
Python Simulations for Engineering Education: Resultant and Equilibrium in Coplanar

Non-Concurrent Forces

Pankaj Dumka1* , Darshana Dave2 , Chandrakant Sonawane3 , Arun Bongale3 , Choon Kit Chan4 ,

Ghanshyam Tejani5,6

1 Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Raghogarh 473226, India
2 Production Engineering Department, Government Engineering College Bhavnagar, Gujarat 364002, India
3 Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune 412115, India
4 Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia
5 Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan
6 Jadara Research Center, Jadara University, Irbid 21110, Jordan

Corresponding Author Email: p.dumka.ipec@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120205 ABSTRACT

Received: 28 September 2024

Revised: 9 November 2024

Accepted: 15 November 2024

Available online: 28 February 2025

This article presents a detailed simulation approach for analyzing the equilibrium of

coplanar and non-concurrent force systems by using Python programming. Coplanar

forces are the forces that lie within the same plane, while non-concurrent forces do not

intersect at a common point, creating complex systems which are often encountered in

engineering fields such as structural analysis and statics. This study develops a set of

Python functions to compute resultant forces, evaluate support reactions, and simulate

equilibrium conditions in such force systems. The methodology involves defining force

magnitudes, directions, and positions in the code, thus enabling automated calculation

of equilibrium parameters through matrix operations (linear algebra) and iterative

methods. Ten standard engineering problems have been selected to examine and test

the functions, with results showing high accuracy when compared with the established

solutions in the existing literature. This work highlights Python's effectiveness as a

computational tool for both educational and practical applications in equilibrium

studies.

Keywords:

static equilibrium, Python programming,

coplanar forces system, non-coplanar forces,

inclusive innovation

1. INTRODUCTION

Studying the forces and their effects on the physical systems

is a basis of engineering and physics. In particular, the analysis

of coplanar and non-concurrent forces is important for

understanding the behaviour of objects subjected to multiple

forces which do not intersect at a common point [1, 2]. This

introduction sets the stage for a comprehensive search of the

theoretical and practical aspects of simulating the resultant and

equilibrium of coplanar and non-concurrent forces using

Python, which is a versatile and widely-used programming

language.

For centuries, scientists and engineers have faced with the

fundamental question of how forces interact with the objects

and structures. This question forms the basis of classical

mechanics, a branch of physics that deals with the motion and

equilibrium of physical bodies. In this quest, the concept of a

"force" emerged as a fundamental object that causes a body to

change its state of motion or rest. Forces can result from

interactions such as gravity, contact, tension, compression,

and more, making them a central concept in understanding the

behaviour of physical systems [1-3].

When several forces act on an object, the net effect of these

forces becomes a critical consideration. Coplanar forces are

the subset of forces that all lie within the same plane. However,

the term "non-concurrent" means that these forces do not share

a common point of intersection. This property separates them

from concurrent forces, where lines of action meet at a single

point. The study of coplanar and non-concurrent forces

becomes particularly relevant when studying the stability and

equilibrium of structures, determining the net effect of various

loads, and designing components that can survive multiple

forces [3-5].

Knowing and modelling the resultant and equilibrium of

coplanar and non-concurrent forces have great effects in

various scientific and engineering fields. The significance of

this study can be summarised as follows [6]:

⚫ Structural analysis: In the civil and mechanical

engineering, the stability and safety of structures, such

as buildings, bridges, and machinery, depends on the

correct analysis of the forces [7]. Determining the

resultant and equilibrium of non-concurrent forces is

central for ensuring that these structures remain stable

and do not depart to the stresses imposed on them.

Engineers rely on these principles to design and

evaluate the strength and reliability of a wide range of

structural systems.

⚫ Mechanical design: Mechanical engineers normally

Mathematical Modelling of Engineering Problems
Vol. 12, No. 2, February, 2025, pp. 403-414

Journal homepage: http://iieta.org/journals/mmep

403

https://orcid.org/0000-0001-5799-6468
https://orcid.org/0009-0005-9209-5987
https://orcid.org/0000-0002-3408-5060
https://orcid.org/0000-0002-1942-9179
https://orcid.org/0000-0001-7478-7334
https://orcid.org/0000-0001-9106-0313
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120205&domain=pdf

face systems subjected to multiple forces. Whether

designing automotive components, machinery, or

consumer products, engineers must confirm that the

components can bear various forces while remaining in

equilibrium [8, 9]. The knowledge of how to simulate

and analyse these forces using Python will provide a

valuable tool for optimizing the mechanical designs.

⚫ Physics and education: This study has educational

significance, as it forms the basis for the teaching of

fundamental principles (statics) in physics and

engineering courses. Using Python to simulate force

systems and their behaviour can help the students to

understand the abstract concepts more concretely.

Furthermore, educators can use these simulations to

make the subject matter engaging and handy [10, 11].

⚫ Computational tools: Python, a versatile and widely

adopted programming language, is noteworthy for

simulating coplanar non-concurrent forces. Python's

rich ecosystem of libraries for numerical calculations

and data visualisation makes it an ideal platform for

engineers, physicists, and students to perform complex

force simulations efficiently. Developing Python-based

tools for this purpose can enhance efficiency and

accuracy in force analysis. In this article, NumPy, a

module dedicated to numerical computations, has been

used [12-20].

