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1 Introduction

Titanium-aluminum laminated composites have emerged 
as significant materials in advanced engineering applica-
tions, owing to their remarkable balance of lightweight, 
high strength, and excellent corrosion resistance [1–3]. 
The layered structure of Ti/Al composites effectively com-
bines titanium’s strength, ductility, and resilience with alu-
minum’s low density and superior thermal and electrical 
conductivity. This synergistic approach in composite pro-
duction not only boosts mechanical performance but also 
enhances energy absorption and reduces crack propagation, 
providing a material solution that outperforms traditional 
monolithic materials [4–6]. Achieving the desired proper-
ties in Ti/Al laminated composites requires precise control 
over the production process. Various methods, such as dif-
fusion bonding, explosive welding, and accumulative roll 
bonding, have been explored for creating these laminates 
[7, 8]. Among these, hot pressing has also emerged as an 
effective and versatile technique for fabricating high-quality 
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Abstract
This study investigates the prediction and evaluation of mechanical characteristics in hot-pressed Ti/Al/Ti laminates using 
a Random Forest (RF) machine learning model. The training dataset was generated through numerical simulations, encap-
sulating the laminates’ complex mechanical behavior under diverse conditions. To optimize model performance, hyper-
parameter tuning techniques, including Grid Search (GS), Particle Swarm Optimization (PSO), and Genetic Algorithms 
(GA), were applied. Among these, the GA-tuned RF model exhibited the highest predictive accuracy, achieving R2 values 
of 0.947 for yield stress, 0.937 for yield strength, and 0.928 for Poisson’s ratio. The superior performance of the GA-tuned 
model is attributed to its effective feature selection and optimization capabilities, surpassing GS and PSO by identifying 
the most relevant input features. Relevance score analysis also revealed a balanced contribution of material geometry 
(e.g., thickness) and pressing parameters for predicting yield stress and ultimate strength, while induced strain played a 
significant role in predicting Poisson’s ratio. A case study using the GA-RF model further unveiled intricate relationships 
between input variables and mechanical properties, providing valuable guidance for optimizing hot-pressing parameters 
to enhance laminate performance.
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Ti/Al composites. Hot pressing involves applying heat 
and pressure simultaneously to bond the dissimilar layers, 
enabling strong metallurgical bonding while minimizing 
defects [9, 10]. By operating at elevated temperatures, the 
process promotes diffusion at the interface, ensuring excel-
lent adhesion between layers. Experimental studies have 
extensively explored the performance and properties of Ti/
Al laminates under various conditions in the hot pressing. 
For instance, one study demonstrated that hot-pressed Ti/Al 
sheets exhibit remarkable ductility at elevated temperatures, 
achieving an elongation of 135% at 600 °C [11]. Another 
investigation by Que et al. [12] revealed that optimizing 
process parameters, such as grain size and recrystallization 
fraction, led to the formation of nanoscale TiAl₃ phases with 
significant stacking faults, enhancing interfacial bonding 
and mechanical strength. Additionally, hierarchical modifi-
cations to bimodal grain structures were shown to achieve 
an exceptional strength-ductility synergy in Ti/Al laminates 
[13]. Recent advancements in this field also include inte-
grating high-entropy alloy particles and ultrasonic consoli-
dation into the fabrication process of Ti/Al laminates, which 
further improve tensile strength, crack resistance, and aniso-
tropic flexural properties of these composites [14, 15].

Beyond experimental efforts, finite element (FE) simu-
lations have emerged as a powerful tool for analyzing the 
behavior of hot-pressed Ti/Al laminates. Such studies affirm 
that FE analysis is a powerful tool for evaluating the plas-
ticity and mechanical properties of Ti/Al laminates. More-
over, similar studies have effectively utilized FE analysis 
to investigate the behavior of laminates under hot pressing, 
demonstrating its reliability for understanding and optimiz-
ing processing conditions [16, 17]. However, despite their 
utility, FE simulations can be computationally intensive and 
time-consuming, particularly when applied to large datasets 
or real-time predictions [18, 19]. These limitations under-
score the need for complementary approaches to enhance 
efficiency without compromising accuracy. In this regard, 
machine learning (ML) offers a promising alternative to 
traditional simulation-based methods. ML models excel 
in processing large datasets, identifying complex patterns, 
and delivering rapid predictions, making them particularly 
well-suited for material property evaluations [20–22]. Con-
sidering the context of this work, ML has demonstrated 
exceptional potential for predicting mechanical responses 
and plasticity behavior under various processing conditions, 
including laminated composites [23, 24], and hot pressing 
processes [25, 26].

