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Interface yield stress and plastic viscosity of fresh concrete significantly influences its pumping ability. 
The accurate determination of these properties needs extensive testing on-site which results in 
time and resource wastage. Thus, to speed up the process of accurately determining these concrete 
properties, this study tends to use four machine learning (ML) algorithms including Random Forest 
Regression (RFR), Gene Expression Programming (GEP), K-nearest Neighbor (KNN), Extreme Gradient 
Boosting (XGB) and a statistical technique Multi Linear Regression (MLR) to develop predictive models 
for plastic viscosity and interface yield stress of concrete. Out of all employed algorithms, only GEP 
expressed its output in the form of an empirical equation. The models were developed using data 
from published literature having six input parameters including cement, water, time after mixing 
etc. and two output parameters i.e., plastic viscosity and interface yield stress. The performance of 
the developed algorithms was assessed using several error metrices, k-fold validation, and residual 
assessment etc. The comparison of results revealed that XGB is the most accurate algorithm to predict 
plastic viscosity (training R2 = 0.959, testing R2 = 0.947) and interface yield stress (training 
R2 = 0.925, testing R2 = 0.965). To get increased insights into the model prediction process, 
shapely and individual conditional expectation analyses were carried out on the XGB algorithm which 
highlighted that water, cement, and time after mixing are the most influential parameters to estimate 
both fresh properties of concrete. In addition, a graphical user interface has been made to efficiently 
implement the findings of this study in the civil engineering industry.
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PI  Performance Index
MAE  Mean Absolute Error
P  Pressure
OF  Objective Function
Q  Flowrate
GP  Genetic Programming
SHAP  Shapely Additive Explanatory Analysis
GUI  Graphical user Interface
ICE  Individual Conditional Expectation
R  Coefficient of Correlation
DT  Decision Tree
R2  Coefficient of Determination
RMSE  Root Mean Squared Error
ANN  Artificial Neural Networks

In the construction industry, the utmost attention is usually given to the hardened properties of concrete 
specifically compressive strength. However, the procedure of transporting freshly made concrete from ground 
to the intended location in the construction of dams, high rise buildings, and long-span bridges etc. is very 
challenging and requires due attention1–3. Although, the concrete is widely transported to great distances and 
huge vertical heights by means of a concrete pump in a steel pipe, the problem of blockage of pump and pipes and 
segregation of concrete while transportations remain a serious issue. These issues not only result in degradation 
of concrete quality, but also cause loss of time and resources on the worksite4–6.

The ability of a concrete to easily pass through a pipe without altering its fresh and hardened properties 
using pump is known as pumpability of concrete. There are mainly two types of studies related to this, one those 
who focus on pump and pipe configuration and those who focus on the concrete fresh properties itself. Since, 
for a given worksite setting, one doesn’t have much choice in terms of pump and pipe related properties like 
pump capacity, pipe diameter, pipe length etc. Thus, the study and optimization of fresh concrete properties 
plays a key role in achieving the desired outcomes7–9. To quote an example, in the construction of world’s 
tallest building in Dubai, the Burj Khalifa, to ensure a smooth and single stage pumping of concrete over 600 m 
without blockage, the engineers performed extensive tests to finalize a concrete mixture to achieve the desired 
properties10,11. Similarly, the hurdles faced while constructing Head Race Tunnel project in India had been 
descried by Hazaree and Mahadevan12. The project required concrete lining up to a distance of 6.3 km which was 
successfully achieved by extensive testing and meticulous planning done by the engineers. The crucial processes 
of material selection, equipment and pipeline selection were done by careful evaluation of priming and pumping 
methodologies and thorough pre-testing before the actual concrete pumping. The plastic viscosity of concrete is 
of particular importance in this regard. It is a crucial rheological property of concrete to consider in situations 
where concrete is subjected to shear forces like pumping, casting, and placement etc. It is an indication of how 
easily the concrete can be mixed, transported, and placed without loss of quality (bleeding & segregation). It is 
also important to indicate the ease with which concrete passes through the pump without blockage or clogging. 
Similarly, interface yield stress of concrete is a crucial parameter which that determines the strength of bond 
between concrete and the reinforcement bars13–15.

Previous studies regarding estimation of fresh concrete properties
The flow profile of concrete inside a pipe along with three layers named as the lubrication layer at the interface 
between the pipe and concrete, a shear induced region where concrete is under shear and a plug flow zone 
where concrete flows under translational motion16–18 are shown in Fig. 1. In previous studies, the calculation 
of concrete pumpability is related to pumping pressure (P) and flow rate (Q) of a concrete mixture. Jang et al.19 
introduced a bi-linear mode to estimate the P-Q relationship. The first assumes that only a boundary layer of 
small thickness is subjected to shear while the second part considers partial shear during pumping. Scholars 
have also devised different equations to compute pumping pressure19–21 for the purpose of determining concrete 
pumpability which are given by Eqs. (1) and (2). In below equations,   is viscous constant of the lubricating layer 
measured by tribometer ( P a.s/m), τ io is the interface yield stress (Pa), while τ o is the yield stress and µ is 
plastic viscosity ( P a.s) of the concrete measured with the help of a viscometer. Also, k represents pipe filling 

Figure 1. Schematic diagram to show flow of fresh concrete inside a pipe23.
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coefficient while R and L are the radius and length of pipe respectively measured in meters. Equation (1) gives 
the concrete movement to where only a small boundary layer is subjected to shear and Eq.  (2) is applicable 
when bulk concrete is partially sheared during pumping. The concrete pumping pressure is estimated with the 
help of its rheological and tribological properties when the pumping configuration, concrete flow rate and pipe 
dimensions are pre-defined22. Thus, predicting plastic viscosity and interface yield stress is crucial to obtaining 
an optimal pumping pressure.

 
 (1)

 
 (2)

In another study conducted by Choi et al.24 the authors calculated flow rate by integration of velocity and radius. 
The developed models utilized rheological properties of each layer, and the four aforementioned parameters were 
determined via experimentation. More recently, several scholars suggested using a portable tribometer to determine 
τ io and  15,25–31. Similarly, He et al.32 studied the influence of nano titanium oxide on both porous and normal 
concrete and the authors concluded that the micromechanics approach might be feasible for predicting mechanical 
concrete properties. However, among these previously developed models, the model developed by Ngo et al.33 is 
valid only for normal concrete. In practice, it has been identified that for normal concrete, interfacial properties are 
crucial to determine pumping pressure34–37. So, the interfacial properties which characterize the lubrication layer 
properties, have been the subject of interest for many researchers. For example, Ngo et al.33 conducted experiments 
in which they estimated variation in pumping parameters with change in concrete compositions including variation 
in superplasticizer, water cement ratio and paste volume etc. The authors concluded that concrete composition 
affects the lubrication layer formation and concrete tribological properties. Also, Dong et al.38 documented that yield 
stress generally decreases with increase in finer content of concrete. Similarly, T. Ngo (2009) concluded that increase 
in cement paste volume results in a linear decrease in viscosity and a minimal decrease in interface yield stress39. 
Moreover, the variation in water-cement ratio also affects plastic viscosity and yield stress in the same fashion as 
cement paste volume. The increase in gravel to sand ratio also causes a decrease in viscosity40–43. According to Choi 
et al.44 both under question parameter also varied greatly with coarse aggregate size, and plastic viscosity exhibited a 
linear increasing trend with increase in coarse aggregate size.

