determine the optimal rubber content that
balances performance enhancement and strength retention. Addition-
ally, the size of the rubber particles remains a subject of debate, as it
significantly impacts the material’s overall performance. To address
these critical questions and challenges, a systematic investigation is
required. Moreover, the effects of varying chemical compositions, spe-
cifically the ratios of Na/Si, Si/Al, H₂O/Na₂O, and Na/Al, on the physical
and thermal behavior of geopolymer concrete incorporated with crumb
rubber particles remains undiscovered. This study aims to develop a
predictive model to analyse the mechanical, thermal, and microstruc-
tural properties of RuGPC and understand the parameters that influence
their performance the most using ML-based models. The model will
examine the effects of both the quantity and size of CR in the mixture
alongside other relevant parameters specific to SS-GGSS-based geo-
polymer chemical compositions.

1.4. Objectives of the Study

Despite numerous studies on CR-enhanced GPC, research on the ef-
fects of alkali activator ratios, such as Na₂SiO₃/NaOH, remains limited.
Additionally, there is limited data on the effects of CR percentage and
crusher dust (CD), curing temperatures, curing time, types of geo-
polymer source materials (SS and GGBS combined), and chemical
compositions on the mechanical, thermal, and microstructural proper-
ties of RuGPC mortars and concrete. The lack of understanding of these
parameters hinders the widespread use of RuGPC in the construction
industry. Therefore, this study aims to investigate the effects of these
parameters. The specific objectives of the study are as follows:

1. To investigate the effects of different molarity (NaOH) and alkali
activator ratios.

2. To examine the influence of CR and CD percentages on GPC.
3. To investigate the effects of varying chemical compositions, specif-

ically the ratios of Na/Si, Si/Al, H₂O/Na₂O, and Na/Al.
4. To analyze the combined effects of these parameters.

5. To develop predictive models that analyse the mechanical, thermal,
and microstructural properties of RuGPC and understand the most
influential parameters on their performance using ML-based models.

6. To evaluate the economic viability of RuGPC.
7. To identify the most influencing parameters.

By systematically analyzing these variables, the research seeks to
provide a deeper understanding of the interactions between chemical
compositions and waste material incorporation, ultimately contributing
to developing more sustainable and high-performance construction
materials.

2. Experimental methodology

The methodology involves selecting raw materials, designing mixes
based on various variables, casting the materials, and conducting sub-
sequent testing. The data obtained from these tests is used to develop a
predictive model. This model facilitates informed decision-making by
establishing relationships between variables and material properties,
thereby aiding in optimizing construction material development
processes.

2.1. Raw Materials

In this research, materials were carefully selected and sourced to
develop geopolymer-based composites. SS, obtained from the Vizag
Steel Plant in the Vishakhapatnam district, was characterized by its grey
colour, a density of 2.89 g/cm3, and particle sizes ranging from 300 µm
to 10 µm (Fig. 2 illustrates the particle size analysis curve). Chemical
analysis revealed significant components, including SiO2 (36.9 %),
Al2O3 (12.1 %), CaO (38.8 %), and MgO (7.69 %). Microscopic exami-
nation showed irregular particle morphology, which could influence
mix workability.

GGBS, another key ingredient, was also sourced from the Visha-
khapatnam Steel Plant. GGBS had a white-brown color and finer parti-
cles, smaller than 150 µm, with its particle size distribution shown in
Fig. 2. Microscopic analysis indicated spherical particle morphology (see
Fig. 3a-b), enhancing both reactivity and workability. The chemical
composition of GGBS included SiO2 (36.8 %), Al2O3 (16.5 %), CaO
(35.1 %), and MgO (6.26 %), along with traces of Na2O and K2O. Fig. 3
displays the SEM images of SS and GGBS. The SS particles are irregular,
angular, and have a rough texture. In contrast, the GGBS particles, while
exhibiting similar morphology, appear sharp and flaky. The SEM image
of SS was captured at 500x magnification, whereas the GGBS image was
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Fig. 2. Particle Size analysis of SS and GGBS.
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taken at 10,000x magnification, demonstrating that SS particles are
significantly coarser than those of GGBS. This variation in particle size
can influence the reactivity of SS.

CD used in the study was sourced from quarries approximately 45
kilometres from the laboratory. Its particle size was limited to 2.36
millimetres, and the gradation curve is presented in Fig. 2. The density
of the CD was 1891 kg/m3. This material was considered inert, showing
no reactivity in geopolymer formation but serving as a filler to enhance
strength and stability.

Waste rubber, sourced from a discarded rubber factory in Vijaya-
wada, was available in three grades: Grade A (particles passing through
a 2-millimeter sieve), Grade B (particles passing a 0.841-millimeter
sieve), and Grade C (particles passing a 0.595-millimeter sieve). These
grades denoted as A, B, and C, respectively, have their particle sizes
represented in Fig. 4.

We used a combination of alkali activators for the geopolymer
formulation: sodium silicate (Na2SiO3) and sodium hydroxide (NaOH).
These chemicals were procured from a local vendor, diluting the NaOH
with water before use. In this study, four different sodium hydroxide
molarity levels were experimented with (8 M, 10 M, 12 M, and 14 M).
worth mentioning that molarity is a critical factor influencing geo-
polymer development and performance. The alkali solution was pre-
pared using a specific ratio of 2.8 (Na2SiO3/NaOH).

3. Material development

This section details the mix designs and geopolymer preparation
methods used in this research as illustrated in Fig. 5. The primary goal
was to develop a predictive model, necessitating a substantial dataset
from meticulously designed materials. Various variables were

Fig. 3. SEM images at 20 µm of (a) GGBS (b) SS showing surface morphology.

Fig. 4. Grades of CR used in this study.
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considered, including the ratio of GGBS:SS, with three levels: 40:30,
35:35, and 40:30. Sodium hydroxide molarity had four levels: 8 M,
10 M, 12 M, and 14 M. CR grades included Grade A, Grade B, and Grade
C, and the volume replacement of crumb rubber with CD was set at
10 %, 20 %, and 30 %. These factors resulted in 108 distinct mix com-
binations. Detailed mix designs are available in the manuscript’s sup-
plementary files (see Table A1 in Appendix A).

Fig. 5 illustrates the process of preparing crumb rubber-based geo-
polymer. Initially, all raw materials are carefully measured. A dry
mixing phase follows, combining all solid ingredients in the specified
proportions using a rotary mixer for 2–5 minutes. Next, the alkali so-
lution is added, and wet mixing continues for 2–3 minutes until the
mixture is homogeneous. The workability of each mix can vary based on
the ingredient proportions, with a noted trend of decreasing workability
as NaOH increases.

The mixture is then poured into moulds to cast RuGPC samples. After
hardening, the samples are demoulded following a 24-hour curing
period. To enhance reactivity, the blocks undergo an additional 24-hour
curing in a heated oven at 60◦C. Once removed from the moulds, the
samples are cured again at 60◦C. CS tests are conducted on the 28th
days, and the resulting data is recorded for further analysis.

Adherence to relevant ASTM standards guided the execution of all
tests during the experimental phase. To assess the integrity of hardened
mortar, batches were cast in plastic moulds measuring 50 ×50 x 50 mm
each. Maintained at a constant temperature of 22 ± 1◦C, specimens
remained in their molds for 24 hours before being immersed in water in
the laboratory for 28 days. Mechanical properties were scrutinized
through CS, density, and TC tests.

The TC of the rubberized geopolymer composite was determined
using a hot-guarded plate apparatus. This involved positioning the
RuGPC block between top and bottom plates, with the top plate heated
to a specific temperature. Thermocouples placed at various points
measured the heat transferred through the RuGPC block. TC (k) was
calculated using Eq.(1):

q = − k× a×
dt
dx

(1)

4. Experimental work discussion

This section illustrates the influence of various factors, including

GGBS: SS, Ratio Molarity of NaOH, Grade of CR, Volume replacement of
CR with CD, and other chemical compositions on the performance of
RuGPC. Table 1 presents the effect of different levels of factors on the
concrete’s performance.

4.1. Compressive Strength (CS)

The experimentation involves analyzing four significant factors in
the development of RuGPC. Each factor was examined at three levels, as
detailed in the methodology section, allowing for a clear understanding
of the influence of each parameter separately. The data revealed that
increasing the proportion of SS in the mix results in a decrease in CS.
Specifically, incorporating steel slag at 30 %, 35 %, and 40 % resulted in
CS of 43.16 MPa, 40.38 MPa, and 38.96 MPa, respectively. SS and GGBS
combine with an alkali solution to form a complex tetrahedral network
of Si+ and Al+ ions. This network initiates the synthesis of an oligomeric
gel, where the Si+ and Al+ ions saturate and dehydrate to form the
geopolymer’s three-dimensional structure. GGBS, being more reactive
due to its morphology and chemical composition, increases strength
with its higher content than SS.

