
Phys. Scr. 100 (2025) 046012 https://doi.org/10.1088/1402-4896/adbd8f

PAPER

A deep learning framework for solving fractional partial differential
equations

AminaAli1,2 , Norazak Senu1,3,∗ , Ali Ahmadian4,5,∗ andNadihahWahi1,3

1 Department ofMathematics and Statistics, Universiti PutraMalaysia, 43400UPM, Serdang,Malaysia
2 Department ofMathematics, College of Education, University of Sulaimani, Sulaymaniyah, Iraq
3 Institute forMathematical Research, Universiti PutraMalaysia, 43400UPM, Serdang,Malaysia
4 JadaraUniversity ResearchCenter, JadaraUniversity, Jordan
5 Faculty of Engineering andNatural Sciences, IstanbulOkanUniversity, Istanbul, Turkey
∗ Authors towhomany correspondence should be addressed.

E-mail: norazak@upm.edu.my and ahmadian.hosseini@gmail.com

Keywords: laplace transformmethod, fractional partial differential equations, artificial neural networks, gradient descent, deep neural
network

Abstract
This research focuses on the study and solution of fractional partial differential equations (FPDEs), a
critical area inmathematical analysis. FPDEs pose significant challenges due to their complexity, often
requiring extensive computational resources to solve. Given the scarcity of exact solutions, numerical
methods have been a primary approach for tackling FPDEs.However, thesemethods often yield
substantial but limited results. The ongoing quest formore effective solutions has led researchers to
explore newmethodologies. Recent advancements in deep learning (DL), particularly in deep neural
networks (DNNs), offer promising tools for solving FPDEs due to their exceptional function-
approximation capabilities, demonstrated in diverse applications such as image classification and
natural language processing. This research addresses the challenges of solving FPDEs by proposing a
novel deep feedforward neural network (DFNN) framework. Themethod integrates the Laplace
transform formemory-efficient Caputo derivative approximations and demonstrates superior
accuracy across various examples. The results highlight the framework’s versatility and computational
efficiency, establishing it as a powerful tool for solving FPDEs.

1. Introduction

Fractional integrals and derivatives have a rich historical background, emerging nearly concurrently with
integer-order calculus. A noteworthy characteristic of fractional derivatives is their inherent timememory or
historical heredity [1]. This unique attributemakes fractional derivatives highly applicable across awide range of
fields [2].When solving fractional differential equations, two primary categories ofmethods exist: analytical and
numerical. Analyticalmethods include techniques such as the Fourier transform, Laplace transform [3],Mellin
transform, andGreen’s function technique. Additionally, the Lie symmetry analysismethod has emerged as a
modern analytical approach for solving FPDEs [4, 5]. However,most fractional differential equations do not
have analytical solutions. Evenwhen solutions exist, they often involve intricate functions such as theMittag-
Leffler function,Wright function, andH-function,making numerical computations challenging. Consequently,
it is essential to investigate and develop numerical techniques for solving fractionalmodels.

Over the past decade, DL has undergone a significant transformation, particularly in the development of
deep artificial neural networks (ANNs). AlthoughANNs have existed since the 1940s [6] and have been applied
across various domains, recent advancements in deep learning, especially in the context of differential equations,
have been particularly noteworthy. For an extensive historical overview, especially concerning differential
equations, see Chapter 2 of [7]. The remarkable achievements ofDL over the past ten years can be attributed to
the seamless integration of enhanced theoretical foundations beginningwith unsupervised pre-training and

RECEIVED

16 January 2025

REVISED

28 February 2025

ACCEPTED FOR PUBLICATION

6March 2025

PUBLISHED

19March 2025

© 2025 IOPPublishing Ltd. All rights, including for text and datamining, AI training, and similar technologies, are reserved.

https://doi.org/10.1088/1402-4896/adbd8f
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050
mailto:norazak@upm.edu.my
mailto:ahmadian.hosseini@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/adbd8f&domain=pdf&date_stamp=2025-03-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/adbd8f&domain=pdf&date_stamp=2025-03-19

deep belief networks alongside advancements in hardware, particularly general-purpose graphics processing
units (GPUs), as highlighted in [8, 9]. DeepANNs have demonstrated significant success across a wide range of
applications, including image interpretation, pattern recognition, object localization, language comprehension,
and emergingfields such as autonomous transportation and autonomous vehicles.While deepANNs have led to
major breakthroughs in key application areas, questions remain regarding the fundamental processes that
underpin their effectiveness. In the domain of function approximation, it has been recognized since the 1990s
that ANNs serve as universal approximators, capable of approximating any continuous function alongwith its
derivatives. This insight is well-documented in the research of [10–12]. In the context of partial differential
equations (PDEs), the conventional approach has been to employ single-hidden-layer ANNs for solving PDEs.
This choice is based on the understanding that a single layer, when equippedwith a sufficient number of
neurons, can approximate any given function. This capability arises from the fact that all necessary gradients can
be explicitly computed in analytical form, as noted in [13–15]. However, a still-limited but growing body of
research has begun exploring deepANNs for PDE solving [16, 17].

Overall, ANNs offer the advantage of being continuous, computable functions that can be evaluated at any
point, bothwithin and beyond the domain, eliminating the need for reconstitution.However, the precise
mechanisms underlying their remarkable effectiveness remain an active area of research and exploration. DNN
approaches offer several advantages over traditional numerical techniques, including [18]:

1. Traditional numerical approaches operate iteratively and typically require defining a discretization interval
before computation. If a solution is needed between two grid points, the entire processmust be restarted
from the initial stage. In contrast, DNNmethods overcome this limitation by enabling numerical solutions at
any point within the domainwithout requiring repetitive iterations.

2. While solving inverse problems is often challenging or even impossible with most traditional numerical
methods, DNNs offer the advantage of handling inverse problemswithminimalmodifications to code
originally designed for forward problems. This adaptability is a significant strength.

3. Various traditional numerical methods, such as the finite difference and finite element approaches, rely on
grid-based computationmodels,making high-dimensional problems challenging to handle. In contrast,
DNNmethods leverage automatic differentiation, are generallymeshless, and can effectively overcome the
challenges posed by the curse of dimensionality.

Here is a concise literature review on the proposedmethod:Weinan et al developed aDNN-basedmethod
for solving variational problems [19]. In [20], a Physics-InformedNeural Network (PINN)was introduced,
specifically designed for supervised learning tasks related to solving nonlinear PDEs governing various physical
laws. Berg et al explored the use ofDFNNs for solving PDEs in complex geometries [21]. Jin et al employed
PINNs to integrate governing equations directly into theDNN through automatic differentiation, effectively
handling constraints in the simulation of incompressible laminar and turbulent flows [22]. Sheng et al proposed
the Penalty-FreeNeural Network (PFNN)method, which provides an efficient solution for a particular class of
second-order boundary value problems arising in complex geometries [23]. Ye et al developedDNN-based
methods for addressing both forward and inverse problems associatedwith time-fractional diffusion equations
featuring conformable derivatives [24].Wei et al designed aDNN for solving time-fractional Fokker-Planck
equations of orderα, where 0<α< 1 [25]. Fang et al introduced a novel approach for solving a specific class of
FPDEs of orderα, where 0<α< 1, usingDNNs to address both the equations and their corresponding inverse
problems [26]. Shi et al developed fractional physics-informed neural networks (fPINNs)method for solving the
time-fractionalHuxley equation [27]. Shi et al presented a fast L1-fractional fPINNs (FL1-fPINN)for solving
time-fractional reaction-diffusion [28].