Concrete plastic viscosity and yield stress are commonly measured by tribometers38,45,46. Based on the 
findings from these tribometers, researchers have attempted to develop empirical prediction models. Ferraris 
and Larrard47 developed a model to investigate the relationship between properties of finer mixtures and mortar 
parameters. Ngo et al.33 studied fresh concrete properties in relation to lubrication layer thickness and ratio of 
solid concentration to maximum compactness of the granular mixture. But all these models are constructed 
with respect to specific grading of the aggregates and concrete additives, so their application is greatly limited. In 
addition, there are very few works in the literature about prediction of plastic viscosity and interface yield stress 
of concrete. Thus, to ensure smooth concrete pumping, it is important to accurately estimate yield stress and 
plastic viscosity of concrete mixes as accurately as possible based on the mixture composition.

The optimization of concrete mixes to be used for pumping and transportation through pipes also requires 
the paste-distance correlations to be investigated. But these tests consume significant time and resources. 
The rheological properties of concrete mixes depend upon its composition and are inherently complex 
to understand48–50. Also, the properties of concrete mixes in fresh state are time dependent. Therefore, it is 
imperative to have a thorough understanding of concrete properties during the fresh state to make the concrete 
pumping process smooth.

Artificial Intelligence (AI) in civil engineering
Since there is a transition to artificial intelligence-based systems in almost every industry, civil and materials 
industry is also making its transition towards intelligence-based designs and methodologies driven by data. AI 
in the realm of civil engineering mainly refers to amalgamation of advanced machine learning (ML) and deep 
learning techniques to optimize material usage, foster sustainable construction practices and intelligent design 
of infrastructure to improve the overall efficiency and accuracy of construction industry. ML is a subtype of 
artificial intelligence that enables computers to recognize patterns from the data and use that learning to make 
accurate predictions for future unseen data without explicit human intervention51. Machine learning tools have 
emerged as an effective way to make decisions based on learnings from the data. The ML techniques understand 
the complex and hidden relationships between independent and dependent variable(s) in the data obtained from 
experimental investigations. These learnings from the data are then used by professionals like engineers etc. 
to make accurate decisions without going into the timely and costly testing procedures. In the technologically 
advanced world of today, ML techniques are seen as a superior alternative of traditional statistical approaches 
and are extensively used in modelling complex material properties52–64. Thus, there is a need to apply the robust 
and widely used ML models to predict fresh concrete properties to solve the aforementioned problems in 
transportation of concrete over long distances. These ML-based models developed using the generalized data 
from past studies can be used as reliable tools to predict fresh properties and their use not only results in time 
and cost savings, but also increases accuracy in estimating rheological concrete properties.

Research significance
From the above discussion, it is evident that a purely experimental approach to assess different rheological 
properties like plastic viscosity and interface yield stress requires extensive resources and is not the most 
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feasible option given the diverse site conditions. In past, there have been several attempts to develop empirical 
relationships to obtain concrete plastic constant using statistical techniques13,39,65. However, these statistical 
models have limited applicability and are sensitive to the material properties of concrete constituents etc. Also, 
it is evident from the overview of relevant literature that are few analytical models available for determining 
plastic viscosity and interface yield stress of concrete but there is a need for exploration on the subject using 
advanced and accurate ML techniques to predict these properties. The data driven models based on the already 
available experimental data can help greatly in this regard to accurately predict rheological concrete properties 
thus eliminating the need for extensive testing and increasing the productivity of the construction industry.

The employment of advance ML techniques will help the professionals to effectively calculate these values 
without carrying out extensive testing. Thus, this study intends to apply random forest regression (RFR), 
K-nearest Neighbor (KNN), Extreme gradient Boosting (XGB), Gene Expression Programming (GEP) and also 
a statistical analysis technique called Multi Linear Regression (MLR) to predict the aforementioned properties 
of concrete in fresh state and contribute to the literature about predicting plastic viscosity and interface yield 
stress of concrete mixes using different ML algorithms because the existing literature on the subject is extremely 
limited. The advantage of using evolutionary technique like GEP alongside other algorithms is that it gives the 
output in the form of an empirical equation unlike other employed algorithms. This property makes GEP a 
grey-box model as compared to other black-box model algorithms66. GEP provides increased transparency and 
insights into the prediction process in the form of an empirical equation that relates the predicted parameter to 
the input parameters. It also offers the advantage of not requiring the pre-optimization of model architecture 
like Artificial neural networks etc., thus requires less computing power and time to complete the model training 
and prediction process67. Similarly, the tree-based algorithms (RFR and XGB) are known for their accuracy and 
in giving insights about the importance of different input features. Also, the use of MLR can serve as a way to 
compare the accuracy of newly developed ML algorithms to predict rheological concrete parameters compared 
to the conventional statistical approach. The particular significance of this study lies in the fact that it draws a 
comparison between GEP, tree-based algorithms, KNN, and MLR to highlight their strengths and weaknesses 
for predicting important rheological properties of concrete. Also, this study intends to utilize a novel explanatory 
analysis technique (SHAP) analysis on the algorithm of highest accuracy to highlight the importance of different 
input features in predicting the two outputs. This thing has not been explored in the literature to the best of 
author’s knowledge.

Research methodology
The identification of research problem and collection of data regarding that problem are the most important 
steps. Thus, the data was collected from literature to be used for training and testing the algorithms. The collected 
data underwent several statistical analyses to reveal more information about the distribution and correlation of 
the data. After that, in Step 3, four ML algorithms including GEP, RFR, XGB, KNN and one statistical regression 
technique i.e., MLR were employed to predict the two concrete properties. After algorithm development, 
they were validated using several techniques including k-fold cross validation, error assessment, and residual 
distribution. After the models were validated, they were compared to point out a single accurate model which 
will be used for further analysis. In step 4, the most accurate model was used for conducting contemporary 
explanatory analysis techniques including SHAP and individual conditional expectation (ICE) analysis. Finally, 
a graphical user interface (GUI) has been developed to help implement the findings of this study in the practical 
settings. The schematic representation of the current study’s methodology is given in Fig. 2 while the explanation 
of the working mechanism of the employed algorithms is given in the subsequent sections.

Gene expression programming (GEP)
GEP is an AI technique which uses evolutionary algorithms to find solution to a problem. It is an extension of 
Genetic Programming (GP) and based on Charles Darwin’s principles of natural selection. GEP finds solution to 
the problem using genes and performing evolutionary rules on these genes67. The genes are build using various 
mathematical functions called primitive functions. These functions range from simple arithmetic functions like 
addition, subtraction to more complex like square root, sine, cosine etc68. These genes which can be expressed as 
expression trees represent a small piece of code and are combined in various ways using crossover and mutation 
to create a full program which represents the solution to the given problem69. Crossover involves combining two 
expressions to develop a new one and mutation means changing an existing expression70. These processes in 
GEP are similar to the genetic mutation and crossover in humans. The pictorial representation of the processes 
of crossover and mutation is given in Fig. 3.