Another parameter influencing the strength of the geopolymer is the
molarity of the NaOH solution. Higher NaOH concentrations increase
the Na/Si and Na/Al ratios, accelerating geopolymerization and pro-
moting gel formation, thus enhancing material strength. The analysis
showed a clear correlation between strength and NaOH molarity. As
NaOH molarity increased, strength improved, with average CS of
38.91 MPa, 40.91 MPa, and 42.68 MPa for mixes with 8 M, 10 M, and
12 M NaOH, respectively. The highest CS of 56.67 MPa was achieved
with 12 M NaOH, indicating its superior effectiveness.

The size of the CR, indicated by grade classification, also emerged as
a crucial factor influencing the overall strength of the developed geo-
polymer. The average CS varied significantly across different grades of
CR, highlighting the importance of particle size. CS were 33.75 MPa,
43.26 MPa, and 45.48 MPa for Grade A, Grade B, and Grade C rubber
particles, respectively. Coarser Grade A rubber (passing through a 2 mm
sieve) exhibited poor distribution within the matrix, leading to reduced
strength. In contrast, finer Grade B and C rubber (passing through
0.841 mm and 0.595 mm sieves, respectively) demonstrated better
distribution and stronger interlocking and bonding with the geopolymer
binder, resulting in higher CS.

Finally, the percentage variation of crumb rubber within the

Fig. 5. Flow process of RuGPC development [53].
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geopolymer mix was critical. Analysis showed CS of 47.22 MPa,
41.03 MPa, and 34.26 MPa for CR replacement levels of 10 %, 20 %,
and 30 %, respectively. An inverse relationship exists between CS and
CR content. As the proportion of rubber particles increases, the occupied
volume grows, leading to a decrease in strength and rigidity. This
decrease is due to the disruptive influence of the rubber particles on the
matrix’s structural integrity, making higher percentages of CR

unsuitable for commercial applications due to significantly compro-
mised material strength.

Figs. 6a-c and 7a-d delve into the CS of RuGPC with varying chemical
compositions and molarity concentrations. Fig. 6a-c highlights the ef-
fects of Na/Si, H2O/Na2O, and Na/Al ratios, illustrating that the CS
significantly fluctuates with changes in these compositions. Specifically,
an optimal balance of these ratios is crucial for enhancing the CS, as

Table 1
Effect of three different levels of GGBS-SS ratio, Molarity of NaOH, Grade of CR, and Volume replacement of CR with CD on CS, Density, and TC.

Factors Investigated factors’ levels 28 days CS (MPa) Density (kg/mm3) TC (W/mK)

Min. Max. Mean Min. Max. Mean Min. Max. Mean

GGBS:SS Ratio R1 - (40:30) 28.87 54.63 43.16 1552 1850 1710.03 0.474 0.709 0.580
R2 - (35:35) 27.28 51.48 40.38 1506 1795 1659.92 0.463 0.677 0.563
R3 - (30:40) 26.21 49.14 38.96 1460 1740 1610.4 0.445 0.655 0.540

Molarity of NaOH M1–8 M 25.40 50.77 37.65 1420 1678 1556 0.419 0.611 0.507
M2–10 M 26.21 52.35 38.91 1460 1725 1599.67 0.445 0.649 0.5387
M3–12 M 28.52 54.69 40.91 1520 1797 1665.81 0.471 0.685 0.568
M4–14 M 28.85 56.57 42.68 1565 1850 1714.88 0.481 0.709 0.586

Grade of CR C1 - Grade A 26.21 44.67 33.75 1460 1792 1622.85 0.445 0.709 0.560
C2 - Grade B 31.89 54.63 43.26 1505 1815 1652.33 0.465 0.645 0.571
C3 - Grade C 35.19 56.57 45.48 1545 1850 1705.185 0.472 0.675 0.582

Volume replacement of CR with CD V1–10 % 36.79 56.67 47.22 1625 1850 1737.88 0.575 0.675 0.625
V2–20 % 29.35 51.25 41.03 1610 1835 1722.55 0.555 0.651 0.603
V3–30 % 26.21 42.92 34.26 1545 1760 1655.11 0.472 0.562 0.516
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imbalances may lead to suboptimal mechanical performance. It is worth
noting that any increase in CS was associated with an increase in Na/Si
composition, which was endorsed by some works recently [54].
Fig. 7a-d expands on this by focusing on the Si/Al ratios at different
molarities of NaOH (M8, M10, M12, andM14). The H2O/Na2O increases
when the NaOH increases from M8 to M10; however, it decreases from
M10 to M14. The CS of the samples systematically decreased as the
molar Si/Al ratio increased, as reported in some recent works [55,56].
Conversely, a higher NaOH concentration resulted in a notable increase
in CS. An increased Si/Al ratio in one-part geopolymer reduces the Si
contribution to the final geopolymer product and a slower geo-
polymerization rate. This phenomenon is attributed to forming large,
unreactive silicate oligomers rather than smaller, more reactive silicate
species. This result aligns with the results reported by some researchers
[57,58]. Moreover, results reveal that higher molarity concentrations
generally bolster the CS, with M12 and M14 demonstrating superior
performance for using 10 % grade (C) CR. The decreased CS in M8-M10
is associated with its lower Na/Si ratio and higher Si/Al ratio within the
C − (N) − A − S − H type gel phases [59]. This suggests a pivotal role of
Si/Al ratios in synergy with molarity concentration, indicating that
precise adjustments in these parameters can lead to substantial im-
provements in RuGPC’s mechanical robustness.

4.2. Bulk Density

The bulk density of building materials is a crucial consideration in

the construction industry, as it influences the structural design of
buildings. Lower bulk density is preferred, as it simplifies the con-
struction process.This research has shown that incorporating CR
reduced the bulk density of the geopolymer composites, a significant
finding that could revolutionize the construction materials industry.
CR’s light and porous nature created a more porous structure, lowering
the bulk density. The average bulk densities for geopolymer composites
with 10 %, 20 %, and 30 % crumb rubber were 1737 kg/m3, 1722 kg/
m3, and 1655 kg/m3, respectively.

Furthermore, the size of the CR particles (referred to as the grade)
also affected the density of the geopolymer composites. The average
bulk densities for Grade (A), Grade (B), and Grade (C) CR were 1622 kg/
m3, 1652 kg/m3, and 1705 kg/m3, respectively. Finer CR particles are
distributed more evenly throughout the matrix, resulting in better
compaction during placement and slightly higher density values.
Incorporating CR also increased the material’s porosity. Both the
quantity and the grade of CR significantly influenced these properties,
underscoring the importance of considering these factors when
designing and constructing buildings with RuGPC.

Figs. 8a-c and 9a-d examine the density variations of RuGPC con-
cerning the same chemical compositions and molarity concentrations.
Fig. 8a-c shows that the density of RuGPC is sensitive to the Na/Si, H2O/
Na2O, and Na/Al ratios. A higher density is associated with specific
combinations of these ratios, pointing to the importance of tailoring
these compositions to achieve the desired density. When Na/Si is high,
the density increases, aligning with Gholampour et al.’s results [60].
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[61,62].

4.3. Thermal Conductivity (TC)

TC represents the heat flow through a material, is a crucial parameter
that affects the insulation characteristics of building materials, and thus
requires thorough analysis. The TC of the developed mixes was analyzed
based on the factors listed in the table. The first factor is the ratio of SS to
GGBS. The data suggests that increasing the SS content leads to a
decrease in thermal conductivity values. Specifically, the incorporation
of 30 %, 35 %, and 40 % SS resulted in thermal conductivity values of
0.58 W/mK, 0.56 W/mK, and 0.54 W/mK, respectively. As discussed in
the previous section, higher GGBS content leads to better reactivity,
forming a denser matrix. This denser matrix facilitates faster heat
propagation, resulting in higher TC values. Additionally, the molarity of
the NaOH solution has a similar influence. Higher molarity leads to
better reactivity due to increased dissolution of Si and Al ions, resulting
in a denser matrix and higher heat flow rates. The results indicate that
NaOH molarities of 10 M, 12 M, and 14 M resulted in TC values of
0.53 W/mK, 0.56 W/mK, and 0.58 W/mK, respectively.

The addition of CR significantly impacted the TC of the material.
Geopolymer blocks with Grade (A), Grade (B), and Grade (C) CR had TC
values of 0.56 W/mK, 0.57 W/mK, and 0.58 W/mK, respectively. As
discussed earlier, finer particles distribute more evenly within the ma-
trix and compact well, making the geopolymer blocks denser with fewer

pores compared to coarser grades of CR. Therefore, TC values are rela-
tively higher when Grade (C) is incorporated into the matrix compared
to the finer grade (Grade A).