Conventionally, simulating the coplanar and non-

concurrent forces has been depend on the analytical

techniques, graphical methods, or specialized software, each

with its own advantages and limitations [21, 22]. Analytical

methods, i.e., the resolution of forces into components and the

use of equilibrium equations, gives exact solutions but they

can be time-consuming and challenging to use on the complex

systems with several forces. Graphical methods, like the force

polygon or funicular polygon, offer a more visual approach but

they are less precise, particularly for systems with many forces

or when they are used in educational settings [23, 24]. While

specialized software packages in structural engineering and

mechanics, such as MATLAB or finite element analysis tools,

offer powerful solutions, they often require advanced

knowledge and are not universally accessible [25, 26]. The

proposed Python-based approach aims to bridge these gaps by

offering a cost-effective, accessible, and versatile alternative

that simplifies the simulation process. Python’s ease of use

(also no license is required to use it), coupled with its powerful

numerical libraries like NumPy, enables engineers, educators,

and students to efficiently calculate force resultants, simulate

equilibrium states, and visualize complex force interactions.

This approach enhances both educational engagement and

practical applications, particularly in environments where

traditional software may not be readily available.

The primary objectives of this study are to provide an in-

depth understanding of the theoretical underpinnings of

coplanar non-concurrent forces, including the calculation of

the resultant force and the principles of equilibrium,

demonstrate how Python, a popular and versatile

programming language, can be used to simulate and calculate

the resultant and equilibrium of coplanar non-concurrent

forces, to highlight the practical applications of this knowledge

in fields such as structural engineering and mechanical design.

While this article aims to provide a comprehensive

overview of the subject, it is essential to acknowledge its

limitations. The scope of this article primarily covers the

analysis of coplanar non-concurrent forces in a two-

dimensional plane. Also, the beams analysed are determinate

and indeterminate beams have not been considered. More

complex three-dimensional force systems, dynamics, and

considerations such as friction and material properties are

beyond the scope of this article.

2. THEORETICAL BACKGROUND

Learning forces and their effects on physical systems is a

fundamental thing in the field of engineering and physics.

Coplanar and non-concurrent forces (which are the specific

class of forces) are the focus of this article. These forces share

the property of acting in the same plane but do not intersect at

a common point [2]. Understanding the calculation principles

behind the resultant forces and their equilibrium is central in

numerous engineering applications, such as structural analysis

and mechanical design. In the context of structural engineering

and the analysis of beams, the principles related to coplanar

and non-concurrent forces take on particular significance.

Beams, whether cantilevered or simply supported, are critical

components of various structures, and understanding how

forces act on them is necessary for confirming structural

stability and performance [27]. This section will elaborate on

the theoretical concepts of coplanar non-concurrent forces,

providing a deeper insight into the mathematical principles

underpinning their analysis.

The concept of the resultant force is important to understand

the net effect of multiple forces acting on a system. For a

system the resultant force is the single force that produces the

same effect as the original forces combined when applied at

the appropriate point [28]. To determine the resultant force,

vector addition is employed, a mathematical method that

considers both the magnitude and direction of forces.

In this article (in Python formulation), forces are treated as

vectors, which are mathematical entities that have both

magnitude and direction. An arrow usually represents a vector

and can be expressed in the form: F=[HV], where, H represents

the horizontal component and V represents the vertical

component of the forece F.

For a system of non-concurrent forces, each force is

represented as a vector, and all vectors are considered in the

same plane, simplifying the analysis. The vector addition

allows us to find the resultant force vector, which, when

clubbed with the following steps, will lead to support reactions

and moments [1, 3, 6]:

• Resolve external forces into components, i.e., each force in

the system is resolved into its horizontal and vertical

components. This step involves breaking down each force

vector into its constituent parts based on the system's

geometry.

• Sum up all the horizontal components and equate them to

zero for the equilibrium condition.

• Sum up all the vertical components and equate them to zero

for the equilibrium condition.

• If the end is fixed, then the moment will be the sum of all

the moments. Whereas, if it is hinge, the sum of the

moments will be equal to zero.

2.1 Common type of loadings

In structural engineering, various types of loads come upon,

each of which exerts different forces on a structure.

Understanding and analysing these loads is necessary for

404

designing safe and efficient structures. Here are some

commonly seen loadings [4, 6, 27]:

⚫ Concentrated loads: Concentrated loads are the point

loads that act at specific location/point on a structure.

These loads are usually represented by forces applied at

a single point or distributed over a small area. Examples

of concentrated loads include the weight of a person

standing on a floor or the force applied by a vehicle's

tire on a bridge.

⚫ Uniformly distributed loads (UDL): UDL, often

called as uniform loads, are the one which are

distributed evenly along a specific span of a structure.

These loads are usually represented by a force per unit

length (e.g., N/m). Common examples of UDLs include

the self-weight of beams, uniform snow loads on a roof,

or wind pressures acting along the building height.

⚫ Uniformly varying loads (UVL): Uniformly varying

loads are distributed loads that change linearly along

the length of a structural element. A triangular

distribution of force often represents these types of

loads. An example of a uniformly varying load is the

hydrostatic pressure on the side of a dam, which

increases with depth.

⚫ External moments: External moments, also known as

applied moments, are twisting forces applied to a

structure. These moments can occur at specific points

or along the length of a beam or other structural

element. For instance, a door on hinges applies an

external moment to its frame.

Figure 1 shows these loads from the point of view of a

simply supported beam (the same holds for the cantilever as

well). Engineers must consider the effects of these various

loadings during the design and analysis of buildings, bridges,

and other structures to ensure they can safely support the

forces they encounter. By understanding and appropriately

accounting for these loads, engineers can create safe, efficient

and durable structures.