The prediction process starts with the formation of a random population of computer programs called 
chromosomes. These chromosomes are evaluated for their ability to solve the given problem using a pre-defined 
fitness function. The chromosomes with good performance based on the fitness function are selected for the next 
generation while the worst performing ones are deleted from the population72. This process repeats several times 
until a population of chromosomes with the highest accuracy is reached73. The flowchart of the overall process 
is given in Fig. 4.

K-nearest neighbor (KNN)
KNN is a widely used ML technique which can solve both classification and regression problems74. The concept 
of KNN is based on the principle that if the k closest neighboring samples to a given sample in the space belong 
to a specific category, then the given sample should also belong to that category. In other words, the KNN 
algorithm is used to decide the category of an unknown sample by looking at the category of its k closest 
neighboring samples. For solving a regression problem, the KNN algorithm computes the distance between 
an input unknown sample and all other samples present in the dataset and selects the first k samples with the 
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shortest distances. KNN algorithm computes the value of unknown data samples by computing the average of 
relevant variables and comparing the results with the k-nearest samples in the training set75. The algorithm’s 
effectiveness is highly dependent on the k value76, which determines the number of samples to be considered 
in the regression process. A smaller value of k may result in a higher level of noise in the process, while a larger 
k value may lead to over smoothing and lower accuracy. Therefore, choosing an appropriate k value is crucial 
for optimization of the KNN performance. The distance between neighboring points used for the regression 

Figure 3. Representation of expression tree and genetic processes71.

 

Figure 2. Overall research methodology of the study.
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problems is calculated commonly by using Minkowski function as given in Eq. (3). In Eq. (3), xi and yi are the 
ith dimensions, and q indicates the order between the points x and y.

 
F (mi) =

(∑ f

i=0
(| xi − yi |)q

)1

q
 (3)

The KNN method has several benefits over other ML algorithms. Firstly, it is simple and easy to understand. 
Secondly, it can easily understand nonlinear decision boundaries of both regression and classification problems. 
Moreover, the flexibility of the KNN approach is enhanced by the ability to adjust the k value to provide a suitable 
choice limit.

Random forest regression (RFR)
RFR is an ensemble ML algorithm consisting of two components i.e., decision tree (DT) and bagging algorithm 
and it can be utilized to solve both regression and classification problems based on the given dataset. It can 
swiftly relate input and output variables to make accurate predictions and has the ability to simulate complex 

Figure 4. Graphical representation of ML models.
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and multivariate relationships between different dependent and independent variables. The algorithm runs 
by iteratively partitioning the feature space into several sub-regions and this partitioning continues until a 
stopping criterion is met. Although the decision tree algorithm was robust for solving regression problems in 
civil engineering, Breiman proposed RFR algorithm to overcome the learning limitations of DTs77 and since its 
development, RFR has proven to be useful in solving various civil and geotechnical related problems78–81. RFR 
treats DT as base learner and uses bagging technique on them to make predictions. It generates a number of DTs 
that are correlated by using different samples from the bagging technique and the results of all DTs are averaged 
to make the final predictions to overcome the overfitting issue. It is reported that RFR has several advantages 
over the traditional DT algorithm including ability to seamlessly handle large data sets, robustness towards 
outliers and over-fitting82. Also, it can simultaneously deal with various variables without skipping any of them 
and is simpler than other algorithms like ANN etc. The architecture of the RFR algorithm is illustrated in Fig. 4.

Extreme gradient boosting (XGB)
In 2016, Chen and Guestrin developed an ensemble ML algorithm of remarkable accuracy named as XGB83 which 
uses gradient boosting and DT algorithm to make predictions. Since its development, it has found numerous 
applications in diverse sectors such as identifying diseases, classifying traffic accidents, and predicting customer 
behaviours etc84–86. The higher accuracy of XGB as compared to other boosting techniques is by virtue of its 
ability to learn fast and run several processes in parallel and reduce overfitting86. XGB treats DTs as base learners 
and uses gradient boosting to build more efficient trees. The DTs used in XGB provide useful information about 
the importance of different variables in predicting the output87. The XGB algorithm enhances this ability of DTs 
by optimizing a loss function to reduce the error of previously generated trees88. In simpler words, the process of 
applying gradient boosting on DTs is simply combining several weak learners to create a strong learner through 
an iterative process82. The XGB algorithm adds new trees in a sequence to reduce the error of previous trees36. 
This feature enables the algorithm to quickly fit the training data, but it can also become overfitted to the training 
data if this addition of trees is done at a swift rate. Thus, it is advised to reduce the rate of fitting of algorithm to 
the training data by means of newly added trees89. This limitation of learning rate is done by applying a factor 
called shrinking rate to the predictions of newly constructed trees. The value of this shrinking rate is advised to 
be between 0.01 and 0.1 in the literature87. The selection of a lower value of shrinking rate or learning rate makes 
sure that new trees are gradually added to the model to reduce the residual of previously trained trees, and the 
model is not overfitted. The visual representation of XGB prediction process is given in Fig. 4.

Multi-linear regression (MLR)
It is a common statistical practice to model the relationship between two variables using linear regression. 
Multiple linear regression (MLR) is an advanced version of basic linear regression which can be used to model 
linear relationship between several variables. In the current study, MLR model is developed to predict both 
plastic viscosity and interface yield stress of concrete. The general form of linear regression equation is given by 
Eq. (4). In Eq. (4), c is the intercept, X1, X2, . . . .Xn are variables and b1, b2, . . . .bn are coefficients.

 Y = c + b1X1 + b2X2 + b3X3 + . . . + bnXn (4)

Data collection and analysis
A reliable database plays a crucial role in building ML-based models. Thus, a database of 142 instances was 
collected from published literature (given in Table A) which contained concrete mixture composition and 
experimental results for plastic viscosity and interface yield stress. The dataset was used from a study in which 
the authors designed an experiment to investigate the relationship between concrete mixture composition and 
the two fresh properties of concrete i.e., plastic viscosity and interface yield stress23. In particular, the aim of the 
experiment was to examine the interaction between pipe walls of a concrete pump and the outer layer of concrete 
as (shown in Fig. 1) using a device called tribometer. A tribometer has three parts: (i) an agitator equipped with 
a speed electronic control device for measuring the torque, a container, and a steel cylinder. A lubricating layer is 
formed with the help of two co-axial cylinders and the rheological properties of concrete were computed using 
the Bingham model. The authors varied the concrete mixture composition to study their effect on the rheological 
properties of concrete. Also, the effect of time was investigated by measuring the rheological properties at different 
times after mixing the concrete. The data extracted from the tribometer included rotational velocity V measured 
in rotations per second and torque T measured in newton meter which were used to calculate plastic viscosity 
and interface yield stress were using a Bingham model. A detailed description of the procedure of extracting the 
plastic viscosity and interface yield stress from the measured values of torque and rotational velocity along with 
the detailed material properties of concrete constituents like type of cement, maximum diameter of aggregate, 
and type of superplasticizer etc. can be found in23. The dataset used in current study has six input parameters 
including cement, water, coarse aggregate, fine aggregate, superplasticizer, and time after mixing. These six input 
parameters were used in the original experimental setup and are categorized as influencing parameters to predict 
plastic viscosity and interface yield stress of concrete. According to the recommendations from previous studies, 
the collected dataset has been divided into training (70%) and testing (30%) sets to make sure that the developed 
models can perform well on the unseen testing data. The algorithms will be trained using training data and 
testing data will be used to assess the accuracy of developed models afterwards. This type of data splitting makes 
sure that models are not overfitted to the training data and can perform equally well on the unseen data and90,91. 
The distribution characteristics of data like minimum and maximum value, average, standard deviation, 25%, 
50% and 75% percentile value are given in Table 1.

