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This article presents a detailed simulation approach for analyzing the equilibrium of 

coplanar and non-concurrent force systems by using Python programming. Coplanar 

forces are the forces that lie within the same plane, while non-concurrent forces do not 

intersect at a common point, creating complex systems which are often encountered in 

engineering fields such as structural analysis and statics. This study develops a set of 

Python functions to compute resultant forces, evaluate support reactions, and simulate 

equilibrium conditions in such force systems. The methodology involves defining force 

magnitudes, directions, and positions in the code, thus enabling automated calculation 

of equilibrium parameters through matrix operations (linear algebra) and iterative 

methods. Ten standard engineering problems have been selected to examine and test 

the functions, with results showing high accuracy when compared with the established 

solutions in the existing literature. This work highlights Python's effectiveness as a 

computational tool for both educational and practical applications in equilibrium 

studies.  
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1. INTRODUCTION

Studying the forces and their effects on the physical systems 

is a basis of engineering and physics. In particular, the analysis 

of coplanar and non-concurrent forces is important for 

understanding the behaviour of objects subjected to multiple 

forces which do not intersect at a common point [1, 2]. This 

introduction sets the stage for a comprehensive search of the 

theoretical and practical aspects of simulating the resultant and 

equilibrium of coplanar and non-concurrent forces using 

Python, which is a versatile and widely-used programming 

language. 

For centuries, scientists and engineers have faced with the 

fundamental question of how forces interact with the objects 

and structures. This question forms the basis of classical 

mechanics, a branch of physics that deals with the motion and 

equilibrium of physical bodies. In this quest, the concept of a 

"force" emerged as a fundamental object that causes a body to 

change its state of motion or rest. Forces can result from 

interactions such as gravity, contact, tension, compression, 

and more, making them a central concept in understanding the 

behaviour of physical systems [1-3]. 

When several forces act on an object, the net effect of these 

forces becomes a critical consideration. Coplanar forces are 

the subset of forces that all lie within the same plane. However, 

the term "non-concurrent" means that these forces do not share 

a common point of intersection. This property separates them 

from concurrent forces, where lines of action meet at a single 

point. The study of coplanar and non-concurrent forces 

becomes particularly relevant when studying the stability and 

equilibrium of structures, determining the net effect of various 

loads, and designing components that can survive multiple 

forces [3-5]. 

Knowing and modelling the resultant and equilibrium of 

coplanar and non-concurrent forces have great effects in 

various scientific and engineering fields. The significance of 

this study can be summarised as follows [6]: 

⚫ Structural analysis: In the civil and mechanical

engineering, the stability and safety of structures, such

as buildings, bridges, and machinery, depends on the

correct analysis of the forces [7]. Determining the

resultant and equilibrium of non-concurrent forces is

central for ensuring that these structures remain stable

and do not depart to the stresses imposed on them.

Engineers rely on these principles to design and

evaluate the strength and reliability of a wide range of

structural systems.

⚫ Mechanical design: Mechanical engineers normally
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face systems subjected to multiple forces. Whether 

designing automotive components, machinery, or 

consumer products, engineers must confirm that the 

components can bear various forces while remaining in 

equilibrium [8, 9]. The knowledge of how to simulate 

and analyse these forces using Python will provide a 

valuable tool for optimizing the mechanical designs. 

⚫ Physics and education: This study has educational 

significance, as it forms the basis for the teaching of 

fundamental principles (statics) in physics and 

engineering courses. Using Python to simulate force 

systems and their behaviour can help the students to 

understand the abstract concepts more concretely. 

Furthermore, educators can use these simulations to 

make the subject matter engaging and handy [10, 11]. 

⚫ Computational tools: Python, a versatile and widely 

adopted programming language, is noteworthy for 

simulating coplanar non-concurrent forces. Python's 

rich ecosystem of libraries for numerical calculations 

and data visualisation makes it an ideal platform for 

engineers, physicists, and students to perform complex 

force simulations efficiently. Developing Python-based 

tools for this purpose can enhance efficiency and 

accuracy in force analysis. In this article, NumPy, a 

module dedicated to numerical computations, has been 

used [12-20]. 

Conventionally, simulating the coplanar and non-

concurrent forces has been depend on the analytical 

techniques, graphical methods, or specialized software, each 

with its own advantages and limitations [21, 22]. Analytical 

methods, i.e., the resolution of forces into components and the 

use of equilibrium equations, gives exact solutions but they 

can be time-consuming and challenging to use on the complex 

systems with several forces. Graphical methods, like the force 

polygon or funicular polygon, offer a more visual approach but 

they are less precise, particularly for systems with many forces 

or when they are used in educational settings [23, 24]. While 

specialized software packages in structural engineering and 

mechanics, such as MATLAB or finite element analysis tools, 

offer powerful solutions, they often require advanced 

knowledge and are not universally accessible [25, 26]. The 

proposed Python-based approach aims to bridge these gaps by 

offering a cost-effective, accessible, and versatile alternative 

that simplifies the simulation process. Python’s ease of use 

(also no license is required to use it), coupled with its powerful 

numerical libraries like NumPy, enables engineers, educators, 

and students to efficiently calculate force resultants, simulate 

equilibrium states, and visualize complex force interactions. 