Building on existing literature, this study proposes a 
novel hybrid approach that integrates FE simulations with 
ML techniques to improve the prediction, understanding, 
and optimization of hot-pressed Ti/Al/Ti laminates. Recent 
advancements in materials science have also demonstrated 

the potential of ML-FE integration for accurately and effi-
ciently predicting the mechanical responses of various 
materials and structures [27–29]. In this work, FE simula-
tions serve as the primary data source, generating a com-
prehensive and reliable dataset. This dataset is then used to 
train ML models, enabling precise and efficient predictions 
of mechanical responses in laminated composites. The pro-
posed approach introduces several key novelties and advan-
tages. By combining FE-generated data with ML models, 
this study achieves a unique balance between high-fidelity 
simulation results and rapid predictive capabilities. Further-
more, the proposed model uncovers complex relationships 
between processing parameters and mechanical properties 
that conventional numerical methods often fail to capture. 
This deeper insight facilitates the optimization of hot-
pressing parameters, enabling the development of Ti/Al/Ti 
laminates with tailored mechanical properties for advanced 
engineering applications. Additionally, the framework is 
scalable and adaptable, allowing for continuous integra-
tion of new data, making it applicable to a broad range of 
material systems and processing conditions. From an ML 
perspective, this study also demonstrates how proper hyper-
parameter tuning significantly enhances predictive accu-
racy in materials property estimation. Ultimately, this work 
contributes to both materials science and ML implementa-
tion, advancing the field of hot-pressed laminate production 
through a data-driven approach.

2 Methodology

2.1 Numerical simulation as a data collection 
method

In this study, numerical simulations were conducted to gen-
erate data on the hot pressing of Ti/Al/Ti laminates, which 
were subsequently used for training ML models. Specifi-
cally, FE simulations were carried out using Abaqus, incor-
porating a thermo-displacement approach to accurately 
represent the coupled thermal and mechanical behavior 
during the pressing process. The thermo-displacement 
approach in the simulation modeled the interaction between 
thermal and mechanical fields [30]. As the laminate was 
subjected to heat and pressure, the thermal field influenced 
the mechanical deformation by altering the materials’ yield 
strength and elastic modulus. Conversely, the mechani-
cal deformation affected heat transfer by changing contact 
areas and conduction paths. This bidirectional coupling was 
critical for accurately capturing the evolution of stresses, 
strains, and temperature gradients during the hot pressing of 
Ti/Al/Ti laminates. The Ti/Al/Ti configuration was modeled 
with varying layer thicknesses, where the bonding between 
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titanium and aluminum layers was done through the exis-
tence of intermetallic TiAl₃ at the interfaces. The metallic 
layers were characterized as elastoplastic to capture their 
ability to undergo plastic deformation under applied loads, 
while the TiAl₃ intermetallic, known for its brittle behavior, 
was modeled as an elastic material. This distinction ensured 
realistic representation of the material behavior under press-
ing conditions.

As seen in Fig. 1a, the simulation utilized a thermally 
coupled, 8-node element with trilinear displacement and 
temperature capabilities and reduced integration (C3D8T). 
This element was chosen for its ability to efficiently and 
accurately represent the thermal-mechanical interactions in 
complex processes like hot pressing. The choice of C3D8T 
elements ensured that the thermal and mechanical responses 
were simultaneously computed, accounting for temperature-
dependent material behavior such as softening in the metallic 
layers and thermal expansion mismatches at the interfaces. 
Moreover, the TiAl₃ interface was explicitly meshed using 
the same C3D8T elements as the metallic layers to ensure 
compatibility in temperature and displacement calculations, 
eliminating the need for additional contact definitions. To 
ensure a realistic representation of boundary conditions, the 

nodes located on the bottom tray were constrained along the 
X-axis, effectively restricting any lateral movement. Addi-
tionally, the interfacial bonding between Ti, TiAl₃, and Al 
was enforced by constraining the displacement degrees of 
freedom at shared nodes, ensuring perfect adhesion without 
requiring separate cohesive elements. A reference point was 
defined on the top of the upper tray, allowing the capture 
of force and displacement data during the simulation. The 
pressing action was simulated by incrementally displacing 
the top tray, with data recorded at each step to analyze the 
pressing force requirements and deformation behavior of 
the laminate. Hot pressing was simulated over a wide range 
of processing parameters, including varying temperatures, 
pressing durations, and pressing pressure. This comprehen-
sive parameter set enabled the analysis of the laminate’s 
response under different conditions, providing a robust data-
set for subsequent ML training.