The key contributions of this study are as follows:

1. A widely used numerical scheme (L1 and L2) for approximating fractional derivatives, as outlined in the
literature, requires historical data from all previous time steps to compute the term ()z h

h
¶ Y

¶

g

g
, . This dependence

on extensive past data leads to significantmemory challenges in long-duration simulations, potentially
causing computational bottlenecks. To address this issue, we propose a novel approximation of theCaputo-
type fractional derivative using the Laplace transform. This approach effectively alleviatesmemory
constraints, providing amore efficient and scalable solution for solving FPDEs.

2. ADFNNwithmultiple hidden layers is developed to solve FPDEs in theCaputo sense.

3. A novel trial solution is developed for a specific class of FPDEs, incorporating the appropriate initial and
boundary conditions.

2

Phys. Scr. 100 (2025) 046012 AAli et al

4. FPDEs with orders ranging from 0 to 1 and 1 to 2 are successfully solved, demonstrating the method’s
versatility across a range of problems.

5. Our DFNNmethod demonstrates superior accuracy in solving FPDEs when compared to existing methods,
establishing its effectiveness as a reliable computational tool.

The following sections in this paper are structured as outlined below: section 2 provides a concise
introduction to the pertinent definitions relevant to our study. Section 3 outlines theDFNNmethod, including
the establishment of theDFNNarchitecture and the derivation of the cost function. Section 4 presents the
solutions of several examples alongwith their corresponding results. Lastly, a synopsis of the paper’s findings is
provided in section 5.

2. Preliminary concepts

This section offers a definition of the fractional derivatives used in this study, as well as the Laplace transform for
theCaputo fractional derivative.

Definition 2.1.Defined for an orderα> 0, theCaputo derivative is expressed as follows in [29, 30]:

()
()

()

()
()ò

f z h
h a

f z h a
=

- - < <

=
h
a a

h f z h a

h

G -
¶

¶
- -

¶
¶

D
l dl for p p

for p
,

, 1 ,

, , ,
a
C p a l

p1 , 1
p

p

p

p

⎧

⎨
⎩⎪

where p is a natural number.

Definition 2.2.Considering the function h defined for t in the non-negative domain, the Laplace transformof h,
denoted as { } h , is established through the improper integral, as described in [31]:

{ ()} () () () ò= =
¥

-h x H s e h x dx. 2.1sx

0

Provided that the integral in (2.1) exists and is convergent. The inverse Laplace transform is defined as:

{ ()} () òp
=-

- ¥

+ ¥
H s

i
e H s ds

1

2
.

c i

c i
sx1

Definition 2.3.The Laplace transformation of theCaputo fractional derivative having an order γ is outlined in
[32]:

{ ()} { ()} ()() å= -g g g

=

-
- -D h t s h t s D h 0 .C

t
k

l
k

t
k

0
0

1
1

0

3.Dfnnmodel construction

In this section, we offer a detailed introduction to ourmethod.

3.1.Design of theDFNNarchitecture
The architecture employed in this study can aptly be referred to as aDFNN. The following notations are briefly
introduced in this architecture: As shown infigure 1, consider an l+ 1 layer network, consisting of an input
layer, lhidden layers, and an output layer. The number of neurons in each hidden layer is assumed to be equal
and is denoted as n. The layer notation appears as a superscript on each node, indicating its positionwithin a
specific layer. This notation extends to the superscripts of theweights and biases, specifying the subsequent layer
towhich they contribute. Theweights are denoted as wij

l , where the indices follow these ranges: l from1 to l+ 1, i
from1 to n, and j from1 to n. The subscripts i and j have specificmeanings: they represent theweights from the
neuron at position j in the (l− 1)-th layer to the neuron at position i in the l-th layer. Regarding biases, they are
represented as b[l], where l ranges from1 to l+ 1. The network’s input is denoted asμ= (ζ, η)T, and its output,
represented byN(ζ, η, p), is obtained from the node h[l+1], reflecting the count of unknown variables in the
FPDEs. It is essential to acknowledge the pivotal role of the activation function, represented byf, in
transforming the input to produce the network’s output. In this study, we utilize the sigmoid function, defined
as ()f z =

+ z-e

1

1
, for every node in each hidden layer.

3

Phys. Scr. 100 (2025) 046012 AAli et al

3.2. FPDEs problem formulation
Weaim to solve the following FPDEswith the initial and boundary conditions:

()

() ()
() () () ()

()

() z h z h g

z f z z
h f h h f h h

= Y Y Y Y Y <

Y =
Y = Y =

z h
h h z zz hh

¶ Y
¶

g

g G , , , , , , , 0 1, 0 1, 0 1,

, 0 , 0 1,

0, , 1, , 0 1.

3.1

,

1

2 3

⎫

⎬
⎪

⎭⎪

()

() () () ()
() () () ()

()

() z h z h g

z f z z f z z
h f h h f h h

= Y Y Y Y Y <

Y = Y =
Y = Y =

z h
h h z zz hh

h

¶ Y
¶

g

g G , , , , , , , 0 1, 0 1, 1 2,

, 0 , , 0 , 0 1,

0, , 1, , 0 1.

3.2

,

1 2

3 4

⎫

⎬
⎪

⎭⎪

3.3. Approximation of the caputo time fractional derivative
First, we use the Laplace transform approach to approximate theCaputo-type time-fractional derivative [33]:

1. when 0< γ< 1:

{ } ¯ () ()

[¯ () ()] ()

() z z

z z

= Y - Y

= Y - Y

z h
h

g g

g

¶ Y
¶

-

-

g

g s s s

s s s

, , 0 ,

, , 0 . 3.3

, 1

1

Here, ¯ ()zY s, denotes the Laplace transformofΨ(ζ, η). Considering 0< γ< 1, we can linearize the term s γ in
the followingmanner:

()g g» + -gs s 1 .

Subsequently, we substitute this linearized term into (3.3). This results in:

{ } (())[¯ () ()]

[¯ () ()] ()[¯ () ()]

() g g z z

g z z g z z

» + - Y - Y

= Y - Y + - Y - Y

z h
h

¶ Y
¶

-

- -

g

g s s s

s s s s s

1 , , 0 ,

, , 0 1 , , 0 .

, 1

1 1

Therefore, the inverse Laplace transform yields,

() () ()[() ()]z h
h

g
z h
h

g z h z
¶ Y

¶
»

¶Y
¶

+ - Y - Y
g

g

, ,
1 , , 0 .

2. when 1< γ< 2:

Figure 1.The designedDFNN structure.

