10P Publishing

® CrossMark

RECEIVED
16 January 2025

REVISED
28 February 2025

ACCEPTED FOR PUBLICATION
6 March 2025

PUBLISHED
19 March 2025

Phys. Scr. 100 (2025) 046012 https://doi.org/10.1088/1402-4896 /adbd8f

Physica Scripta

PAPER

A deep learning framework for solving fractional partial differential
equations

Amina Ali"*®, Norazak Senu'*>*®, Ali Ahmadian*>*@® and Nadihah Wahi'*

! Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
> Department of Mathematics, College of Education, University of Sulaimani, Sulaymaniyah, Iraq

* Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia

* Jadara University Research Center, Jadara University, Jordan

Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey

Authors to whom any correspondence should be addressed.

5

E-mail: norazak@upm.edu.my and ahmadian.hosseini@gmail.com

Keywords: laplace transform method, fractional partial differential equations, artificial neural networks, gradient descent, deep neural
network

Abstract

This research focuses on the study and solution of fractional partial differential equations (FPDEs), a
critical area in mathematical analysis. FPDEs pose significant challenges due to their complexity, often
requiring extensive computational resources to solve. Given the scarcity of exact solutions, numerical
methods have been a primary approach for tackling FPDEs. However, these methods often yield
substantial but limited results. The ongoing quest for more effective solutions has led researchers to
explore new methodologies. Recent advancements in deep learning (DL), particularly in deep neural
networks (DNNs), offer promising tools for solving FPDEs due to their exceptional function-
approximation capabilities, demonstrated in diverse applications such as image classification and
natural language processing. This research addresses the challenges of solving FPDEs by proposing a
novel deep feedforward neural network (DENN) framework. The method integrates the Laplace
transform for memory-efficient Caputo derivative approximations and demonstrates superior
accuracy across various examples. The results highlight the framework’s versatility and computational
efficiency, establishing it as a powerful tool for solving FPDEs.

1. Introduction

Fractional integrals and derivatives have a rich historical background, emerging nearly concurrently with
integer-order calculus. A noteworthy characteristic of fractional derivatives is their inherent time memory or
historical heredity [1]. This unique attribute makes fractional derivatives highly applicable across a wide range of
fields [2]. When solving fractional differential equations, two primary categories of methods exist: analytical and
numerical. Analytical methods include techniques such as the Fourier transform, Laplace transform [3], Mellin
transform, and Green’s function technique. Additionally, the Lie symmetry analysis method has emerged as a
modern analytical approach for solving FPDEs [4, 5]. However, most fractional differential equations do not
have analytical solutions. Even when solutions exist, they often involve intricate functions such as the Mittag-
Leffler function, Wright function, and H-function, making numerical computations challenging. Consequently,
itis essential to investigate and develop numerical techniques for solving fractional models.

Opver the past decade, DL has undergone a significant transformation, particularly in the development of
deep artificial neural networks (ANNs). Although ANNSs have existed since the 1940s [6] and have been applied
across various domains, recent advancements in deep learning, especially in the context of differential equations,
have been particularly noteworthy. For an extensive historical overview, especially concerning differential
equations, see Chapter 2 of [7]. The remarkable achievements of DL over the past ten years can be attributed to
the seamless integration of enhanced theoretical foundations beginning with unsupervised pre-training and

© 2025 IOP Publishing Ltd. All rights, including for text and data mining, Al training, and similar technologies, are reserved.

https://doi.org/10.1088/1402-4896/adbd8f
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050
mailto:norazak@upm.edu.my
mailto:ahmadian.hosseini@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/adbd8f&domain=pdf&date_stamp=2025-03-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/adbd8f&domain=pdf&date_stamp=2025-03-19

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

deep belief networks alongside advancements in hardware, particularly general-purpose graphics processing
units (GPUs), as highlighted in [8, 9]. Deep ANNs have demonstrated significant success across a wide range of
applications, including image interpretation, pattern recognition, object localization, language comprehension,
and emerging fields such as autonomous transportation and autonomous vehicles. While deep ANNs have led to
major breakthroughs in key application areas, questions remain regarding the fundamental processes that
underpin their effectiveness. In the domain of function approximation, it has been recognized since the 1990s
that ANNSs serve as universal approximators, capable of approximating any continuous function along with its
derivatives. This insight is well-documented in the research of [10—12]. In the context of partial differential
equations (PDEs), the conventional approach has been to employ single-hidden-layer ANNs for solving PDEs.
This choice is based on the understanding that a single layer, when equipped with a sufficient number of
neurons, can approximate any given function. This capability arises from the fact that all necessary gradients can
be explicitly computed in analytical form, as noted in [13—15]. However, a still-limited but growing body of
research has begun exploring deep ANNs for PDE solving [16, 17].

Overall, ANNSs offer the advantage of being continuous, computable functions that can be evaluated at any
point, both within and beyond the domain, eliminating the need for reconstitution. However, the precise
mechanisms underlying their remarkable effectiveness remain an active area of research and exploration. DNN
approaches offer several advantages over traditional numerical techniques, including [18]:

1. Traditional numerical approaches operate iteratively and typically require defining a discretization interval
before computation. Ifa solution is needed between two grid points, the entire process must be restarted
from the initial stage. In contrast, DNN methods overcome this limitation by enabling numerical solutions at
any point within the domain without requiring repetitive iterations.

2. While solving inverse problems is often challenging or even impossible with most traditional numerical
methods, DNNs offer the advantage of handling inverse problems with minimal modifications to code
originally designed for forward problems. This adaptability is a significant strength.

3. Various traditional numerical methods, such as the finite difference and finite element approaches, rely on
grid-based computation models, making high-dimensional problems challenging to handle. In contrast,
DNN methods leverage automatic differentiation, are generally meshless, and can effectively overcome the
challenges posed by the curse of dimensionality.