This approach enhances both educational engagement and 

practical applications, particularly in environments where 

traditional software may not be readily available. 

The primary objectives of this study are to provide an in-

depth understanding of the theoretical underpinnings of 

coplanar non-concurrent forces, including the calculation of 

the resultant force and the principles of equilibrium, 

demonstrate how Python, a popular and versatile 

programming language, can be used to simulate and calculate 

the resultant and equilibrium of coplanar non-concurrent 

forces, to highlight the practical applications of this knowledge 

in fields such as structural engineering and mechanical design. 

While this article aims to provide a comprehensive 

overview of the subject, it is essential to acknowledge its 

limitations. The scope of this article primarily covers the 

analysis of coplanar non-concurrent forces in a two-

dimensional plane. Also, the beams analysed are determinate 

and indeterminate beams have not been considered. More 

complex three-dimensional force systems, dynamics, and 

considerations such as friction and material properties are 

beyond the scope of this article. 
 

 

2. THEORETICAL BACKGROUND  
 

Learning forces and their effects on physical systems is a 

fundamental thing in the field of engineering and physics. 

Coplanar and non-concurrent forces (which are the specific 

class of forces) are the focus of this article. These forces share 

the property of acting in the same plane but do not intersect at 

a common point [2]. Understanding the calculation principles 

behind the resultant forces and their equilibrium is central in 

numerous engineering applications, such as structural analysis 

and mechanical design. In the context of structural engineering 

and the analysis of beams, the principles related to coplanar 

and non-concurrent forces take on particular significance. 

Beams, whether cantilevered or simply supported, are critical 

components of various structures, and understanding how 

forces act on them is necessary for confirming structural 

stability and performance [27]. This section will elaborate on 

the theoretical concepts of coplanar non-concurrent forces, 

providing a deeper insight into the mathematical principles 

underpinning their analysis. 

The concept of the resultant force is important to understand 

the net effect of multiple forces acting on a system. For a 

system the resultant force is the single force that produces the 

same effect as the original forces combined when applied at 

the appropriate point [28]. To determine the resultant force, 

vector addition is employed, a mathematical method that 

considers both the magnitude and direction of forces. 

In this article (in Python formulation), forces are treated as 

vectors, which are mathematical entities that have both 

magnitude and direction. An arrow usually represents a vector 

and can be expressed in the form: F=[HV], where, H represents 

the horizontal component and V represents the vertical 

component of the forece F. 

For a system of non-concurrent forces, each force is 

represented as a vector, and all vectors are considered in the 

same plane, simplifying the analysis. The vector addition 

allows us to find the resultant force vector, which, when 

clubbed with the following steps, will lead to support reactions 

and moments [1, 3, 6]: 

• Resolve external forces into components, i.e., each force in 

the system is resolved into its horizontal and vertical 

components. This step involves breaking down each force 

vector into its constituent parts based on the system's 

geometry. 

• Sum up all the horizontal components and equate them to 

zero for the equilibrium condition. 

• Sum up all the vertical components and equate them to zero 

for the equilibrium condition. 

• If the end is fixed, then the moment will be the sum of all 

the moments. Whereas, if it is hinge, the sum of the 

moments will be equal to zero. 
 

2.1 Common type of loadings 
 

In structural engineering, various types of loads come upon, 

each of which exerts different forces on a structure. 

Understanding and analysing these loads is necessary for 
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designing safe and efficient structures. Here are some 

commonly seen loadings [4, 6, 27]: 

⚫ Concentrated loads: Concentrated loads are the point 

loads that act at specific location/point on a structure. 

These loads are usually represented by forces applied at 

a single point or distributed over a small area. Examples 

of concentrated loads include the weight of a person 

standing on a floor or the force applied by a vehicle's 

tire on a bridge. 

⚫ Uniformly distributed loads (UDL): UDL, often 

called as uniform loads, are the one which are 

distributed evenly along a specific span of a structure. 

These loads are usually represented by a force per unit 

length (e.g., N/m). Common examples of UDLs include 

the self-weight of beams, uniform snow loads on a roof, 

or wind pressures acting along the building height. 

⚫ Uniformly varying loads (UVL): Uniformly varying 

loads are distributed loads that change linearly along 

the length of a structural element. A triangular 

distribution of force often represents these types of 

loads. An example of a uniformly varying load is the 

hydrostatic pressure on the side of a dam, which 

increases with depth. 

⚫ External moments: External moments, also known as 

applied moments, are twisting forces applied to a 

structure. These moments can occur at specific points 

or along the length of a beam or other structural 

element. For instance, a door on hinges applies an 

external moment to its frame. 

Figure 1 shows these loads from the point of view of a 

simply supported beam (the same holds for the cantilever as 

well). Engineers must consider the effects of these various 

loadings during the design and analysis of buildings, bridges, 

and other structures to ensure they can safely support the 

forces they encounter. By understanding and appropriately 

accounting for these loads, engineers can create safe, efficient 

and durable structures. 

