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Abstract
In this paper, we introduce two innovative variations of a gamma integral operator in the
context of q-calculus theory. These q-analogues are derived from well-known q-analogues
of the exponential function, with a focus on functions that satisfy specific exponential growth
conditions. We also explore the application of these q-analogues in different categories of
q-Bessel functions, including types one, two, and three. Furthermore, we derive various for-
mulas and corollaries that demonstrate the practical applications of our findings.Additionally,
we consider the finite products of Bessel functions of the same type in our analysis.

Keywords Bessel function · Integral operator · q-Hypergeometric function · Quantum
calculus · q-Analogue · Gamma integral

Mathematics Subject Classification 26A33 · 44A20 · 05A30

Introduction

The quantum calculus or q-calculus is an area of calculus initiated by Jackson [1, 2] and
developed by Euler to exchange the traditional derivative by a difference operator. The quan-
tum theory of calculus connects mathematics and physics and receives attention of many
investigators due its mainly numerous applications in various mathematical aspects includ-
ing number theory, orthogonal polynomials, the theory of geometric functions, the theory
of relativity, combinatorics and mechanics [3–7]. The concerned theory has realized many
developments in mathematical physics including q-hypergeometric functions, polynomials,
the area of partitions and the theory of numbers [4, 5, 5–12]. As an example on this inter-
est, the q-hypergeometric functions are used in the fields of vector spaces, combinatorial
analysis, particle physics, lie theory, nonlinear electric circuit theory, theory of heat conduc-
tion, mechanical engineering, statistics and cosmology. However, investigation of various
q-analogues of various classical integral transforms is a popular topic among mathemati-
cians and physicists [13, 14]. Soon after the q-Jackson definition various authors including
Purohit and Kalla [15], Vyas et al. [16], Salem et al. [14], Hahn [17], Atici [18], Albayrak
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et al. [19], Al-Omari [9], Ucar [12, 20], Won Sang et al. [21], Al-Omari [13], Al-Salam [22]
have contributed largely in this q-integral theory, see also [26–34] for further details.

For an arbitrary function ϕ and a real number q such that 0 < q < 1, the q-analogue of
the difference operator is introduced by Jackson [1] as

(
Dqϕ

)
(τ ) = ϕ (τ) − ϕ (qτ)

(1 − q) τ
, τ �= 0. (1)

The complex number τ ∈ C, the natural number j ∈ N and the factorial of the natural
number j have q-analogues given as [32]

[τ ]q = 1 − qτ

1 − q
, [ j]q = 1 − q j

1 − q
and [ j]q ! = [ j]q [ j − 1]q . . . [2]q [1]q , [0]q ! = 1, (2)

respectively. On the other hand, the shifted factorials have q-analogues defined by [32]

(τ ; q) j =
j−1∏

i=0

(
1 − τqi

)
, (τ ; q)0 = 1 and (τ ; q)∞ = lim j→∞ (τ ; q) j . (3)

The q-analogues of the exponential function are defined in two forms as [19]

Eq (τ ) =
∞∑

j=0

q
j( j−1)

2
τ j

[k]q ! = (τ ; q)∞ and eq (τ ) =
∞∑

j=0

τ j

[ j]q !
= 1

(τ ; q)∞
, τ ∈ R. (4)

The definite and improper integrals have been, respectively, assigned q-analogues defined
by [32] ∫ γ

0
ψ (γ ) dqγ = (1 − q)

∑

i≥0

ψ
(
qiγ

)
γ qi (5)

and ∫ ∞
τ

0
ψ (γ ) dqγ = (1 − q)

∑

i∈Z

qi

τ
ψ

(
qi

τ

)
. (6)

The gamma function has two q-analogues defined on the basis of the q -exponential
functions (4) as

�q (δ) =
∫ 1

1−q

0
γ δ−1Eq (q (1 − q) γ ) dqγ (7)

and

�q (δ) = k (w; δ)

∫ ∞
w(1−q)

0
γ δ−1eq (− (1 − q) γ ) dqγ, (8)

where

k (w; δ) = wδ−1 (−q/w; q)∞ (−w; q)∞(−qδ/w; q)
∞

(−wq1−δ; q)
∞

. (9)