Here is a concise literature review on the proposed method: Weinan et al developed a DNN-based method
for solving variational problems [19]. In [20], a Physics-Informed Neural Network (PINN) was introduced,
specifically designed for supervised learning tasks related to solving nonlinear PDEs governing various physical
laws. Berg et al explored the use of DFNNSs for solving PDEs in complex geometries [21]. Jin et al employed
PINNSs to integrate governing equations directly into the DNN through automatic differentiation, effectively
handling constraints in the simulation of incompressible laminar and turbulent flows [22]. Sheng et al proposed
the Penalty-Free Neural Network (PFNN) method, which provides an efficient solution for a particular class of
second-order boundary value problems arising in complex geometries [23]. Ye et al developed DNN-based
methods for addressing both forward and inverse problems associated with time-fractional diffusion equations
featuring conformable derivatives [24]. Wei et al designed a DNN for solving time-fractional Fokker-Planck
equations of order o, where 0 < a < 1[25]. Fang et al introduced a novel approach for solving a specific class of
FPDEs of order o, where 0 < o < 1, using DNNs to address both the equations and their corresponding inverse
problems [26]. Shi et al developed fractional physics-informed neural networks (fPINNs) method for solving the
time-fractional Huxley equation [27]. Shi et al presented a fast L1-fractional fPINNs (FL1-fPINN)for solving
time-fractional reaction-diffusion [28].

The key contributions of this study are as follows:

1. A widely used numerical scheme (L; and L,) for approximating fractional derivatives, as outlined in the
literature, requires historical data from all previous time steps to compute the term 8\;77(707) This dependence
on extensive past dataleads to significant memory challenges in long-duration simulations, potentially
causing computational bottlenecks. To address this issue, we propose a novel approximation of the Caputo-
type fractional derivative using the Laplace transform. This approach effectively alleviates memory
constraints, providing a more efficient and scalable solution for solving FPDEs.

2. ADFNN with multiple hidden layers is developed to solve FPDEs in the Caputo sense.

3. A novel trial solution is developed for a specific class of FPDEs, incorporating the appropriate initial and
boundary conditions.

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

4. FPDEs with orders ranging from 0 to 1 and 1 to 2 are successfully solved, demonstrating the method’s
versatility across a range of problems.

5. Our DENN method demonstrates superior accuracy in solving FPDEs when compared to existing methods,
establishing its effectiveness as a reliable computational tool.

The following sections in this paper are structured as outlined below: section 2 provides a concise
introduction to the pertinent definitions relevant to our study. Section 3 outlines the DFNN method, including
the establishment of the DENN architecture and the derivation of the cost function. Section 4 presents the
solutions of several examples along with their corresponding results. Lastly, a synopsis of the paper’s findings is
provided in section 5.

2. Preliminary concepts

This section offers a definition of the fractional derivatives used in this study, as well as the Laplace transform for
the Caputo fractional derivative.

Definition 2.1. Defined for an order a > 0, the Caputo derivative is expressed as follows in [29, 30]:

1 T oreCm 0 pyp-a-1 B
r(p_ﬂ)fu o —Dbretldl, - for p—1<a<p,

Dy m=1
(:)T]p¢(<: 77)’ fOT’ a = P’

where p is a natural number.

Definition 2.2. Considering the function / defined for t in the non-negative domain, the Laplace transform of i,
denoted as L£{h}, is established through the improper integral, as described in [31]:

L{h(x)) = H(s) = foc e~h(x)dx. 2.1)
0
Provided that the integral in (2.1) exists and is convergent. The inverse Laplace transform is defined as:
1 c+ioco
LYH@$)) = — e*H (s)ds.
{ ()} 2mi jzfioo ()

Definition 2.3. The Laplace transformation of the Caputo fractional derivative having an order «yis outlined in
[32]:

-1
LEDh(B)} = 9L{kB} — 3 775 1(DF)(0).
k=0

3. Dfnn model construction
In this section, we offer a detailed introduction to our method.

3.1. Design of the DFNN architecture

The architecture employed in this study can aptly be referred to as a DENN. The following notations are briefly
introduced in this architecture: As shown in figure 1, consider an / + 1 layer network, consisting of an input
layer, hidden layers, and an output layer. The number of neurons in each hidden layer is assumed to be equal
and is denoted as . The layer notation appears as a superscript on each node, indicating its position within a
specific layer. This notation extends to the superscripts of the weights and biases, specifying the subsequent layer
to which they contribute. The weights are denoted as wiﬁ-, where the indices follow these ranges: Ifrom 1 to /4 1, i
from 1 to n, and j from 1 to n. The subscripts i and j have specific meanings: they represent the weights from the
neuron at position jin the (I — 1)-th layer to the neuron at position 7 in the I-th layer. Regarding biases, they are
represented as b' !, where I ranges from 1 to [+ 1. The network’s input is denoted as ;1 = (¢,)", and its output,
represented by N((, 7, p), is obtained from the node pt reflecting the count of unknown variables in the
FPDEs. It is essential to acknowledge the pivotal role of the activation function, represented by ¢, in
transforming the input to produce the network’s output. In this study, we utilize the sigmoid function, defined
asp(() = H%, for every node in each hidden layer.

3

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

Input
layer

n

pll pl2l bl pli+1]

Figure 1. The designed DFNN structure.

3.2. FPDEs problem formulation
We aim to solve the following FPDEs with the initial and boundary conditions:

LI = G(Gm W Wy W U, W), 0<CSLOSH<LO<y<L,
V(G0 =), 0<C<, ((3-1)

(0, n) = ¢,(n), ¥(I,n) = ¢5(n), 0<n< L

VG
o _G(C)n)\I’;\I[n)\II()\I’C()\I’nn)) 0<C<1)0<n<1:1<7<2’

\II(C) 0) = ¢1(C)7 \Ijn(C) 0) = ¢2(C): 0
U0, n) = ¢3(m), U(1, n) = ¢,(n), 0

: (3.2)

3.3. Approximation of the caputo time fractional derivative
First, we use the Laplace transform approach to approximate the Caputo-type time-fractional derivative [33]:

1. when0<y<1:

c{Tpen = 23, 5) - NG 0,
= S1U(C, 5) — sTIU(C, 0)]. (3.3)

Here, ¥((, s) denotes the Laplace transform of U((, 7). Considering 0 < 7y < 1, we can linearize the term s ” in
the following manner:
ST ys + (1 —).
Subsequently, we substitute this linearized term into (3.3). This results in:
c{ T) & (s 4+ (1= TG) = s7UE O,
= U) = WG 0] + (1 = NIV 9) — s, 0)].