Another crucial factor affecting TC is the percentage incorporation of
CR particles. Incorporating CR at 10 %, 20 %, and 30 % resulted in TC
values of 0.62 W/mK, 0.60 W/mK, and 0.51 W/mK, respectively. CR
has a low specific gravity (approximately 1.1–1.15) and is porous,
providing adequate void spaces that restrict heat transfer. Hence, as the
incorporation of CR increases, the packing density of the product de-
creases, forming more voids and resulting in lower TC values. Higher CR
incorporation is beneficial for providing insulation and enhancing
thermal comfort for building occupants.

Figs. 10a-c and 11a-d address the TC of RuGPC, showcasing its
dependence on chemical compositions and molarity concentrations.
Fig. 10a-c highlights that Na/Si, H2O/Na2O, and Na/Al ratios signifi-
cantly impact the TC, with specific ratios leading to lower TC, which is
beneficial for insulation purposes. Fig. 11a-d further investigates the
influence of Si/Al ratios at different molarities of NaOH. Higher molarity
concentrations, notably M12 andM14, are associated with increased TC.
This relationship underscores the potential of RuGPC for energy-
efficient applications, where lower TC is desirable. The increase of
Na/Al led to a reduction in the TC.

The TC of geopolymers indicates good thermal insulation, with lower
density correlating to lower TC [63]. However, the increase of Si/Al led
to a reduction in TC. Using SS-GGBS significantly increased the Si
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content in the system, leading to higher Na/Si and Si/Al ratios. This
resulted in a richer variety and greater content of gel phases [64].

The binder’s porosity was reduced due to the filling capacity of these
abundant gel phases, significantly enhancing thermal stability.
Increasing the concentration of NaOH produced a higher TC and higher
Si/Al ratios [61,62]. Moreover, results reveal that higher molarity
concentrations generally higher the TC, with M8 demonstrating a lower
value for 30 % grade (A) CR along with Si/Al=5.618 and M14 demon-
strating the highest value for 10 % grade (C) CR along with
Si/Al=5.497.

4.4. Micro-structural Analysis

4.4.1. Scanning Electron Microscopy analysis
The SEM analysis of steel slag and GGBS-based geopolymer com-

posites gives us insights into their microstructure and elemental
composition, showing the formation of key phases, unreacted particles,
calcium hydroxide and geopolymer hybridization. The low-
magnification (refer to Figure12(a)) SEM image shows a dense matrix
with well-distributed particles, good compaction, and bonding within
the geopolymer composite. At higher magnification (See Fig. 12(b)), the
microstructure shows finer details, small unreacted particles of steel slag
and GGBS, rubber, some microvoids, areas of incomplete reaction, or
trapped air. These unreacted particles within the matrix are indicative of
the raw materials’ partial reaction, which can be further clarified by
elemental mapping and EDS analysis.

Elemental mapping (Refer to Fig. 13a-b) shows a uniform distribu-
tion of key elements like Silicon (Si), Calcium (Ca), Aluminum (Al), and
Iron (Fe), which are essential to understand the chemical interactions
within the geopolymer matrix. The presence of Si and Al confirms the
formation of aluminosilicate gels characteristic of geopolymer struc-
tures. The high amount of Ca from GGBS supports the formation of
C − A − S − H and C − S − H phases, which are important for strength and
durability. Moreover, the presence of calcium hydroxide (Ca(OH)₂)
detected through the EDS spectrum indicates the incomplete reaction of
GGBS, residual reactants that can affect the overall properties of the
geopolymer.

The EDS spectrum analysis further confirms the elemental compo-
sition with major elements like Si, Ca, Al, Na, and Fe. The high amount
of Si and Al indicates the formation of N − A − S − H (sodium-alumino-
silicate-hydrate) gels which contributes to the geopolymer structural
integrity. The high Ca content supports the presence of
C − A − S − H and C − S − H phases which enhance the composite me-
chanical properties. The presence of Na from the alkaline activator helps
in forming the N − A − S − H gel and Fe from SS contributes to the ma-
terial density. The formulation of these compounds is in alignment with
XRD analysis; the presence of broad peaks corresponding to
C − A − S − H and C − S − H phases and distinct peaks for calcium hy-
droxide indicates geopolymer hybridization. This hybridization forms a
complex interlinked network of N − A − S − H,C − A − S − H, and C − S − H
phases, which enhances the mechanical properties and durability of the
composite. At an activator dosage of 2.8 (Na2SiO3/NaOH), the
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microstructure of M14 was smoother, more intermixed, and denser
compared to other concentrations, owing to its higher Na/Si ratio of
0.2123, which aligns with similar results of other works [65].

The detection of unreacted particles matches with the crystalline
peaks in the XRD pattern, residual raw materials. SEM analysis, along
with elemental mapping and EDS spectrum, gives us a comprehensive
understanding of the microstructure and elemental composition of the
SS-GGBS-based geopolymer composites.

Comparing the Na/Si, H2O/Na2O, and Na/Al ratios of the RuGPC
mix, the M14-concentration mix exhibited higher Na/Si and H2O/Na2O
ratios. This suggests that the reaction products were predominantly
sodium–aluminosilicate hydrate rather than typical alkali-silica reaction
gel or calcium–silicate hydrate. Incorporating SS-GGBS increased the
Al/Si ratio and decreased the Na/Si ratio, with a slower reduction in the
Na/Si ratio compared to Na/Al for other NaOH concentrations. This
indicates that the formed gels were similar to calcium–aluminosilicate
hydrate, reducing alkali-silica reaction expansion with higher SS-GGBS
content.

In a 75 % waste glass powder (WGP) / 25 % GGBS-based AASG
(alkali-activated GGBS-glass powder blended) paste, the Ca/Si, Si/Al,
and Na/Si ratios (0.34, 8.78, and 0.27, respectively) indicate the for-
mation of C − (N) − A − S − H gels as the main reaction products [59].
These gels effectively mitigate efflorescence, as reported by Wang et al.
and Saludung et al. [66,67]. The blend’s lower Na/Si and Ca/Si ratios
and higher Si/Al ratio support efflorescence control. EDS analysis shows
variations in atomic ratios due to reactive phases and the coexistence of

N − A − S − H and C − A − S − H gels in SS-GGBS-based RuGPC, which in-
crease Na/Si ratios. The slow release of Ca fromGGBS initially forms N −

A − S − H, which later converts into C − A − S − H (see Fig. 13a-b).

4.4.2. X-Ray diffraction analysis
The XRD analysis of SS and GGBS-based RuGPC, as shown in Fig. 14,

shows a complex mixture of amorphous and crystalline phases, which
are important for its mechanical properties. SS contains crystalline
compounds like calcium carbonate (C) with peaks at 29.4◦ and 39.5◦ 2θ,
quartz (Q) with peaks around 26.6◦ 2θ, akermanite (A) with peaks
around 32.2◦ 2θ, dolomite (D) with peaks at 30.9◦ 2θ and larnite (L) with
peaks around 32.5◦ and 41.4◦ 2θ. These compounds contribute to the
material’s inherent strength and durability: calcium carbonate and
larnite contribute to density andmechanical stability, calcium carbonate
and larnite contribute to density and mechanical stability; calcium
carbonate and larnite contribute to density and mechanical stability,
and quartz contributes to hardness and wear resistance. GGBS is amor-
phous with minor crystalline phases like calcium silicate hydrate
(C − S − H,R with peaks at 29.4◦ and 32.2◦ 2θ, Q with peaks at 26.6◦ 2θ
and calcium aluminum silicate hydrate (C − A − S − H,G) with peaks at
22.9◦ and 30.4◦ 2θ. These phases are important for the reactivity and
binding of GGBS, C − S − H for early strength development, and
C − A − S − H for long-term durability. When SS and GGBS are mixed to
form the geopolymer composite, the resulting material has a hybrid
structure with both amorphous and crystalline phases. The XRD pattern
of SS-GGBS RuGPC shows the presence of several key phases: C with
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peaks around 29.4◦ and 39.5◦ 2θ, Q with peaks around 26.6◦ 2θ, A with
peaks around 32.2◦ 2θ, D with peaks at 30.9◦ 2θ, herschelite (N − A −

S − H,S) indicated by the broad amorphous hump between 20◦-35◦ 2θ,
rosenhahnite (C − S − H, R) with peaks at 29.4◦ and 32.2◦ 2θ, gis-
mondine (C − A − S − H,G) with peaks around 22.9◦ and 30.4◦ 2θ and L
with peaks around 32.5◦ and 41.4◦ 2θ. The formation of herschelite
(N − A − S − H gel) and rosenhahnite (C − S − H) in the geopolymer
matrix is important. N − A − S − H gel indicated by the broad, amorphous
hump in the XRD pattern is responsible for the composite’s binding
capacity, amorphous hump in the XRD pattern is responsible for the

composite’s binding capacity and flexural strength, toughness, and
bending stress resistance.