A statistical analysis tool called correlation matrix is frequently utilized to check the interdependence between 
various variables used to develop the models. It is used to investigate the effect of explanatory variables on each 
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other because it quantifies the relationship between different variables in the form of coefficient of correlation 
(R). Th extent of interdependence between variables can be judged by looking at the R values between two 
variables. Generally, a value above 0.8 indicates the presence of a good correlation between two variables92. It is 
important to check interdependence between variables before developing a ML model. It is due to the fact that 
if most of the variables are strongly correlated to each other, then it might cause complications in the model, a 
problem commonly referred to as multi-collinearity93. Notice from Fig. 5 that the correlations between variables 
are less than 0.8 mostly so they will not give rise to the problem of multi-collinearity.

Violin plots are also constructed to visualize the distribution of parameters used in the study as shown in 
Fig. 6. In the violin plots, the density of data is shown by the width of the violin plot. Also, the thick black bar 
represents the 25–75% quartile range, and the small blue dot indicates the median value. Moreover, the extended 
black line represents the 95% confidence interval. It can be seen from violin plots that both input and output 
variables are spread across a wide range. The literature recommends having this type of wide data distribution to 
make widely acceptable and generalized ML models94.

Figure 5. Correlation matrix of variables.

 

Cement Water Fine Aggregate Coarse Aggregate Superplasticizer Time after mixing Plastic Viscosity Interface yield stress

Units kg kg kg kg Litres/ 100 kg cement minutes Pa/s Pa

Symbol A B C D E F Y1 Y2

Maximum 604 275 1064 1175 4.6 90 1324 125.8

Minimum 420 147 553 709 0 0 105.6 15.7

Mean 460.19 190.10 776.29 958.14 2.142 35.660 553.10 41.55

Standard Deviation 29.804 29.461 104.04 81.628 1.938 33.758 230.667 21.145

Median 460 184 792 968 1 30 516 36.42

25% 450 171 731 918 1 0 352.80 27.43

50% 460 184 813 968 1 30 465.68 40.025

75% 460 184 859 1010 3.80 60 603.75 50.29

Table 1. Statistical description of dataset.
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Figure 6. Violin plot distribution of parameters.
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Performance assessment and model development
Development of GEP model
A software package was used in current study for efficiently for implementing GEP algorithm known as 
GeneXpro Tools version 5.0. The dataset fed into the software and split into training and testing data. The 
training was used for training of GEP and after training, the testing data was used to assess the accuracy of 
trained model. After splitting of the data, the next step was to specify some GEP hyperparameters because each 
dataset and each algorithm needs a specific set of hyperparameters. The important hyperparameters to tune for 
GEP algorithm include head size, number of genes, set of functions, and number of chromosomes etc. Each of 
these hyperparameters control a critical aspect of the GEP algorithm (as indicated by Table 2) and are crucial 
for the development of a robust GEP model. For instance, head size and number of chromosomes dictate the 
convergence of the model towards the solution. Similarly, number of genes specify the number of sub expression 
trees that will be formed by the algorithm and joined by the linking function to get the final equation. The 
selection of right set of these parameters is crucial since the model’s performance and accuracy is dependent on 
these hyperparameters. Thus, in current study, these parameters were carefully chosen after consulting previous 
studies and extensive testing. The initial set of parameter values were chosen using a trial-and-error method and 
previous literature recommendations95,96. Then these parameters were varied across a range of possible values 
and the set of values which yielded highest accuracy were used to build the GEP model for predicting both 
outputs. The model development was started using chromosome number as 10 and it was varied in increments 
of 10 until the maximum accuracy was achieved at 100 chromosomes for predicting plastic viscosity and at 80 
chromosomes for interface yield stress. In the same way, head size was initially selected as 5, and the model 
presented in current study achieved maximum accuracy at head size equal to 20 and 30 for plastic viscosity and 
interface yield stress respectively. The accuracy of the model may be improved by increasing these values however 
increasing these values beyond a certain point may result in overfitting of the model. Selecting higher values of 
these parameters also increases the run time and computational power required by the algorithm. Thus, the GEP 
modelling essentially refers to the process of finding the optimal balance between accuracy, model complexity, 
and computational power required by the algorithm and the model developed using GEP in this study presents 
the optimal balance between these aspects. Furthermore, notice that the set of functions used to be included in 
the final equation consist of simple arithmetic functions and trigonometric functions. It was deliberately done in 
order to keep the resultant equations simple and compact for fast computation and implementation. The set of 
GEP hyperparameters employed in current study is represented in Table 2.

Development of RFR, XGB, and KNN models
In contrast to GEP algorithm, XGB, RFR, and KNN algorithms were developed with the help of python 
programming language in Anaconda software. All the prerequisite steps of model development like data loading, 
data splitting, and actual model development (hyperparameter settings) were done with the help of python codes 
as shown in Fig. 7. For algorithms like XGB and RFR, the tunning process of hyperparameters holds paramount 
importance since the accuracy of these algorithms depend directly on these hyperparameter settings97. The 
careful selection of the hyperparameters will enable the algorithms to mitigate overfitting and make them 
suitable for variable data configurations98. There are several approaches available for hyperparameter selection 

Parameters Significance Search Space

Optimal Values

Y1 Y2

GEP Parameters

No. of Chromosomes Specifies the chromosomes in the population 10 to 100 100 80

No. of Genes Controls the number of sub-expression trees made 2 to 10 5 5

Head Size Controls size of each sub-expression 10 to 50 20 30

Linking Function Used to link sub-expressions from all the genes Addition, Subtraction, 
Division, Multiplication Addition Addition

Functions Arithmetic functions used to make the equation +, -, x, ÷, sqrt, sin, cos, tan +, -, x, ÷, sqrt, sin, cos, tan
+, -, x, ÷, 
sqrt, sin, 
cos, tan

KNN Parameters

k-neighbors The number of samples averaged by the algorithm to give 
the prediction 2 to 10 8 5

Distance Function The metric used to calculate the distance of a sample from its 
neighbouring samples Euclidean, Minskowski Euclidean function Euclidean 

function

RFR Parameters

Max. depth Maximum size of each decision tree 2 to 10 5 5

n-estimators Number of base learners present in the algorithm 10 to 50 20 20

XGB Parameters

Max. depth Maximum size of each DT 5 to 20 10 10

n-estimators Number of DTs made by the algorithm 50 to 200 100 100

Learning rate Shrinking factor applied on the predictions of each new tree 0.01 to 0.1 0.01 0.01

Table 2. Hyperparameter settings of ML models.
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to avoid manual selection of parameters. The grid search approach is the most famous and efficient one out of 
all the available techniques and is widely used for hyperparameter selection99. This approach exhaustively tests 
all possible combinations of hyperparameters in a gird configuration to find the best set of parameters and it has 
the advantage that it does not further alter the good-performing values100. For XGB, RFR, and KNN models in 
current study, the ‘GridSearchCV’ function in sklearn library of python was used to implement the GridSearch 
algorithm101. Despite the development of other techniques like random search approach etc. for parameter 
optimization, GridSearch approach is still the most efficient and widely used technique because:

 (i) it is easy to implement.
 (ii) it is reliable and results in low dimensionality.
 (iii) it results in greater accuracy than other optimization techniques102.