4

Phys. Scr. 100 (2025) 046012 AAli et al

{ } ¯ () () ()

[¯ () () ()] ()

() z z z

z z z

= Y - Y - Y

= Y - Y - Y

z h
h

g g g
h

g
h

¶ Y
¶

- -

- -

g

g s s s

s s s s

, 0 , 0 , 0 ,

, , 0 , 0 . 3.4

, 1 2

1 2

For 1< γ< 2, applying linear interpolation to the s γ power function at interpolation points 1 and 2 yields the
following result:

() ()g g» - + -gs s s1 2 .2

Putting it into (3.4) yields,

{ } (() ())[¯ () () ()]

() [¯ () () ()]
() [¯ () () ()]

() g g z z z

g z z z

g z z z

» - + - Y - Y - Y

= - Y - Y - Y

+ - Y - Y - Y

z h
h h

h

h

¶ Y
¶

- -

- -

- -

g

g s s s s s

s s s s

s s s s

1 2 , , 0 , 0 ,

1 , , 0 , 0

2 , , 0 , 0 .

, 2 1 2

2 1 2

1 2

Inverse Laplace transform results in the following:

()

() () ()

() ()

()

g

g g z

» -

+ - - - Y

z h
h

z h
h

z h
h h

¶ Y
¶

¶ Y
¶

¶Y
¶

g

g 1

2 2 , 0 .

, ,

,

2

2

3.4. Proposed solution
Drawing inspiration fromLagaris’s concept [13], we formulate a trial solution ˆ ()mY p, that adheres to the initial
boundary value conditions, aiming to solve (3.1) and (3.2),

ˆ () () () ()
() () () () () () () () ()
m z h z z h m
z h z f h zf h f z z f zf

Y = + -
= - + + - - -

p A N p

A

, , 1 , ,

, 1 1 0 1 . 3.52 3 1 1 1

ˆ () () () ()
() () () () ()(() (() () ()))

((() (() () ())) ()

m z h z z h m
z h z f h zf h h f z z f zf

h f z z f zf

Y = + -
= - + + - - - +

+ - - +

p A N p

A

, , 1 , ,

, 1 1 1 0 1

1 0 1 . 3.6

2

3 4
2

1 1 1

2 2 2

whereA(ζ, η) satisfies the initial boundary conditions.

3.5. Learning algorithm
The cost function can be defined as follows:

()
ˆ ()

(ˆ ˆ ˆ ˆ ˆ) ()åm
m
h

z h=
¶ Y

¶
- Y Y Y Y Y

g

g h z zz hh
=

C p
p

G,
1

2

,
, , , , , , , 3.7

i

S
i

i i
1

2
⎡
⎣
⎢

⎤
⎦
⎥

S represents the total number of discretized points for ζ and η. Gradient descent has been used tominimize (3.7),
so the following derivatives with respect toDFNN’s parameters are needed to compute thisminimization. Let’s
take one hidden layer as an example to compute these derivations:The output ofDFNN is :

() ()åm f z h= + + +
=

N p w w w b b, .
j

n

j j j j
1

1
2

1
1

2
1 1

1
2

The derivative ofN(μ, p) concerning ζ, η is as follows:

() ()()å
m
z

f z h
¶

¶
= + +

=

N p
w w w w b

,
,

j

n

j j j j j
1

1
2

1
1 1

1
1

2
1 1

() ()() ()å f z h= + +m
z

¶
¶

=

w w w w b ,
N p

j

n

j j j j j
,

1
1
2

1
1 2 2

1
1

2
1 1

2

2

()() ()å f z h= + +m
h

¶
¶

=

w w w w b ,
N p

j

n

j j j j j
,

1
1
2

2
1 1

1
1

2
1 1

() ()() ()å f z h= + +m
h

¶
¶

=

w w w w b .
N p

j

n

j j j j j
,

1
1
2

2
1 2 2

1
1

2
1 1

2

2

Wheref(1) andf(2) are thefirst and second derivatives of the activation functionf, respectively. The following
are the derivative ofN(μ, p),Nζ(μ, p),Nζζ(μ, p),Nη(μ, p), andNηη(μ, p)with respect to wj1

1 and wj2
1 , respectively.

5

Phys. Scr. 100 (2025) 046012 AAli et al

()

(() ())

(() () ())

() ()

() () ()

() () ()

å

å

å

zf z h

zf z h f z h

zf z h f z h

= + +

= + + + + +

= + + + + +

m

m

m

¶
¶

=

¶

¶
=

¶

¶
=

z

zz

w w w b

w w w w b w w b

w w w w b w w w b

,

,

2 ,

N p

w
j

n

j j j j

N p

w
j

n

j j j j j j j j

N p

w
j

n

j j j j j j j j j

,

1
1
2 1

1
1

2
1 1

,

1
1
2

1
1 2

1
1

2
1 1 1

1
1

2
1 1

,

1
1
2

1
1 2 3

1
1

2
1 1

1
1 2

1
1

2
1 1

j

j

j

1
1

1
1

1
1

()

(() ())

(() () ())

() ()

() () ()

() () ()

å

å

å

hf z h

hf z h f z h

hf z h f z h

= + +

= + + + + +

= + + + + +

m

m

m

¶
¶

=

¶

¶
=

¶

¶
=

h

hh

w w w b

w w w w b w w b

w w w w b w w w b

,

,

2 .

N p

w
j

n

j j j j

N p

w
j

n

j j j j j j j j

N p

w
j

n

j j j j j j j j j

,

1
1
2 1

1
1

2
1 1

,

1
1
2

2
1 2

1
1

2
1 1 1

1
1

2
1 1

,

1
1
2

2
1 2 3

1
1

2
1 1

2
1 2

1
1

2
1 1

j

j

j

2
1

2
1

2
1

The derivative ofN(μ, p),Nζ(μ, p),Nη(μ, p),Nηη(μ, p) andNζζ(μ, p)with respect to w j1
2 is as follows:

()

()

() ()

()

() ()

() ()

å

å

å

f z h

f z h

f z h

= + +

= + +

= + +

m

m

m

¶
¶

=

¶

¶
=

¶

¶
=

z

zz

w w b

w w w b

w w w b

,

,

,

N p

w
j

n

j j j

N p

w
j

n

j j j j

N p

w
j

n

j j j j

,

1
1

1
2

1 1

,

1
1

1 1
1

1
2

1 1

,

1
1

1 2 2
1

1
2

1 1

j

j

j

1
2

1
2

1
2

()

() ()

() ()

() ()

å

å

f z h

f z h

= + +

= + +

m

m

¶

¶
=

¶

¶
=

h

hh

w w w b

w w w b

,

.

N p

w
j

n

j j j j

N p

w
j

n

j j j j

,

1
1

1 1
1

1
2

1 1

,

1
1

1 2 2
1

1
2

1 1

j

j

1
2

1
2

The derivative ofN(μ, p),Nζ(μ, p),Nη(μ, p),Nηη(μ, p) andNζζ(μ, p) concerning b1
2 is as follows:

()

()

()

()

()

=

=

=

=

=

m

m

m

m

m

¶

¶

¶

¶

¶

z

zz

h

hh

1,

0,

0,

0,

0.