A representative volume element (RVE) with dimen-
sions of 5 mm × 5 mm × 5 mm was constructed to inves-
tigate material behavior at the microscale (See Fig. 1b). 
The RVE consisted of alternating titanium and aluminum 
layers with TiAl₃ interfaces, maintaining geometric sym-
metry to reduce computational demands while preserving 

Fig. 1 (a) Schematic of the tray/sample configuration used in the pressing process, (b) Representative Volume Element model for analysis
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layers, emphasizing the plastic deformation occurring in the 
aluminum and titanium layers. The strain concentration in 
the aluminum layer can be attributed to its higher ductility 
compared to the titanium layers. Figure 2c shows the cor-
responding stress-strain curve obtained from the tensile test, 
highlighting critical mechanical properties such as the yield 
stress (σy) and ultimate tensile strength (σu), which are key 
indicators of the material’s ability to withstand stress and 
strain before failure. In addition to these primary mechanical 
properties, Poisson’s ratio (υ) was calculated based on the 
strain distribution, providing insights into the lateral defor-
mation behavior of the laminate under tensile stress. Pois-
son’s ratio complements the stress-strain data by describing 
the material’s elastic response, specifically the relationship 
between longitudinal and lateral strain. Together with the 
yield stress and ultimate tensile strength, Poisson’s ratio 
serves as an essential output feature for this study, as these 
properties offer a comprehensive understanding of the lami-
nate’s mechanical performance under tensile loading.

The dataset for training process consisted of 230 sam-
ples, each representing a unique combination of input 
parameters and their corresponding mechanical responses. 
To ensure a comprehensive and diverse dataspace, the data-
set was generated using a hybrid sampling approach. This 
approach combined stratified sampling, random sampling, 
and edge-case augmentation in the following way: First, 
stratified sampling was used to divide the input parameters 
into distinct groups or strata. Samples were then drawn pro-
portionally from each stratum to ensure balanced represen-
tation across these key parameters. Next, random sampling 
was applied within each stratum to introduce variability and 
ensure that no specific parameter combination was over-rep-
resented. Finally, edge-case augmentation was incorporated 
to explicitly include extreme values for critical parameters,, 
ensuring that the dataset covers the full range of possible 
processing conditions and material behaviors. This hybrid 
approach allowed for a well-distributed and diverse data-
set, capturing the full spectrum of mechanical responses 
while preventing bias towards any single set of conditions. 
To prepare the dataset for ML training, all input and output 
features were normalized to a range of 0 to 1. This prepro-
cessing step ensured that all features contributed equally to 
the training process, preventing features with larger numeri-
cal ranges from dominating the learning process. The care-
ful selection of input and output features, combined with 
systematic dataset generation and normalization, ensured 
that the ML model was trained on a robust and representa-
tive dataset. By incorporating both process parameters and 
mechanical responses, the dataset captured the relationships 
between the hot pressing conditions, material behavior, and 
final mechanical properties of the Ti/Al/Ti laminates.

the physical accuracy of the model. Symmetric boundary 
conditions (SBC) were also applied to constrain the edges 
of the RVE, ensuring periodicity in deformation and stress 
distribution [31]. Following the hot pressing simulation, a 
tensile test was modeled to evaluate the mechanical proper-
ties of the Ti/Al/Ti laminate. The test setup involved apply-
ing a uniaxial tensile load perpendicular to the laminate’s 
plane to assess its strength and ductility. The strain rate was 
set to 10⁻³ s⁻¹ to simulate quasi-static conditions, ensuring 
that the material response was not influenced by strain rate 
effects. In the simulation, the bottom nodes of the laminate 
were fixed to prevent movement, creating a stable boundary 
condition. A controlled displacement was applied to the top 
nodes, mimicking the experimental tension test. A reference 
point was defined on the top surface to monitor the force-
displacement response throughout the simulation.