Likewise, for real numbers τ > 0 and β > 0, the beta function has q-analogue defined by
the integral formula [32]

B (τ, β) =
∫ 1

0
δτ−1 (1 − q)β−1

q dqδ.
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For further analysis, the gamma operators are defined for functions ϕ of certain exponential
growth conditions in the form [33]

(Gnϕ) (δ) = nn

δn� (n)

∫ ∞

0
ϕ (τ) τ n−1e

−nτ
δ dτ, δ ∈ [0,∞) and n ∈ N. (10)

And, in a sense of quantum calculus theory, the q-analogues of the gamma operators are
defined by [34]

Gn,q (ϕ; δ) = nn

δn�q (n)

∫ ∞

0
ϕ (τ) τ n−1eq

(−qnτ

δ

)
dqτ, 0 < q < 1. (11)

In what follows, we introduce the q-analogues of the gamma function as follows:

Definition 1.1 Let ϕ be a function of certain exponential growth conditions. Then, we
introduce a q-analogue of first kind for the gamma function in the form

Gn,q (ϕ; δ) = nn

(1 − q) δn�q (n)

∫ δ

0
ϕ (τ) τ n−1Eq

(qnτ

δ

)
dqτ, δ ∈ [0,∞), (12)

whereas we introduce a q-analogue of second type for the gamma function as

Ḡn,q (ϕ; δ) = nn

(1 − q) δn�q (n)

∫ ∞

0
ϕ (τ) τ n−1eq

(−nτ

δ

)
dqτ, δ ∈ [0,∞). (13)

Indeed, the operators Gn,q and Ḡn,q are positive and linear satisfying the relation Gn,q and
Ḡn,q → Gn as q → 1−.

Here, it is also interesting to mention here that the q-analogue (3) can be deduced in terms
of series representation as follows.

Lemma 1.2 Let ϕ be a function of certain exponential growth conditions. Then, we have

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

ϕ
(
δqk

)

(nq; q)k
, (14)

where Aq
n = nn (nq; q)∞ qn

�q (n)
.

Proof By utilizing the definition of the Jackson q -integral, the q-analogue (14) is deduced
in terms of the series representation as

Gn,q (ϕ; δ) = nnqn

�q (n)

∞∑

k=0

ϕ
(
δqk

)
Eq

(
nqk+1

)
.

Therefore, the preceding equation can be written in terms of the fact Eq (τ ) = (τ ; q)∞ as

(Gn,q
)
(ϕ; δ) = nnqn

�q (n)

∞∑

k=0

ϕ
(
δqk

) (
nqk+1; q

)

∞ .

Therefore, by employing the fact [20]

(c; q)τ = (c; q)∞
(cqτ ; q)∞

,
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the equation as above can be expressed as

Gn,q (ϕ; δ) = nnqn

�q (n)

∞∑

k=0

ϕ
(
δqk

) (nq; q)∞
(nq; q)k

= nnqn (nq; q)∞
�q (n)

∞∑

k=0

ϕ
(
δqk

)

(nq; q)k
.

��
This finishes the proof of the lemma.
The remarkable Bessel function

Jγ (τ ) =
∞∑

j=0

(−1) j (τ/2)γ+2 j

j !� (γ + j + 1)

has q-analogues which were first proposed by [33] and discussed subsequently by [17] as

J 1γ (τ ; q) =
(τ

2

)γ
∞∑

j=0

(−1

4
τ 2

) j

(q; q)γ+ j (q; q) j
, |τ | < 2, (15)

and

J 2γ (τ ; q) =
(τ

2

)γ
∞∑

j=0

q j( j+γ )

(−1

4
τ 2

) j

(q; q)γ+ j (q; q) j
, τ ∈ C. (16)

The Hahn–Exton q-analogue of the Bessel function which was discussed by Hahn [17] and
Exton is given by [39]

J 3γ (τ ; q) = τγ
∞∑

j=0

(−1) j q
j( j−1)

2
(
qτ 2

) j

(q; q)γ+ j (q; q) j
, τ ∈ C. (17)

Following is a result which is needful in the sequel.