Figure 1. Different types of loads acting on a simply

supported beam

2.2 Commonly used beams

⚫ Cantilever beams: A cantilever beam is a structural

element supported at one end while the other remains

free. This type of beam is common in constructions like

balconies and diving boards. Understanding how to

calculate the resultant of coplanar non-concurrent

forces is essential for assessing the stability and

strength of cantilever beams. When multiple forces are

applied to a cantilever beam, they may not intersect at

a single point. Each force must be broken down into

horizontal and vertical components to find the resultant

support forces. The summation of these components

provides the resultant horizontal and vertical reaction

forces. The net moment of all the vertical force at the

support has to be evaluated for the support moment. In

practical terms, calculating the resultant force is

essential to assess a cantilever beam's bending moment,

shear forces, and deflections. This analysis ensures that

the beam can withstand the loads applied to it,

safeguarding against structural failure and ensuring the

safety of occupants. In this beam, there are three

reaction components at the fixed end, and at the free

end, no reaction is there. A typical cantilever beam is

shown in Figure 2.

⚫ Simply supported beams: A simply supported beam is

another common structural element. It is supported at

both ends (both ends hinged or one end hinged and the

other having a roller), allowing it to rest on external

supports, such as walls or columns. This type of beam

can be found in floor systems, bridges, and roof trusses.

Analysing the resultant of coplanar non-concurrent

forces is essential for designing and evaluating the

performance of simply supported beams. Similar to

cantilever beams, multiple forces can act on simply

supported beams. The process of finding the support

reactions remains the same, but as the supports are

either hinged or have rollers, the moment will be zero

there. Assessing the beam's reaction forces at its

supports is vital for structural design and ensuring

equilibrium. Engineers must determine whether the

beam is under tension or compression and evaluate its

deformation under the applied loads. A typical simply

supported beam having both ends hinged, and one

hinged and the other on rollers is shown in Figures 3(a)

and (b), respectively.

⚫ Overhanging beams: This type of beam is projected

beyond the supports. The overhang can be on either side

of the supports, as shown in Figure 4.

In this article, the statically determinate beams are

considered as these beams are the ones in which all reaction

components can be obtained with the help of above-mentioned

equilibrium conditions.

Figure 2. A typical cantilever beam

(a) Simply supported beam

(b) One end fixed and the other on roller

Figure 3. Typical simply supported beams

405

(a) Single overhang

(b) Double overhang

Figure 4. Typical schematic of overhanging beams

2.3 Reaction calculations

Cantilever beams

(a) Point loads: For the point loading shown in Figure 5,

the reactions and moments at the fixed end (𝐻𝑎, 𝑉𝑎, and 𝑀𝑎)

are evaluated as:

Figure 5. Point loads acting on the cantilever

𝑉𝑎 = ∑𝐹𝑖sin(𝜃𝑖)

𝑖=𝑛

𝑖=1

 (1)

𝐻𝑎 = ∑𝐹𝑖cos(𝜃𝑖)

𝑖=𝑛

𝑖=1

 (2)

𝑀𝑎 = ∑(𝐹𝑖 sin(𝜃𝑖) × 𝑥𝑖)

𝑖=𝑛

𝑖=1

 (3)

(b) UDL: For UDL’s shown in Figure 6, the reactions

and moments at the fixed end are evaluated as:

Figure 6. UDL acting on cantilever

𝑉𝑎 = ∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

 (4)

𝐻𝑎 = 0 (5)

𝑀𝑎 = ∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

(𝑥𝑟𝑖 + 𝑥𝑙𝑖)/2 (6)

(c) UVL: For UVL, as shown in Figure 7, the reactions

are evaluated as shown in Eqs. (7) and (8), but the lever arm

for the moment at the fixed end are evaluated considering two

cases viz. case-I and case-II.

Figure 7. UVL acting on the cantilever

𝑉𝑎 = ∑(
1

2
) (𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

 (7)

𝐻𝑎 = 0 (8)

𝑀𝑎 = ∑(
1

2
) (𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖) × ℓ𝑖

𝑖=𝑛

𝑖=1

 (9)

Case-I: The left end load of UVL is lower than the right load

ℓ𝑖 = (𝑥𝑙𝑖 + (𝑥𝑟𝑖 − 𝑥𝑙𝑖) (1 −
𝑊𝑖,2 + 2𝑊𝑖,1

𝑊𝑖,1 +𝑊𝑖,2

×
1

3
)) (10)

Case-II: The right end load of UVL is lower than left load

ℓ𝑖 = (𝑥𝑙𝑖 +
(𝑥𝑟𝑖 − 𝑥𝑙𝑖)

3
(
𝑊𝑖,1 + 2𝑊𝑖,2

𝑊𝑖,1 +𝑊𝑖,2

)) (11)

Figure 8. External moments acting on cantilever

(d) External moments: For external moments shown in

Figure 8, the reactions at the support are evaluated as:

𝑉𝑎 = 0 (12)

𝐻𝑎 = 0 (13)

406

𝑀𝑎 = ∑𝑀𝑖

𝑖=𝑛

𝑖=1

 (14)

Simply supported beam

In case of simply supported beam as the moment at the

reactions is zeros so in the calculations they are not been taken

into account.

(a) Point loads: For the point loading shown in Figure 9

the reactions at the supports (𝐻𝑎, 𝑉𝑎, 𝑉𝑏, and 𝑀𝑎) are evaluated

as:

𝑉𝑏 =
1

𝐿
∑(𝐹𝑖 sin(𝜃𝑖) × 𝑥𝑖)

𝑖=𝑛

𝑖=1

 (15)

𝐻𝑎 = ∑𝐹𝑖cos(𝜃𝑖)

𝑖=𝑛

𝑖=1

 (16)

𝑉𝑎 = ∑𝐹𝑖 sin(𝜃𝑖)

𝑖=𝑛

𝑖=1

− 𝑉𝑏 (17)

Figure 9. Point loads acting on simply supported beam

(b) UVL: For UVL’s shown in Figure 10, the reactions at

the supports are evaluated as:

Figure 10. UVL acting on simply supported beam

𝑉𝑏 = (
1

2𝐿
)∑(𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖) × ℓ𝑖

𝑖=𝑛

𝑖=1

 (18)

𝐻𝑎 = 0 (19)

𝑉𝑎 = (
1

2
)∑(𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

− 𝑉𝑏 (20)

For ℓ𝑖 , Eqs. (10) and (11) will be used.