 

 
 

Figure 1. Different types of loads acting on a simply 

supported beam 

 

2.2 Commonly used beams 

 

⚫ Cantilever beams: A cantilever beam is a structural 

element supported at one end while the other remains 

free. This type of beam is common in constructions like 

balconies and diving boards. Understanding how to 

calculate the resultant of coplanar non-concurrent 

forces is essential for assessing the stability and 

strength of cantilever beams. When multiple forces are 

applied to a cantilever beam, they may not intersect at 

a single point. Each force must be broken down into 

horizontal and vertical components to find the resultant 

support forces. The summation of these components 

provides the resultant horizontal and vertical reaction 

forces. The net moment of all the vertical force at the 

support has to be evaluated for the support moment. In 

practical terms, calculating the resultant force is 

essential to assess a cantilever beam's bending moment, 

shear forces, and deflections. This analysis ensures that 

the beam can withstand the loads applied to it, 

safeguarding against structural failure and ensuring the 

safety of occupants. In this beam, there are three 

reaction components at the fixed end, and at the free 

end, no reaction is there. A typical cantilever beam is 

shown in Figure 2. 

⚫ Simply supported beams: A simply supported beam is 

another common structural element. It is supported at 

both ends (both ends hinged or one end hinged and the 

other having a roller), allowing it to rest on external 

supports, such as walls or columns. This type of beam 

can be found in floor systems, bridges, and roof trusses. 

Analysing the resultant of coplanar non-concurrent 

forces is essential for designing and evaluating the 

performance of simply supported beams. Similar to 

cantilever beams, multiple forces can act on simply 

supported beams. The process of finding the support 

reactions remains the same, but as the supports are 

either hinged or have rollers, the moment will be zero 

there. Assessing the beam's reaction forces at its 

supports is vital for structural design and ensuring 

equilibrium. Engineers must determine whether the 

beam is under tension or compression and evaluate its 

deformation under the applied loads. A typical simply 

supported beam having both ends hinged, and one 

hinged and the other on rollers is shown in Figures 3(a) 

and (b), respectively. 

⚫ Overhanging beams: This type of beam is projected 

beyond the supports. The overhang can be on either side 

of the supports, as shown in Figure 4. 

In this article, the statically determinate beams are 

considered as these beams are the ones in which all reaction 

components can be obtained with the help of above-mentioned 

equilibrium conditions. 

 

 
 

Figure 2. A typical cantilever beam 

 

 
(a) Simply supported beam 

 
(b) One end fixed and the other on roller 

 

Figure 3. Typical simply supported beams 
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(a) Single overhang 

 
(b) Double overhang 

 

Figure 4. Typical schematic of overhanging beams 

 

2.3 Reaction calculations 

 

Cantilever beams 

(a) Point loads: For the point loading shown in Figure 5, 

the reactions and moments at the fixed end (𝐻𝑎, 𝑉𝑎, and 𝑀𝑎) 

are evaluated as: 

 

 
 

Figure 5. Point loads acting on the cantilever 

 

𝑉𝑎 = ∑𝐹𝑖sin(𝜃𝑖)

𝑖=𝑛

𝑖=1

 (1) 

 

𝐻𝑎 = ∑𝐹𝑖cos(𝜃𝑖)

𝑖=𝑛

𝑖=1

 (2) 

 

𝑀𝑎 = ∑(𝐹𝑖 sin(𝜃𝑖) × 𝑥𝑖)

𝑖=𝑛

𝑖=1

 (3) 

 

(b) UDL: For UDL’s shown in Figure 6, the reactions 

and moments at the fixed end are evaluated as: 

 

 
 

Figure 6. UDL acting on cantilever 

 

𝑉𝑎 = ∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

 (4) 

 

𝐻𝑎 = 0 (5) 

 

𝑀𝑎 = ∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

(𝑥𝑟𝑖 + 𝑥𝑙𝑖)/2 (6) 

 

(c) UVL: For UVL, as shown in Figure 7, the reactions 

are evaluated as shown in Eqs. (7) and (8), but the lever arm 

for the moment at the fixed end are evaluated considering two 

cases viz. case-I and case-II. 

