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Abstract This research article effectively demonstrates the implementation of the 
modified Adomian decomposition method (MADM). Using a numerical procedure 
called MADM, some classes of Volterra integro differential equations can be solved 
can be solved with easily computational and high degree of acuracy. The procedure 
relies on ADM approximate series solutions, Laplace transform, and Pade approx-
imants. The efficacy and dependability of MADM is tested through a numerical 
example. The results acquired reveal that the provided approach is highly effective 
and robust in addressing this differential equation. 
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1 Introduction 

Volterra integro-differential equations are commonly found in various scientific areas 
such as astronomy, biology, biotechnology, engineering, physics, and radiology. 
There are numerous applications for these equations, including diffusion processes, 
and cell growth. The concept of Volterra integro-differential equations was initially 
introduced by Volterra himself when he encountered a situation where a single equa-
tion consisted of both differential and integral operators. He was exploring a model 
for population growth to investigate the influence of heredity. As a result. This novel 
form of equation is referred to as the Volterra integro-differential equation. These 
equations can be expressed as: 

u(n) = f (x) + λ 
x ∫
0 
k(x, t)u(t)dt. (1) 

It is crucial to establish and delineate the initial conditions. 

u(0), u'(0), u''(0), . . . ,  u(n−1) (0). 

Given the widespread use of differential equations in the modeling and character-
ization of real-world phenomena, the solutions to these equations are of significant 
significance in the realms of applied mathematics and engineering. However, solving 
these equations can be challenging, especially when dealing with strongly nonlinear 
equations. Therefore, it is necessary to obtain exact solutions or accurate approxima-
tions with a high level of precision. The behavior of the phenomena can be studied 
and understood through these solutions. To achieve this goal, various numerical 
and approximation methods have been employed and developed for solving a wide 
range of equations [1–29]. The Adomian decomposition method is widely recog-
nized as a systematic technique used to solve a wide range of linear and nonlinear 
equations. These equations can include ordinary differential equations, partial differ-
ential equations, integral equations, integro-differential equations, and other related 
equations. 

The aim of this work is to improve the ADM to provide accurate solutions for 
Volterra integro-differential equations. To accomplish this, an alternative technique 
called the MADM will be utilized. MADM alters the series solution for a specific 
category of Volterra integro-differential equations by incorporating the Laplace trans-
formation on the truncated series derived from ADM. Consequently, the transformed 
series is converted into a meromorphic function through the utilization of Padé 
approximants. Ultimately, the inverse Laplace transform is applied to the resultant 
analytic solution, generating the exact solution. 

Section 2 provides a concise exposition of the fundamental principles underlying 
the ADM [30–32], Padé approximation, and Laplace transformation. In Sect. 3, we  
present concrete instances to exemplify the applicability and efficacy of our proposed
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methodology. Finally, Sect. 4 offers a comprehensive conclusion that encapsulates 
the key discoveries and contributions of this research endeavor. 

2 Research Methodology 

2.1 ADM Procedure 

The essence of the ADM lies in its focus on differential equations of the following 
form: 

Lu + Ru + Nu = g, (2) 

here g and u are the systems input, and output, L and N is the linear and nonlinear 
operators, R is the linear remainder operator is the operator. We note that the selec-
tion of the linear operator is intended to yield an easily invertible operator, leading 
to straightforward integrations. Furthermore, we emphasize the significance of the 
choice for L. and its inverse L−1 are decided by the particular equation to be solved 
(Adomian). Moreover, we choose L = dm 

dxm (.) for mth-order differential equation and 
thus its inverse L−1 follows as m-fold definite integration operator from x0 to x. We 
have L−1Lu = u − ψ, where ψ incorporates the initial values as 

ψ = 
m−1∑ 

v=0 

βv 
(x − x0)v 

v! . 

Applying L−1 to both sides of Eq. (2) yields: 

u = g(x) − L−1 [Ru + Nu], (3) 

where g(x) = ψ + L−1g. The ADM solution: 

u(x) = 
∞∑ 

0 

un, (4) 

And the nonlinear term Nu: 

Nu = 
∞∑ 

0 

An, (5) 

Knowing that, the Adomian polynomials An, depending upon u0, u1, . . . ,  un, that 
are gained form the nonlinearity formula
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An = 
1 

n! 
dn 

d λn 

[ 

f 
∞∑ 

n=0 

λn un 

] 

λ=0 

n = 0, 1, 2, . . . (6) 

where λ is a parameter. 

3 Numerical Test 

In this section of the discussion, we will analyze one illustration. This example 
is taken into consideration and is illustrative of the technique for Volterra integro-
differential equations. 

Example 3.1 Consider the provided Volterra integral differential equation. 

u''(x) = x + 
xʃ 

0 

(x − t)u(t)dt u(0) = 1, u'(0) = 1 (7)  

To apply the MADM procedure for this problem, first we employ the ADM by 
integrating Eq. (7), this yields to 

u(x) = x + 
x3 

6 
+ L−1 

⎛ 

⎝ 
xʃ 

0 

(x − t)u(t)dt 

⎞ 

⎠. (8) 

According to the ADM process, we possess the following 

u0(x) = x + 
x3 

6 
, (9) 

and 

un+1(x) = L−1 

⎛ 

⎝ 
xʃ 

0 

un(t)dt 

⎞ 

⎠. (10) 

Which yields to 

u1(x) = L−1 

⎛ 

⎝ 
xʃ 

0 

(x − t)u0(t)dt 

⎞ 

⎠ = 
x5 

5! + 
x7 

7! , (11) 

u2(x) = L−1 

⎛ 

⎝ 
xʃ 

0 

(x − t)u1(t)dt 

⎞ 

⎠ = 
x9 

9! + 
x11 

11! , (12)
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As a result, the series-form solution to Eq. (7) provided by 

u(x) = x + 
x3 

6 
+ 

x5 

5! + 
x7 

7! + 
x9 

9! + 
x11 

11! , (13) 

And in the limit of an infinite number of terms, the sequence converges to the exact 
solution u(x) = sinhx. Numerical results are displayed in Table 1 and are presented 
graphically in Fig. 1. To improve the accuracy, we employ the Laplace transform on 
Eq. (13) as follows.  

L(u(t)) = 
1 

s12 
+ 

1 

s10 
+ 

1 

s8 
+ 

1 

s6 
+ 

1 

s4 
+ 

1 

s2 
, (14) 

Assum = 1 z , then 

L(u(t)) = z2 + z4 + z6 + z8 + z10 + z12 , (15) 

Then we apply Pade approximate of order 
[
3 
3 

] 
on (15), yields to 

[
3 
3 

] = 
z2 

1−z2 , Recalling z = 1 s , gives 
[
3 
3 

] = 1 
(1− 1 

s2 
)s2 

. 
Using the Padé approximation and the inverse Laplace transform, one obtains 

u(x) = sinhx.

Table 1 Numerical results 
x Exact solution ADM solution Absolute error 

0 1 1 0 

0.2 0.2013360025 0.2013360025 0 

0.4 0.4107523258 0.4107523258 1.05 × 10−15 

0.6 0.6366535821 0.6366535821 2.10 × 10−13 

0.8 0.8881059822 0.8881059822 8.86 × 10−12 

1 1.1752011936 1.1752011935 1.61 × 10−10 

Fig. 1 a Exact and approximate solutions, b the absolute error 
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4 Conclusion 

The MADM is efficiently used in this research paper to obtain precise solutions 
for Volterra integro-differential equations. In this case, an analysis is conducted to 
assess the applicability and effectiveness of this technique. The obtained outcomes 
are presented as exact solutions, highlighting the significant power of the MADM. 
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