N p

b

N p

b

N p

b

N p

b

N p

b

,

,

,

,

,

1
2

1
2

1
2

1
2

1
2

The derivative ofN(μ, p),Nζ(μ, p),Nη(μ, p),Nηη(μ, p) andNζζ(μ, p) concerning bj
1 is as follows:

()

()

() ()

()

() ()

() ()

() ()

() ()

() ()

() ()

å

å

å

å

å

f z h

f z h

f z h

f z h

f z h

= + +

= + +

= + +

= + +

= + +

m

m

m

m

m

¶
=

¶
=

¶
=

¶
=

¶
=

z

zz

h

hh

w w w b

w w w w b

w w w w b

w w w w b

w w w w b

,

,

,

,

.

N p

b
j

n

j j j j

N p

b
j

n

j j j j j

N p

b
j

n

j j j j j

N p

b
j

n

j j j j j

N p

b
j

n

j j j j j

,

1
1
2 1

1
1

2
1 1

,

1
1
2

1
1 2

1
1

2
1 1

,

1
1
2

1
1 2 3

1
1

2
1 1

,

1
1
2

2
1 2

1
1

2
1 1

,

1
1
2

2
1 2 3

1
1

2
1 1

j

j

j

j

j

1

1

1

1

1

6

Phys. Scr. 100 (2025) 046012 AAli et al

Finally, the derivative of (3.7) can be takenwith respect toDFNN’s parameters as follows:

() ()
() ()
() ()
() ()
() ()

(ˆ ˆ ˆ ˆ ˆ)

(ˆ ˆ ˆ ˆ ˆ)

(ˆ ˆ ˆ ˆ ˆ)

(ˆ ˆ ˆ ˆ ˆ)

(ˆ ˆ ˆ ˆ ˆ)

() ˆ () ˆ ()

() ˆ () ˆ ()

() ˆ () ˆ ()

() ˆ () ˆ ()

() ˆ () ˆ ()

å

å

å

å

å

z h

z h

z h

z h

z h

= - Y Y Y Y Y -

= - Y Y Y Y Y -

= - Y Y Y Y Y -

= - Y Y Y Y Y -

= - Y Y Y Y Y -

m m
h h z zz hh

m
h

m m
h h z zz hh

m
h

m m
h h z zz hh

m
h

m m
h h z zz hh

m
h

m m
h h z zz hh

m
h

¶
¶

=

¶ Y

¶
¶

¶

¶ Y

¶
¶
¶

¶
¶

=

¶ Y

¶
¶

¶

¶ Y

¶
¶
¶

¶
¶

=

¶ Y

¶
¶

¶

¶ Y

¶
¶
¶

¶
¶

=

¶ Y

¶
¶
¶

¶ Y

¶
¶
¶

¶
¶

=

¶ Y

¶
¶

¶

¶ Y

¶
¶
¶

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

G

G

G

G

G

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , .

C p

w
i

S
p

i i w

p G

w

C p

w
i

S
p

i i w

p G

w

C p

w
i

S
p

i i w

p G

w

C p

b
i

S
p

i i b

p G

b

C p

b
i

S
p

i i b

p G

b

,

1

, ,

,

1

, ,

,

1

, ,

,

1

, ,

,

1

, ,

j

i

j

i

j

j

i

j

i

j

j

i

j

i

j

j

i

j

i

j

i i

1
2

1
2

1
2

1
1

1
1

1
1

2
1

2
1

2
1

1 1 1

1
2

1
2

1
2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Then, the parameters are updated using the following equations:

d

d

= -

= -

+ ¶
¶

+ ¶
¶

w w

b b

,

.

ij
n

ij
n C

w

j
n

j
n C

b

1

1

ij
n

j
n

Notably, these derivatives are just for one hidden layer; if we increase the number of hidden layers, it will be
more complicated, so to avoid this complexity, we used automatic differentiation [34] in Python tominimize the
cost function.

4.Numerical results and discussion

Within this section, we demonstrate the application ofDFNNs in solving FPDEs by presentingmultiple
illustrative examples. The neural network is trained for a total of 20000 epochs using 121mesh points over the
interval [0, 1]× [0, 1]. TheCPU time,measured in seconds, is provided to assess themethod’s efficiency.
Additionally,MAE refers to theMaximumAbsolute Error. By thoroughly examining each scenario, our
objective is to highlight the efficacy and versatility of theDFNNapproach in handling the complexities inherent
in FPDEs.

Example 4.1.Consider the following nonlinear fractional-order heat equation [35]:

() () () ()z h
h

z h
z h
z

z h
z

z h g
¶ Y

¶
- Y

¶Y
¶

-
¶ Y

¶
= <

g

g

,
,

, ,
0, 0 1, 0 1, 0 1,

2

2

withΨ(ζ, 0)= 2− ζ, ()hY =
h+

0, 2

1
, and ()hY =

h+
1, 1

1
. where for γ= 1, the exact solution is ()z hY =,

z
h

-
+

2

1
. As per (3.5), the designatedDFNN is: ˆ () () ()m z z z z zY = - + + - - - - +

h h+ +
p, 1 2 2 12

1

1

1

() ()z z h m- N p1 , .

Table 1 shows the numerical results for different values of γ. The table indicates that theDFNNmodel’s
accuracy improves as γ approaches 1.When γ = 0.99, the approximation is very close to the exact solution,
reflecting high accuracy.Moreover, theCPU time remains consistently low for all values of γ. Table 2 presents
the absolute errors (AEs) for various values of (ζ, η)with γ= 1. The errors remainminimal, ranging from
1.43× 10−6 to 1.79× 10−6 across all evaluated points. Table 3 compares theMAEs, Cost function, andCPU
times across various configurations of theDFNNmethod, each characterized by different neuron distributions,
hidden layer depths, and epoch counts. Themodel configurations are labeled as follows: a four-layermodel with
20000 epochs (DFNN-4L20 K), a four-layermodel with 25000 epochs (DFNN-4L25 K), a four-layermodel with
30000 epochs (DFNN-4L30 K), a single-layermodel with 20000 epochs (DFNN-1L20 K), a single-layermodel
with 5000 epochs (DFNN-1L5 K), and a four-layermodel with 5000 epochs (DFNN-4L5 K). The results clearly
demonstrate that theDFNN-4L20 K configurationwithNn= (35, 25, 20, 15) delivers the best performance,
achieving the lowestMAEof 1.32× 10−5 and a corresponding cost function value of 2.12× 10−8, with aCPU
time of 94.39548 seconds. In contrast, theDFNN-4L20 K configurationwith a reduced neuron distribution of
Nn= (10, 10, 10, 10) exhibits significantly poorer performance, with anMAEof 5.01× 10−4 and a cost function
value of 2.54× 10−5. Increasing the number of training epochs to 25 K for the configuration
Nn= (35, 25, 20, 15) results in a slightly higherMAEof 1.88× 10−5 and a cost function value of 2.18× 10−8,
accompanied by an increase inCPU time to 117.80738 seconds. However, extending training to 30 K epochs
leads to a noticeable decline in performance, with theMAE increasing sharply to 1.18× 10−4 and the cost

7

Phys. Scr. 100 (2025) 046012 AAli et al

function rising to 1.46× 10−6, alongwith a substantial increase in computational time to 145.52670 seconds.
The single-layer configurations, DFNN-1L5 K andDFNN-1L20 K, bothwithNn= 35, result in higherMAEs of
1.18× 10−3 and 2.74× 10−4, respectively, alongwith elevated cost function values of 4.73× 10−4 and
1.35× 10−5. Additionally, theDFNN-4L5 K configurationwithNn= (35, 25, 20, 15) achieves anMAEof
1.37× 10−4 and a cost function value of 4.32× 10−6, with aCPU time of 64.62576 seconds.While this
configuration outperforms the single-layermodels in accuracy, it remains inferior to deepermodels trainedwith
more epochs. Given that the accuracy at 25 K epochs does not surpass that of the 20 K epoch configuration and
that performance at 30 K epochs deteriorates significantly compared to both 20 K and 25 K, theDFNN-4L20 K
configurationwithNn= (35, 25, 20, 15) is identified as the optimalmodel. This configuration offers the best
balance between accuracy and computational efficiency. Figure 2 presents a comparison of the exact andDFNN
solutions for γ= 1. The close similarity between them indicates that theDFNNmodel provides an accurate
approximation of the exact solution. Figure 3 shows the absolute errors and the cost function behavior over

Table 1.Numerical results for Example 4.1with different values of γ.