(c) UDL: For UDL’s shown in Figure 11, the reactions at

the supports are evaluated as:

Figure 11. UDL acting on simply supported beam

𝑉𝑏 = (
1

2𝐿
)∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

(𝑥𝑟𝑖 + 𝑥𝑙𝑖) (21)

𝐻𝑎 = 0 (22)

𝑉𝑎 = ∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

− 𝑉𝑏 (23)

(d) External moments: For external moments shown in

Figure 12, the reactions at the support are evaluated as:

Figure 12. External moments acting on simply supported

beam

𝑉𝑏 = (
1

𝐿
)∑𝑀𝑖

𝑖=𝑛

𝑖=1

 (24)

𝐻𝑎 = 0 (25)

𝑉𝑎 = −𝑉𝑏 (26)

Point to be noted in all the above calculations is that

downward loading is considered as positive. All the angles are

measured counter-clock wise. For cantilever the x coordinate

starts at fixed end whereas, for simply supported beam it will

start from left support.

3. PYTHON FUNCTIONS TO OBTAIN SUPPORT

REACTIONS

To simulate the resultant and equilibrium of coplanar non-

concurrent forces in Python the NumPy library/module has

been used [29-33]. The solution of the above functions is based

on the following assumptions:

407

• The position of any external force or moment is

considered from left to right, i.e., for cantilever all the

positions are measured considering fixed end as 𝑥 = 0 and for

simply supported beam the left support is at 𝑥 = 0.

• For overhang case which is on the left side of the

support of simply supported beam negative x position is

considered.

• All the angles are measured counter clockwise from

the beams as shown in Figures 5 and 8.

• All the determinate cases have been taken, i.e., the

beam is designed for the determinate cases.

The Python functions presented in this section are designed

to simulate the equilibrium conditions of coplanar and the non-

concurrent forces in cantilever and simply supported beams,

under various loading scenarios. The code was developed to

be flexible and modular, allowing for the analysis of point

loads, point moments, uniformly distributed loads (UDL), and

uniformly varying loads (UVL) applied to both cantilever and

simply supported beams. Each function takes in specific

arguments that correspond to the forces, positions, and angles

as defined in the problem diagrams.

The primary package used in the development of these

functions is NumPy, which provides efficient array operations

and mathematical functions. Particularly, array() is used to

handle the input data, and sum() is used for summing up the

forces and moments. For the angular calculations, the radians()

function is used to convert the input angles from degrees to

radians for accurate trigonometric functions, such as sine and

cosine.

Functions for cantilever beam

def canti_pl(w,θ,x):

 """

 function to evaluate the reaction and moment at the

 fixed end of a cantilever beam with point loads.

 Fixed end is considered as 'A'.

 Input: list of load (a) magnitudes (b) angle (c) position

 Output: Reaction (Va, Ha) and moment (Ma) at the free end

 """

 w=array(w)

 θ=array(θ)

 x=array(x)

 θ=radians(θ)

 Va=sum(w[:]*sin(θ[:]))

 Ha=sum(w[:]*cos(θ[:]))

 Ma=sum(w[:]*sin(θ[:])*x[:])

 return array([Va,Ha,Ma])

def canti_mom(M,x):

 """

 function to evaluate the reaction and moment at the

 fixed end of a cantilever beam with point moments.

 Fixed end is considered as 'A'.

 Input: list of (a) moments (b) moment position

 Output: Reaction (Va, Ha) and moment (Ma) at the free end

 """

 M=array(M)

 x=array(x)

 Va=0.0

 Ha=0.0

 Ma=sum(M[:])

 return array([Va,Ha,Ma])

def canti_udl(w,x):

 """

 function to evaluate the reaction and moment at the

 fixed end of a cantilever beam with udl.

 Fixed end is considered as 'A'.

 Input: list of udl (a) magnitudes (b) position

 Output: Reaction (Va, Ha) and moment (Ma) at the free end

 """

 w=array(w)

 x=array(x)

 Va=sum(w[:]*(x[:,1]-x[:,0]))

 Ha=0.0

 Ma=sum(w[:]*(x[:,1]-x[:,0])*(x[:,1]+x[:,0])/2.0)

 return array([Va,Ha,Ma])

def canti_uvl(w,x):

 """

 function to evaluate the reaction and moment at the

 fixed end of a cantilever beam with uvl.

 Fixed end is considered as 'A'.

 Input: list of uvl (a) magnitudes (b) position

 Output: Reaction (Va, Ha) and moment (Ma) at the free end

 """

 w=array(w)

 x=array(x)

 Va=sum(0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0])))

 Ha=0.0

 m=empty(shape(w)[0])

 if (w[:,0]<w[:,1]).all():

 b=w[:,0]

 a=w[:,1]

 la=x[:,0]+(x[:,1]-x[:,0])*(1-(a+2*b)/(3*(a+b)))

 m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la

 else:

 a=w[:,0]

 b=w[:,1]

 la=x[:,0]+(x[:,1]-x[:,0])*(a+2*b)/(3*(a+b))

 m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la

 Ma=sum(m)

 return array([Va,Ha,Ma])

Functions for simply supported beam

def ssb_pl(w,θ,x,L):

 """

 function to evaluate the reactions at the

 ends of a simply supported beam with point loads.

 End 'A' is considered as pin joint and 'B' is roller.

 Input: list of load (a) magnitudes (b) angle (c) position

 & (d) length of beam.