There are two common hyperparameters which need to be tuned in case of XGB and RFR called n-estimators and 
maximum depth which specify the number of trees build by the algorithm and depth of each tree respectively. 
The RFR algorithm builds different trees and takes mean of all the predictions made by trees to reach at the final 
prediction. The number of trees developed by the algorithm is controlled by the parameter “n-estimators”. Thus, 
the value of this parameter must be carefully chosen so that the algorithm builds a considerable number of trees 
and takes their mean to make the final prediction. Similarly, the parameter “k-neighbours” of KNN algorithm 
specifies the number of neighboring samples that the algorithm considers and takes into account in making the 
decision. The accuracy of KNN algorithm largely depends upon this parameter and selecting an abnormally 
larger value of this parameter may result in the algorithm being overfitted. The XGB algorithm adds new trees 
in a sequence to reduce the residual of previously constructed trees and it can fit very quickly to the training 
data by virtue of this technique, but it can also lead to overfitting of the algorithm to the training data89. Thus, it 
is beneficial to limit the rate at which the algorithm adds new trees to reduce the residual of previous tree. This 
can be done by applying a shrinking factor to the prediction made by the newly constructed trees. Therefore, a 
factor called learning rate is applied to the new predictions which limits the rate at which the algorithm fits to 
the training data. The literature suggests keeping its value between 0.01 and 0.1103 so that the residual reduction 
by each added tree is done slowly. Thus, the value of learning rate has been selected as 0.01 for prediction of 
both outputs. The values of other hyperparameters used in current study found using grid search approach are 
given in Table 3 along with the search space in which GridSearch algorithm searched for those values and the 
significance of each hyperparameter in the development of the ML algorithm.

Performance assessment of models
The developed models will be checked by means of different error metrices because it is necessary to make 
sure that the models can effectively solve the given problem without abnormally large errors104. The coefficient 
of determination R2 is used as an indicator of model’s general accuracy105. However, due to its insensitivity 
towards some conditions such as a constant value being multiplied or divided with the output106, several other 
metrices are used alongside it. The metrices MAE and RMSE are described as crucial for evaluating a ML 
based model104. MAE measures average error between real and predicted values and RMSE gives an indication 
of presence of larger errors107. The metrices PI and OF are commonly used as indicators of model’s overall 
performance because they simultaneously consider different metrices and calculates a value based on them108. 
Thus, every metric has its own importance. The employed error metrices, their mathematical formulas, their 
range and suggested criteria for acceptable models are given in Table 3. The criteria given in Table 3 will be used 
to check the suitability of the resulting ML models.

Figure 7. Model development process using python programming language.
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Results and discussion
GEP results
The empirical equations for predicting plastic viscosity and interface yield stress are given by Eqs.  (5) and 
(6). Since the number of genes were selected as 3 for plastic viscosity modelling, the algorithm yielded three 
expression trees which were combined using the chosen linking function (addition) to get the final equation. 
While the number of genes were selected as 5 for interface yield stress prediction thus the algorithm yielded 
four sub-expression trees which are linked by the addition linking function to get the final result in Eq. (6). The 
predictive abilities of the GEP algorithm for prediction of both outputs are given in the form of scatter plots for 
predicting plastic viscosity in Fig. 8. Notice from Fig. 8 (a) that the data points are scattered across the line of linear 
fit with some points lying at great distances from the line. It depicts that the GEP algorithm failed to accurately 
predict plastic viscosity at several points. It can also be seen from the training and testing error metrices of GEP 
given in Table 4. Notice that the R2 value for training and testing of GEP is 0.74 and 0.77 which is less than the 
recommended value of 0.8. It means that the general performance of GEP algorithm is not satisfactory. The PI 
values for training and testing set are 0.11 and 0.07 respectively which is less than the upper threshold of 0.2. 
Also, the OF value of GEP is 0.086 which is also less than the recommended value of 0.2. Although the PI and 
OF values suggest that the performance of GEP algorithm is satisfactory, the correlation between the actual and 
predicted values is less than 0.8 which suggests that its general accuracy is not satisfactory.

Regarding the prediction of interface yield stress, the scatter plots in Fig. 8 (b) provide a useful way to visualize 
the predictive capabilities of the algorithm. The line of linear fit represents the points where actual and predicted 
values are the same. It can be seen that some data points are lying close to the line while some are scattered in 
both training and testing plots. It indicates that there are some points at which GEP didn’t accurately predict the 
interface yield stress. The error evaluation summary of GEP model is also given in Table 5. The R2 value for 
both training and testing sets lie in the range of 0.6 which is not up to the recommended value for a good model 
(0.8). Also, the average error between actual and predicted yield stress is 9.17 and 12.80 for training and testing 
data respectively. The PI value for training is 0.161 and 0.20 for testing while it is recommended to have PI value 
less than 0.2 for an acceptable model. Thus, despite the advantage that GEP algorithm yielded an empirical Eq. 

 Y1 = T1 + T2 + T3 (5)
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No. Metric Abbreviation Formula Range Suggested value

1. Mean absolute error MAE Σ |x − y|
N 0 to + ∞ Close to zero

2. Root mean square error RMSE
√∑

(x − y)
2

N
0 to + ∞ Close to zero

3. Coefficient of determination R2 1 −

∑
(x−y)2∑

(y−ymean)2 0 to 1 R2 > 0.8

4. Performance index PI RRMSE
1+R 0 to + ∞ PI < 0.2

6. Objective Function OF
(NTraining−NTesting

N

)
PTraining + 2

(NTesting
N

)
PTesting 0 to + ∞ OF < 0.2

Table 3. Summary of error evaluation criteria.
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GEP KNN XGB MLR RFR

Training Testing Training Testing Training Testing Training Testing Training Testing

MAE 83.38 83.28 91.15 98.77 22.39 29.28 106.66 160.92 46.55 90

RMSE 109.22 66.06 119.96 138.4 57.10 73.32 144.43 196.1 61.02 128.28

R2 0.7419 0.7765 0.6608 0.7219 0.959 0.947 0.5093 0.2073 0.9149 0.6429

PI 0.11 0.07 0.137 0.142 0.059 0.071 0.184 0.222 0.065 0.12

OF 0.086 0.139 0.066 0.206 0.097

Table 4. Error metrices of developed models for plastic viscosity prediction.