Therefore, the inverse Laplace transform yields,

o) OV)
a0 oy

(I = NV m) — WS 0]

2. whenl<~vy<2:

I0OP Publishing Phys. Scr. 100 (2025) 046012 AAlietal

c{ZHn = 0T, 0) — 97 0) — 2 0,
= S, 5) — s7IW(C, 0) — 572, (¢, 0)]. (3.4)

For 1 < < 2, applying linear interpolation to the s” power function at interpolation points 1 and 2 yields the
following result:

ST s2(y— 1) + (2 —)s.
Putting itinto (3.4) yields,

cpﬂ@}zww7n+@fme¢97ﬂMQ®*“%@®L

on
=(y— 1)52[\i’(<’ s) — 571‘1/(@ 0) — 572\1}7]((’ 0)]
+ @2 = NS[UG) = 57U 0) — s72Ty(G 0]
Inverse Laplace transform results in the following:
PR () PN L ((e0))
o (1)—6172

+@ = NEEE 2= DY 0).

3.4. Proposed solution
Drawing inspiration from Lagaris’s concept [13], we formulate a trial solution W(yu, p) thatadheres to the initial
boundary value conditions, aiming to solve (3.1) and (3.2),

U(p, p) = AG m) + ¢ — OnN (i, p),
AN =0 = Qb () + (o) + ¢,(O) — (1 —), (0) — oy (D). (3.5)

U, p)= A) + ¢ — On*N (i, p),
A =1 = Qb)) + (o) + A = 7D (9,(O) — (1 — O),(0) + (By(1)))
+ 1((9,(O) — (1 = O),(0) + (B (1))). (3.6)

where A((, n) satisfies the initial boundary conditions.

3.5. Learning algorithm
The cost function can be defined as follows:

2

1| 07y, p)
—Mp - G(Ci) > \Il) \I/'r/) ‘l’(a \I/((’ \I/'I/U) > (37)

Clup) == -
2i0 on
Srepresents the total number of discretized points for (and . Gradient descent has been used to minimize (3.7),
so the following derivatives with respect to DFNN’s parameters are needed to compute this minimization. Let’s
take one hidden layer as an example to compute these derivations: The output of DFNN is :

N, p) =3 W1§'¢(W]1'1C + W]l‘277 + b}) + bl
=1

The derivative of N(u, p) concerning ¢, 77is as follows:

ON (s p) _ ¢
D) 5™ wih o+ whr +)
¢ -1
92N (11, p) u
% = 21 Wﬁ(w}l)zqﬁ(z)(W]l‘lC + le'zn + bjl‘),
j=
AN (1, p)

n
— 2.1 1 1 1 1
TaaDY IWUWJ‘2¢“(Wi C+ wipn + b)),
p

9N (11, p) S 1 1 1
ar = Do Wi W) eP (Wi ¢ + wirn + b)).
=1

Where ¢V and ¢® are the first and second derivatives of the activation function ¢, respectively. The following

are the derivative of N(u, p), Ne(t, p), N, p)» Nyy(ps p), and Ny, (u, p) with respect to w}l and lez, respectively.

5

I0OP Publishing Phys. Scr. 100 (2025) 046012 AAlietal

DD — 5w GO Owh G+ wh + B,
=1
P, S W GHOORC + whn + B + SO+ wh +)
j=1
W 3 WA C + wh + BY) + 2wh 6Pk ¢+ wh + BY),
j=1
aj\;i:jfzp) =]Zn:lwénq%l)(w}l(+ w}-zn + bjl-),
RTah S WP ¢+ whn + B + 6VGAC + whi + B,
j=1
T = Zl W (W] 6D wh ¢ + whi + b) + 2w g wWh¢ + whn + b)).

The derivative of N(y, p), Ne(tt> p)> Nyt p)s Ny, p) and Ne (1, p) with respect to wﬁ- is as follows:

n
ON(,p) __ 1 1 1
8“’6 - zjl d)(W]lC + W]277 + b]))
i=
n
ON(wp) 1 1(1) (y1 1 1
o Z} wi oV (wj ¢+ win + b)),
i=
ONC(p)
#:;p = Z(W}1)2¢(2)(W}1C + W]1‘27I + bjl‘))
i ‘
j=1
ON (1 p)

n
= L @t 1 !
3W12j - Z:l W]ld) (W]lc + W]277 + b])’
j=
ONy, (11,)

e = Yo W) (wh¢ + whn + b)).
=1

The derivative of N(, p), N(t, p), N, (1t p), Ny (1, p) and N1, p) concerning b} is as follows:

N@wp) _ 1
b} >
NC(;:;ZP) _ 0’
Nﬁ;l};p) -0,
N, (i,
Tg::lzp) - 0,
Ny (s
—’;2“1/’) = 0.

The derivative of N(y, p), Ne(t, p)> Nyy(tt> p)s Nyp(1, p) and Ne (i, p) concerning b} is as follows:

n
N p) 2 1 1 1
a;!p =5 :W1j¢(l)(Wj1C + win + b)),
' o
j=1

n

Ne(p, p) 2.1 1 1 1

i = 2 wiwp P wiC + win + b)),
J =1

n
Nec(ps p)
ap = 2 WP (G + wh + by,
i :
j=1

n
Ny(p p) 2.1 1 1 1
= = 2 WiwpdP Wi G+ wipn + by,
]]:1
Ny (i p)

n
b > Wl?(le'z)2¢(3)(W;1'1C + W]1'277 + bjl‘)-
=1

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

Finally, the derivative of (3.7) can be taken with respect to DENN’s parameters as follows:

1

af;v’;}’z”) :zj:l(qu GG mp U, Wy W, i, W) (j
— G (G B, B B, \if,m)) 0%(67?,’;’"7)) -

S N
oICuwp) _ Z 0N (p, p)
ab! ~\ "oy
i

S .
9C (i, p) _ Z 0"W(p; p)
abf ! on
=

(>)
)
)

o (0% p) 0
G(C,; ;> \If \I/yp \IIQ, \Ifco W))(W(o) — W .