�q (α) = (1 − q)α−1
G (qα)

G (q)
(1 − q)α−1 G

(
qα

) = 1

(qα, q)∞
(1 − q)1−α . (18)

In this article, we extend our results into four sections. In Sect. 1, certain definitions and
preliminary results are introduced. In Sect. 2, the q-gamma integral operators of the first type
are defined and employed to certain sets of Bessel function type. In Sect. 3, the q-gamma
integral operators of the second type are employed to certain three sets of Bessel functions.
Section4 discusses some applications to the obtained results.

Gn,q of Finite Product of q-Bessel Functions

This section aims to discuss the Gn,q integral operator and its application to a finite product
of q-analogues of Bessel functions of type one, two and three. The assigned products are
multiplied by a polynomial to obtain more general cases.

Theorem 2.1 Let S = {J 12γi
(
2 (c1τ)

1
2 ; q

)
, i = 1, . . . , r} be a set of first kind q-analogues

of Bessel functions and

ϕ (t) = τ
−1�r
i=1 J

1
2γi

(
2 (ciτ)

1
2 ; q

)
,
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then we have

Gn,q (ϕ; δ) = Bq
n�r

i=1

∞∑

j=0

(−1) j
(ciδ)γi+ j (q2γi+ j+1; q)

∞
(q; q)∞

∞∑

k=0

qk(
−1+γi+ j)

(nq; q)k
,

where Bq
n = Aq

n

δ1−

.

Proof By using (12) , we write

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

ϕ
(
δqk

)

(nq; q)k
. (19)

Therefore, by employing (15) , (19) can be expressed in the form

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

(
δqk

)
−1
�r

i=1

(
ciδq

k
)γi

∞∑

j=0

(−ciδqk
) j

(q; q)2γi+ j (q; q) j

1

(nq; q)k
. (20)

Hence, (20) reveals to have

Gn,q (ϕ; δ) = Aq
n�

r
i=1 (ciδ)

γi

∞∑

j=0

(−ciδ) j

(q; q)2γi+ j (q; q) j

∞∑

k=0

(
δqk

)
−1 qkγi+ jk

(nq; q)k
.

That is,

Gn,q (ϕ; δ) = Aq
n

δ1−

�r

i=1 (ciδ)
γi

∞∑

j=0

(−1)n
c ji δ

j

(q; q)2γi+ j (q; q) j

∞∑

k=0

qk(
−1+γi+ j)k

(nq; q)k
. (21)

But, invoking

(c; q)x = (c; q)∞
(cqx ; q)∞

in (21) yields

Gn,q (ϕ; δ) = Aq
n

δ1−

�r

i=1

∞∑

j=0

(−1) j
(ciδ)γi+ j (q2γi+ j+1; q)

∞
(q; q)∞

∞∑

k=0

qk(
−1+γi+ j)

(nq; q)k
.

��
This finishes our proof.

Theorem 2.2 Let S = {J 22γi
(
2 (c1τ)

1
2 ; q

)
, i = 1, . . . , r} be a set of second type

q-analogues of Bessel functions and

ϕ (τ) = τ
−1�r
i=1 J

2
2γi

(
2 (ciτ)

1
2 ; q

)
,

then

Gn,q (ϕ; δ) = Cq
n�r

i=1

∞∑

j=0

(−1) j q j( j+2γi )+k j (δci )
j+γi

(
q2γi+ j+1; q)

∞
(q; q) j

∞∑

k=0

qk(
+γi )

(nq; q)k
,
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where Cq
n = Aq

nδ

−1

(q; q)∞
.

Proof With the benefit of (12) we derive

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

ϕ
(
δqk

)

(nq; q)k

= Aq
n

∞∑

k=0

(
δqk

)
−1
�r

i=1 J
2
2γi

(
2

(
ciδq

k
) 1

2 ; q
)

1

(nq; q)k
.

By utilizing (16) we establish that

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

(
δqk

)
−1
�r

i=1

(
ciδq

k
)γi

∞∑

j=0

q j( j+2γi )
(−ciδqk

) j

(q; q)2γi+ j (q; q) j

1

(nq; q)k
.