 

Figure 8. Scatter plots to GEP training and testing; (a) for plastic viscosity; (b) for interface yield stress.
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)}
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( F
A
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 T8 = tan {tan (B)}

KNN results
The KNN algorithm didn’t yielded an equation for prediction of interface yield stress and plastic viscosity. 
However, the KNN results are shown as scatter plots in Fig. 9 for the prediction of both outputs and it can be 
seen that the points are scattered and not lie much closer to the line of linear fit. The error metrices of KNN for 
plastic viscosity prediction given in Table 4 also suggest the same. The R2 value is 0.66 for training which shows 
that there is only 60% accuracy in the predictions made by KNN. The accuracy improved a little in testing set as 
shown by 0.729 R2 value but it is still less than the recommended value of 0.8. The average errors of KNN are 
also greater than GEP which shows that KNN will give larger errors than GEP when used to make predictions. 
The PI values are 0.137 and 0.142 for training and testing which are close to the upper value of 0.2. The OF 
value is also 0.139 which suggests that the overall performance of KNN algorithm is also marginally satisfactory 
according to the performance indicators. In the same way, the result for interface yield stress prediction is shown 
as scatter plots in Fig. 9 (b) and the error evaluation is given in Table 5. It can be seen from Table 5 that the 
R2 value is 0.520 for training while it is 0.678 for testing. Both of these values are greater than GEP but lower 

than the recommended literature value of 0.8. The trend is same for other error metrices of KNN like MAE and 
RMSE. This shows that the performance of KNN isn’t satisfactory to accurately predict the interface yield stress. 
This is also visible from the scatter plots in Fig. 9 where the data points are very much scattered and not lie close 
to the linear fit line. The PI values are 0.168 and 0.17 for training and testing respectively which is less than the 
recommended value of 0.2. However, despite the PI and OF values lying in the recommended range, the KNN-
based predictive model has a difference of 8 to 12 Pa between actual and predicted values.

MLR results
The MLR result for plastic viscosity prediction is given as Eq. (7) while the equation for yield stress is given as 
Eq. (8). The performance of MLR is also given as scatter plots in Fig. 10 (a) for plastic viscosity and performance 
evaluation is given in Table 4. Firstly, the R2 value is 0.50 for training and 0.20 for testing which suggests that 
MLR accuracy is very less than the other algorithms. Similarly, the testing PI and OF value of MLR model are 
greater than 0.2 which suggests that MLR failed to exhibit overall satisfactory performance to predict plastic 
viscosity. The scatter plots for interface yield stress prediction are shown in Fig. 10 (b) for MLR training and 
testing sets. The inability of MLR to accurately predict output and lack of correlation between actual and 
predicted values is evident from the scatter plots. Also from Table 5, notice that the MAE and RMSE values of 
MLR are significantly higher than other algorithms while the R2 value is at the lowest of about 0.2. Notably, both 
the training and testing PI values of MLR (0.25 and 0.321 respectively) are considerably higher than 0.2 which 
suggests the overall performance of MLR model is acceptable to be used for prediction. Moreover, the OF value 
of MLR being 0.292 also suggests that it can’t be used for accurate prediction of the output. It further necessitates 
the utilization of ML models for predicting properties of concrete.

 Y1 = −3529.81 + 3.04A − 0.49B + 1.37C + 1.55D − 10.99E + 4.34F (7)

 Y2 = 37.89 − 0.1A + 0.03B + 0.0007C + 0.045D − 5.90E + 0.25F (8)

RFR results
The error metrices calculated for RFR-based predictive model for plastic viscosity are given in Table 4 and also 
shown as scatter plots in Fig. 11 (a). Notice that the R2 value for RFR training is 0.91 which indicates that the 
RFR predicted values are very close to the actual values. It can also be depicted by the very less training MAE 
value of 46.55. However, the performance of RFR algorithm drops significantly when tested against unseen 
data of the training set. The R2 drops to a lowest value of 0.64 and MAE increases to 90 Pa/s from 46 Pa/s 
which is a significant loss in accuracy. Similarly, the training PI suggests that the performance of algorithm 
is satisfactory in training phase having a value of 0.065 but it increases to 0.12 in testing phase which shows 
that the algorithm could not exhibit the same level of accuracy when used for unseen data. It shows that the 
algorithm is overfitted to the training set. Similarly, Fig. 11 (b) shows the RFR result for interface yield stress 
prediction and the summary of error evaluation of RFR model is also given in Table 5. First of all, the R2 value 

GEP KNN XGB MLR RFR

Training Testing Training Testing Training Testing Training Testing Training Testing

MAE 9.17 12.80 8.8 12.98 1.966 2.45 13.81 15.64 4.02 12.53

RMSE 12.18 16.4 11.9 16.2 4.63 5.24 17.5 21.22 6.188 18.15

R2 0.5655 0.6825 0.5209 0.6788 0.9259 0.965 0.3489 0.2278 0.8806 0.695

PI 0.161 0.20 0.168 0.17 0.057 0.053 0.25 0.321 0.078 0.20

OF 0.165 0.184 0.054 0.292 0.150

Table 5. Error metrices of developed models for interface yield stress prediction.
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for RFR training is 0.88 which is greater than the recommended value of 0.8. The good performance of algorithm 
in training phase can also be depicted by the MAE value of only 4.02 Pa. However, the performance of drops 
significantly in the testing phase with R2 reaching the value of 0.695. Same trend was observed for RMSE and 
MAE. Also, the training PI suggests that the performance of algorithm is satisfactory having a value of 0.078 
but it increases significantly to 0.2 in testing phase which is equal to the upper threshold for PI values. It depicts 
that the algorithm could not exhibit the same level of accuracy when used for testing data and is overfitted to 
the training set. It can also be seen from Fig. 11 that the data points in training plot lie close to the linear fit line 
while they are scattered in the testing data plot.

XGB results
The XGB algorithm failed to give an empirical equation like GEP, however the result of XGB to predict plastic 
viscosity is given in the form of scatter plots in Fig. 12 (a). It can be seen from the plots that most of the data 
points lie close to the linear fit line which shows the excellent accuracy of XGB. Also, the error metrices for 
XGB is given in Table 4. Notice that the R2 value of XGB is 0.959 and 0.947 for training and testing respectively 
and the MAE value is also considerably less than the other algorithms. It is an indicator of XGB’s excellent 
accuracy to predict the plastic viscosity values. The RMSE values are 57.10 for training and 73.32 for testing 
which suggests that there will not be any abnormally larger errors in the predictions made by the XGB algorithm. 
Moreover, the OF value of XGB is considerably less than the other algorithms (0.066) which again suggests that 
its performance is better than all other algorithms. Also, the error metrices calculated for XGB-based predictive 
model for interface yield stress are given in Table 5 and also shown as scatter plots in Fig. 12 (b). Notice that the 

Figure 9. Scatter plots to KNN training and testing; (a) for plastic viscosity; (b) for interface yield stress.
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R2 value for XGB training is 0.92 which indicates that the XGB predicted values are very close to the actual 
values. The performance of XGB algorithm doesn’t drop when tested against unseen data of the training set. 
Similarly, the training PI suggests that the performance of algorithm is satisfactory in training phase having 
the lowest value of 0.057 and it remained almost same in testing phase (0.053) which shows that the algorithm 
exhibited the same level of accuracy when used for unseen data. It shows that the algorithm is not overfitted 
to the training set and can be effectively used for predictions on the new data. This can also be visualized from 
scatter plots in Fig. 12 where the data points in training and testing plots lie very close to the linear fit line. Thus, 
from Table 5 it can be concluded that XGB proved to be the most accurate algorithm for prediction of interface 
yield stress of concrete.