Then, the parameters are updated using the following equations:

n+l _ oC
Wi] - 58 n’

n+1 no_ 3C
byt = by — S

Notably, these derivatives are just for one hidden layer; if we increase the number of hidden layers, it will be
more complicated, so to avoid this complexity, we used automatic differentiation [34] in Python to minimize the
cost function.

4. Numerical results and discussion

Within this section, we demonstrate the application of DFNNGs in solving FPDEs by presenting multiple
illustrative examples. The neural network is trained for a total of 20000 epochs using 121 mesh points over the
interval [0, 1] x [0, 1]. The CPU time, measured in seconds, is provided to assess the method’s efficiency.
Additionally, MAE refers to the Maximum Absolute Error. By thoroughly examining each scenario, our
objective is to highlight the efficacy and versatility of the DFNN approach in handling the complexities inherent
in FPDEs.

Example 4.1. Consider the following nonlinear fractional-order heat equation [35]:

ON(S, m) Um0)
- =0, 0<(<LL0<n<LL,0<yL 1,
o S m o c ¢ U gl
w1th\11(§ 0)=2—-¢¥(0,n) = ,and v, n) =— where forv—l the exact solution is W((,) =

2-C As per (3.5), the de51gnatedDFNN is: ‘If(u, p) = (1 -0
C(l — QNN (i, p).

+¢ +2-C—-201—-¢—C+

1+1/ 1+7/

Table 1 shows the numerical results for different values of . The table indicates that the DFNN model’s
accuracy improves as -y approaches 1. When v = 0.99, the approximation is very close to the exact solution,
reflecting high accuracy. Moreover, the CPU time remains consistently low for all values of . Table 2 presents
the absolute errors (AEs) for various values of (¢, 7)) with y= 1. The errors remain minimal, ranging from
1.43 x 10" °t0 1.79 x 10 ° across all evaluated points. Table 3 compares the MAEs, Cost function, and CPU
times across various configurations of the DENN method, each characterized by different neuron distributions,
hidden layer depths, and epoch counts. The model configurations are labeled as follows: a four-layer model with
20000 epochs (DFNN-4L20 K), a four-layer model with 25000 epochs (DFNN-4125 K), a four-layer model with
30000 epochs (DFNN-4L30 K), a single-layer model with 20000 epochs (DFNN-1L20 K), a single-layer model
with 5000 epochs (DFNN-1L5 K), and a four-layer model with 5000 epochs (DFNN-4L5 K). The results clearly
demonstrate that the DFNN-4L20 K configuration with N,, = (35, 25, 20, 15) delivers the best performance,
achieving the lowest MAE of 1.32 x 10~ and a corresponding cost function value of 2.12 x 10~ %, with a CPU
time of 94.39548 seconds. In contrast, the DFNN-4L20 K configuration with a reduced neuron distribution of
N, = (10, 10, 10, 10) exhibits significantly poorer performance, with an MAE of 5.01 x 10~ *and a cost function
value of 2.54 x 10", Increasing the number of training epochs to 25 K for the configuration
N, = (35, 25,20, 15) results in a slightly higher MAE of 1.88 x 10> and a cost function value 0f2.18 x 108,
accompanied by an increase in CPU time to 117.80738 seconds. However, extending training to 30 K epochs
leads to a noticeable decline in performance, with the MAE increasing sharply to 1.18 x 10~ *and the cost

7

I0OP Publishing Phys. Scr. 100 (2025) 046012 AAlietal

Table 1. Numerical results for Example 4.1 with different values of .

DENN

(&) Exact y=0.5 y=0.7 7=0.99 y=1
(0,0) 2 2 2 2 2
(0.1,0.1) 1.727272 1.727265 1.727255 1.727277 1.727257
(0.2,0.2) 1.500000 1.499998 1.499953 1.500014 1.499955
(0.3,0.3) 1307692 1.307738 1307628 1307717 1307621
(0.4,0.4) 1.142857 1.143001 1.142799 1.142886 1.142772
(0.5,0.5) 1.000000 1.000283 0.999976 1.000027 0.999920
(0.6,0.6) 0.875000 0.875436 0.875544 0.875020 0.874943
(0.7,0.7) 0.764706 0.765262 0.764799 0.764714 0.764683
(0.8,0.8) 0.666667 0.667246 0.666091 0.666800 0.666677
(0.9,0.9) 0.578947 0.579374 0.579064 0.578939 0.578973
(1,1) 0.5 0.5 0.5 0.5 0.5
CPU Time(s) 110.67262 127.20520 125.10181 117.03224

Table 2. Absolute errors
for Example 4.1 with y=1.

@) AEs

0,0 0

(0.1,0.1) 1.79 x 107°
0.2,0.2) 523 x107°
0.3,0.3) 9.18x10°°
(0.4,0.4) 1.19x 107°
0.5,0.5) 1.26 x107°
(0.6,0.6) 1.14x 107°
(0.7,0.7) 8.44x10°°
(0.8,0.8) 483x10°°
0.9,0.9) 1.43x10°°
(L1 0

Table 3. Comparison of MAEs, Cost function, and CPU time for DENN-1L and DFNN-4L
when a=11in Problem 4.1.

N, Method MAEs Cost function CPU Time(s)
35 DFENN-1L5K 1.18 x 107° 473x107* 15.61976
(35,25,20,15) DFNN-4L20K 132x107° 2.12x1078 94.39548
(10, 10, 10, 10) DFNN-4L20K 5.01 x 107* 2.54%x107° 97.67032
(35,25,20,15) DFENN-4L25K 1.88 x 107> 2.18 x 1078 117.80738
(35,25,20,15) DFNN-4L30K 1.18x 107* 1.46 x 107° 145.52670
35 DENN-1L20K 2.74%x107* 1.35%x107° 59.51180
(35,25,20,15) DFNN-4L5K 137 x107* 432%x107° 64.62576

function rising to 1.46 x 10~°, along with a substantial increase in computational time to 145.52670 seconds.
The single-layer configurations, DFNN-1L5 K and DFNN-1L20 K, both with N,, = 35, result in higher MAEs of
1.18 x 10 2and 2.74 x 107%, respectively, along with elevated cost function values 0of4.73 x 10 *and

1.35x 10", Additionally, the DFNN-4L5 K configuration with N,, = (35, 25, 20, 15) achieves an MAE of