Or, equivalently, we have

Gn,q (ϕ; δ) = Aq
n

(q; q)∞
�r

i=1

(
ciδq

k
)γi

∞∑

j=0

q j( j+2γi )
(−ciδqk

) j

(q; q)2γi+ j (q; q) j

∞∑

k=0

(
δqk

)
−1 1

(nq; q)k
.

(22)
By employing the fact

(c; q)x = (c; q)∞
(cqx ; q)∞

,

equation (22) gives rise to

Gn,q (ϕ; δ) = Aq
n

(q; q)∞
�r

i=1 (ciδ)
γi

∞∑

j=0

q j( j+2γi )

(−ciδqk
) j

(q; q) j

(
q2γi+ j+1; q

)

∞

∞∑

k=0

qkγi

(nq; q)k
.

(23)
Modifying (23) suggests to have

Gn,q (ϕ; δ) = Aq
nδ


−1

(q; q)∞
�r

i=1

∞∑

j=0

(−1) j
q j( j+2γi )+k j (δci ) j+γi

(
q2γi+ j+1; q)

∞
(q; q) j

∞∑

k=0

qk(
+γi )

(nq; q)k
.

��
This finishes the proof.

Theorem 2.3 Let S = {J 32γi
((

q−1c1τ
) 1
2 ; q

)
, i = 1, . . . , r} be q-Bessel functions of the

third type and

ϕ (τ) = τ
−1�r
i=1 J

3
2γi

((
q−1ciτ

) 1
2 ; q

)
,

then

Gn,q (ϕ; δ) = Aq
nδ


−1

(q; q)∞
�r

i=1

∞∑

j=0

(ciδ)
j+γi (−1) j q

j
(

j−1
2

) (
q2γi+ j+1; q)

∞
(q; q) j
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∞∑

k=0

qk(
−1+ j+γi )

(nq; q)k
,

where Cq
n = Aq

nδ

−1

(q; q)∞
.

Proof By (12) and (9) , we write

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

f
(
δqk

)

(nq; q)k
= Aq

n

∞∑

k=0

(
δqk

)
−1
�r

i=1 J
3
2γi

((
q−1ciδq

k
) 1

2 ; q
)

1

(nq; q)k
.

This can be simplified to yield

Gn,q (ϕ; δ) = Aq
n

∞∑

k=0

(
δqk

)
−1
�r

i=1

(
ciδq

k−1
)γi

∞∑

j=0

(−1) j
q

j( j−1)
2

(
ciδqk

) j

(q; q)2γi+ j (q; q) j (nq; q)k
.

(24)
By using the fact (c; q)x = (c;q)∞

(cqx ;q)∞ , (24) can be set into the form

Gn,q (ϕ; δ) = Aq
n

(q; q)∞
�r

i=1 (ciδ)
μi

∞∑

j=0

(−1) j q
j( j−1)

2
(ciδ) j

(q; q) j
(q2μi+ j+1; q)∞

∞∑

k=0

(
δqk

)
−1 qkj+(k−1)μi

(nq; q)k

= Aq
nδ


−1

(q; q)∞
�r

i=1

∞∑

j=0

(ciδ)
j+μi (−1) j q

j
(

j−1
2

) (
q2μi+ j+1; q)

∞
(q; q) j

∞∑

k=0

qk(
−1+ j+μi )

(nq; q)k
.

��
This finishes the proof.

Ḡn,q of Finite Product of q-Bessel Functions

Analogous to results obtained in the previous section, this section investigates the second
q-gamma integral Ḡn,q and functions involving a finite product of q-Bessel functions of type
one, two and three multiplied by a polynomials of different orders.

Remark 3.1 Let ϕ be a function of certain exponential growth conditions. Then, we have

Ḡn,q (ϕ, δ) = T q
n

∑

k∈Z

(−nδ−1; q)
k q

k f
(
qk

)
,

where T q
n = nnδ1−n

(−nδ−1;q)∞�q (n)
.