C − S − H phases contribute to both early and long term contribute to
both early and long term contribute to both early and long-term con-
tributions to both early and long-term strength by providing a strong
binding matrix. Gismondine (C − A − S − H) phases also contribute to
long term contribute to the long-term durability and compressive
strength so that the composite can withstand various environmental
conditions over time.

The identified phases of typical reaction products, including

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

SI/Al=5.497 SI/Al=5.618 SI/Al=5.7455

TC
 (W

/m
K)

 

A B CM8(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

SI/Al=5.497 SI/Al=5.618 SI/Al=5.7455

TC
 (W

/m
K)

 

A B CM10(b)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

SI/Al=5.497 SI/Al=5.618 SI/Al=5.7455

TC
 (W

/m
K)

 

A B CM12(c)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

10
%

CD

20
%

CD

30
%

CD

SI/Al=5.497 SI/Al=5.618 SI/Al=5.7455

TC
 (W

/m
K)

 

A B CM14(d)

Fig. 11. Influence of Si/Al chemical compositions on the TC of RuGPC foe different NaOH concentrations: (a) M8, (b) M10, (c) M12, and (d) M14.

Fig. 12. FESEM image of binary blend of SS-GGBS-based RuGPC (a) Low magnification (b) High magnification.
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C,C − S − H, and N − A − S − H gel, align with the findings reported by
Puertas et al. [68]. In the alkali-activated SS-GGBS degraded zone, the
Na/Si ratio ranged from 0.17 to 0.215. M14-concentration concrete
samples exhibited the highest Na/Si ratios and showed no Na leaching,
attributable to their lower alkali content compared to the
alkali-activated SS-GGBS. This synergistic combination of phases due to
the incorporation of both SS and GGBS gives the RuGPC its superior
mechanical properties.

4.4.3. FTIR Analysis
The FTIR spectra, as shown in Fig. 15, show the characteristic peaks

of SS, GGBS, and a geopolymer composite made from GGBS and SS. The
SS spectrum features a broad peak around 3400 cm⁻1, indicating O − H
stretching vibrations from hydroxyl groups or absorbed water, and a
sharp peak around 1630 cm⁻1, attributed to the bending mode of H-O-H,
confirming molecular water presence. Additionally, a peak around
1400 cm⁻1 suggests C-O stretching of carbonate species, while peaks
around 870 cm⁻1 and 710 cm⁻1 correspond to Si − O − Si and Al − O − Si
bending vibrations, typical in silicate materials. In the GGBS spectrum,

Fig. 13. (a) EDS image and mapping of a binary blend of SS-GGBS-based RuGPC (b) chemical elements.
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the broad peak around 3400 cm⁻1 is again related to O-H stretching
vibrations, and the sharp peak around 1630 cm⁻1 corresponds to the
H − O − H bending mode. A broad peak around 1000–1100 cm⁻1, indic-
ative of Si-O-Si stretching vibrations, is prominent due to GGBS’s high
silica content, with a peak around 870 cm⁻1 associated with Al − O − Si
bending vibrations and a weak peak around 450 cm⁻1 attributed to Si-O
bending vibrations [69].

The SS-GGBS geopolymer composite spectrum displays similar broad
peaks around 3400 cm⁻1 and 1630 cm⁻1, indicating O − H stretching and
H − O − H bending vibrations, respectively. The broad peak around
1000–1100 cm⁻1 is associated with Si − O − Si and Al − O − Si stretching
vibrations, signifying the formation of the geopolymer network and
quartz mineral [70,71]—peak around 870 cm⁻1 remains, representing
Al − O − Si bending vibrations. These peaks and any new shifts or addi-
tional peaks suggest the formation of new phases or changes in the
chemical environment due to geopolymerization. This result agreed
with the previous literature [59,66,67]. Overall, the FTIR analysis re-
veals the chemical interactions and development of the geopolymer

network in the composite material. This understanding is not only
essential for determining its properties but also paves the way for po-
tential applications, thereby demonstrating the significant impact of our
research in the field of materials science and geopolymer technology.

5. Soft computing modelling

The models developed in this study aim to predict the properties of
SS-GGBS-based-RuGPC, specifically targeting CS, density, and TC. The
objective is to identify the best model that offers more accurate esti-
mations than experimental methods. The dataset was divided into
training and testing sets, comprising 76 and 32 datasets, respectively.
Various models, including M5P-tree, random forest (RF), random tree
(RT), linear regression (LR), support vector machine (SVM), and artifi-
cial neural network (ANN), were trained using the training datasets. For
the ANN and SVM models, their weights and biases were optimized,
while for the tree-based models (M5P-tree, RF, RT) and linear regres-
sion, their parameters and structure were adjusted during the training
process to minimize prediction error. These models were then evaluated
using the testing datasets. The performance of each model was assessed
based on several criteria, including scientific accuracy, high correlation
coefficient (CC) values, and low values of mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage error
(MAPE), and scatter index (SI).

5.1. M5P Tree

The M5P model tree, an extension of the M5P-tree algorithm, en-
hances conventional decision trees by incorporating linear regression
functions at the leaf nodes [72]. This algorithm organizes data into a tree
structure with root, internal, and leaf nodes connected by branches.
Originally introduced by Quinlan [73], the M5P-tree is a powerful tool
for regression analysis, assigning linear regression models to terminal
nodes. By dividing the dataset into multiple sub-spaces, it applies a
multivariate linear regression model to each. This approach effectively
addresses continuous class problems and high-dimensional features,
providing detailed insights into the nonlinear relationships within the
data [74]. Node division criteria are based on error reduction, specif-
ically the standard deviation of the class at each node. The attribute that
maximizes error reduction is selected, initially creating a large, poten-
tially overfitted tree. Pruning is then performed, replacing pruned sub-
trees with linear regression functions to enhance model efficiency. The
M5P-tree model equation is similar to the linear regression equation,
as shown in Eq.(2) and Fig. 16:

Outcomes(CS,Density, and TC = f1(Na/Si, Si/Al
, H2O/Na2O,Na/Al,Grade of Rubber
, and CR replacement percentage by volume of CD)

(2)

5.2. Radom Forest (RF)

RF is a widely employed ML model renowned for its efficacy in both
classification and regression tasks [76]. It operates as an ensemble
method consisting of multiple unpruned classification or regression
trees. The RF model’s construction begins with the original training set
X = {x1,x2,…,xn} and corresponding labels Y = {y1,y2,…,yn}. From
this original dataset, N new training sets {X1,X2,…,XN}with labels {Y1,

Y2,…,YN} are generated through random sampling with replacement, a
technique known as bootstrapping. Each of these new training sets is
then used to grow a decision tree {t1, t2,…, tN}, Where random features
are selected at each node to determine the best split, thereby introducing
variability and reducing overfitting [76]. Unlike traditional decision
trees, RF trees are not pruned, which allows them to capture more
complex patterns in the data. The final prediction of the RF model is
obtained by aggregating the outputs of all individual trees using a ma-
jority voting rule for classification tasks or averaging for regression
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tasks. This aggregation process enhances the model’s accuracy and
robustness by mitigating the biases and variances associated with indi-
vidual trees, leading to improved generalization on unseen data [77].

5.3. Radom Tree (RT)

Decision tree algorithms are highly effective due to their ability to
provide human-readable rules for classification. In recent years, signif-
icant research has been conducted on random trees within machine
learning. However, their application in the construction industry is still
in its early stages [78]. Random trees, also referred to as
regression-based decision tree algorithms, operate by considering K
randomly selected attributes at each node during the tree-building
process without any pruning [79–81]. A random tree is generated
through a stochastic process, which is formed based on random selection
and probabilities.

The methodology involves creating multiple trees where each
tree Ti is built using a random subset of the training data. Randomness
is introduced at each node to select a subset of features, which helps
reduce overfitting and improve generalization [79]. Additionally,
random trees can estimate class probabilities (or target means in
regression cases) based on a hold-out set, a technique known as back-
fitting [79,82]. Mathematically, if X is the original training set with n
samples and labels Y, the algorithm can be described as follows: (i)
Randomly sample the training set with replacement to generate N new
training sets {X1,X2,…,XN} with corresponding labels {Y1,Y2,…,YN}.
(ii) For each training set Xi, grow a decision tree Ti by:

• Randomly selecting K attributes at each node.
• Splitting the node based on the best attribute from the K selected.
• Continuing this process until the tree is fully grown without pruning.

The prediction for a new sample x can then be obtained by averaging
the predictions from all trees (in the case of regression) or by using
majority voting (in the case of classification) as shown in Eq.(3):

ŷ =
1
N

∑N

i=1
Ti(x) (3)

This ensemble approach enhances the model’s robustness and ac-
curacy, making random trees a powerful tool in machine learning. They
have promising potential applications in construction and other fields.