 

 
 

Figure 7. UVL acting on the cantilever 

 

𝑉𝑎 = ∑(
1

2
) (𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

 (7) 

 

𝐻𝑎 = 0 (8) 

 

𝑀𝑎 = ∑(
1

2
) (𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖) × ℓ𝑖

𝑖=𝑛

𝑖=1

 (9) 

 

Case-I: The left end load of UVL is lower than the right load 

 

ℓ𝑖 = (𝑥𝑙𝑖 + (𝑥𝑟𝑖 − 𝑥𝑙𝑖) (1 −
𝑊𝑖,2 + 2𝑊𝑖,1

𝑊𝑖,1 +𝑊𝑖,2

×
1

3
)) (10) 

 

Case-II: The right end load of UVL is lower than left load 

 

ℓ𝑖 = (𝑥𝑙𝑖 +
(𝑥𝑟𝑖 − 𝑥𝑙𝑖)

3
(
𝑊𝑖,1 + 2𝑊𝑖,2

𝑊𝑖,1 +𝑊𝑖,2

)) (11) 

 

 
 

Figure 8. External moments acting on cantilever 

 

(d) External moments: For external moments shown in 

Figure 8, the reactions at the support are evaluated as: 

 

𝑉𝑎 = 0 (12) 

 

𝐻𝑎 = 0 (13) 
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𝑀𝑎 = ∑𝑀𝑖

𝑖=𝑛

𝑖=1

 (14) 

 

Simply supported beam 

In case of simply supported beam as the moment at the 

reactions is zeros so in the calculations they are not been taken 

into account. 

(a) Point loads: For the point loading shown in Figure 9 

the reactions at the supports (𝐻𝑎, 𝑉𝑎, 𝑉𝑏, and 𝑀𝑎) are evaluated 

as: 

 

𝑉𝑏 =
1

𝐿
∑(𝐹𝑖 sin(𝜃𝑖) × 𝑥𝑖)

𝑖=𝑛

𝑖=1

 (15) 

 

𝐻𝑎 = ∑𝐹𝑖cos(𝜃𝑖)

𝑖=𝑛

𝑖=1

 (16) 

 

𝑉𝑎 = ∑𝐹𝑖 sin(𝜃𝑖)

𝑖=𝑛

𝑖=1

− 𝑉𝑏 (17) 

 

 
 

Figure 9. Point loads acting on simply supported beam 

 

(b) UVL: For UVL’s shown in Figure 10, the reactions at 

the supports are evaluated as: 

 

 
 

Figure 10. UVL acting on simply supported beam 

 

𝑉𝑏 = (
1

2𝐿
)∑(𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖) × ℓ𝑖

𝑖=𝑛

𝑖=1

 (18) 

 

𝐻𝑎 = 0 (19) 

 

𝑉𝑎 = (
1

2
)∑(𝑊𝑖,1 +𝑊𝑖,2)(𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

− 𝑉𝑏 (20) 

 

For ℓ𝑖 , Eqs. (10) and (11) will be used. 

(c) UDL: For UDL’s shown in Figure 11, the reactions at 

the supports are evaluated as: 

 

 
 

Figure 11. UDL acting on simply supported beam 

 

𝑉𝑏 = (
1

2𝐿
)∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

(𝑥𝑟𝑖 + 𝑥𝑙𝑖) (21) 

 

𝐻𝑎 = 0 (22) 

 

𝑉𝑎 = ∑𝑊𝑖 (𝑥𝑟𝑖 − 𝑥𝑙𝑖)

𝑖=𝑛

𝑖=1

− 𝑉𝑏 (23) 

 

(d) External moments: For external moments shown in 

Figure 12, the reactions at the support are evaluated as: 

 

 
 

Figure 12. External moments acting on simply supported 

beam 

 

𝑉𝑏 = (
1

𝐿
)∑𝑀𝑖

𝑖=𝑛

𝑖=1

 (24) 

 

𝐻𝑎 = 0 (25) 

 

𝑉𝑎 = −𝑉𝑏 (26) 

 

Point to be noted in all the above calculations is that 

downward loading is considered as positive. All the angles are 

measured counter-clock wise. For cantilever the x coordinate 

starts at fixed end whereas, for simply supported beam it will 

start from left support. 

 

 

3. PYTHON FUNCTIONS TO OBTAIN SUPPORT 

REACTIONS  
 

To simulate the resultant and equilibrium of coplanar non-

concurrent forces in Python the NumPy library/module has 

been used [29-33]. The solution of the above functions is based 

on the following assumptions: 
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• The position of any external force or moment is 

considered from left to right, i.e., for cantilever all the 

positions are measured considering fixed end as 𝑥 = 0 and for 

simply supported beam the left support is at 𝑥 = 0. 

• For overhang case which is on the left side of the 

support of simply supported beam negative x position is 

considered. 

• All the angles are measured counter clockwise from 

the beams as shown in Figures 5 and 8. 

• All the determinate cases have been taken, i.e., the 

beam is designed for the determinate cases. 

The Python functions presented in this section are designed 

to simulate the equilibrium conditions of coplanar and the non-

concurrent forces in cantilever and simply supported beams, 

under various loading scenarios. The code was developed to 

be flexible and modular, allowing for the analysis of point 

loads, point moments, uniformly distributed loads (UDL), and 

uniformly varying loads (UVL) applied to both cantilever and 

simply supported beams. Each function takes in specific 

arguments that correspond to the forces, positions, and angles 

as defined in the problem diagrams. 

The primary package used in the development of these 

functions is NumPy, which provides efficient array operations 

and mathematical functions. Particularly, array() is used to 

handle the input data, and sum() is used for summing up the 

forces and moments. For the angular calculations, the radians() 

function is used to convert the input angles from degrees to 

radians for accurate trigonometric functions, such as sine and 

cosine. 