2.2 Data identification and extraction for model 
training

In this study, several parameters from the FE simula-
tion were selected as inputs for the ML training process. 
These input features included the thickness of the Al layer 
(Dal=1.5–3.5 mm), the thickness of Ti layers (Dti=1.5–
3.5 mm), the intermetallic layer thickness (Dim=0–0.1 mm), 
the pressing temperature (T = 670–820 K), the pressing time 
(t = 10–30 min), and the pressing pressure (L = 30–60 MPa). 
These parameters were chosen to capture a wide range of 
processing conditions and material configurations, ensuring 
that the training dataset adequately represented the vari-
ability in the process. Figure 2a provides an example of the 
stress and strain distribution in a pressed Ti/Al/Ti laminate 
sample. The maximum stress is observed at the interme-
tallic/Ti boundaries, likely due to the mismatch in elastic 
modulus and thermal expansion coefficients between the 
intermetallic TiAl₃ layer and the Ti layers. This mismatch 
creates localized stress concentrations under pressing pres-
sure. Conversely, the maximum induced strain occurs at 
the Al/intermetallic boundaries, which can be attributed 
to the lower yield strength and higher ductility of the alu-
minum compared to the intermetallic and titanium layers. 
This mechanical incompatibility leads to significant strain 
accumulation near the softer aluminum layer. Based on 
these insights, the maximum stress (σmax) and strain (εmax) 
at the interfacial boundaries, as well as the average values 
of stress (σave) and strain (εave) across the volume of each 
layer, were selected as additional input features for the ML 
model. These features provide a detailed description of the 
mechanical behavior within the laminate under hot pressing 
conditions. Figure 2b and c illustrate the mechanical behav-
ior of a sample subjected to tensile loading. Figure 2b dis-
plays the distribution of induced strain across the laminate 

1 3

  285  Page 4 of 16



Data-driven characterization of plastic deformation and mechanical properties in hot-pressed Ti/Al/Ti…

space and identify optimal configurations that maximize 
model accuracy. The details of these methods, integral to 
the RF structure (see Fig. 3), are described as follows:

A. Grid Search Optimization for RF Tuning: To enhance 
the predictive accuracy of the RF model in analyzing 
the mechanical behavior of Ti/Al/Ti laminates, Grid 
Search (GS) was employed for systematic hyperparam-
eter optimization. Grid Search is an exhaustive tuning 
technique that explores a predefined grid of hyperpa-
rameter values to identify the optimal configuration 
[34]. Key hyperparameters tuned included the number 
of trees (Ntrees), maximum tree depth (Dmax), and mini-
mum number of samples required to split an internal 

2.3 ML implementation

In this study, ML models were implemented with a focus on 
the Random Forest (RF) algorithm, which was chosen for 
its robustness to overfitting, scalability, and ability to handle 
complex, nonlinear relationships. RF builds an ensemble of 
decision trees, aggregating their outputs to improve stability 
and accuracy [32, 33]. This makes it particularly well-suited 
for analyzing the intricate interplay of mechanical properties 
in laminates. To further enhance its predictive performance, 
three distinct hyperparameter tuning methods—Grid Search 
(GS), Particle Swarm Optimization (PSO), and Genetic 
Algorithm (GA)—were systematically employed. Each 
method was designed to effectively navigate the parameter 

Fig. 2 An example illustrating: (a) stress and strain maps in pressed samples, (b) strain maps for RVE samples during tensile testing, and (c) stress-
strain curves

 

1 3

Page 5 of 16   285 



M. Sharaf et al.

Where yi represents the true values, 
,
yi the predicted values, 

and N the number of samples. Alternatively, the coefficient 
of determination (R²) was also considered. Grid Search 
identifies configurations that minimize MSE or maximize 
R², ensuring the RF model is fine-tuned for high predictive 
accuracy.

node (Msplit). By systematically varying these param-
eters within specified ranges, the model’s performance 
was evaluated through cross-validation.

B. The performance metric, mean squared error (MSE), is 
expressed as:

MSE = 1
N

∑
N
i=1(yi −

,
yi)

2
 (1)

Fig. 3 Structure of the Random Forest model with various hyperparameter tuning processes
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Next, crossover combines genes from two parent solutions 
at a crossover point c, as shown by:
{

Offspring1 = [Parent1 [1 : c] , Parent2[c + 1 : n ]]
Offspring2 = [Parent2 [1 : c] , Parent1[c + 1 : n ]]  (5)

Mutation introduces diversity by slightly altering genes 
using a random perturbation:

Chromosomei [j] = Chromosomei [j] + ϵ  (6)

Where ε represents a random perturbation. Elitism is also 
employed to retain the best individuals across generations, 
ensuring that the optimal solutions are preserved. These 
steps are repeated for Gmax generations or until conver-
gence, which is achieved when minimal change in fitness 
values is observed. This structured approach explores the 
hyperparameter space effectively, resulting in a robust and 
well-optimized RF model.