1.37 x 10~*and a cost function value of4.32 x 10~°, with a CPU time of 64.62576 seconds. While this
configuration outperforms the single-layer models in accuracy, it remains inferior to deeper models trained with
more epochs. Given that the accuracy at 25 K epochs does not surpass that of the 20 K epoch configuration and
that performance at 30 K epochs deteriorates significantly compared to both 20 K and 25 K, the DFNN-4120 K
configuration with N,, = (35, 25, 20, 15) is identified as the optimal model. This configuration offers the best
balance between accuracy and computational efficiency. Figure 2 presents a comparison of the exact and DENN
solutions for = 1. The close similarity between them indicates that the DFNN model provides an accurate
approximation of the exact solution. Figure 3 shows the absolute errors and the cost function behavior over

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

w0
(g, n)

(a) (b)

Figure 2. Comparison of the exact solution and DFNN for Example 4.1 with v = 1. (a) represents the exact solution, while (b) presents
the DFNN approximation.

rror (107)

Absolute er
Cost Function

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

(a) (b)

Figure 3. Absolute errors with v = 1 and convergence of the cost function for Example 4.1. (a) represents the absolute errors, while (b)
illustrates the convergence behavior of the cost function.

20000 epochs. The graph indicates that the cost function decreases rapidly and stabilizes near zero as the number
of epochs increases, demonstrating the effective convergence of the model during training.

Example 4.2. Let consider the following FPDE of order v (0 <y < 1) as [33]:

NVGm) _ OV 6 3—7y 3 — ¢
ar — oa +(F(4—w)77 + 1’)cos(¢) —e50< (< 1,n>0,

V(0 =e0<(<1,
U0, n) =n>+1,¥1, n) =n’cos(l) + e, n > 0.

Where the exact solution is W(¢, 1) = n° cos(¢) + e, according to (3.5), the assigned DFNN
is W(p, p) = ¢ + 1°(1 — O) + Gy’eos(1) + ¢(1 — OnN (1, p).

Table 4 provides detailed numerical results across various y values (0.1, 0.75, and 0.95), evaluated at different
(¢, n) points within the domain. The DFNN model demonstrates strong performance, closely approximating the
exact solutions across the tested range of 7y values.Furthermore, the CPU time decreases as -y increases. Table 5
presents the AEs for different yvalues (0.1, 0.75, and 0.95). Figure 4 visually demonstrates the effectiveness of the
DFNN model in approximating the exact solutions at vy = 0.75. Figure 5 presents the absolute errors and the
reduction and subsequent stabilization of the cost function over 20000 epochs, emphasizing the efficiency of the
training process. The sharp decline in the cost function early on signifies rapid initial learning.

9

10P Publishing

Phys. Scr. 100 (2025) 046012

AAlietal

vi@,n

(a)

the DFNN approximation.

¥(g,n)

Figure 4. Comparison of the exact solution and DFNN for Example 4.2 with v = 0.75. (a) Shows the exact solution, while (b) presents

(b)

Table 4. Numerical results for Example 4.2 with different values of v.

DFNN
< n Exact v=0.1 v=10.75 v=0.95
(0,0) 1 1 1 1
(0.1,0.1) 1.106166 1.107981 1.108270 1.108756
0.2,0.2) 1.229243 1.235304 1.236285 1.238005
(0.3,0.3) 1.375653 1.386276 1.388114 1.391484
(0.4,0.4) 1.550773 1.564191 1.566854 1.571964
(0.5,0.5) 1.758419 1.771351 1.774639 1.781262
(0.6,0.6) 2.000391 2.009074 2.012656 2.020252
0.7,0.7) 2.276093 2277711 2281163 2.288883
(0.8,0.8) 2.582255 2.576671 2.579500 2.586195
(0.9,0.9) 2.912757 2.904436 2.906116 2.910336
1,1) 3.258584 3.258584 3.258584 3.258584
CPU Time(s) 120.22104 118.61125 99.85458

Table 5. Absolute errors for Example 4.2 with various 7y values.
AEs
& m y=0.1 y=0.75 y=0.95
(0,0) 0 0 0
0.1,0.1) 1.81x107° 21.04x107° 259 %1072
0.2,0.2) 6.06 x 107> 7.04 %1072 8.76 x 1072
(0.3,0.3) 1.06 x 1072 1.24%x 1072 1.58 x 1072
0.4,0.4) 1.34x 1072 1.60 x 1072 2.11x 1072
(0.5,0.5) 1.29x 1072 1.62 x 1072 228 %1072
0.6,0.6) 8.68 x 107> 1.22x 1072 1.98 x 1072
0.7,0.7) 1.61 x 107 5.06 x 1072 127 x 1072
(0.8,0.8) 5.58 x 107> 2.75%107° 3.94 %1072
0.9,0.9) 8.32x 102 6.64x 1073 2.42%x1073
(L,1) 0 0 0

Example 4.3. Consider the following time- fractional telegraph equation of order y(1 <y <2)[36]:

R(S))

QUG W)

o +

\IJ(C’ 0) =0, \Ijt(c.:) 0) =0,

(0, n) =0,

an

o¢

=h(n,0<(<1,0<n<],

(1, n) =0.

10

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

Absolute error (1072)

Cost Function
5

—_

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

(@) (b)

Figure 5. Absolute errors with -y = 0.75 and convergence of the cost function for Example 4.2. (a) Depicts the absolute errors, while
(b) illustrates the convergence behavior of the cost function.

Table 6. Numerical results for Example 4.3 with different values of -y.

DENN

(&) Exact y=13 y=1.5 v=1.99
(0.1,0.1) —0.000900 —0.000913 —0.000912 —0.000900
(0.2,0.2) —0.006400 —0.006491 —0.006490 —0.006398
(0.3,0.3) —0.018900 —0.019163 —0.019170 —0.018901
(0.4,0.4) —0.038400 —0.038925 —0.038958 —0.038411
(0.5,0.5) —0.062500 —0.063338 —0.063422 —0.062535
(0.6,0.6) —0.086400 —0.087537 —0.087693 —0.086471
(0.7,0.7) —0.102900 —0.104229 —0.104462 —0.103012
(0.8,0.8) —0.102400 —0.103697 —0.103976 —0.102538
(0.9,0.9) —0.072900 —0.073806 —0.074037 —0.073017
1,1 0 0 0 0
CPU Time(s) 120.96981 138.05785 101.74970

Table 7. Absolute errors for Example 4.3 with various -y values.