 

Functions for cantilever beam 

 

def canti_pl(w,θ,x): 

    """ 

    function to evaluate the reaction and moment at the  

    fixed end of a cantilever beam with point loads. 

    Fixed end is considered as 'A'. 

     

    Input: list of load (a) magnitudes (b) angle (c) position 

    Output: Reaction (Va, Ha) and moment (Ma) at the free end 

    """ 

    w=array(w) 

    θ=array(θ) 

    x=array(x) 

     

    θ=radians(θ) 

    Va=sum(w[:]*sin(θ[:])) 

    Ha=sum(w[:]*cos(θ[:])) 

    Ma=sum(w[:]*sin(θ[:])*x[:]) 

    return array([Va,Ha,Ma]) 

def canti_mom(M,x): 

    """ 

    function to evaluate the reaction and moment at the  

    fixed end of a cantilever beam with point moments. 

    Fixed end is considered as 'A'. 

     

    Input: list of (a) moments (b) moment position 

    Output: Reaction (Va, Ha) and moment (Ma) at the free end 

    """ 

    M=array(M) 

    x=array(x) 

     

    Va=0.0 

    Ha=0.0 

    Ma=sum(M[:]) 

    return array([Va,Ha,Ma]) 

def canti_udl(w,x): 

    """ 

    function to evaluate the reaction and moment at the  

    fixed end of a cantilever beam with udl. 

    Fixed end is considered as 'A'. 

     

    Input: list of udl (a) magnitudes (b) position 

    Output: Reaction (Va, Ha) and moment (Ma) at the free end 

    """ 

    w=array(w) 

    x=array(x) 

     

    Va=sum(w[:]*(x[:,1]-x[:,0])) 

    Ha=0.0 

    Ma=sum(w[:]*(x[:,1]-x[:,0])*(x[:,1]+x[:,0])/2.0) 

    return array([Va,Ha,Ma]) 

def canti_uvl(w,x): 

    """ 

    function to evaluate the reaction and moment at the  

    fixed end of a cantilever beam with uvl. 

    Fixed end is considered as 'A'. 

     

    Input: list of uvl (a) magnitudes (b) position 

    Output: Reaction (Va, Ha) and moment (Ma) at the free end 

    """ 

    w=array(w) 

    x=array(x) 

     

    Va=sum(0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))) 

    Ha=0.0 

 

    m=empty(shape(w)[0]) 

 

    if (w[:,0]<w[:,1]).all(): 

        b=w[:,0] 

        a=w[:,1] 

        la=x[:,0]+(x[:,1]-x[:,0])*(1-(a+2*b)/(3*(a+b))) 

        m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la 

    else: 

        a=w[:,0] 

        b=w[:,1] 

        la=x[:,0]+(x[:,1]-x[:,0])*(a+2*b)/(3*(a+b))  

        m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la 

 

    Ma=sum(m) 

    return array([Va,Ha,Ma]) 

 

Functions for simply supported beam 

 

def ssb_pl(w,θ,x,L): 

    """ 

    function to evaluate the reactions at the  

    ends of a simply supported beam with point loads. 

    End 'A' is considered as pin joint and 'B' is roller. 

     

    Input: list of load (a) magnitudes (b) angle (c) position  

    & (d) length of beam. 
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    Output: Reactions (Va, Ha, Vb)  

    """ 

    w=array(w) 

    θ=array(θ) 

    x=array(x) 

     

    θ=radians(θ) 

    Vb=sum(w[:]*sin(θ[:])*x[:])/L 

    Va=sum(w[:]*sin(θ[:]))-Vb 

    Ha=sum(w[:]*cos(θ[:])) 

 

    return array([Va,Vb,Ha]) 

def ssb_udl(w,x,L): 

    """ 

    function to evaluate the reaction at the  

    ends of a simply supported beam with udl. 

    End 'A' is considered as pin joint and 'B' is roller. 

    Input: list of udl (a) magnitudes (b) positions  

    & (c) length of beam. 

    Output: Reaction (Va, Ha, Vb) 

    """ 

    w=array(w) 

    x=array(x) 

     

    Vb=sum(w[:]*(x[:,1]-x[:,0])*(x[:,1]+x[:,0])/2.0)/L 

    Va=sum(w[:]*(x[:,1]-x[:,0]))-Vb 

    Ha=0.0 

 

    return array([Va,Vb,Ha]) 

def ssb_uvl(w,x,L): 

    """ 

    function to evaluate the reaction at the  

    ends of a simply supported beam with uvl. 

    End 'A' is considered as pin joint and 'B' is roller. 

     

    Input: list of uvl (a) magnitudes (b) positions  

    & (c) length of beam. 