DFNN

(ζ, η) Exact γ= 0.5 γ= 0.7 γ= 0.99 γ= 1

(0,0) 2 2 2 2 2

(0.1, 0.1) 1.727272 1.727265 1.727255 1.727277 1.727257

(0.2, 0.2) 1.500000 1.499998 1.499953 1.500014 1.499955

(0.3, 0.3) 1.307692 1.307738 1.307628 1.307717 1.307621

(0.4, 0.4) 1.142857 1.143001 1.142799 1.142886 1.142772

(0.5, 0.5) 1.000000 1.000283 0.999976 1.000027 0.999920

(0.6, 0.6) 0.875000 0.875436 0.875544 0.875020 0.874943

(0.7, 0.7) 0.764706 0.765262 0.764799 0.764714 0.764683

(0.8, 0.8) 0.666667 0.667246 0.666091 0.666800 0.666677

(0.9, 0.9) 0.578947 0.579374 0.579064 0.578939 0.578973

(1,1) 0.5 0.5 0.5 0.5 0.5

CPUTime(s) 110.67262 127.20520 125.10181 117.03224

Table 2.Absolute errors
for Example 4.1with γ= 1.

(ζ, η) AEs

(0,0) 0

(0.1, 0.1) 1.79× 10−6

(0.2, 0.2) 5.23× 10−6

(0.3, 0.3) 9.18× 10−6

(0.4, 0.4) 1.19× 10−5

(0.5, 0.5) 1.26× 10−5

(0.6, 0.6) 1.14× 10−5

(0.7, 0.7) 8.44× 10−6

(0.8, 0.8) 4.83× 10−6

(0.9, 0.9) 1.43× 10−6

(1,1) 0

Table 3.Comparison ofMAEs, Cost function, andCPU time forDFNN-1L andDFNN-4L
whenα= 1 in Problem4.1.

Nn Method MAEs Cost function CPUTime(s)

35 DFNN-1L5K 1.18× 10−3 4.73× 10−4 15.61976

(35, 25, 20, 15) DFNN-4L20K 1.32× 10−5 2.12× 10−8 94.39548

(10, 10, 10, 10) DFNN-4L20K 5.01× 10−4 2.54× 10−5 97.67032

(35, 25, 20, 15) DFNN-4L25K 1.88× 10−5 2.18× 10−8 117.80738

(35, 25, 20, 15) DFNN-4L30K 1.18× 10−4 1.46× 10−6 145.52670

35 DFNN-1L20K 2.74× 10−4 1.35× 10−5 59.51180

(35, 25, 20, 15) DFNN-4L5K 1.37× 10−4 4.32× 10−6 64.62576

8

Phys. Scr. 100 (2025) 046012 AAli et al

20000 epochs. The graph indicates that the cost function decreases rapidly and stabilizes near zero as the number
of epochs increases, demonstrating the effective convergence of themodel during training.

Example 4.2. Let consider the following FPDEof order γ (0< γ< 1) as [33]:

() ()

()
() () ()

() ()
()

h h z z h

z z
h h h h h

= + + - < < >

Y = < <
Y = + Y = + >

z h
h

z h
z g

g z

z

¶ Y
¶

¶ Y
¶ G -

-
g

g e

e

e

cos , 0 1, 0,

, 0 , 0 1,

0, 1, 1, cos 1 , 0.

, , 6

4
3 3

3 3

2

2
⎧

⎨
⎪

⎩
⎪

Where the exact solution is () ()z h h zY = + ze, cos3 , according to (3.5), the assignedDFNN
is ˆ () () () () ()m h z zh z z h mY = + - + + -zp e cos N p, 1 1 1 , .3 3

Table 4 provides detailed numerical results across various γ values (0.1, 0.75, and 0.95), evaluated at different
(ζ, η)points within the domain. TheDFNNmodel demonstrates strong performance, closely approximating the
exact solutions across the tested range of γ values.Furthermore, the CPU time decreases as γ increases. Table 5
presents theAEs for different γ values (0.1, 0.75, and 0.95). Figure 4 visually demonstrates the effectiveness of the
DFNNmodel in approximating the exact solutions at γ= 0.75. Figure 5 presents the absolute errors and the
reduction and subsequent stabilization of the cost function over 20000 epochs, emphasizing the efficiency of the
training process. The sharp decline in the cost function early on signifies rapid initial learning.

Figure 2.Comparison of the exact solution andDFNN for Example 4.1with γ= 1. (a) represents the exact solution, while (b) presents
theDFNNapproximation.

Figure 3.Absolute errors with γ= 1 and convergence of the cost function for Example 4.1. (a) represents the absolute errors, while (b)
illustrates the convergence behavior of the cost function.

9

Phys. Scr. 100 (2025) 046012 AAli et al

Example 4.3.Consider the following time- fractional telegraph equation of order γ (1< γ< 2) [36]:

()

() ()
() ()

() () () z h z h

z z
h h

+ - = <

Y = Y =
Y = Y =

z h
h

z h
h

z h
z

¶ Y
¶

¶Y
¶

¶ Y
¶

g

g h , , 0 1, 0 1,

, 0 0, , 0 0,

0, 0, 1, 0.
t

, , ,2

2 ⎧

⎨
⎪

⎩⎪

Table 4.Numerical results for Example 4.2with different values of γ.

DFNN

(ζ, η) Exact γ= 0.1 γ= 0.75 γ= 0.95

(0,0) 1 1 1 1

(0.1, 0.1) 1.106166 1.107981 1.108270 1.108756

(0.2, 0.2) 1.229243 1.235304 1.236285 1.238005

(0.3, 0.3) 1.375653 1.386276 1.388114 1.391484

(0.4, 0.4) 1.550773 1.564191 1.566854 1.571964

(0.5, 0.5) 1.758419 1.771351 1.774639 1.781262

(0.6, 0.6) 2.000391 2.009074 2.012656 2.020252

(0.7, 0.7) 2.276093 2.277711 2.281163 2.288883

(0.8, 0.8) 2.582255 2.576671 2.579500 2.586195

(0.9, 0.9) 2.912757 2.904436 2.906116 2.910336

(1,1) 3.258584 3.258584 3.258584 3.258584

CPUTime(s) 120.22104 118.61125 99.85458

Figure 4.Comparison of the exact solution andDFNN for Example 4.2with γ= 0.75. (a) Shows the exact solution, while (b) presents
theDFNNapproximation.