K-fold Validation
K-fold cross-validation is a statistical method for evaluating the generalization abilities of ML models and 
helps to confirm that the models are resistant to overfitting or underfitting. Overfitting occurs when a model 
performs exceptionally well on the training data but fails to generalize to unseen data. It can result from the 
model capturing irrelevant patterns in the training set. K-fold validation mitigates overfitting by ensuring that 
the model is trained and validated on different subsets of the data, promoting more robust learning patterns. 
This technique works by dividing the whole dataset into ‘k’ equal-sized subsets, known as folds. During every 
iteration, one fold is used for testing, while all other folds are cumulatively used for testing. This process is 

Figure 10. Scatter plots to MLR training and testing; (a) for plastic viscosity; (b) for interface yield stress.
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repeated ‘k’ times, enabling each fold to act as testing data exactly one time, as shown by Fig. 13. This ensures 
that the developed models are generalizable to unseen data, thereby eliminating overfitting. This study utilizes 
8-fold cross-validation for all three algorithms, with the accuracy of each algorithm in each fold measured by 
RMSE, as shown in Figs. 14 and 15.

Figure  14 shows the k-fold results of algorithms for prediction of plastic viscosity. Plot (a) in Fig.  14 
corresponds to the results of GEP algorithm. It can be seen that the RMSE values corresponding to the 8 folds 
of GEP have some difference in the values. Although it is closer to the RMSE values of GEP given in Table 4, the 
disparity between the RMSE values of different folds suggests that the performance of algorithm is marginally 
accurate, and the algorithm may be subject to slight overfitting. Next, plot (b) of Fig. 14 shows the KNN results 
of k-fold validation. In contrast to GEP, the RMSE values of different folds are very close to each other suggesting 
that although KNN has less accuracy (as indicated in Table 4), it is not overfitted. Moving on, plot (c) shows 
MLR results in which some folds yield slightly higher values of RMSE indicating slight overfitting. In contrast, 
the RFR results in plot (d) show a substantial difference in RMSE values of different folds conforming with the 
previous findings that RFR model is overfitted to the training set. In particular, RFR yields RMSE values as high 
as 130 Pa/s in some folds while this value is only 60 Pa/s in other folds. It suggests that the performance of 
RFR algorithm can significantly change based on the distribution of the data. In other words, the RFR model 
developed in current study is not well generalized for making predictions. It may be due to the fact that RFR 
algorithm picked up some unnecessary correlations from the data which affected its accuracy. Finally, plot (e) of 

Figure 11. Scatter plots to RFR training and testing; (a) for plastic viscosity; (b) for interface yield stress.
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Figure 13. Schematic representation of k-fold cross validation.

 

Figure 12. Scatter plots to XGB training and testing; (a) for plastic viscosity; (b) for interface yield stress.
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Fig. 14 show the k-fold validation results of XGB algorithm. It can be seen from the plot that the RMSE values 
from each fold are lying sufficiently closer to one another. Moreover, these values are also closer to the training 
and testing RMSE values of XGB given earlier in Table 4. It confirms that XGB is resistant to overfitting and can 
be used effectively on unseen dataset.

Similarly, the k-fold results of algorithms for prediction of interface yield stress are shown in Fig. 15. The 
GEP results for yield stress prediction are shown by plot (a) of Fig. 15 from which it can be seen that there is 
some disparity between the RMSE values of different folds. Previously, in Table 5, GEP algorithm also showed a 
difference in accuracies for training and testing data. It can be attributed to the fact that GEP is an evolutionary 
technique which solves the problem by means of chromosomes (mathematical expressions). These expressions 
are randomly generated and later modified to fit the data. Due to this randomness in the structure of GEP, it 
is unable to give a generalized and robust model for prediction of interface yield stress. In next plot (b), which 
has been made with k-fold values for KNN algorithm, the difference between RMSE values for various folds 
is less prominent compared to GEP. It suggests that KNN is not overfitted to the training data and has good 
generalization capabilities although with a lower accuracy. It is also true for the MLR results. Its accuracy is less 
than that of KNN with RMSE values approaching 24 Pa but it is generalized, nevertheless. However, the RFR 
model again shows prominent signs of overfitting with substantial differences between RMSE values of different 
folds indicating that the model’s performance varies for diverse data distributions. It highlights that RFR is not 
generalized well and thus should not be used practically for the prediction of subject output. At last, XGB again 
stands out having the least difference among different RMSE values. Also, the RMSE values for XGB are very less 
compared to its counterparts. This suggests that XGB, in addition to accurately predicting plastic viscosity on 
unseen data, can be effectively leveraged to predict interface yield stress of unseen data too.

Residual assessment
In addition to error evaluation and k-fold validation, it is imperative to check the residuals of individual 
algorithms to confirm the maximum error which can be encountered while using the algorithm. Also, the 
residual assessment of algorithm results will help us to understand the range in which the errors lie most of the 
time. Thus, Fig. 16 shows the residual assessment of developed algorithms for plastic viscosity prediction. Notice 
from plot (a) (which shows the GEP residuals) that most of the residuals are concentrated in the range − 100 
to 200. Although there are some observations for which the residual is more than 300 Pa/s, but mostly the 
error remains within the range of -150 to 150. It is a fairly larger range considering the importance of accurate 
predictions for plastic viscosity of concrete. In the next plot, the KNN residuals are depicted which shows a 
similar range of residuals with some residuals going as high as 500 Pa/s. However, in this plot too, the range 

Figure 14. K-fold Validation results of algorithms for prediction of plastic viscosity.
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for existence of majority of the residual is -200 to 300. It is again a larger range, and it suggests that KNN 
fails to predict accurate values at various observations. Moving on, plot (3) for MLR shows a similar picture 
with residuals as high as 600 Pa/s. In contrast to GEP and KNN, larger number of residuals are lying beyond 
the range − 400 to 400 suggesting that MLR has higher error rates. It can be attributed to the fact that MLR 
is a simple statistical technique which is unable to capture the complexity of relationships that exist between 
plastic viscosity and concrete mixture composition. Plot (d) developed using RFR residuals shows significant 
improvement. There are no errors going beyond − 200 to 300 in the plot while it can be seen that most residuals 
are concentrated in the range of -100 to 100. It underlines that the accuracy of RFR is better than KNN, MLR, 
and GEP algorithms. However, it is overfitted to the training data (discussed previously) implying that it may 
give unexpected errors when tested on unseen data. At last, plot (e) shows the XGB residuals with an impressive 
improvement in the prediction accuracy. More than 95% of the XGB residuals lie in the narrowest range of -100 
to 100. It shows that almost 96% of the times, the XGB error between actual and predicted plastic viscosity will 
not exceed 100 Pa/s. In addition, there is not a single residual going beyond the range − 200 to 300 further 
highlighting XGB’s superior performance as compared to other algorithms.