5.4. Linear Regression (LR)

LR is a statistical technique used to model the relationship between

dependent variables (response variables) and independent variables
(explanatory variables) [83,84]. The general formula for multiple
regression models is (Eq.4):

Y = β0 + β1 X1 + β2 X2 + .....+ βn Xn + ϵ (4)

In this equation, Y represents the dependent variable, β0 is the
intercept, βj (where j=1,2,…,n) are the regression coefficients for each
independent variable Xj, and ϵϵ is the error term. Simple regression
analysis involves only one independent variable, while multiple
regression analysis includes two or more independent variables.

Several assumptions underpin linear regression models [83,84]:

• Existence: For any unique combination of independent variables X1,
X2,…, Xj, the dependent variable Y is a random variable with a fixed
average and variance within specific probability distributions.

• Independence: The observed values of Y are statistically independent
and not correlated with each other.

• Linearity of Relationships: The expected value of Y is a linear func-
tion of the independent variables X1, X2,…, Xj. This means the
relationship between Y and each Xj is linear.

• Homogeneity of Variance: The variance of the dependent variable Y
remains constant across all levels of the independent variables X1,
X2,…, Xj. This assumption is also known as homoscedasticity.

• Normality: The dependent variable Y follows a normal distribution
for each combination of the independent variables X1, X2,…, Xj.

These assumptions are critical for the validity of the linear regression
model, ensuring that the relationships observed in the data can be
reliably generalized.

5.5. Support Victor Machine (SVM)

Support vector machine (SVM) is a widely utilized supervised ma-
chine learning algorithm, originally developed based on the principles of
Vapnik-Chervonekis dimension minimization and structural risk mini-
mization [85]. Known for separate effectively separating classes with a
distinct margin, SVM is highly efficient in handling high-dimensional
spaces with minimal memory usage. The primary objective of SVM is
to identify the hyperplane that maximizes the margin for classifying
samples. The hyperplane is defined by the following function [86]
(Eq.5):

wt x + b = 0 (5)

X represents an n-dimensional vector, and w and b are the weight
and bias, respectively. The optimization problem for determining this

Fig. 16. Schematic of M5P: (a) input split; (b) model structure [75].

A.N. Raut et al. Construction and Building Materials 453 (2024) 138985 

15 



hyperplane is formulated as a constrained problem (Eq.6):

s.t.minw,b
1
2
‖w‖

1
2

+C
∑l

a=1
La − ya

(
∅(xa)tw+ b

)
≤ La − 1, La ≥ 0, a

= 1…, l (6)

In this formulation, C is the penalty parameter, l is the number of
training instances, La are the slack variables, and ∅ denotes the
nonlinear mapping function. To determine the decision function for any
test data, the following optimization problem is solved (Eq.7):

f(x) = sign(
∑l

a=1
δa yak(x, xa) + b) (7)

whereδa ≥ 0 (a = 1…, l) are the Lagrange multipliers. This formu-
lation ensures that the SVM can efficiently classify data by maximizing
the margin between different classes, thus achieving high performance
in various applications.

5.6. Artificial Neural Network (ANN)

ANN is a prominent technique in soft computing, known for its
simplicity, high performance, and low computational cost [87]. Among
the various types of ANN, the feed-forward neural network is the most
commonly used and the simplest form [88]. This network type processes
inputs on one side and delivers outputs on the other, utilizing unidi-
rectional connections between neurons across different layers [89].

The feed-forward neural network includes two main types: the
single-layer perceptron (SLP) and the multi-layer perceptron (MLP) [90,
91]. SLPs consist of only a single perceptron, whereas MLPs comprise
several key elements: an input layer, hidden layer(s), activation func-
tions, weights, an output layer, and neurons [92]. The input layer’s role
is to receive information from the external environment and pass it to
the neurons in the hidden layer without any computation. Hidden layers
between the input and output layers handle the bulk of the network’s
internal processing. The output layer presents the network’s computa-
tions to the external world [93].

Adjacent layers in an MLP are fully interconnected through weights,
and the activation function determines how neurons process input
values to generate output values for the next layer [93]. A schematic
diagram of a 3-layer MLP featuring 2 inputs, a hidden layer with 3
neurons, and 2 output units is depicted in Fig. 17.

5.7. Methodology of ML modeling

5.7.1. Models training
Models are typically built by dividing the data set into set training

and testing set. The ratio of the training set to the testing set is 70:30,
which means that 70 % of the data is used to train the model, and the
remaining 30 % is used to assess it. To ensure consistency in the data
division, a single random seed was used so that all models were trained

and tested on identical datasets. A trial-and-error tuning method was
utilized to establish the models’ parameters, structures, and functions
during the training phase. In the current experiment, three outputs (CS,
density, and TC) are predicted using ML techniques. Surprisingly, while
the forecasts for CS were successfully generated by all ML techniques.
Using M5P, RF, RT, LR, SVM, and ANN models, estimates for restricted
CS, density, and TC were made. Table 2 summarizes the ideal M5P, RF,
RT, REPT, and SVM hyper-parameters and designs for the three outputs.
In ANN, the learning rate (lr) hyperparameter is a crucial component of
the optimizer function. According to the Keras documentation, the
Stochastic Gradient Descent (SGD) optimizer employs a default lr
scheduler that reduces the lr during the optimization process. This
reduction follows a specific formula throughout the SGD algorithm
(Eq.8):

lr =
lro

(1+ decay× epoch)
(8)

5.7.2. Dataset
The predictive performance of a model is intricately tied to the di-

versity and quality of the data employed during its training phase. This
study’s dataset comprising 108 experimental observations was meticu-
lously curated, encompassing input variables deemed influential in
shaping the anticipated outcomes, particularly within the realm of
reliable ensemble models constructed through ML techniques. Notably,
the dataset featured six input and two output variables, introducing
novel parameters such as Na/Si, Si/Al,H2O/Na2O,Na/Al, Grade of
Rubber, and CR replacement percentage by volume of CD. These vari-
ables were carefully selected to predict three crucial output parameters:
the CS at 28 days, density, and TC. A comprehensive statistical analysis
of the dataset is presented in Table 3, shedding light on the distribution
characteristics of the variables under consideration. Additionally,
Fig. 18 elucidates the workflow adopted in the modeling part of the
current study, offering a structured overview of the research method-
ology employed.

5.7.3. Data pre-processing
The database used to train and evaluate ML models in this study was

derived from experimental work conducted as part of the research. It

Fig. 17. ANN’s general architecture [94].

Table 2
Optimized hyper-parameters of ensemble models.

Hyper-parameters Optimized Value

M5P min Num Instances 4
Pruning Pruned and Unpruned trees
Max depth 5

RF num Execution Slots 1
num Iterations 100
num Features 0
Out of Bag (OOB) True
Random seed 5
Max depth 5

RT min Num 1
min Variance 0.001
Seed 5
Max depth 5

SVM c 1
Type of filter Normalize training data
Kernel PUK, RBF, PK, and NPK
num Iterations 10
Shrinkage 1

ANN number of layers Trial-and-error
neurons per layer Trial-and-error
Random seed 5
Initial learning rate (lro) 0.01
decay 1e− 6
momentum 0.9
Nesterovic momentum True
Epochs 250
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comprises six input variables and two output variables, encompassing
108 data instances, including new parameters: Na/Si, Si/Al, H2O/Na2O,
Na/Al, Grade of Rubber, and CR replacement percentage by volume of
CD. Moreover, Fig. 19 provides a visual representation of the Pearson
correlation matrix, elucidating the interrelationships among the vari-
ables in the dataset. These visualizations offer valuable insights into the
understanding of the data, aiding in the interpretation of model per-
formance and predictive capabilities. To facilitate model training and
evaluation, 70 % of the dataset was allocated for training purposes,
while the remaining 30 % was reserved for testing the model’s perfor-
mance. Notably, the CS of blended cement concrete serves as the pri-
mary output parameter of interest.

5.7.4. Performance metrics
The models were trained using a substantial dataset of 68 entries,

constituting 70 % of the data collected from current and prior studies. A

separate test set of 29 entries was utilized to assess their performance,
representing the remaining 30 % of the dataset [95–98]. The evaluation
of these models involved a thorough analysis based on multiple criteria.
Key factors included verifying the scientific accuracy of the model,
ensuring minimal discrepancy between predicted and actual values, and
achieving high correlation coefficients (CC) as indicated in Eq.(9) [99].
Additionally, the models were assessed on their ability to maintain low
values across several performance metrics, including mean absolute
error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE), scatter index (SI), comprehensive measurement (COM),
relative RMSE (RRMSE%), and performance index (PI), as detailed in
Eqs.(10− 16). Additionally, to detect any potential overfitting, the
objective function (OBF) indicator was applied, as described in Eq.(17).
These criteria collectively ensured a robust evaluation of the models’
predictive accuracy and reliability. The equations used to evaluate these
metrics are given in Table 4.

Table 3
Detailed statistical analysis of input and output parameters used in the current study.