AEs

(&) y=13 y=1.5 y=1.99
0.1,0.1) 1.29x 107 1.24x107° 452x1077
0.2,0.2) 9.07 x 10> 9.001 x 107> 1.50 x 107
(0.3,0.3) 2,63 x107* 2.70 x 10* 6.22 %1077
0.4,0.4) 5.24 x 107* 5.57 x 107* 1.14x107°
0.5,0.5) 8.38 x107* 921 x107* 3.52x107°
(0.6,0.6) 1.13x 107 1.29%107° 8.12x107°
0.7,0.7) 1.32x 1073 1.56 x 1073 1.12x 107*
0.8,0.8) 1.29%x 1077 157 %1077 1.38x107*
0.9,0.9) 9.05x 10™* 1.13x107° 116 x107*
11 0 0 0

with h(¢, n) = 2(¢% — C)n(%) — 2n*and U((,) = (¢ — On*. The DENN can be written as

follows from (3.6): ¥ (y, p) = ¢ — On*N (i, p).

Table 6 illustrates the numerical results for Problem 4.3 across various -y values. Furthermore, CPU time remains
consistently low for all -y settings. Table 7 presents the AEs across different values of 7. It is observed that as -y increases,
the AEs generally decrease, indicating improved accuracy. Figure 6 provides a visual comparison between the exact

11

I0OP Publishing Phys. Scr. 100 (2025) 046012 AAlietal

v(gn

(a) (b)

Figure 6. Comparison of the exact solution and DFNN for Example 4.3 with v =1.99. (a) Displays the exact solution, while (b)
presents the DFNN approximation.

10°

Absolute error (1074

Cost Function

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

(@ (b)

Figure 7. Absolute errors with -y = 1.99 and convergence of the cost function for Example 4.3. (a) Depicts the absolute errors, while (b)
illustrates the convergence behavior of the cost function.

solutions and the DFNN approximations, demonstrating the model’s capability to effectively capture the underlying
dynamics of the problem. Figure 7 shows the absolute error surface, offering a visual representation of the
discrepancies between the DENN and exact solutions across the domain, along with the cost function’s trajectory over
training epochs. The sharp initial decrease in the cost function, followed by a plateau, suggests that the model quickly
adapts to the problem structure, achieving a significant reduction in error early in the training process.

Example 4.4. Consider the following FPDE of order y(1 < v < 2) [37]:

RS L () 6 3y .3 <
o = ac +(F(47v)77 + 1P)cos(¢) — e 0< (< 1,n>0,

U 0)=eS U 0)=0,0< (<1,
WO, n) =n*+ 1, ¥, n) = n’cos(1) + e, n > 0.

Where the exact solution is W((, 1) = 1’ cos(¢) + €.
From (3.6), the DNN may be expressed as follows: T, p) = (1 — O + 1) + C(Peos(1) + e) +
(1 =7 = (1 =) —¢e)+ ¢ — On’N(u, p).

Table 8 presents numerical results for different values of 7. The values are evaluated at various points (¢, 1),
highlighting the model’s accuracy in approximating the exact solutions. Furthermore, for all settings of 7, the
CPU time remains consistently low. Table 9 provides a comparison of absolute errors between the proposed
DFNN method and the PRKM method [37] for various ((,) values when y = 1.3. The table clearly shows that
the DFNN method consistently outperforms PRKM [37], yielding lower absolute errors across all parameter

12

10P Publishing

Phys. Scr. 100 (2025) 046012

AAlietal

vin

(a)

presents the DFNN solution.

b(,n)

(b)

Figure 8. Comparison of the exact solution and DFNN with = 1.95 for Example 4.4. (a) Displays the exact solution, while (b)

Table 8. Numerical results for Example 4.4 with different values of v.

DFNN
) Exact y=1.3 y=17 v=1.95
(0.1,0.1) 1.106166 1.106400 1.105654 1.106283
(0.2,0.2) 1.229243 1.230610 1.225875 1.229905
(0.3,0.3) 1.375653 1.378859 1.366573 1.377156
(0.4,0.4) 1.550773 1.555706 1.534195 1.553018
(0.5,0.5) 1.758419 1.764077 1.734667 1.760947
(0.6,0.6) 2.000391 2.005245 1.972277 2.002617
(0.7,0.7) 2.276093 2.278747 2.248544 2.277608
(0.8,0.8) 2.582255 2.582226 2.561062 2.583033
(0.9,0.9) 2.912757 2911176 2.902329 2.913098
(1,1) 3.258584 3.258584 3.258584 3.258584
CPU Time(s) 127.03214 112.54682 103.44827

Table 9. Comparison of absolute errors for Example 4.4

withy=1.3.

(@) DFNN PRKM(h=0.1)[37]
(0.1,0.1) 2.34007 x 10~* 259785 x 10~*
0.2,0.2) 1.36709 x 107> 5.06435 x 107>
0.3,0.3) 3.20589 x 102 1.37166 x 102
(0.4,0.4) 493347 x 107> 2.48823 x 1072
(0.5,0.5) 5.65838 x 10> 3.66127 x 1072
(0.6,0.6) 4.85373 107 4.63938 x 1072
0.7,0.7) 2.65384 x 107> 512172 x 1072
(0.8,0.8) 2.86102 x 10~° 4.76556 x 102
0.9,0.9) 1.58071 x 10~ 3.19344 x 1072

values, further demonstrating its superior accuracy. Figure 8 displays a comparison between the exact solution
and the DFNN solution for y= 1.95. Figure 9 illustrates the cost function and absolute error surface for y=1.95,
underscoring the efficiency of model training and its accuracy in approximating the exact solution.

Example 4.5. The time fractional telegraph equation is expressed as follows [38]:

OMW(¢,) + AU, _ O

8771'8

\II(C: 0) = C(l - C)) \Ij’r](ca 0) =0,

07,0.8

a¢?

0<(¢<1,¥(0,n) =0,%(1,n =0.