Figure 17 highlights the residual assessment of models developed for the purpose of prediction of interface 
yield stress of concrete. Starting from plot (a) of Fig. 17 for GEP algorithm, it can be seen that the range for all 
residuals is -30 to 50 while most residuals lie in the range − 20 to 20 Pa. This suggests that GEP can give error up 
to 50 Pa when used to predict interface yield stress values. The KNN residuals are shown next in plot (b) which 
paints a similar picture to that of plot (a). Most of the residuals are concentrated between − 20 Pa and 30 Pa while 
the maximum residual goes as high as 48 Pa. In plot (c), the range is increased for MLR with residuals lying in 
the widest rage of -40 to 80. The maximum observed residual in case of MLR is almost 70 Pa which suggests a 
significant drop in accuracy compared to GEP and KNN algorithms. The RFR residuals in plot (d) of Fig. 17 
highlights an interesting phenomenon. Although there is an improvement in accuracy because most of the 
residuals are lying from − 10 Pa to 20 Pa. However, there are some residuals which go beyond this range to as 
large as 60 Pa. It shows that while 95% of the times the error will be around 10 Pa, there can be situations where 
RFR can yield larger than 50 Pa errors. This abnormal distribution of residuals can be attributed to the fact that 
RFR showed significant overfitting tendencies in the previous sections and this distribution is a result of that. 
Finally, the XGB residual assessment is given in plot (e) which highlights two important developments: (i) the 
range for errors is significantly reduced compared to previous algorithms and now the range is -7 to 7 compared 
to -30 to 50 for GEP, (ii) most of the errors lie really close to zero and only some errors go beyond the 10 Pa 

Figure 15.  K-fold Validation results of algorithms for prediction of interface yield stress.
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Figure 24. ICE analysis for investigating relationships between inputs and interface yield stress.
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been identified by Ngo et al.33. The amount of water in the concrete directly impacts the paste volume which in 
turn affects the plastic viscosity of concrete39. Similarly, the influence of finer content (sand) and additives like 
superplasticizer on rheological concrete properties have been documented by various studies17,38,125. Thus, it 
can be concluded that XGB is the most robust algorithm to predict fresh concrete properties not only because it 
depicted higher accuracy on training and testing datasets but also because the insights into the XGB prediction 
process provided by the SHAP, and ICE analyses are also the same as observed in experimental investigations.

Practical implications
It is important to highlight the practical implications of such empirical studies to further highlight their 
importance. It has already been discussed in introduction section that accurate determination of plastic 
viscosity and interface yield stress are crucial for determining rheology and pumpability of concrete. However, 
the accurate determination of these properties calls for significant time and resources on-site. Thus, this study 
was conducted to develop empirical prediction models for determining these two properties of concrete in fresh 
state. Also, with the recent surge in use of AI and ML in every aspect of the world, it is important to provide these 
types of frameworks through which the construction industry as a whole and the concrete industry in particular 
can make its transition towards informed decision-making techniques using the transformative power of ML. 
This study employed XGB, RFR, GEP, and KNN algorithms for the purpose of fresh properties prediction of 
concrete. Out of all these algorithms, only GEP expressed its output as an empirical equation for the prediction 
of subject outputs. However, the accuracy of GEP wasn’t satisfactory compared to the other algorithms. Also, 
the developed equations are lengthy and computationally extensive which increases the risk of human error 
while calculating the values. In contrast, the accuracy of XGB was exceptionally good for the prediction of 
both outputs. However, its black-box nature prevented it from yielding an equation. Thus, to overcome these 
limitations, a GUI has been developed using python programming language to help compute the plastic viscosity 
and interface yield stress of concrete automatically based on the set of input variables considered in this as shown 
in Fig. 25. The user can enter desired input values and upon pressing the predict button, result will be obtained 
instantly in the output box specified in the GUI. This GUI can serve as an invaluable tool for professionals in 
the civil engineering industry and different stakeholders to effectively predict concrete properties by entering 
the mixture composition without requiring extensive technical expertise. Also, with the increasing shift of 
civil engineering industry towards informed decision making, this GUI is an important tool which reflects 
the practical application of ML utilization in civil engineering industry. The accurate determination of these 
properties without going into extensive testing will help the workers to make informed decisions quickly on 
the site without waiting for the test results. Also, a lot of resources which would have otherwise wasted by 
conducting the tests on concrete can be saved by employing these ML models. In situations where concrete is 
used in bulk as batches, there can be several time, resource, and apparatus limitations which can be prevented by 
using these ML models for predicting concrete properties. The two outputs considered in this study i.e., plastic 

Figure 25. GUI developed for prediction of outputs.
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viscosity and interface yield stress are of particular importance in situations where concrete is subjected to shear 
forces such as during pumping, placement, and casting etc. Thus, this study holds paramount importance in this 
regard that it provides a framework to accurately determine these properties using the transformative power of 
ML. The predictive models in this study can be effectively utilized to determine these properties on site which 
will save time and help in making swift decisions.

Conclusions
This study was conducted to develop ML-based prediction models for yield stress and plastic viscosity of 
concrete since efficient pumpability of concrete through pumps for high-rise construction requires accurate 
estimation of these concrete properties. Four ML algorithms including GEP, XGB, RFR and KNN along with a 
statistical technique i.e., MLR were used for this purpose using a database of 142 instances and the conclusions 
of this study were:

• Among all the algorithms employed in this study, only GEP expressed its output in the form of an empirical 
equation to predict plastic viscosity and interface yield stress.

• The deployed algorithms were validated using error metrices, k-fold validation, and residual assessment 
which proved that XGB is the most accurate algorithm to predict the subject outputs while GEP and KNN 
had marginal accuracies. The algorithm comparison by means of taylor plots also confirmed this.

• The results of error evaluation showed that XGB is the most accurate algorithm to predict both outputs having 
R2 value greater than 0.92 and minimal values of other error metrices like objective function and MAE etc.

• SHAP and ICE analysis were conducted on the XGB algorithm which revealed that time after mixing, water, 
and cement etc. are the most important features to predict both fresh concrete properties.

Recommendations
Despite the fact that this study is a significant contribution to the literature and a crucial step towards prediction 
of critical rheological properties of concrete using diverse ML techniques, it is important to highlight its 
limitations and provide suggestions for future studies:

• The ML models presented in current study were developed using a limited dataset of 142 experimental col-
lected from literature. For the development of more reliable, robust, and widely appliable models, it is recom-
mended to consider much larger datasets in future studies.

• The output variables in this study i.e., plastic viscosity and interface yield stress can be affected by different 
material properties like nominal aggregate diameter, type of superplasticizer and variable site conditions like 
mixing and pumping temperature etc. This study doesn’t exclusively incorporate the effect of these variables 
but recommends considering them in future studies.

• The models presented in this study were developed using data whose range is given in Table 1. For the devel-
opment of more widely applicable models, it is necessary to consider a wider range of data.

• Other widely used interpretable techniques like partial dependence plots (PDP) and permutation importance 
analysis etc. must be considered in future studies to reveal more about the nature of black-box models.

Data availability
Data is available in the supplementary materials.
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