Proof By the series q-representation, (13) can be nicely expressed as

Ḡn,q (ϕ, δ) = nnδ (1 − q)

(1 − q) δn�q (n)

∑

k∈Z
qkϕ

(
qk

)
qk−1eq

(−nqk

δ

)
.
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By the fact that eq (τ ) = 1

(τ ; q)∞
, we rewrite the above equation in the form

Ḡn,q (ϕ, δ) = nnδ1−n

�q (n)

∑

k∈Z
qk

ϕ
(
qk

)

(−nqkδ−1; q)
∞

= nnδ1−n
(−nδ−1; q)

∞ �q (n)

∑

k∈Z

(−nδ−1; q)
k q

kϕ
(
qk

)
. (25)

Finally, setting T q
n = nnδ1−n

(−nδ−1;q)∞�q (n)
finishes the proof of our remark. ��

Theorem 3.2 Let S = {J 12γ1
(
2 (c1τ)

1
2 ; q

)
, . . . , J 12γr

(
2 (crτ)

1
2 ; q

)
} and ϕ (τ) =

τ
−1�r
i=1 J

1
2γ1

(
2 (ciτ)

1
2 ; q

)
. Then

Ḡn,q (ϕ, s) = Hq
n �r

i=1

∞∑

j=0

(−1) j
(
q2γi+ j−1; q)

∞ cγi+ j
i

(q; q) j

(1 − q)γi+ j−1 �q (
 + γi + j)

K
( n

δ
;
 + γi + j

) ,

where Hq
n = (1 − q)


(−nδ−1; q)
∞ T q

n

(q; q)∞
.

Proof By following (13) and (25) we establish that

Ḡn,q (ϕ, δ) = T q
n

∑

k∈Z

(−nδ−1; q)
k q

kϕ
(
qk

)

= T q
n

∑

k∈Z

(−nδ−1; q)
k q

k
�r
i=1 J

1
2γi

(
2

(
ciq

k
) 1

2 ; q
)

. (26)

Hence, making use of (15) yields

Ḡn,q (ϕ, δ) = T q
n

∑

k∈Z
qk


(−nδ−1; q)
k �r

i=1

(
ciq

k
)μi

∞∑

j=0

(−ciqk
) j

(q; q)2μi+ j (q; q) j
.

Thus, we have consequently obtained that

Ḡn,q (ϕ, δ) = T q
n �r

i=1

∞∑

j=0

(−1) j cγi+ j
i

(q; q)2γi+ j (q; q) j

∑

k∈Z
qk(
+γi+ j) (−nδ−1; q)

k . (27)

Therefore, by following the fact [20],(26)

q� (α) = K (A, α)∞
(1 − q)α−1 (− 1

A , q
)
∞

∑

k∈Z

(
qk

A

)(
− 1

A
; q

)

k
,

and setting A = n

δ
and α = 
 + γi + j, we get

Ḡn,q (ϕ, δ) = nT q
n

δ
�r

i=1

∞∑

j=0

(−1) j (ci )γi+1

(q; q)2γi+ j (q; q) j

�q (
 + γi + j) (1 − q)
+γi+ j−1

K
(n

δ
,
 + γi + j

) , (28)

123



Int. J. Appl. Comput. Math           (2024) 10:124 Page 9 of 14   124 

where K (A, α) has the significance of

K (A, α) = Aα−1 (−q/α; q)∞ (−α; q)∞
(−qt/α; q)∞

(
1 − αq1−t ; q)

∞
.

Now, owing to the fact (c; q)k = (c; q)∞(
cqk; q)

∞
we get

Ḡn,q (ϕ, δ) = (1 − q)

(−nδ−1; q)

∞ T q
n

(q; q)∞
�r

i=1

∞∑

j=0

(−1) j
(ci )γi+ j

(q; q) j

(
q2γi+ j−1; q

)

∞

(1 − q)γi+ j−1 �q (
 + γi + j)

K
( n

δ
;
 + γi + j

) .

��
This finishes the proof.

Theorem 3.3 Let S = {J 22γ1
(
2 (ciτ)

1
2 ; q

)
, . . . , J 22γr

(
2 (ciτ)

1
2 ; q

)
} and ϕ (τ) =

τ
−1�r
i=1 J

2
2γ1

(
2 (ciτ)

1
2 ; q

)
. Then, we have

Ḡn,q (ϕ; δ) = Kq
n �r

i=1

∞∑

j=0

(−1)n
q j( j+2γi )cγi+ j

i

(q; q) j

(
q2γi+ j+1; q

)

∞

(1 − q)γi+ j �q (
 + γi + j)

K
( n

δ
;
 + γi + j

) ,

where Kq
n = n (1 − q)
−1 Hq

n

δ
.