Na/Si Si/Al H2O/Na2O Na/Al Grade of
Rubber

RC replacement in % by
Volume of CD

CS at 28
days

Density (Kg/
mm3)

TC (W/
mK)

Mean 0.192 5.620 9.720 1.081 2.000 20.000 40.038 1634.176 0.550
Standard Error 0.002 0.010 0.114 0.009 0.079 0.789 0.748 8.731 0.006
Median 0.193 5.618 9.571 1.083 2.000 20.000 40.175 1628.500 0.545
Mode 0.171 5.497 8.248 0.940 1.000 10.000 45.240 1710.000 0.625
Standard Deviation 0.016 0.102 1.181 0.094 0.820 8.203 7.771 90.738 0.065
Sample Variance 0.000 0.010 1.394 0.009 0.673 67.290 60.395 8233.303 0.004
Kurtosis − 1.652 − 1.514 − 1.093 − 1.512 − 1.514 − 1.514 − 0.960 − 0.434 − 0.655
Skewness − 0.072 0.027 0.352 − 0.046 0.000 0.000 0.011 0.080 0.217
Range 0.041 0.249 3.239 0.279 2.000 20.000 31.173 429.551 0.290
Minimum 0.171 5.497 8.248 0.940 1.000 10.000 25.397 1420.449 0.419
Maximum 0.212 5.746 11.488 1.220 3.000 30.000 56.570 1850.000 0.709
Sum 20.771 606.983 1049.725 116.738 216.000 2160.000 4324.076 176490.956 59.393
Count 108.000 108.000 108.000 108.000 108.000 108.000 108.000 108.000 108.000
Confidence Level
(95.0 %)

0.0031 0.01946 0.22518 0.01796 0.15647 1.56476 1.48244 17.30863 0.01231

CR replacement in percentage by volume of CD

Fig. 18. Methodology adopted in the current study to predict outputs of RuGPC.
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5.8. Results and discussion of ML modeling

Table 5 provides a comprehensive overview of the quantitative ac-
curacy metrics, including CC, MAE, RMSE, MAPE, RRMSE, PI, and COM
for each model across both training and testing stages. These metrics,
illustrated in Fig. 20 (a-b), provide crucial insights into the models’
performance and reliability in predicting concrete properties where CS
prediction is shown in Fig. 20 (a1-b1), density prediction is shown in
Fig. 20 (a2-b2), and TC prediction is shown in Fig. 20 (a3-b3),. The focus
on testing set performance is justified by its importance in assessing
model generalizability. A lower COM value reflects superior overall
modeling proficiency, as detailed in Table 5.

5.8.1. Performance of M5P-based Models
This subsection evaluates the performance of the M5P-Pruned and

M5P-Unpruned models in predicting CS, Density, and TC of concrete.
The M5P model, which employs pruning techniques to enhance gener-
alizability, was highly effective across all three properties. For The M5P-
Pruned model achieved a high CC of 0.993 for CS during training, with
low errors (MAE 0.696, RMSE 0.894, and RRMSE 2.266), maintaining
similar performance during testing. For Density and TC, the model also
showed strong performance with testing CC values of 0.987 and 0.977,
respectively. The M5P-Unpruned model performed comparably well,
with slightly lower errors for CS and similar results for Density and TC.
Both models showed excellent generalization, making them reliable for
predicting concrete properties. Key indices such as CC, MAE, RMSE, and
RRMSE underscore their predictive proficiency (see Table 5), with the
pruned model showing a slight superiority in generalization. The pruned
model provided excellent generalization to new data, making it a

Fig. 19. Heat map for correlation between input and output parameters.

Table 4
Performance metrics equation [29–32].

Eq.
No.

Parameter Equation

9 CC
CC =

∑N
i=1 (Pri − Pr)(Aci − Ac)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Pri − Pr)2
∑N

i=1 (Aci − Ac)2
√

Where: Aci = observed value, Pri = predicted value, N =

number of observations.
10 MAE MAE =

1
N

∑N
i=1

|Pri − Aci|

11 MAPE
MAPE =

100
N

∑n
i=1

|Aci − Pri|
Aci

12 RMSE
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1

(Pri − Aci)2
√

13 SI SI =
RMSE

S
S = average observed value
For excellent model (0.1)

14 COM COM = (
1
3
×

RMSETRAINING ∗ MAPETRAINING
CCTRAINING

) + (
2
3
×

RMSETESTING ∗ MAPETESTING
CCTESTING

)

The lowest is the best
15 RRMSE RRMSE = (

RMSE
S

)× 100 For excellent model (0–10) %;

good model (11–20) %
16 PI PI =

RRMSE
1+ CC

For good model (less than 0.2)

17 OBF OBF = (
nTRAINING − nTESTING

nTOTAL
)PITRAINING + (

nTESTING
nTOTAL

)

PITESTING
For a good model (less than 0.2)
For an excellent model (less than 0.1)
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reliable choice for predictive modeling. Detailed numerical results and
the weight of each model parameter is documented in Appendix A
(Tables A3-A5), developed using the M5P tree model for both pruned
and unpruned versions.

5.8.2. Performance of RF-based Models
The RF model displayed excellent training performance, with high

correlation CC for CS (0.998), Density (0.994), and TC (0.995) alongside
low errors. However, the testing phase revealed reduced generalization.
For CS, the testing CC dropped to 0.982, with errors increasing signifi-
cantly (MAE 1.709, RMSE 2.081, RRMSE 4.809). Similarly, for Density
and TC, the testing CC values decreased to 0.945 and 0.950, respec-
tively, with increased errors. This highlights the RF model’s need for
parameter fine-tuning to improve generalization while maintaining
strong training accuracy. Key indicators show a disparity between
training and testing phases, emphasizing a balance between model
robustness and generalization.

5.8.3. Performance of RT-based Models
RT model achieved a perfect CC of 1.0 on the training dataset,

indicating an exact fit for CS (see Fig. 20 (a1-b1)), Density ( Fig. 20 (a2-
b2)), and TC ( Fig. 20 (a3-b3)) of RuGPC. However, its performance on
the testing dataset was significantly poorer, with a CC of 0.809 and
higher errors. This suggests severe overfitting, where the model learns
the training data too well, including its noise and anomalies, but fails to
generalize to new, unseen data. The RT model’s sensitivity to overfitting
highlights the necessity for techniques to enhance generalization.
Pruning the tree to remove less significant branches or incorporating
ensemble methods like Random Forests, which aggregate multiple trees
to reduce variance and bias, can mitigate overfitting. Furthermore,
ensuring the training data is comprehensive and representative of the
entire data distribution. This finding underscores the importance of

employing robust validation strategies, such as cross-validation, to
ensure the model’s reliability and performance on new data.

5.8.4. Performance of LR-based Models
LR, known for its simplicity and interpretability, demonstrated

reasonable performance. For CS, the LR model achieved a strong CC of
0.985 during training, with low errors (see Table 5). However, the
testing phase saw a slight decline in performance, with the CC dropping
to 0.988. Similarly, the model performed well for Density, with a
training CC of 0.991 and satisfactory testing results (CC of 0.987). When
predicting TC, the model maintained good training accuracy (CC of
0.956) but showed reduced generalization during testing, with a CC of
0.930 and increased errors. Key indications include the LR model’s solid
baseline performance, particularly in predicting CS and Density, but the
need for improvement in predicting TC and handling generalization is-
sues. The study suggests that, while LR is useful, it may not fully capture
complex relationships in the data, emphasizing the necessity of more
advanced models for better predictions across all properties. The results
emphasize the models can be used to predict the outcomes without for
experimental testing (see Appendix A: Table A3-A5).

5.8.5. Performance of SVM-based Models
This subsection evaluates the performance of SVM models with

various kernels (PUK, RBF, PK, and NPK) for predicting CS, Density, and
TC of RuGPC. The SVM-PUK kernel demonstrated perfect training per-
formance (CC of 1.0 for all properties) but struggled a bit with gener-
alization during testing, where the CC dropped significantly for CS
(0.977), Density (0.980), and TC (0.947) (see Table 5). The SVM-RBF
model, while capturing non-linear patterns, showed moderate results
with high training CCs (CS: 0.981, Density: 0.989, TC: 0.942), but
experienced reduced accuracy in testing (CCs of 0.981, 0.981, and
0.907, respectively). The SVM-PK kernel provided the best overall

Table 5
Performance evaluating parameters of the models for 28 days CS, density, and TC of RuGPC.