    Output: Reaction (Va, Ha, Vb) 

    """ 

    w=array(w) 

    x=array(x) 

     

    m=empty(shape(w)[0]) 

     

    if (w[:,0]<w[:,1]).all(): 

        b=w[:,0] 

        a=w[:,1] 

        la=x[:,0]+(x[:,1]-x[:,0])*(1-(a+2*b)/(3*(a+b))) 

        m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la 

    else: 

        a=w[:,0] 

        b=w[:,1] 

        la=x[:,0]+(x[:,1]-x[:,0])*(a+2*b)/(3*(a+b))  

        m[:]=0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0]))*la 

     

    Vb=sum(m)/L 

     

    Va=sum(0.5*((w[:,0]+w[:,1])*(x[:,1]-x[:,0])))-Vb 

     

    Ha=0.0 

 

    return array([Va,Vb,Ha]) 

def ssb_mom(M,x,L): 

    """ 

    function to evaluate the reaction at the  

    ends of a simply supported beam with point moments. 

    End 'A' is considered as pin joint and 'B' is roller. 

     

    Input: list of moment (a) magnitudes (b) positions  

    & (c) length of beam. 

    Output: Reactions (Va, Ha, Vb)  

    """ 

    M=array(M) 

    x=array(x) 

     

    Vb=sum(M[:])/L 

    Va=-Vb 

    Ha=0.0 

    return array([Va,Vb,Ha]) 
 

While using the above functions one has to be very carefully 

pass the arguments. Table 1 will help the user to supply the 

inputs in a proper format. 
 

Table 1. Functions and their arguments 
 

S. No. Function Arguments 

1 canti_pl(w,θ,x) 

With respect to the Figure 5: 

𝑤 = [𝐹1, 𝐹2, 𝐹3, 𝐹4] 
𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4] 
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] 

2 canti_mom(M,x): 

With respect to the Figure 8: 

𝑀 = [𝑀1, 𝑀2,𝑀3, 𝑀4] 
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] 

3 canti_udl(w,x) 

With respect to the Figure 6: 

𝑤 = [𝑊1,𝑊2] 
𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]] 

4 canti_uvl(w,x) 

With respect to the Figure 7: 

𝑤 = [[𝑊1,1,𝑊1,2], [𝑊2,1,𝑊2,2]] 

𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]] 

5 ssb_pl(w,θ,x,L) 

With respect to the Figure 9: 

𝑤 = [𝐹1, 𝐹2, 𝐹3, 𝐹4] 
𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4] 
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] 

𝐿 = 𝐿 

6 ssb_udl(w,x,L) 

With respect to the Figure 11: 

𝑤 = [𝑊1,𝑊2] 
𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]] 

𝐿 = 𝐿 

7 ssb_uvl(w,x,L) 

With respect to the Figure 10: 

𝑤 = [[𝑊1,1,𝑊1,2], [𝑊2,1,𝑊2,2]] 

𝑥 = [[𝑥𝑙1, 𝑥𝑟1], [𝑥𝑙2, 𝑥𝑟2]] 
𝐿 = 𝐿 

8 ssb_mom(M,x,L) 

With respect to the Figure 12: 

𝑀 = [𝑀1, 𝑀2,𝑀3, 𝑀4] 
𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] 

𝐿 = 𝐿 
 

To test the developed Python functions, ten typical 

problems were chosen based on their significance to practical 

applications in structural and mechanical engineering. These 

problems include a variety of force systems with different 

magnitudes, directions, and points of application, 

demonstrating common situations encountered in structural 

analysis and mechanical design. The selection was made to 
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cover a wide range of difficulties, from simple two-force 

systems to more complex multi-force equilibria. This diversity 

ensured that the functions could be evaluated across different 

levels of difficulty and their applicability to real-world 

engineering problems. 

 

 

4. IMPLEMENTATION OF PYTHON FUNCTIONS  
 

In this section all the Python functions developed above are 

tested against different types of loadings on cantilever and 

simply supported beams. 

Example 1: For the cantilever beam shown below in Figure 

13, evaluate the fixed end reactions: 

 

 
 

Figure 13. Cantilever beam with UDL and point load 

 

Solution: Figure 14 represents the forces, reactions and 

moments acting on the beam shown in Figure 13. 

 

 
 

Figure 14. FBD 

 

This problem has two types of loads viz. point load and udl. 

The functions used are: canti_pl (w,θ,x) and canti_udl 

(w,θ,x). The program to call the functions and its output is as 

follows: 
 

Program 

Va,Ha,Ma=canti_pl([15,20],[90,60],[3,2])+canti_udl([10],[[0,2]]

) 

print(f"Va= {round(Va,3)}, Ha ={round(Ha,3)}, Ma = 

{round(Ma,3)}") 

Output 

Va= 52.321, Ha =10.0, Ma = 99.641 

 

Example 2: For the cantilever beam shown below in Figure 

15, evaluate the fixed end reactions: 
 

 
 

Figure 15. Cantiler beam with UVL and point load 
 

Solution: Figure 16 represents the forces, reactions and 

moments acting on the beam shown in Figure 15. 
 

 
 

Figure 16. FBD 

 

This problem has two types of loads viz. point load and uvl. 