Proof By utilizing (35) and (16) , we obtain

Ḡn,q (ϕ, δ) = T q
n

∑

k∈Z

(−nδ−1; q)
k q

kϕ
(
qk

)

= T q
n

∑

k∈Z

(−nδ−1; q)
k q

k
�r
i=1 J

2
2γi

(
2

(
ciq

k
) 1

2 ; q
)

= T q
n

∑

k∈Z

(−nδ−1; q)
k q

k
�r
i=1

(
ciq

k
)γi

∞∑

j=0

q j( j+2γi )
(−ci ; qk

) j

(q; q)2γi+ j (q; q) j
.

Indeed, this yields

Ḡn,q (ϕ, δ) = T q
n �r

i=1

∞∑

j=0

(−1) j q j( j+2γi )cγi+ j
i

(q; q)2γi+ j (q; q) j

∑

k∈Z
qk(
+γi+ j) (−nδ−1; q)

k . (29)

Hence, by [5, 20]and setting w = n

δ
and α = 
+γi + j and, the fact (c; q)x = (c;q)∞

(cqx ;q)∞ ,

we obtain

Ḡn,q (ϕ; δ) = Kq
n �r

i=1

∞∑

j=0

(−1)n
q j( j+2γi ) (ai )γi+ j

(q; q) j

(
q2γi+ j+1; q

)

∞
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(1 − q)μi+ j �q (
 + γi + j)

K
( n

δ
;
 + γi + j

) ,

where Kq
n = n (1 − q)
−1 Hq

n

δ
. ��

This finishes the proof.

Theorem 3.4 Let S = {J 32γ1
(

(
q−1ciτ

) 1
2 ; q

)
, . . . , J 32γr

(
(
q−1crτ

) 1
2 ; q

)
} and ϕ (τ) =

τ
−1�r
i=1 J

3
2γi

(
(
q−1ciτ

) 1
2 ; q

)
. Then,

Ḡn,q (ϕ; δ) = Kq
n �r

i=1

∑

j=0

c j+1
i (−1) j q

( j−1)
2 −1

(q; q) j

(
q2γi+ j+1; q

)

∞
�q (
 + j + 1) (1 − q) j

K
( n

δ
;
 + j + 1

) ,

where Kq
n = n (1 − q)
 Hq

n

δ
.

Proof Assume the hypothesis of the theorem holds. Then, by Remark 3.1 and the definition
of J 32μi

given by (17), we get

Ḡn,q (ϕ; δ) = T q
n

∑

k∈Z

(−nδ−1; q)
k q

kϕ
(
qk

)

= T q
n

∑

k∈Z

(−nδ−1; q)
k q

k
�r
i=1 J

3
2γi

((
qk−1ci

) 1
2 ; q

)

= T q
n

∑

k∈Z

(−nδ−1; q)
k q

k
�r
i=1q

k−1ci

∞∑

j=0

(−1) j
q

j( j−1)
2

(
qkci

) j

(q; q)2γi+ j (q; q) j
.

Therefore, we have

Ḡn,q (ϕ; δ) = T q
n �r

i=1

∞∑

j=0

c j+1
i (−1) j q

j( j−1)
2 −1

(q; q)2γi+ j (q; q) j

∑

k∈Z
q(
+ j+1)k (−nδ−1; q)

k . (30)

Thus, by utilizing [5, 20] and setting A = n

δ
, α = 
 + j + 1 we obtain

Ḡn,q (ϕ; δ) = n (1 − q)
 Hq
n

δ
�r

i=1

∑

j=0

c j+1
i (−1) j q

( j−1)
2 −1

(q; q) j

(
q2γi+ j+1; q

)

∞

(1 − q) j �q (
 + j + 1)

K
( n

δ
;
 + j + 1

) .

��

This finishes the proof.
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Applications

In this application part, we consider several special cases of q-gamma functions of various
kinds of functions including q-Bessel functions.