Training Testing COM Ranking

CC MAE RMSE MAPE RRMSE PI CC MAE RMSE MAPE RRMSE PI

CS
M5P-Prund 0.993 0.696 0.894 0.049 2.266 0.011 0.993 0.740 0.945 0.235 2.183 0.011 0.164 2
M5P-Unprund 0.993 0.675 0.870 0.771 2.205 0.011 0.993 0.758 0.985 0.255 2.275 0.011 0.394 3
RF 0.998 0.587 0.714 0.508 1.810 0.009 0.982 1.709 2.081 0.729 4.809 0.024 1.152 7
RT 1.000 0.011 0.040 0.093 0.102 0.001 0.809 4.250 4.938 2.333 11.411 0.063 9.495 10
LR 0.985 1.073 1.309 1.183 3.318 0.017 0.988 1.011 1.261 0.469 2.913 0.015 0.923 5
SVM-PUK 1.000 0.029 0.033 0.099 0.083 0.000 0.977 1.750 2.121 0.694 4.901 0.025 1.006 7
SVM-RBF 0.981 1.400 1.844 1.053 4.675 0.024 0.981 1.624 2.085 0.466 4.818 0.024 1.319 8
SVM-PK 0.984 1.039 1.371 0.908 3.475 0.018 0.989 0.991 1.229 0.430 2.841 0.014 0.778 4
SVM-NPK 0.976 1.248 1.655 1.235 4.195 0.021 0.959 1.703 2.296 1.152 5.306 0.027 2.535 9
ANN 0.996 0.633 0.796 0.035 2.019 0.010 0.991 0.912 1.114 0.124 2.575 0.013 0.102 1
Density
M5P-Prund 0.992 9.314 11.570 0.443 0.710 0.004 0.987 11.904 14.647 0.705 0.900 0.005 8.704 4
M5P-Unprund 0.995 7.643 9.525 0.327 0.585 0.003 0.988 10.929 14.815 0.596 0.910 0.005 7.003 3
RF 0.994 10.074 12.167 0.438 0.747 0.004 0.945 26.718 32.564 0.923 2.001 0.010 22.979 9
RT 1.000 0.267 0.774 0.012 0.048 0.000 0.853 44.536 48.054 1.192 2.952 0.016 44.789 10
LR 0.991 9.486 11.793 0.440 0.724 0.004 0.987 11.704 14.696 0.856 0.903 0.005 10.246 7
SVM-PUK 1.000 0.464 0.501 0.015 0.031 0.000 0.980 19.023 23.373 0.409 1.436 0.007 6.507 2
SVM-RBF 0.989 13.847 18.202 0.197 1.118 0.006 0.981 16.894 21.098 0.656 1.296 0.007 10.609 6
SVM-PK 0.992 9.081 11.785 0.660 0.724 0.004 0.986 12.175 15.194 0.597 0.934 0.005 8.750 5
SVM-NPK 0.979 13.630 18.342 0.509 1.126 0.006 0.979 14.750 18.575 0.639 1.141 0.006 11.263 8
ANN 0.999 4.103 5.049 0.024 0.310 0.002 0.999 4.469 5.383 0.055 0.331 0.002 0.238 1
TC
M5P-Prund 0.981 0.010 0.012 1.450 2.239 0.011 0.977 0.012 0.015 1.991 2.546 0.013 0.026 3
M5P-Unprund 0.985 0.009 0.011 1.314 1.980 0.010 0.985 0.009 0.011 1.717 1.879 0.009 0.017 2
RF 0.995 0.007 0.008 0.974 1.554 0.008 0.950 0.020 0.026 2.295 4.478 0.023 0.044 5
RT 1.000 0.000 0.000 0.090 0.000 0.000 0.902 0.026 0.029 2.333 5.145 0.027 0.051 6
LR 0.956 0.015 0.018 1.783 3.367 0.017 0.930 0.021 0.025 2.856 4.337 0.022 0.062 7
SVM-PUK 1.000 0.000 0.000 0.092 0.056 0.000 0.947 0.021 0.027 2.219 4.794 0.025 0.043 4
SVM-RBF 0.942 0.017 0.025 1.967 4.681 0.024 0.907 0.023 0.036 2.298 6.234 0.033 0.078 10
SVM-PK 0.952 0.013 0.021 1.856 3.811 0.020 0.923 0.019 0.029 2.917 5.162 0.027 0.075 9
SVM-NPK 0.940 0.014 0.022 1.950 4.107 0.021 0.903 0.022 0.031 2.125 5.496 0.029 0.064 8
ANN 0.996 0.004 0.005 0.002 0.981 0.005 0.989 0.008 0.010 1.248 1.756 0.009 0.008 1
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balance, delivering high training CCs (CS: 0.984, Density: 0.992, TC:
0.952) and strong testing performance (CCs of 0.989, 0.986, and 0.923).
Lastly, the SVM-NPK model offered good training results but lower
testing accuracy, with CCs dropping to 0.959 for CS, 0.979 for Density,
and 0.903 for TC. Key indications include the superior balance of the
SVM-PK kernel between training and testing accuracy, making it the
most effective for predicting concrete properties. The SVM-PUK kernel,
despite its excellent training performance, requires improved general-
ization for new data. Both the SVM-RBF and SVM-NPK models would
benefit from further hyperparameter tuning and validation to enhance
predictive accuracy and performance. The results highlight the impor-
tance of kernel selection and model optimization when using SVM for
complex datasets.

5.8.6. Performance of ANN-based Models
This study assessed the Artificial Neural Network’s (ANN) perfor-

mance in predicting Compressive Strength (CS), Density, and Thermal
Conductivity (TC) of RuGPC, revealing strong results in both training
and testing phases. For CS, the ANN achieved a high training CC of 0.996
and low training errors (MAE of 0.633, RMSE of 0.796, RRMSE of
2.019). Testing accuracy remained high, with a CC of 0.991 andminimal
errors (MAE 0.912, RMSE 1.114, RRMSE 2.575). In predicting Density,
the ANN showed excellent performance, with a training CC of 0.999 and
testing CC of 0.999, alongside very low errors in both phases. For TC, the
model also performed well, reaching a training CC of 0.996 and a testing
CC of 0.989, indicating its strong ability to handle non-linear data pat-
terns. Overall, the ANN model’s high performance across all properties
demonstrates its efficacy in learning from data and providing reliable
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Fig. 20. ML-based model agreement for actual and predicted values: (a) training and (b) testing datasets.
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predictions, making it a valuable tool for RuGPC’s property estimation.

5.8.7. Comparison of the applied ML-based models performance
This trend is further supported by the observations in Fig. 21(a-c),

which highlight variations in the relative errors across different tech-
niques. The results underscore the superior predictive capabilities of the
ANN-based models, with an error margin of 1 %. Models utilizing M5P-
Pruned and M5P-Unpruned techniques also performed well, showing an
error margin of 1.5 % for evaluating CS, Density, and TC of RuGPC.
Additionally, the SVM-PUK-based models demonstrated perfect predic-
tion accuracy with an error margin of 5 %. In contrast, TR-based models
exhibited the highest error margins at 10 %, 15 %, and 19 % for CS,
Density, and TC of RuGPC, respectively, making them the least effective
among the techniques applied.

Furthermore, the SI was calculated to evaluate the effectiveness of
the predictive models [100]. As depicted in Fig. 22(a-c), all models
demonstrated precise predictions for CS, Density, and TC of RuGPC. The
ANN-based models exhibited particularly low SI values, indicating high

accuracy: CS (0.022, 0.024), Density (0.003, 0.003), and TC (0.010,
0.018). The M5P-Unpruned model also performed well, achieving SI
values of 0.020, 0.027 for CS, 0.006, 0.009 for Density, and 0.020, 0.019
for TC, although these were slightly higher than the ANN models. All
models-maintained SI values below 10 %, underscoring their robust
predictive capabilities.

Additionally, the CC/MAE ratio serves as a valuable metric for
assessing the prediction accuracy of different models [101] used in
RuGPC analysis. A higher CC/MAE ratio indicates better predictive
capability. As depicted in Fig. 23(a-c), all models were evaluated based
on this ratio. Notably, the ANN-based models demonstrated superior
performance compared to the others, highlighting their effectiveness in
enhancing prediction accuracy for RuGPC analysis. Furthermore,
M5P-based models (both Pruned and Unpruned) also showed strong
predictive capabilities.

5.8.8. Overfitting check
As shown in Table 9, all models had OBF values below 2 %,
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Fig. 21. Relative error of RuGPC’s performance in training and testing stages: (a) CS, (b) density, and (c) TC.
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demonstrating strong performance without signs of overfitting. This
result highlights the robustness, reliability, and effectiveness of the
models. The ANN models, in particular, showed the lowest OBF values,
registering 0.007 for CS, 0.001 for density, and 0.004 for TC, further
confirming their superior performance. Notably, all models maintained
OBF values under 0.2 %, ensuring that overfitting was avoided during
both the training and testing phases.(Table 6)

5.8.9. Sensitivity Analysis
Sensitivity analysis, as outlined by Verbeeck et al. [102], is a quan-

titative technique used in modeling and decision-making to evaluate the
effect of variations in input parameters on a model’s output. This
method involves altering one variable at a time while keeping others
constant, observing the resulting changes in the model’s predictions.
This analysis provides valuable insights into the model’s robustness and
reliability by quantifying its sensitivity to fluctuations in input param-
eters. As depicted in Fig. 24 (a-c) for the CS, Density, and TC of RuGPC,
the outcomes reveal significant observations. Notably, the grade of
rubber is shown to have a substantial influence on predicting CS, Den-
sity, and TC of RuGPC, underscoring its critical role in shaping the
model’s effectiveness. Additionally, the CR replacement percentage by
volume of CD is identified as the second most influential parameter in
determining CS.