The functions used are: canti_pl (w,θ,x) and canti_uvl 

(w,θ,x). The program to call the functions and its output is as 

follows: 

 

Program 

Va,Ha,Ma=canti_pl([60],[90],[2.5])+canti_uvl([[45,0]],[[0,2]]) 

print(f"Va= {round(Va,3)}, Ha ={round(Ha,3)}, Ma = 

{round(Ma,3)}") 

Output 

Va= 105.0, Ha =0.0, Ma = 180.0 

 

Example 3: For the simply supported beam shown below 

in Figure 17, evaluate the reactions at the end: 

 

 
 

Figure 17. Cantilever beam with UVL 

 

Solution: Figure 18 represents the forces and reactions 

acting on the beam shown in Figure 17. 

 

 
 

Figure 18. FBD 

 

This problem has only uvl. The functions used is: ssb_uvl 

(w,x,L). The program to call the functions and its output is as 

follows: 
 

Program 

w=[[20,60]] 

x=[[2,6]] 

L=6 

Va,Vb,Ha=ssb_uvl(w,x,L) 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha 

={round(Ha,3)}") 

Output 

Va= 44.444,Vb= 115.556, Ha =0.0 

 

Example 4: For the simply supported beam and its FBD 

shown below in Figure 19, evaluate the reactions at the end: 
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Figure 19. Simply supported beam with point loads 
 

Solution: Figure 20 represents the forces and reactions 

acting on the beam shown in Figure 19. 

 

 
 

Figure 20. FBD 
 

This problem has only point loads. The functions used is: 

ssb_pl(w,θ,x,L). The program to call the functions and its 

output is as follows: 
 

Program 

w=[10,15,20] 

θ=[90,30,45] 

x=[4,6,10] 

L=12 

Va,Vb,Ha=ssb_pl(w,θ,x,L) 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha 

={round(Ha,3)}") 

Output 

Va= 12.774, Vb= 18.868, Ha =27.133 

 

Example 5: For the simply supported beam shown below 

in Figure 21, evaluate the reactions at the end: 

 

 
 

Figure 21. Simply supported beam with UVL and point 

loads 

 

Solution: This problem has point loads and udl. The 

functions used are: ssb_pl (w,θ,x,L) and ssb_udl (w,x,L). The 

program to call the functions and its output is as follows: 

 

Program 

Va,Vb,Hb=ssb_pl([20,60],[90,180-

45],[2,7],9)+ssb_udl([30],[[2,6]],9) 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha 

={round(Ha,3)}") 

Output 

Va= 91.65, Vb= 90.776, Hb =-42.426 

 

Example 6: For the simply supported beam shown below 

in Figure 22, evaluate the reactions at the end: 

 
 

Figure 22. FBD of an over hanging beam 

 

Solution: This problem has point load, uvl, and udl. The 

functions used are: ssb_pl(w,θ,x,L) , ssb_udl(w,x,L), and 

ssb_uvl(w,x,L). The program to call the functions and its 

output is as follows: 

 

Program 

Va,Vb,Ha=ssb_pl([30],[90],[1],5)+ssb_udl([24],[[2,5]],5)+ssb_u

vl([[40,0]],[[5,6.5]],5) 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha 

={round(Ha,3)}") 

Output 

Va= 42.6, Vb= 89.4, Ha =0.0 

 

Example 7: For the overhanging beam shown below in 

Figure 23, evaluate the reactions at the end: 

 

 
 

Figure 23. Overhanging beam with moment, point load, and 

UDL 

 

Solution: This problem has point load, external moment, 

and udl. The functions used are: ssb_pl(w,θ,x,L), 

ssb_udl(w,x,L), and ssb_mom(w,x,L). The program to call 

the functions and its output is as follows: 

 

Program 

Va,Vb,Ha=ssb_pl([30],[45],[5],6)+ssb_udl([20],[[6,8]],6)+ssb_m

om([40],[3],6) 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha 

={round(Ha,3)}") 

Output 

Va= -9.798, Vb= 71.011, Ha =21.213 

 

Example 8: For the simply supported beam shown below 

in Figure 24, evaluate the reactions at the end: 

 

 
 

Figure 24. Overhanging beam with UVL 

 

Solution: This problem has two uvl’s. The function used is: 

ssb_uvl(w,x,L). The program to call the functions and its 

output is as follows: 
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Program 

Va,Vb,Ha=ssb_uvl([[0,10],[10,0],[10,20]],[[-1,0],[0,2],[2,5]],5) 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Ha 

={round(Ha,3)}") 

Output 

Va= 26.0, Vb= 34.0, Ha =0.0 

 

Example 9: For the simply supported beam shown below 

in Figure 25, evaluate the reactions at the end: 

 

 
 

Figure 25. A complex beam 

 

Solution: Free body diagrams of beams AB and CD are 

shown below in Figure 26. 

 

 
 

Figure 26. FBD 

 

This problem has one uvl but if looked closely, then the 

problem can be divided into two. First, the top beam has to be 

solved with uvl, which will result in a reaction at roller and D. 