Corollary 4.1 Let ϕ1
1 (τ ) = τ
−1 J 11

(
2 (cτ)

1
2 , q

)
, where J 11 is a q-analogue of a Bessel

function of first type. Then

Gn,q (ϕ1; δ) = Bq
n

∞∑

j=0

(−1) j cδ
1
2+ j

(
q j+2; q

)

∞

∞∑

k=0

q
k
(

− 1

2+ j
)

(nq; q)k
,

where Bq
n = Aq

n

δ1−

.

Proof The result is a truthful end results from Theorem 2.1, follows with the aid of putting

μ = 1

2
and r = 1. ��

Corollary 4.2 Let ϕ2
1 (τ ) = τ
−1 J 21

(
2 (cτ)

1
2 , q

)
, where J 21 is a q-analogue of a Bessel

function of second type. Then

Gn,q
(
ϕ2
1; δ

) = Cq
n

∞∑

j=0

(−1) j
q j( j+1) (δc) j+ 1

2
(
q j+2; q)

∞
(q; q) j

∞∑

k=0

q
k
(

+ 1

2

)

(nq; q)k
,

where Cq
n = Aδ
−1

(q; q)∞
.

Proof The result is a truthful end results from Theorem 2.2, follows with the aid of putting

μ = 1

2
and r = 1. ��

Corollary 4.3 Let ϕ3
1 (τ ) = τ
−1 J 31

(
2 (cτ)

1
2 , q

)
, where J 31 is a Bessel function of third

type. Then

Gn,q
(
ϕ3
1; δ

) = Cq
n

∞∑

j=0

(−1) j (cδ) j q
j( j−1)+1

2
(
q j+2; q)

∞
(q; q) j

∞∑

k=0

q
k
(

+ j− 1

2

)

(nq; q)k
,

where Cq
n = Aq

n (cδ)
1
2 δ
−1

(q; q)∞
.

Proof The result is a truthful end results from Theorem 2.3, follows with the aid of putting

μ = 1

2
and r = 1. ��

Corollary 4.4 Let ϕ1
1 (τ ) = τ
−1 J 11

(
2 (cτ)

1
2 , q

)
, where J 11 is a Bessel function of the first

type. Then

Ḡn,q
(
ϕ1
1; δ

) = Hq
n

∞∑

j=0

(−1) j a j+ 1
2

(
q j+2; q

)

∞
�q

(

 + j + 1

2

)
(1 − q) j

K
(n

δ
;
 + j + 1

2

) ,
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where Hq
n =

(−nδ−1; q)
∞ (1 − q)
− 1

2 T q
n

(q; q)∞
.

Proof The result is a truthful end results from Theorem 3.2, follows with the aid of putting

μ = 1

2
and r = 1. ��

Corollary 4.5 Letϕ2
1 (τ ) = τ
−1 J 21

(
2 (cτ)

1
2 , q

)
, where J 21 is aBessel function of the second

type. Then

Ḡn,q
(
ϕ2
1; δ

) = Kq
n

∞∑

j=0

(−1) j q j( j+1)c j+
1
2

(
q j+2; q

)

∞
�q

(

 + j + 1

2

)
(1 − q) j

(q; q) j K
(n

δ
;
 + j + 1

2

) ,

where Kq
n = n (1 − q)
− 1

2 Hq
n

δ
.

Proof The result is a truthful end results from Theorem 3.3, follows with the aid of putting

μ = 1

2
and r = 1. ��

Corollary 4.6 Let ϕ3
1 (τ ) = τ
−1 J 31

(
2 (cτ)

1
2 , q

)
, where J 31 is a Bessel function. Then

Ḡn,q
(
ϕ3
1; δ

) = Kq
n

∞∑

j=0

(−1) j c j+1q j ( j+2)
2 −1

(
q j+2; q

)

∞
�q (
 + j + 1) (1 − q) j

(q; q) j K
(n

δ
,
 + j + 1

) ,

where Kq
n = n (1 − q)
 Hq

n

δ
.

Proof The end result is a truthful end results from Theorem 3.2, follows with the aid of

putting μ = 1

2
and r = 1 ��

Conclusion

This article introduces and discusses two q-analogues of the Gamma operator, focusing on
various finite products of different types of q-Bessel functions. The findings presented here
are also applied to specific instances of the aforementioned results.
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