Table 5.Absolute errors for Example 4.2with various γ values.

AEs

(ζ, η) γ= 0.1 γ= 0.75 γ= 0.95

(0,0) 0 0 0

(0.1, 0.1) 1.81× 10−3 21.04× 10−3 2.59× 10−3

(0.2, 0.2) 6.06× 10−3 7.04× 10−3 8.76× 10−3

(0.3, 0.3) 1.06× 10−2 1.24× 10−2 1.58× 10−2

(0.4, 0.4) 1.34× 10−2 1.60× 10−2 2.11× 10−2

(0.5, 0.5) 1.29× 10−2 1.62× 10−2 2.28× 10−2

(0.6, 0.6) 8.68× 10−3 1.22× 10−2 1.98× 10−2

(0.7, 0.7) 1.61× 10−3 5.06× 10−3 1.27× 10−2

(0.8, 0.8) 5.58× 10−3 2.75× 10−3 3.94× 10−3

(0.9, 0.9) 8.32× 10−3 6.64× 10−3 2.42× 10−3

(1,1) 0 0 0

10

Phys. Scr. 100 (2025) 046012 AAli et al

with ()() () ()
()

z h z z h h= - -g h
g

G - +
G -

g-

h , 2 22 3

3
2

1

andΨ(ζ, η)= (ζ2− ζ)η2. TheDFNNcan bewritten as

follows from (3.6): ˆ () () ()m z z h mY = -p N p, 1 ,2 .

Table 6 illustrates thenumerical results for Problem4.3 across variousγ values. Furthermore,CPU time remains
consistently low for allγ settings.Table 7presents theAEs across different values ofγ. It is observed that asγ increases,
theAEs generally decrease, indicating improved accuracy. Figure6provides a visual comparisonbetween the exact

Figure 5.Absolute errors with γ= 0.75 and convergence of the cost function for Example 4.2. (a)Depicts the absolute errors, while
(b) illustrates the convergence behavior of the cost function.

Table 6.Numerical results for Example 4.3with different values of γ.

DFNN

(ζ, η) Exact γ= 1.3 γ= 1.5 γ= 1.99

(0.1, 0.1) −0.000900 −0.000913 −0.000912 −0.000900

(0.2, 0.2) −0.006400 −0.006491 −0.006490 −0.006398

(0.3, 0.3) −0.018900 −0.019163 −0.019170 −0.018901

(0.4, 0.4) −0.038400 −0.038925 −0.038958 −0.038411

(0.5, 0.5) −0.062500 −0.063338 −0.063422 −0.062535

(0.6, 0.6) −0.086400 −0.087537 −0.087693 −0.086471

(0.7, 0.7) −0.102900 −0.104229 −0.104462 −0.103012

(0.8, 0.8) −0.102400 −0.103697 −0.103976 −0.102538

(0.9, 0.9) −0.072900 −0.073806 −0.074037 −0.073017

(1, 1) 0 0 0 0

CPUTime(s) 120.96981 138.05785 101.74970

Table 7.Absolute errors for Example 4.3with various γ values.

AEs

(ζ, η) γ= 1.3 γ= 1.5 γ= 1.99

(0.1, 0.1) 1.29× 10−5 1.24× 10−5 4.52× 10−7

(0.2, 0.2) 9.07× 10−5 9.001× 10−5 1.50× 10−6

(0.3, 0.3) 2.63× 10−4 2.70× 10−4 6.22× 10−7

(0.4, 0.4) 5.24× 10−4 5.57× 10−4 1.14× 10−5

(0.5, 0.5) 8.38× 10−4 9.21× 10−4 3.52× 10−5

(0.6, 0.6) 1.13× 10−3 1.29× 10−3 8.12× 10−5

(0.7, 0.7) 1.32× 10−3 1.56× 10−3 1.12× 10−4

(0.8, 0.8) 1.29× 10−3 1.57× 10−3 1.38× 10−4

(0.9, 0.9) 9.05× 10−4 1.13× 10−3 1.16× 10−4

(1, 1) 0 0 0

11

Phys. Scr. 100 (2025) 046012 AAli et al

solutions and theDFNNapproximations, demonstrating themodel’s capability to effectively capture theunderlying
dynamics of theproblem.Figure 7 shows the absolute error surface, offering a visual representationof the
discrepancies between theDFNNandexact solutions across thedomain, alongwith the cost function’s trajectory over
training epochs.The sharp initial decrease in the cost function, followedby aplateau, suggests that themodel quickly
adapts to theproblem structure, achieving a significant reduction in error early in the trainingprocess.

Example 4.4.Consider the following FPDE of order γ(1< γ< 2) [37]:

() ()

() ()
() () ()

() ()
()

h h z z h

z z z
h h h h h

= + + - < < >

Y = Y = < <
Y = + Y = + >

z h
h

z h
z g

g z

z

¶ Y
¶

¶ Y
¶ G -

-
g

g e

e

e

cos , 0 1, 0,

, 0 , , 0 0, 0 1,

0, 1, 1, cos 1 , 0.
t

, , 6

4
3 3

3 3

2

2
⎧

⎨
⎪

⎩
⎪

Where the exact solution is () ()z h h zY = + ze, cos3 .

From (3.6), theDNNmay be expressed as follows: ˆ () ()() (())m z h z hY = - + + + +p cos e, 1 1 13 3

()(()) () ()h z z z z h m- - - - + -z-e e N p1 1 1 ,2 2 .

Table 8 presents numerical results for different values of γ. The values are evaluated at various points (ζ, η),
highlighting themodel’s accuracy in approximating the exact solutions. Furthermore, for all settings of γ, the
CPU time remains consistently low. Table 9 provides a comparison of absolute errors between the proposed
DFNNmethod and the PRKMmethod [37] for various (ζ, η) valueswhen γ= 1.3. The table clearly shows that
theDFNNmethod consistently outperforms PRKM [37], yielding lower absolute errors across all parameter

Figure 6.Comparison of the exact solution andDFNN for Example 4.3with γ= 1.99. (a)Displays the exact solution, while (b)
presents theDFNNapproximation.

Figure 7.Absolute errors with γ= 1.99 and convergence of the cost function for Example 4.3. (a)Depicts the absolute errors, while (b)
illustrates the convergence behavior of the cost function.

12

Phys. Scr. 100 (2025) 046012 AAli et al

values, further demonstrating its superior accuracy. Figure 8 displays a comparison between the exact solution
and theDFNN solution for γ= 1.95. Figure 9 illustrates the cost function and absolute error surface for γ= 1.95,
underscoring the efficiency ofmodel training and its accuracy in approximating the exact solution.

Example 4.5.The time fractional telegraph equation is expressed as follows [38]:

()

() () () () ()

() () () z h z h

z z z z z h h

+ = +

Y = - Y = < < Y = Y =

z h
h

z h
h

z h
z

h

¶ Y
¶

¶ Y
¶

¶ Y
¶

f , , 0 1, 0 1,

, 0 1 , , 0 0, 0 1, 0, 0, 1, 0.