408

 Output: Reactions (Va, Ha, Vb)

 """

 w=array(w)

 θ=array(θ)

 x=array(x)

 θ=radians(θ)

 Vb=sum(w[:]*sin(θ[:])*x[:])/L

 Va=sum(w[:]*sin(θ[:]))-Vb

 Ha=sum(w[:]*cos(θ[:]))

 return array([Va,Vb,Ha])

def ssb_udl(w,x,L):

 """

 function to evaluate the reaction at the

 ends of a simply supported beam with udl.

 End 'A' is considered as pin joint and 'B' is roller.

 Input: list of udl (a) magnitudes (b) positions

 & (c) length of beam.

 Output: Reaction (Va, Ha, Vb)

 """

 w=array(w)

 x=array(x)

 Vb=sum(w[:]*(x[:,1]-x[:,0])*(x[:,1]+x[:,0])/2.0)/L

 Va=sum(w[:]*(x[:,1]-x[:,0]))-Vb

 Ha=0.0

 return array([Va,Vb,Ha])

def ssb_uvl(w,x,L):

 """

 function to evaluate the reaction at the

 ends of a simply supported beam with uvl.

 End 'A' is considered as pin joint and 'B' is roller.

 Input: list of uvl (a) magnitudes (b) positions

 & (c) length of beam.

 Output: Reaction (Va, Ha, Vb)

 """

 w=array(w)

 x=array(x)

 m=empty(shape(w)[0])

 if (w[:,0]<w[:,1]).all():

 b=w[:,0]

 a=w[:,1]

 la=x[:,0]+(x[:,1]-x[:,0])*(1-(a+2*b)/(3*(a+b)))

 m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la

 else:

 a=w[:,0]

 b=w[:,1]

 la=x[:,0]+(x[:,1]-x[:,0])*(a+2*b)/(3*(a+b))

 m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la

 Vb=sum(m)/L

 Va=sum(0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0])))-Vb

 Ha=0.0

 return array([Va,Vb,Ha])

def ssb_mom(M,x,L):

 """

 function to evaluate the reaction at the

 ends of a simply supported beam with point moments.

 End 'A' is considered as pin joint and 'B' is roller.

 Input: list of moment (a) magnitudes (b) positions

 & (c) length of beam.

 Output: Reactions (Va, Ha, Vb)

 """

 M=array(M)

 x=array(x)

 Vb=sum(M[:])/L

 Va=-Vb

 Ha=0.0

 return array([Va,Vb,Ha])

While using the above functions one has to be very carefully

pass the arguments. Table 1 will help the user to supply the

inputs in a proper format.

Table 1. Functions and their arguments

S. No. Function Arguments

1 canti_pl(w,θ,x)

With respect to the Figure 5:

𝑤 = [𝐹1, 𝐹2, 𝐹3, 𝐹4]
𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

2 canti_mom(M,x):

With respect to the Figure 8:

𝑀 = [𝑀1, 𝑀2,𝑀3, 𝑀4]
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

3 canti_udl(w,x)

With respect to the Figure 6:

𝑤 = [𝑊1,𝑊2]
𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]]

4 canti_uvl(w,x)

With respect to the Figure 7:

𝑤 = [[𝑊1,1,𝑊1,2], [𝑊2,1,𝑊2,2]]

𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]]

5 ssb_pl(w,θ,x,L)

With respect to the Figure 9:

𝑤 = [𝐹1, 𝐹2, 𝐹3, 𝐹4]
𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝐿 = 𝐿

6 ssb_udl(w,x,L)

With respect to the Figure 11:

𝑤 = [𝑊1,𝑊2]
𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]]

𝐿 = 𝐿

7 ssb_uvl(w,x,L)

With respect to the Figure 10:

𝑤 = [[𝑊1,1,𝑊1,2], [𝑊2,1,𝑊2,2]]

𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]]
𝐿 = 𝐿

8 ssb_mom(M,x,L)

With respect to the Figure 12:

𝑀 = [𝑀1, 𝑀2,𝑀3, 𝑀4]
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝐿 = 𝐿

To test the developed Python functions, ten typical

problems were chosen based on their significance to practical

applications in structural and mechanical engineering. These

problems include a variety of force systems with different

magnitudes, directions, and points of application,

demonstrating common situations encountered in structural

analysis and mechanical design. The selection was made to

409

cover a wide range of difficulties, from simple two-force

systems to more complex multi-force equilibria. This diversity

ensured that the functions could be evaluated across different

levels of difficulty and their applicability to real-world

engineering problems.

4. IMPLEMENTATION OF PYTHON FUNCTIONS

In this section all the Python functions developed above are

tested against different types of loadings on cantilever and

simply supported beams.

Example 1: For the cantilever beam shown below in Figure

13, evaluate the fixed end reactions:

Figure 13. Cantilever beam with UDL and point load

Solution: Figure 14 represents the forces, reactions and

moments acting on the beam shown in Figure 13.

Figure 14. FBD

This problem has two types of loads viz. point load and udl.

The functions used are: canti_pl (w,θ,x) and canti_udl

(w,θ,x). The program to call the functions and its output is as

follows:

Program

Va,Ha,Ma=canti_pl([15,20],[90,60],[3,2])+canti_udl([10],[[0,2]]

)

print(f"Va= {round(Va,3)}, Ha ={round(Ha,3)}, Ma =

{round(Ma,3)}")

Output

Va= 52.321, Ha =10.0, Ma = 99.641

Example 2: For the cantilever beam shown below in Figure

15, evaluate the fixed end reactions:

Figure 15. Cantiler beam with UVL and point load

Solution: Figure 16 represents the forces, reactions and

moments acting on the beam shown in Figure 15.