6. Economic viability

The economic viability of using GPC is a crucial aspect to consider,

especially in the construction industry where cost-effectiveness signifi-
cantly influences material selection. In this study, the costs of RuGPC
mixtures were calculated based on the constituent materials, excluding
labor and transportation costs. The cost of RuGPC was 1.2–11.61 %
lower than OPC concrete with maximum benefit obtained with 14 M
Molarity and the lower was with 8 M Molarity as illustrated in Table 7.
Such cost savings are critical, as they not only offer a more economical
alternative but also align with sustainable construction goals by
reducing carbon dioxide emissions. It is important to note that while
some studies, such as Janardhanan et al., suggest that GPC may be
slightly more expensive (by about 1.7 %) than OPC for grades up to
30 MPa, others like McLellan et al. have demonstrated that GPC can
reduce both construction costs by 7 %, when fly ash is used [103].
Similarly, GPC could be 11 % less expensive than OPC, making it a more
economically and environmentally favorable option. Despite findings
indicating that GGBS-based GPC may cost around 7 % more than OPC,
the overall reduction in environmental impact and the long-term savings
through durability and isolation make it a viable choice [104,105].
Additionally, the economic index of RuGPC was calculated and
compared with traditional concrete. The results endorsed that RuGPC
showed slightly higher economic index than the traditional concrete
with 10 M, 12 M, and 14 M (see Table A6 in Appendix A). On the other
hand, the economic index was slightly lower than the traditional con-
crete with 8 M. It is worth mentioning that the economic index of the
RuGPC was lower than that of OPC with low CR content. Therefore,
while initial material costs for waste materials-based concrete may
sometimes exceed traditional OPC concrete, the overall economic
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Fig. 22. Comparative SI plots of RuGPC’s performance in training and testing stages: (a) CS, (b) density, and (c) TC.
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benefits derived from lower carbon footprint and potential savings,
aligning with sustainable development goals (SDGs) [106,107]. The
combination of economic benefits makes RuGPC a viable alternative to
traditional concrete [108].

7. Conclusions

The primary objective of the research is to incorporate waste rubber
for sustainable production of building materials. The research has suc-
cessfully utilized the waste CR to develop a sustainable alternative, i.e.,
CR-based geopolymer. However, further, the focus was to analyze and
develop a predictive model to analyze the behavior of critical factors
playing a crucial role in the strength development of the material. In this
quest, the research derived certain conclusions as follows:

• The study showed that RuGPC CS decreases with higher SS con-
tent—43.16 MPa at 30 % SS to 38.96 MPa at 40 % SS—and increases
with NaOH molarity, reaching 56.67 MPa at 12 M. Finer CR grades
increase strength (up to 45.48 MPa), while higher CR content re-
duces it to 34.26 MPa at 30 % CR and lowers bulk density (1655 kg/
m3 at 30 % CR). TC decreases with more SS (0.54 W/mK at 40 % SS)
and higher CR content (0.51 W/mK at 30 % CR), but increases with
NaOH molarity (0.58 W/mK at 14 M).

• The performance analysis of SS-GGBS-based RuGPC highlights the
vital role of chemical compositions and molarity concentrations in
shaping the CS, density, and TC. By adjusting ratios such as Na/Si
and Na/Al, and optimizing NaOH molarity, properties can be
tailored for specific requirements.

• Elemental and structural analyses, including EDS and XRD, confirm
the formation of aluminosilicate gels and phases like C-A-S-H and C-
S-H, which are integral to the material’s mechanical properties and
durability. The presence of phases like calcium carbonate, quartz,
and larnite from SS and the amorphous characteristics of GGBS
contribute to the reactivity and strength of the composite. This
synergistic interaction between SS and GGBS phases results in
enhanced mechanical properties and robustness of RuGPC, indi-
cating the potential for tailored, high-performance geopolymer
applications.

• FTIR spectroscopy of GGBS, SS, and SS-GGBS-based RuGPC com-
posites reveals significant chemical and structural transformations
during geopolymerization. Notable changes include the reduction of
hydroxyl group vibration bands and the emergence of Si-O-Si and Si-
O-Al bonds, indicating the development of a NASH gel and enhanced
chemical bonding within the matrix. Additionally, as the percentage
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Fig. 23. CC/MAE ratio measured for all applied models: (a) CS, (b) density, and (c) TC.

Table 6
OBF values of predictive models.

Models OBF of CS
Models

OBF of Density
Models

OBF of TC
Models

M5P-Pruned 0.007 0.003 0.007
M5P-
Unpruned

0.007 0.002 0.006

RF 0.010 0.004 0.009
RT 0.017 0.004 0.007
LR 0.010 0.003 0.012
SVM-PUK 0.007 0.002 0.007
SVM-RBF 0.015 0.004 0.018
SVM-PK 0.010 0.003 0.014
SVM-NPK 0.015 0.004 0.015
ANN 0.007 0.001 0.004
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Table 7
Cost analysis of RuGPC with four different Molarity concentrations (8 M, 10 M, 12 M, and 14 M).

Materials Cost rate
(Rs./kg)

M40 Mix (OPC 53-grade) RuGPC (NaOH: M8) RuGPC (NaOH: M10) RuGPC (NaOH: M12) RuGPC (NaOH: M14)

Quantity
(kg/m3)

Cost
(Rs)

Quantity
(kg/m3)

Cost
(Rs)

Quantity
(kg/m3)

Cost
(Rs)

Quantity
(kg/m3)

Cost
(Rs)

Quantity
(kg/m3)

Cost
(Rs)

OPC 8.00 500.00 4000 - - - - - - - -
GGBS 2.50 - - 518.52 1296.30 518.52 1296.30 518.52 1296.30 518.52 1296.30
SS 2.50 - - 518.52 1296.30 518.52 1296.30 518.52 1296.30 518.52 1296.30
Sand 1.50 683.00 1024.50 - - - - - - - -
CD 0.56 - - 311.11 173.52 311.11 173.52 311.11 173.52 311.11 173.52
Coarse aggregate 2.25 1289.00 2900.25 - - - - - - - -
CR 10.10 - - 133.33 1346.63 133.33 1346.63 133.33 1346.63 133.33 1346.63
Na2SiO3 10.00 - - 370.37 3703.70 370.37 3703.70 370.37 3703.70 370.37 3703.70
NaOH Solid
Content

10.05 - - 38.84 390.34 46.29 465.21 53.45 537.17 60.57 608.73

Superplasticiser 15.00 26.67 400.05 - - - - - - - -
Total cost (Rs.)   8324.80  8206.80  8281.67  8353.63  8425.19
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of SS increases, further alterations lead to the formation of C-S-H gel,
correlating directly with improvements in the material’s strength
properties.

• This study employed multiple ML techniques—including M5P, RF,
RT, LR, SVM, and ANN—to predict the CS, density, and TC of RuGPC.
Among these, ANN-based models excelled, showing superior pre-
dictive accuracy with high correlation coefficients and low error
metrics (RMS, MAE, MAPE). The M5P models, both pruned and
unpruned, also demonstrated exceptional performance, confirming
their reliability and precision. Additionally, SVM-PUK models were
particularly effective, meeting stringent performance criteria ideal
for practical applications. Sensitivity analysis highlighted the grade
of rubber as the most critical factor influencing predictions, with the
percentage of CR replacement also significantly affecting outcomes.
These insights underscore the potential of ML in enhancing decision-
making in the construction industry, with specific model choices and
parameter adjustments proving crucial for optimizing performance
predictions.

• The findings of economic viability highlight significant cost savings
achieved with RuGPC compared to traditional OPC-based materials,
especially at a 10 % CR volume replacement with CD in 40:30:30
mixes in all Molarity concentrations. This demonstrates a promising
advancement toward more economically viable and sustainable
construction materials.

While the high-strength RuGPC developed in this study holds ex-
hibits promising mechanical properties, durability, and economic ad-
vantages, much work is yet to be done on its complete realization for
construction and infrastructure. Among major future research avenues
that could be pursued is toughness enhancement and brittleness
reduction in RuGPC, since improved ductility would extend its appli-
cability regarding structural applications. Long-term performance
studies, such as determination of creep, shrinkage, and fatigue resis-
tance, would certainly provide more detailed insights into the material’s
behavior over time. Such aspects, if pursued in future studies, may open
perspectives towards the generalization and robustness of RuGPC ap-
plications for a wide range of construction scenarios.
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