13

10P Publishing

Phys. Scr. 100 (2025) 046012

AAlietal

10°

Cost Function

Epoch

(a)

0 2500 5000 7500 10000 12500 15000

17500 20000

Absolute error (1073)

Figure 9. Convergence of the cost function and absolute errors for Example 4.4 with v = 1.95. (a) Shows the convergence behavior of
the cost function, while (b) presents the absolute errors.

(b)

vig.n

(a)

solution.

b(g,m

Figure 10. Comparison of the exact solution and DFNN for Example 4.5. (a) Shows the exact solution, while (b) presents the DENN

(b)

Table 10. Numerical results for Example 4.5.

) Exact DENN AEs
(0.1,0.1) 0.090900 0.090907 7.29x10°°
(0.2,0.2) 0.166400 0.166453 530 x 1077
(0.3,0.3) 0.228900 0.229060 1.60 x 10~*
(0.4,0.4) 0.278400 0.278732 3.32x10°*
(0.5,0.5) 0.312500 0.313052 552x107*
(0.6,0.6) 0.326400 0.327179 7.78 x 10°*
(0.7,0.7) 0.312900 0.313845 9.45x10°*
(0.8,0.8) 0.262400 0.263359 9.58 x 10°*
(0.9,0.9) 0.162900 0.163595 6.95x10°*
(1,1) 0 0 0
CPU Time(s) 116.86251

Where the exact solution is W(¢,) = (1 +7°)¢(1 — O and f(¢, n) = (1 — C)(2 po24 2 1,2) +

2(1 + 7).

(1.2 reo!

Based on equation (3.6), DENN can be written as: W(i1, p) = (1 — ()¢(1 — 12 4+ ¢(A — On*N (i, p).

Table 10 presents numerical results, highlighting the model’s accuracy across the domain, with minimal
discrepancies noted between the exact and DFNN solutions, as evidenced by the small AEs. Figure 10 provides a

14

10P Publishing

Phys. Scr. 100 (2025) 046012 AAlietal

Absolute error (1073)

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

(a) (b)

Figure 11. Absolute errors and convergence of the cost function for Example 4.5. (a) Depicts the absolute errors, while (b) illustrates
the convergence behavior of the cost function.

visual comparison between the exact solutions and the DFNN approximations, demonstrating the model’s
capability to effectively capture the underlying dynamics of the problem. Figure 11 provides a visual
representation of the absolute error surface, illustrating the discrepancies between the DFNN and exact
solutions across the domain. Additionally, it depicts the trajectory of the cost function over training epochs. The
steep initial decline in the cost function is followed by a stabilization phase.

5. Conclusion

This study introduces a novel algorithm based on DFNNss for solving FPDEs, demonstrating significant
improvements over existing methods. The proposed approach leverages gradient descent optimization for
efficient training of the network. The algorithm’s structure is built around two essential components: the
approximation of fractional derivatives and the design of the DFNN architecture. A key strength of this method
is its flexibility in choosing activation functions, which enhances its adaptability and effectiveness in solving a
wide range of FPDEs. Comparative results from five test cases show that the proposed scheme consistently
outperforms existing methods, achieving superior accuracy and minimizing absolute errors. Additionally, the
majority of network parameters were optimally tuned, with the cost function converging to near zero by the end
of each training epoch. This highlights the robustness and accuracy of the proposed approach, underscoring its
advantages over traditional techniques.

Acknowledgments

The authors are very thankful to Malaysia Ministry of Education for awarded Fundamental Research Grant
Scheme (Ref. No. FRGS/1,/2022/STG06/UPM/02/2) for supporting this work.

Data availability statement

The data cannot be made publicly available upon publication because they contain sensitive personal
information. The data that support the findings of this study are available upon reasonable request from the
authors.

ORCID iDs

Amina Ali ® https: /orcid.org/0000-0001-5194-1300
Norazak Senu @ https://orcid.org/0000-0001-8614-8281
Ali Ahmadian @ https: /orcid.org/0000-0002-0106-7050

15

https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-5194-1300
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0001-8614-8281
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050
https://orcid.org/0000-0002-0106-7050