Figure 16. FBD

This problem has two types of loads viz. point load and uvl.

The functions used are: canti_pl (w,θ,x) and canti_uvl

(w,θ,x). The program to call the functions and its output is as

follows:

Program

Va,Ha,Ma=canti_pl([60],[90],[2.5])+canti_uvl([[45,0]],[[0,2]])

print(f"Va= {round(Va,3)}, Ha ={round(Ha,3)}, Ma =

{round(Ma,3)}")

Output

Va= 105.0, Ha =0.0, Ma = 180.0

Example 3: For the simply supported beam shown below

in Figure 17, evaluate the reactions at the end:

Figure 17. Cantilever beam with UVL

Solution: Figure 18 represents the forces and reactions

acting on the beam shown in Figure 17.

Figure 18. FBD

This problem has only uvl. The functions used is: ssb_uvl

(w,x,L). The program to call the functions and its output is as

follows:

Program

w=[[20,60]]

x=[[2,6]]

L=6

Va,Vb,Ha=ssb_uvl(w,x,L)

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha

={round(Ha,3)}")

Output

Va= 44.444,Vb= 115.556, Ha =0.0

Example 4: For the simply supported beam and its FBD

shown below in Figure 19, evaluate the reactions at the end:

410

Figure 19. Simply supported beam with point loads

Solution: Figure 20 represents the forces and reactions

acting on the beam shown in Figure 19.

Figure 20. FBD

This problem has only point loads. The functions used is:

ssb_pl(w,θ,x,L). The program to call the functions and its

output is as follows:

Program

w=[10,15,20]

θ=[90,30,45]

x=[4,6,10]

L=12

Va,Vb,Ha=ssb_pl(w,θ,x,L)

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha

={round(Ha,3)}")

Output

Va= 12.774, Vb= 18.868, Ha =27.133

Example 5: For the simply supported beam shown below

in Figure 21, evaluate the reactions at the end:

Figure 21. Simply supported beam with UVL and point

loads

Solution: This problem has point loads and udl. The

functions used are: ssb_pl (w,θ,x,L) and ssb_udl (w,x,L). The

program to call the functions and its output is as follows:

Program

Va,Vb,Hb=ssb_pl([20,60],[90,180-

45],[2,7],9)+ssb_udl([30],[[2,6]],9)

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha

={round(Ha,3)}")

Output

Va= 91.65, Vb= 90.776, Hb =-42.426

Example 6: For the simply supported beam shown below

in Figure 22, evaluate the reactions at the end:

Figure 22. FBD of an over hanging beam

Solution: This problem has point load, uvl, and udl. The

functions used are: ssb_pl(w,θ,x,L) , ssb_udl(w,x,L), and

ssb_uvl(w,x,L). The program to call the functions and its

output is as follows:

Program

Va,Vb,Ha=ssb_pl([30],[90],[1],5)+ssb_udl([24],[[2,5]],5)+ssb_u

vl([[40,0]],[[5,6.5]],5)

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha

={round(Ha,3)}")

Output

Va= 42.6, Vb= 89.4, Ha =0.0

Example 7: For the overhanging beam shown below in

Figure 23, evaluate the reactions at the end:

Figure 23. Overhanging beam with moment, point load, and

UDL

Solution: This problem has point load, external moment,

and udl. The functions used are: ssb_pl(w,θ,x,L),

ssb_udl(w,x,L), and ssb_mom(w,x,L). The program to call

the functions and its output is as follows:

Program

Va,Vb,Ha=ssb_pl([30],[45],[5],6)+ssb_udl([20],[[6,8]],6)+ssb_m

om([40],[3],6)

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha

={round(Ha,3)}")

Output

Va= -9.798, Vb= 71.011, Ha =21.213

Example 8: For the simply supported beam shown below

in Figure 24, evaluate the reactions at the end:

Figure 24. Overhanging beam with UVL

Solution: This problem has two uvl’s. The function used is:

ssb_uvl(w,x,L). The program to call the functions and its

output is as follows:

411

Program

Va,Vb,Ha=ssb_uvl([[0,10],[10,0],[10,20]],[[-1,0],[0,2],[2,5]],5)

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha

={round(Ha,3)}")

Output

Va= 26.0, Vb= 34.0, Ha =0.0

Example 9: For the simply supported beam shown below

in Figure 25, evaluate the reactions at the end:

Figure 25. A complex beam

Solution: Free body diagrams of beams AB and CD are

shown below in Figure 26.

Figure 26. FBD

This problem has one uvl but if looked closely, then the

problem can be divided into two. First, the top beam has to be

solved with uvl, which will result in a reaction at roller and D.

Then the reaction at C will act as a point load for the bottom

beam, which now can be solved for the reactions at A and B.

The function used is: ssb_udl(w,x,L), and ssb_pl(w,x,L). The

program to call the functions and its output is as follows:

Program

Vc,Vd,Hd=ssb_uvl([[3,12]],[[0,5]],7)

Va,Vb,Hb=ssb_pl([Vc],[90],[2],5)

print(f"Vc= {round(Vc,3)},Vd= {round(Vd,3)}, Hd

={round(Hd,3)}")

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Hb

={round(Hb,3)}")

Output

Vc= 21.429, Vd= 16.071, Hd =0.0

Va= 12.857, Vb= 8.571, Hb =0.0

Example 10: For the simply supported beam shown below

in Figure 27, evaluate the reactions at the end:

Figure 27. Arrangements of overhanging beams

Figure 28. FBD

Solution: The free body diagram of beams shown in Figure

26 is shown in Figure 28.