Then the reaction at C will act as a point load for the bottom 

beam, which now can be solved for the reactions at A and B. 

The function used is: ssb_udl(w,x,L), and ssb_pl(w,x,L). The 

program to call the functions and its output is as follows: 

 

Program 

Vc,Vd,Hd=ssb_uvl([[3,12]],[[0,5]],7) 

Va,Vb,Hb=ssb_pl([Vc],[90],[2],5) 

print(f"Vc= {round(Vc,3)},Vd= {round(Vd,3)}, Hd 

={round(Hd,3)}") 

print(f"Va= {round(Va,3)},Vb= {round(Vb,3)}, Hb 

={round(Hb,3)}") 

Output 

Vc= 21.429, Vd= 16.071, Hd =0.0 

Va= 12.857, Vb= 8.571, Hb =0.0 

 

Example 10: For the simply supported beam shown below 

in Figure 27, evaluate the reactions at the end: 
 

 
 

Figure 27. Arrangements of overhanging beams 

 
 

Figure 28. FBD 

 

Solution: The free body diagram of beams shown in Figure 

26 is shown in Figure 28. 

This problem also has two beams to solve. First, the top 

beam has to be solved with two-point loads, resulting in 

reaction at E and A. Then, the reaction at E will act as a point 

load for the bottom beam, which now can be solved for the 

reactions at C and D. Also, there is one moment acting at F of 

magnitude 10 N-m. The function used is: ssb_pl (w,θ,x,L), and 

ssb_mom (w,x,L). The program to call the functions and its 

output is as follows: 

 

Program 

Va,Ve,Ha=ssb_pl([20,40],[90,180-45],[3,4],3) 

Vc,Vd,Hc=ssb_pl([Ve,20],[90,60],[2,1],3)+ssb_mom([-

10*1],[4],3) 

print(f"Va= {round(Va,3)},Ve= {round(Ve,3)}, Ha 

={round(Ha,3)}") 

print(f"Vc= {round(Vc,3)},Vd= {round(Vd,3)}, Hc 

={round(Hc,3)}") 

Output 

Va= -9.428, Ve= 57.712, Ha =-28.284 

Vc= 34.118, Vd= 40.915, Hc =10.0 

 

While this study largely focuses on theoretical examples, 

the developed Python functions can be readily applied to a 

variety of real-world engineering situations as well. For 

instance, they can be used in structural analysis for designing 

safe and stable buildings, bridges, and mechanical systems 

subjected to multiple forces and moments. These functions can 

also serve as an educational tool to help the students 

understand the principles of statics and equilibrium in a more 

collaborative and practical way. 

 

 

5. CONCLUSIONS  

 

In this article, coplanar non-concurrent forces in beams 

were modelled using Python Programming. First, the 

mathematics for different types of loading is being presented. 

Then, functions were developed for both cantilever and simply 

supported beams for different types of loadings. The 

developed functions are also presented in the article, along 

with the explanation of arguments which these functions will 

take. Then, these functions were tested against ten typical 

problems in structural engineering. It has been observed that 

the results obtained from the functions are in good agreement 

with the literature. The developed Python functions have 

successfully simulated the coplanar and non-concurrent forces 

in beams under various loading conditions, providing accurate 

results that are in sync with the theoretical expectations. 

It has also been observed that the ability of Python 

programming to model complex-looking algorithms in a few 

lines of code is immense. Hence, it can be said that the 
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exploration of these forces through Python is a leap toward 

engineering excellence and scientific progress. Through this 

article, the readers will gain a comprehensive understanding of 

the principles of equilibrium of coplanar non-concurrent 

forces in beams, and they will also learn to apply them to real-

world problems with the help of Python programming. The 

simplicity and usefulness of Python programming make it a 

valuable tool for both engineering practitioners and students. 

Engineers can benefit from efficient structural analysis, while 

students can gain a hands-on understanding of the principles 

of equilibrium and force systems. 

Regardless of the accuracy and versatility of the developed 

Python functions, some limitations were viewed in the 

simulations. The present implementation primarily focuses on 

two-dimensional coplanar and non-concurrent force systems, 

which restricts its application to more complex three-

dimensional or dynamic force systems. Also, the analysis is 

limited to the determinate beams, with indeterminate systems 

not yet considered. Future work could aim to expand the 

capabilities of the Python functions to handle three-

dimensional force systems, dynamic loads, and indeterminate 

structural analyses. Additionally, incorporating more complex 

material properties and the effects of friction could enhance 

the realism of the simulations. As the field progresses, further 

improvements in the user interface and integration with other 

computational tools may also be explored to increase the 

accessibility and applicability of the developed approach. 
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NOMENCLATURE 

 

F external forces  

W per unit length variation of uniformly distributed 

or uniformly varying loads 

V vertical support reaction 

H horizontal support reaction 

𝑥 position of external force 

(𝑥𝑙 , 𝑥𝑟) span of UDL or UVL 

M moment  

 

Greek symbols 

 

𝜃 angle at which the external force will act 

 

Subscripts 

 

ℓ  left 

𝑟 right 
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