, , ,1.8

1.8

0.8

0.8

2

2 ⎧
⎨
⎩

Table 8.Numerical results for Example 4.4with different values of γ.

DFNN

(ζ, η) Exact γ= 1.3 γ= 1.7 γ= 1.95

(0.1,0.1) 1.106166 1.106400 1.105654 1.106283

(0.2,0.2) 1.229243 1.230610 1.225875 1.229905

(0.3,0.3) 1.375653 1.378859 1.366573 1.377156

(0.4,0.4) 1.550773 1.555706 1.534195 1.553018

(0.5,0.5) 1.758419 1.764077 1.734667 1.760947

(0.6,0.6) 2.000391 2.005245 1.972277 2.002617

(0.7,0.7) 2.276093 2.278747 2.248544 2.277608

(0.8,0.8) 2.582255 2.582226 2.561062 2.583033

(0.9,0.9) 2.912757 2.911176 2.902329 2.913098

(1,1) 3.258584 3.258584 3.258584 3.258584

CPUTime(s) 127.03214 112.54682 103.44827

Table 9.Comparison of absolute errors for Example 4.4
with γ= 1.3.

(ζ, η) DFNN PRKM(h= 0.1)[37]

(0.1, 0.1) 2.34007× 10−4 2.59785× 10−4

(0.2, 0.2) 1.36709× 10−3 5.06435× 10−3

(0.3, 0.3) 3.20589× 10−3 1.37166× 10−2

(0.4, 0.4) 4.93347× 10−3 2.48823× 10−2

(0.5, 0.5) 5.65838× 10−3 3.66127× 10−2

(0.6, 0.6) 4.85373× 10−3 4.63938× 10−2

(0.7, 0.7) 2.65384× 10−3 5.12172× 10−2

(0.8, 0.8) 2.86102× 10−5 4.76556× 10−2

(0.9, 0.9) 1.58071× 10−3 3.19344× 10−2

Figure 8.Comparison of the exact solution andDFNNwith γ= 1.95 for Example 4.4. (a)Displays the exact solution, while (b)
presents theDFNN solution.

13

Phys. Scr. 100 (2025) 046012 AAli et al

Where the exact solution isΨ(ζ, η)= (1+ η2)ζ(1− ζ) and ()() ()
() ()

z h z z h h= - + +
G G

f , 1 2

1.2
0.2 2

2.2
1.2

()h+2 1 .2

Based on equation (3.6), DFNNcan bewritten as: ˆ () () () () ()m z z h z z h mY = - - + -p N p, 1 1 1 ,2 2 .

Table 10 presents numerical results, highlighting themodel’s accuracy across the domain, withminimal
discrepancies noted between the exact andDFNN solutions, as evidenced by the small AEs. Figure 10 provides a

Figure 9.Convergence of the cost function and absolute errors for Example 4.4with γ= 1.95. (a) Shows the convergence behavior of
the cost function, while (b) presents the absolute errors.

Table 10.Numerical results for Example 4.5.

(ζ, η) Exact DFNN AEs

(0.1, 0.1) 0.090900 0.090907 7.29× 10−6

(0.2, 0.2) 0.166400 0.166453 5.30× 10−5

(0.3, 0.3) 0.228900 0.229060 1.60× 10−4

(0.4, 0.4) 0.278400 0.278732 3.32× 10−4

(0.5, 0.5) 0.312500 0.313052 5.52× 10−4

(0.6, 0.6) 0.326400 0.327179 7.78× 10−4

(0.7, 0.7) 0.312900 0.313845 9.45× 10−4

(0.8, 0.8) 0.262400 0.263359 9.58× 10−4

(0.9, 0.9) 0.162900 0.163595 6.95× 10−4

(1, 1) 0 0 0

CPUTime(s) 116.86251

Figure 10.Comparison of the exact solution andDFNN for Example 4.5. (a) Shows the exact solution, while (b) presents theDFNN
solution.

14

Phys. Scr. 100 (2025) 046012 AAli et al

visual comparison between the exact solutions and theDFNNapproximations, demonstrating themodel’s
capability to effectively capture the underlying dynamics of the problem. Figure 11 provides a visual
representation of the absolute error surface, illustrating the discrepancies between theDFNN and exact
solutions across the domain. Additionally, it depicts the trajectory of the cost function over training epochs. The
steep initial decline in the cost function is followed by a stabilization phase.

5. Conclusion

This study introduces a novel algorithmbased onDFNNs for solving FPDEs, demonstrating significant
improvements over existingmethods. The proposed approach leverages gradient descent optimization for
efficient training of the network. The algorithm’s structure is built around two essential components: the
approximation of fractional derivatives and the design of theDFNN architecture. A key strength of thismethod
is itsflexibility in choosing activation functions, which enhances its adaptability and effectiveness in solving a
wide range of FPDEs. Comparative results fromfive test cases show that the proposed scheme consistently
outperforms existingmethods, achieving superior accuracy andminimizing absolute errors. Additionally, the
majority of network parameters were optimally tuned, with the cost function converging to near zero by the end
of each training epoch. This highlights the robustness and accuracy of the proposed approach, underscoring its
advantages over traditional techniques.

Acknowledgments

The authors are very thankful toMalaysiaMinistry of Education for awarded Fundamental ResearchGrant
Scheme (Ref.No. FRGS/1/2022/STG06/UPM/02/2) for supporting this work.

Data availability statement

The data cannot bemade publicly available upon publication because they contain sensitive personal
information. The data that support the findings of this study are available upon reasonable request from the
authors.

ORCID iDs

AminaAli https://orcid.org/0000-0001-5194-1300
Norazak Senu https://orcid.org/0000-0001-8614-8281
Ali Ahmadian https://orcid.org/0000-0002-0106-7050

Figure 11.Absolute errors and convergence of the cost function for Example 4.5. (a)Depicts the absolute errors, while (b) illustrates
the convergence behavior of the cost function.

15

Phys. Scr. 100 (2025) 046012 AAli et al

https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050

References

[1] Li C andCaiM2019Theory andNumerical Approximations of Fractional Integrals andDerivatives (SIAM)
[2] Li C andZeng F 2015NumericalMethods for Fractional Calculus vol 24 (CRCPress)
[3] Salahshour S, Allahviranloo T andAbbasbandy S 2012 Solving fuzzy fractional differential equations by fuzzy laplace transforms

Commun.Nonlinear Sci. Numer. Simul. 17 1372–81
[4] Yu J and Feng Y 2024Group classification of time fractional black-scholes equationwith time-dependent coefficients Fractional

Calculus andAppliedAnalysis 27 2335–58
[5] Yu J and Feng Y 2024On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation

lawsChaos,Solitons &Fractals 182 114855
[6] McCullochWS and PittsW1943A logical calculus of the ideas immanent in nervous activityThe Bulletin ofMathematical Biophysics 5

115–33
[7] YadavN et al 2015An Introduction toNeural Networkmethods forDifferential Equations vol 1 (Springer)
[8] HintonGE,Osindero S andTehY-W2006A fast learning algorithm for deep belief netsNeural Comput. 18 1527–54
[9] Krizhevsky A, Sutskever I andHintonGE 2017 Imagenet classificationwith deep convolutional neural networksCommun. ACM 60