This problem also has two beams to solve. First, the top

beam has to be solved with two-point loads, resulting in

reaction at E and A. Then, the reaction at E will act as a point

load for the bottom beam, which now can be solved for the

reactions at C and D. Also, there is one moment acting at F of

magnitude 10 N-m. The function used is: ssb_pl (w,θ,x,L), and

ssb_mom (w,x,L). The program to call the functions and its

output is as follows:

Program

Va,Ve,Ha=ssb_pl([20,40],[90,180-45],[3,4],3)

Vc,Vd,Hc=ssb_pl([Ve,20],[90,60],[2,1],3)+ssb_mom([-

10*1],[4],3)

print(f"Va= {round(Va,3)},Ve= {round(Ve,3)}, Ha

={round(Ha,3)}")

print(f"Vc= {round(Vc,3)},Vd= {round(Vd,3)}, Hc

={round(Hc,3)}")

Output

Va= -9.428, Ve= 57.712, Ha =-28.284

Vc= 34.118, Vd= 40.915, Hc =10.0

While this study largely focuses on theoretical examples,

the developed Python functions can be readily applied to a

variety of real-world engineering situations as well. For

instance, they can be used in structural analysis for designing

safe and stable buildings, bridges, and mechanical systems

subjected to multiple forces and moments. These functions can

also serve as an educational tool to help the students

understand the principles of statics and equilibrium in a more

collaborative and practical way.

5. CONCLUSIONS

In this article, coplanar non-concurrent forces in beams

were modelled using Python Programming. First, the

mathematics for different types of loading is being presented.

Then, functions were developed for both cantilever and simply

supported beams for different types of loadings. The

developed functions are also presented in the article, along

with the explanation of arguments which these functions will

take. Then, these functions were tested against ten typical

problems in structural engineering. It has been observed that

the results obtained from the functions are in good agreement

with the literature. The developed Python functions have

successfully simulated the coplanar and non-concurrent forces

in beams under various loading conditions, providing accurate

results that are in sync with the theoretical expectations.

It has also been observed that the ability of Python

programming to model complex-looking algorithms in a few

lines of code is immense. Hence, it can be said that the

412

exploration of these forces through Python is a leap toward

engineering excellence and scientific progress. Through this

article, the readers will gain a comprehensive understanding of

the principles of equilibrium of coplanar non-concurrent

forces in beams, and they will also learn to apply them to real-

world problems with the help of Python programming. The

simplicity and usefulness of Python programming make it a

valuable tool for both engineering practitioners and students.

Engineers can benefit from efficient structural analysis, while

students can gain a hands-on understanding of the principles

of equilibrium and force systems.

Regardless of the accuracy and versatility of the developed

Python functions, some limitations were viewed in the

simulations. The present implementation primarily focuses on

two-dimensional coplanar and non-concurrent force systems,

which restricts its application to more complex three-

dimensional or dynamic force systems. Also, the analysis is

limited to the determinate beams, with indeterminate systems

not yet considered. Future work could aim to expand the

capabilities of the Python functions to handle three-

dimensional force systems, dynamic loads, and indeterminate

structural analyses. Additionally, incorporating more complex

material properties and the effects of friction could enhance

the realism of the simulations. As the field progresses, further

improvements in the user interface and integration with other

computational tools may also be explored to increase the

accessibility and applicability of the developed approach.

REFERENCES

[1] Bhavikatti, S.S., Rajashekarappa, K.G. (1994).

Engineering Mechanics. New Age International, India.

[2] Meriam, J.L., Kraige, L.G., Bolton, J.N. (2020).

Engineering Mechanics: Dynamics. John Wiley & Sons,

USA.

[3] Mittelstedt, C. (2023). Engineering Mechanics 2:

Strength of Materials. Springer Vieweg Berlin,

Heidelberg. https://doi.org/10.1007/978-3-662-66590-9

[4] Nordin, M.N., Mohd Shah, M.K., Maidin, S.S., Mahmud,

Y.H., Ismail, S.S.A. (2023). Outcomes-based approach

in engineering education for special education need

students: Psychology and rehabilitation elements.

Journal for ReAttach Therapy and Developmental

Diversities, 6(3): 52–58.

https://jrtdd.com/index.php/journal/article/view/320.

[5] Travis, R.C. (1945). An experimental analysis of

dynamic and static equilibrium. Journal of Experimental

Psychology, 35(3): 216-234.

https://psycnet.apa.org/doi/10.1037/h0059788

[6] Bower, A. F. (2009). Applied Mechanics of Solids. CRC

Press, USA. https://doi.org/10.1201/9781439802489

[7] Powell, G.H. (2010). Modeling for Structural Analysis:

Behavior and Basics. Berkeley, CA: Computers and

Structures.

[8] Overtoom, E.M., Horeman, T., Jansen, F.W.,

Dankelman, J., Schreuder, H.W. (2019). Haptic

feedback, force feedback, and force-sensing in

simulation training for laparoscopy: A systematic

overview. Journal of Surgical Education, 76(1): 242-261.

https://doi.org/10.1016/j.jsurg.2018.06.008

[9] Collins, J., Chand, S., Vanderkop, A., Howard, D.

(2021). A review of physics simulators for robotic

applications. IEEE Access, 9: 51416-51431.

https://doi.org/10.1109/ACCESS.2021.3068769

[10] Chernikova, O., Heitzmann, N., Stadler, M., Holzberger,

D., Seidel, T., Fischer, F. (2020). Simulation-based

learning in higher education: A meta-analysis. Review of

Educational Research, 90(4): 499-541.

https://doi.org/10.3102/0034654320933544

[11] McGarr, O. (2021). The use of virtual simulations in

teacher education to develop pre-service teachers’

behaviour and classroom management skills:

Implications for reflective practice. Journal of Education

for Teaching, 47(2): 274-286.

[12] Varsha, M., Yashashree, S., Ramdas, D.K., Alex, S.A.