I0OP Publishing Phys. Scr. 100 (2025) 046012 AAlietal

References

[1] LiCand Cai M 2019 Theory and Numerical Approximations of Fractional Integrals and Derivatives (SIAM)
[2] LiCand ZengF 2015 Numerical Methods for Fractional Calculus vol 24 (CRC Press)
[3] Salahshour S, Allahviranloo T and Abbasbandy S 2012 Solving fuzzy fractional differential equations by fuzzy laplace transforms
Commun. Nonlinear Sci. Numer. Simul. 17 137281
[4] YuJand FengY 2024 Group classification of time fractional black-scholes equation with time-dependent coefficients Fractional
Calculus and AppliedAnalysis 27 2335-58
[5] YuJand FengY 2024 On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation
laws Chaos,Solitons & Fractals 182 114855
[6] McCulloch W Sand Pitts W 1943 A logical calculus of the ideas immanent in nervous activity The Bulletin of Mathematical Biophysics 5
115-33
[7] Yadav N et al 2015 An Introduction to Neural Networkmethods for Differential Equations vol 1 (Springer)
[8] Hinton G E, Osindero S and Teh Y-W 2006 A fast learning algorithm for deep belief nets Neural Comput. 18 1527-54
[9] Krizhevsky A, Sutskever I and Hinton G E 2017 Imagenet classification with deep convolutional neural networks Commun. ACM 60
84-90
[10] Cotter N E 1990 The stone-weierstrass theorem and its application to neural networks IEEEtransactions on Neural Networks 1 290-5
[11] Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural Netw. 2 359—66
[12] Hornik K, Stinchcombe M and White H 1990 Universal approximation of an unknown mapping and its derivatives using multilayer
feedforward networks Neural Netw. 3 551-60
[13] LagarisIE, Likas A and Fotiadis D I 1998 Artificial neural networks for solving ordinary and partial differential equations IEEE
Transactions Onneural Networks 9 987—1000
[14] Lagaris I E, Likas A C and Papageorgiou D G 2000 Neural-network methods for boundary value problems with irregular boundaries
IEEE Transactionson Neural Networks 11 1041-9
[15] McFallK S and Mahan] R 2009 Artificial neural network method for solution of boundary value problems with exact satisfaction of
arbitrary boundary conditions IEEE Trans. Neural Netw. 20 1221-33
[16] ChaudhariP, Oberman A, Osher S, Soatto S and Carlier G 2017 Partial differential equations for training deep neural networks 51st
Asilomar Conference on Signals, Systems, and Computersvol 2017 (IEEE) pp 1627-31
[17] Han]J etal 2017 Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward
stochastic differential equations Communications in Mathematics and Statistics 5 349—80
[18] LuL, MengX, Mao Z and Karniadakis G E 2021 Deepxde: a deep learning library for solving differential equations SIAM Rev. 63 208—28
[19] YuB etal2018 The deep ritz method: a deep learning-based numerical algorithm for solving variational problems Communications in
Mathematics and Statistics 6 1—12
[20] Raissi M, Perdikaris P and Karniadakis G E 2019 Physics-informed neural networks: a deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686707
[21] Berg]Jand Nystrom K 2018 A unified deep artificial neural network approach to partial differential equations in complex geometries
Neurocomputing 317 28—41
[22] JinX, Cai S, Li H and Karniadakis G E 2021 Nsfnets (navier-stokes flow nets): physics-informed neural networks for the incompressible
navier-stokes equations J. Comput. Phys. 426 109951
[23] ShengH and Yang C 2021 Pfnn: a penalty-free neural network method for solving a class of second-order boundary-value problems on
complex geometries J. Comput. Phys. 428 110085
[24] YeY,FanH, LiY, Liu X and Zhang H 2022 Deep neural network methods for solving forward and inverse problems of time fractional
diffusion equations with conformable derivative Neurocomputing 509 177-92
[25] Wei]J-L, Wu G-C, Liu B-Q and Zhao Z 2022 New semi-analytical solutions of the time-fractional fokker-planck equation by the neural
network method Optik 259 168896
[26] FangX, Qiao L, Zhang F and Sun F 2023 Explore deep network for a class of fractional partial differential equations Chaos, Solitons
Fractals 172113528
[27] ShiJ, Yang X and Liu X 2024 A novel fractional physics-informed neural networks method for solving the time-fractional huxley
equation Neural Computing and Applications 36 19097-119
[28] ShiJ, Liu X and Yang X 2025 Data-driven solutions and parameter estimation of the high-dimensional time-fractional reaction-
diffusion equations using an improved fpinn method Nonlinear Dyn. 1-28
[29] PodlubnyI2000 Matrix approach to discrete fractional calculus Fractional Calculus and Applied Analysis 3 359-86
[30] ShenS,LiuF, ChenJ, Turner I and Anh V 2012 Numerical techniques for the variable order time fractional diffusion equation Appl.
Math. Comput. 218 1086170
[31] Fahad HM, Rehman M U and Fernandez A 2023 On laplace transforms with respect to functions and their applications to fractional
differential equations Math. Methods Appl. Sci. 46 830423
[32] PodlubnyI 1999 Fractional differential equations Mathematics in Science and Engineering
[33] Ren]J, Sun Z-Z and Dai W 2016 New approximations for solving the caputo-type fractional partial differential equations Appl. Math.
Modelling 40 2625-36
[34] Baydin A G, Pearlmutter B A, Radul A A and Siskind] M 2018 Automatic differentiation in machine learning: a survey Journal of
Marchine Learning Research 18 1-43
[35] Faheem M, Khan A and Raza A 2022 A high resolution hermite wavelet technique for solving space-time-fractional partial differential
equations Math. Comput. Simul. 194 588-609
[36] Mamadu E J, Njoseh I N and Ojarikre H 12022 Space discretization of time-fractional telegraph equation with mamadu-njoseh basis
functions Applied Mathematics 13 760-73
[37] WangY-L, Jia L-naand Zhang H-lu 2019 Numerical solution for a class of space-time fractional equation by the piecewise reproducing
kernel method Int. J. Comput. Math. 96 210011
[38] WuLand Yang X 2020 An efficient alternating segment parallel difference method for the time fractional telegraph equation Advances
inMathematical Physics 2020 1-11

16

https://doi.org/10.1016/j.cnsns.2011.07.005
https://doi.org/10.1016/j.cnsns.2011.07.005
https://doi.org/10.1016/j.cnsns.2011.07.005
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1016/j.chaos.2024.114855
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2020.110085
https://doi.org/10.1016/j.neucom.2022.08.030
https://doi.org/10.1016/j.neucom.2022.08.030
https://doi.org/10.1016/j.neucom.2022.08.030
https://doi.org/10.1016/j.ijleo.2022.168896
https://doi.org/10.1016/j.chaos.2023.113528
https://doi.org/10.1007/s00521-024-10177-3
https://doi.org/10.1007/s00521-024-10177-3
https://doi.org/10.1007/s00521-024-10177-3
https://doi.org/10.1007/s11071-024-10786-6
https://doi.org/10.1007/s11071-024-10786-6
https://doi.org/10.1007/s11071-024-10786-6
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1016/j.amc.2012.04.047
https://doi.org/10.1002/mma.7772
https://doi.org/10.1002/mma.7772
https://doi.org/10.1002/mma.7772
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1016/j.matcom.2021.12.012
https://doi.org/10.1016/j.matcom.2021.12.012
https://doi.org/10.1016/j.matcom.2021.12.012
https://doi.org/10.4236/am.2022.139048
https://doi.org/10.4236/am.2022.139048
https://doi.org/10.4236/am.2022.139048
https://doi.org/10.1080/00207160.2018.1544367
https://doi.org/10.1080/00207160.2018.1544367
https://doi.org/10.1080/00207160.2018.1544367
https://doi.org/10.1155/2020/6623902
https://doi.org/10.1155/2020/6623902
https://doi.org/10.1155/2020/6623902

	1. Introduction
	2. Preliminary concepts
	3. Dfnn model construction
	3.1. Design of the DFNN architecture
	3.2. FPDEs problem formulation
	3.3. Approximation of the caputo time fractional derivative
	3.4. Proposed solution
	3.5. Learning algorithm

	4. Numerical results and discussion
	5. Conclusion
	Acknowledgments
	Data availability statement
	References