84–90
[10] CotterNE 1990The stone-weierstrass theorem and its application to neural networks IEEEtransactions onNeural Networks 1 290–5
[11] HornikK, StinchcombeMandWhiteH1989Multilayer feedforward networks are universal approximatorsNeural Netw. 2 359–66
[12] HornikK, StinchcombeMandWhiteH1990Universal approximation of an unknownmapping and its derivatives usingmultilayer

feedforward networksNeural Netw. 3 551–60
[13] Lagaris I E, Likas A and Fotiadis D I 1998Artificial neural networks for solving ordinary and partial differential equations IEEE

Transactions Onneural Networks 9 987–1000
[14] Lagaris I E, Likas AC and PapageorgiouDG2000Neural-networkmethods for boundary value problemswith irregular boundaries

IEEETransactionsonNeural Networks 11 1041–9
[15] McFall K S andMahan J R 2009Artificial neural networkmethod for solution of boundary value problemswith exact satisfaction of

arbitrary boundary conditions IEEETrans. Neural Netw. 20 1221–33
[16] Chaudhari P,ObermanA,Osher S, Soatto S andCarlier G 2017 Partial differential equations for training deep neural networks 51st

Asilomar Conference on Signals, Systems, andComputers vol 2017 (IEEE) pp 1627–31
[17] Han J et al 2017Deep learning-based numericalmethods for high-dimensional parabolic partial differential equations and backward

stochastic differential equationsCommunications inMathematics and Statistics 5 349–80
[18] Lu L,MengX,MaoZ andKarniadakis G E 2021Deepxde: a deep learning library for solving differential equations SIAMRev. 63 208–28
[19] YuB et al 2018The deep ritzmethod: a deep learning-based numerical algorithm for solving variational problemsCommunications in

Mathematics and Statistics 6 1–12
[20] RaissiM, Perdikaris P andKarniadakis GE 2019 Physics-informed neural networks: a deep learning framework for solving forward and

inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686–707
[21] Berg J andNyströmK2018Aunified deep artificial neural network approach to partial differential equations in complex geometries

Neurocomputing 317 28–41
[22] JinX, Cai S, LiH andKarniadakis GE 2021Nsfnets (navier-stokes flownets): physics-informed neural networks for the incompressible

navier-stokes equations J. Comput. Phys. 426 109951
[23] ShengH andYangC 2021 Pfnn: a penalty-free neural networkmethod for solving a class of second-order boundary-value problems on

complex geometries J. Comput. Phys. 428 110085
[24] YeY, FanH, Li Y, LiuX andZhangH2022Deep neural networkmethods for solving forward and inverse problems of time fractional

diffusion equationswith conformable derivativeNeurocomputing 509 177–92
[25] Wei J-L,WuG-C, Liu B-Q andZhaoZ 2022New semi-analytical solutions of the time-fractional fokker-planck equation by the neural

networkmethodOptik 259 168896
[26] FangX,Qiao L, Zhang F and Sun F 2023 Explore deep network for a class of fractional partial differential equationsChaos, Solitons

Fractals 172 113528
[27] Shi J, YangX and LiuX 2024Anovel fractional physics-informed neural networksmethod for solving the time-fractional huxley

equationNeural Computing andApplications 36 19097–119
[28] Shi J, LiuX andYangX 2025Data-driven solutions and parameter estimation of the high-dimensional time-fractional reaction-

diffusion equations using an improved fpinnmethodNonlinearDyn. 1–28
[29] Podlubny I 2000Matrix approach to discrete fractional calculus Fractional Calculus andApplied Analysis 3 359–86
[30] Shen S, Liu F, Chen J, Turner I andAnhV2012Numerical techniques for the variable order time fractional diffusion equationAppl.

Math. Comput. 218 10861–70
[31] FahadHM,RehmanMUandFernandez A 2023On laplace transformswith respect to functions and their applications to fractional

differential equationsMath.Methods Appl. Sci. 46 8304–23
[32] Podlubny I 1999 Fractional differential equationsMathematics in Science and Engineering
[33] Ren J, SunZ-Z andDaiW2016New approximations for solving the caputo-type fractional partial differential equationsAppl.Math.

Modelling 40 2625–36
[34] BaydinAG, Pearlmutter BA, Radul AA and Siskind JM2018Automatic differentiation inmachine learning: a survey Journal of

Marchine Learning Research 18 1–43
[35] FaheemM,KhanA andRazaA 2022Ahigh resolution hermite wavelet technique for solving space-time-fractional partial differential

equationsMath. Comput. Simul. 194 588–609
[36] MamaduE J,Njoseh IN andOjarikreH I 2022 Space discretization of time-fractional telegraph equationwithmamadu-njoseh basis

functionsAppliedMathematics 13 760–73
[37] WangY-L, Jia L-na andZhangH-lu 2019Numerical solution for a class of space-time fractional equation by the piecewise reproducing

kernelmethod Int. J. Comput.Math. 96 2100–11
[38] WuLandYangX 2020An efficient alternating segment parallel differencemethod for the time fractional telegraph equationAdvances

inMathematical Physics 2020 1–11

16

Phys. Scr. 100 (2025) 046012 AAli et al

https://doi.org/10.1016/j.cnsns.2011.07.005
https://doi.org/10.1016/j.cnsns.2011.07.005
https://doi.org/10.1016/j.cnsns.2011.07.005
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1016/j.chaos.2024.114855
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2020.110085
https://doi.org/10.1016/j.neucom.2022.08.030
https://doi.org/10.1016/j.neucom.2022.08.030
https://doi.org/10.1016/j.neucom.2022.08.030
https://doi.org/10.1016/j.ijleo.2022.168896
https://doi.org/10.1016/j.chaos.2023.113528
https://doi.org/10.1007/s00521-024-10177-3
https://doi.org/10.1007/s00521-024-10177-3
https://doi.org/10.1007/s00521-024-10177-3
https://doi.org/10.1007/s11071-024-10786-6
https://doi.org/10.1007/s11071-024-10786-6
https://doi.org/10.1007/s11071-024-10786-6
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1002/mma.7772
https://doi.org/10.1002/mma.7772
https://doi.org/10.1002/mma.7772
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1016/j.matcom.2021.12.012
https://doi.org/10.1016/j.matcom.2021.12.012
https://doi.org/10.1016/j.matcom.2021.12.012
https://doi.org/10.4236/am.2022.139048
https://doi.org/10.4236/am.2022.139048
https://doi.org/10.4236/am.2022.139048
https://doi.org/10.1080/00207160.2018.1544367
https://doi.org/10.1080/00207160.2018.1544367
https://doi.org/10.1080/00207160.2018.1544367
https://doi.org/10.1155/2020/6623902
https://doi.org/10.1155/2020/6623902
https://doi.org/10.1155/2020/6623902

	1. Introduction
	2. Preliminary concepts
	3. Dfnn model construction
	3.1. Design of the DFNN architecture
	3.2. FPDEs problem formulation
	3.3. Approximation of the caputo time fractional derivative
	3.4. Proposed solution
	3.5. Learning algorithm

	4. Numerical results and discussion
	5. Conclusion
	Acknowledgments
	Data availability statement
	References