(2019). A review of existing approaches to increase the

computational speed of the python. International Journal

of Research in Engineering, Science and Management,

2(4): 594-598.

[13] Mishra, P., Tewari, P., Mishra, D.R., Dumka, P. (2023).

Numerical modelling of double integration with different

data spacing: A Python-based approach. Mathematics

and Computational Sciences, 4(2): 46-54.

https://doi.org/10.30511/mcs.2023.1990951.1115

[14] Sanner, M.F. (1999). Python: A programming language

for software integration and development. Journal of

Molecular Graphics and Modelling, 17(1): 57-61.

[15] Fuhrer, C., Solem, J.E., Verdier, O. (2021). Scientific

Computing with Python: High-Performance Scientific

Computing with NumPy, SciPy, and Pandas. Packt

Publishing Ltd, UK.

[16] Shein, E. (2015). Python for beginners. Communications

of the ACM, 58(3): 19-21.

http://doi.org/10.1145/2716560

[17] Joshi, A.R., Deo, A., Parashar, A., Mishra, D.R., Dumka,

P. (2023). Modelling steam power cycle using Python.

International Journal of Scientific Research in Computer

Science, Engineering and Information Technology, 9(1):

152-162. https://doi.org/10.32628/CSEIT228671

[18] Gajula, K., Sharma, V., Sharma, B., Mishra, D.R.,

Dumka, P. (2022). Modelling of energy in transit using

Python. International Journal of Innovative Science and

Research Technology, 7(8): 1152-1156.

[19] Dumka, P., Rana, K., Tomar, S.P.S., Pawar, P.S., Mishra,

D.R. (2022). Modelling air standard thermodynamic

cycles using Python. Advances in Engineering Software,

172: 103186.

https://doi.org/10.1016/j.advengsoft.2022.103186

[20] Dumka, P., Chauhan, R., Singh, A., Singh, G., Mishra,

D. (2022). Implementation of Buckingham’s PI theorem

using Python. Advances in Engineering Software, 173:

103232.

https://doi.org/10.1016/j.advengsoft.2022.103232

[21] Kiusalaas, J. (2010). Numerical Methods in Engineering

with Python. Cambridge University Press, UK.

[22] Doerr, H.M. (1997). Experiment, simulation and

analysis: An integrated instructional approach to the

concept of force. International Journal of Science

Education, 19(3): 265-282.

https://doi.org/10.1080/0950069970190302

[23] Reiley, C.E., Akinbiyi, T., Burschka, D., Chang, D.C.,

Okamura, A.M., Yuh, D.D. (2008). Effects of visual

force feedback on robot-assisted surgical task

performance. The Journal of Thoracic and

Cardiovascular Surgery, 135(1): 196-202.

https://doi.org/10.1016/j.jtcvs.2007.08.043

[24] Williams, L.E., Loftin, R.B., Aldridge, H.A., Leiss, E.L.,

413

Bluethmann, W.J. (2002). Kinesthetic and visual force

display for telerobotics. In Proceedings 2002 IEEE

International Conference on Robotics and Automation,

Washington, USA, pp. 1249-1254.

https://doi.org/10.1109/ROBOT.2002.1014714

[25] Françoso, M.T., Costa, D.C., Valin, M.M., Amarante,

R.R. (2013). Use of open source software for the

development of web GIS for accessibility to tourist

attractions. Journal of Civil Engineering and

Architecture, 7(4): 472-486.

[26] Hu, X., Zhou, Q. (2020). MATLAB software in the

numerical calculation of civil engineering. In

International Conference on Machine Learning and Big

Data Analytics for IoT Security and Privacy, pp. 730-

734. https://doi.org/10.1007/978-3-030-62746-1_110

[27] Carrera, E., Giunta, G., Petrolo, M. (2011). Beam

Structures: Classical and Advanced Theories. John

Wiley & Sons, USA.

[28] Saliklis, E., Saliklis, E. (2019). Non-concurrent forces

and the funicular. In Structures: A Geometric Approach:

Graphical Statics and Analysis. Springer, Cham, USA,

pp. 31-56. https://doi.org/10.1007/978-3-319-98746-0_3

[29] Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., et al.

(2017). SymPy: Symbolic computing in Python. PeerJ

Computer Science, 3: e103. http://doi.org/10.7717/peerj-

cs.103

[30] Van Der Walt, S., Colbert, S.C., Varoquaux, G. (2011).

The NumPy array: A structure for efficient numerical

computation. Computing in Science & Engineering,

13(2): 22-30. https://doi.org/10.1109/MCSE.2011.37

[31] Bauckhage, C. (2020). NumPy/SciPy Recipes for Data

Science: Subset-Constrained Vector Quantization via

Mean Discrepancy Minimization, pp. 1-4.

[32] Johansson, R., John, S. (2019). Numerical Python:

Scientific Computing and Data Science Applications

with NumPy, SciPy and Matplotlib. Apress, USA.

[33] Ranjani, J., Sheela, A., Meena, K.P. (2019). Combination

of NumPy, SciPy and Matplotlib/Pylab—A good

alternative methodology to MATLAB—A Comparative

analysis. In 2019 1st International Conference on

Innovations in Information and Communication

Technology (ICIICT), Chennai, India, pp. 1-5.

https://doi.org/10.1109/ICIICT1.2019.8741475

NOMENCLATURE

F external forces

W per unit length variation of uniformly distributed

or uniformly varying loads

V vertical support reaction

H horizontal support reaction

𝑥 position of external force

(𝑥𝑙 , 𝑥𝑟) span of UDL or UVL

M moment

Greek symbols

𝜃 angle at which the external force will act

Subscripts

ℓ left

𝑟 right

414