2.4 Results and discussion

Before proceeding with the characterization and evaluation 
of the machine learning models, it is important to justify the 
selection of 230 samples for the dataset and assess whether 
this sample size is adequate for the training process. Figure 4 
exhibits the relationship between dataset size and MSE for 
the ML models, with the convergence curves indicating the 
performance of each model. As shown in the figure, for both 
the GS- and PSO-based models, the convergence curves sta-
bilize within the range of 220–230 samples, suggesting that 
further increases in sample size do not significantly improve 
model performance. In contrast, for the GA-based model, 
the convergence occurs slightly earlier, within the range 
of 200–215 samples, where the MSE reaches its minimum 
value. These findings support the selection of 230 samples 
as the final dataset size, ensuring that the data sufficiently 
captures the underlying patterns while striking an optimal 
balance between model accuracy and computational effi-
ciency, thereby delivering reliable and stable results for 
subsequent analysis.

Figure 5 illustrates the relationship between the number 
of input features and the models’ prediction performance, 
highlighting the efficiency of each method in utilizing input 
data. As can be seen, the GS-based model requires the full set 
of input features to achieve its peak prediction performance. 
This is expected, as GS systematically evaluates all possible 
hyperparameter combinations without prioritizing specific 
features, making it reliant on the complete dataset to ensure 
optimal results. In contrast, the PSO-based model demon-
strates a more selective approach. For predicting yield and 
ultimate strengths, PSO achieves maximum accuracy using 

C. PSO for RF Tuning: The RF model was further opti-
mized using Particle Swarm Optimization (PSO) 
to enhance its predictive accuracy in analyzing the 
mechanical behavior of Ti/Al/Ti laminates. PSO is an 
iterative optimization algorithm inspired by the social 
behavior of birds flocking or fish schooling. It optimizes 
hyperparameters by simulating a swarm of particles, 
each representing a potential solution [35, 36]. In this 
study, the key RF hyperparameters optimized using 
PSO included the number of trees, maximum depth, 
and the minimum samples required to split a node. The 
process begins with a randomly initialized population 
of particles, each exploring the hyperparameter space. 
The fitness of each particle is evaluated using the mod-
el’s performance, measured by the MSE. The particles’ 
positions are updated according to the velocity formula:

vi (t + 1) = wvi (t) + c1r1 (pi − xi) + c2r2(gi − xi) (2)

Where vi(t) is the velocity of particle i at time t, xi is the cur-
rent position (hyperparameter values), pi is the best position, 
gi is the global best position, c1 and c2 are acceleration coef-
ficients, and r1and r2 are random values between [0, 1]. The 
new position of the particle is then updated using:

xi (t + 1) = xi (t) + vi(t + 1) (3)

PSO iterates over generations, updating particle positions 
and velocities until convergence, at which point the optimal 
hyperparameters for the RF model are identified. This pro-
cess significantly enhances the RF model’s performance in 
predicting the mechanical behavior of Ti/Al/Ti laminates.

C) GA Optimization for RF Tuning: The RF model was 
also optimized using a Genetic Algorithm (GA) to enhance 
its predictive performance for analyzing materials prop-
erties. GA is an evolutionary search heuristic inspired by 
natural selection. It mimics biological evolution through 
selection, crossover, and mutation to explore the hyperpa-
rameter space and identify the optimal values for the RF 
model [37, 38]. Initially, a population of individuals, each 
representing a potential combination of hyperparameters, 
is created. In this study, the hyperparameters optimized 
by GA included the number of trees, maximum depth, and 
minimum samples required to split a node, with these values 
encoded as chromosomes. The fitness of each individual is 
evaluated based on the RF model’s performance, typically 
defined as the inverse of the MSE. Selection is based on 
fitness, with higher-probability reproduction for individuals 
that perform better, as indicated by the formula:

P (xi) = Fitness (xi)∑ Npop
k=1 Fitness (xk)

 (4)
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each update. This adaptation allows PSO to explore the dis-
crete search space dynamically while maintaining its ability 
to navigate complex, non-linear relationships. The veloc-
ity and position update rules (Eqs. 2 and 3) were applied 
as usual, but the final positions were constrained to integer 
values, ensuring that the hyperparameters remain valid for 
the RF model. For GA, the hyperparameters were encoded 
as integer-valued genes in the chromosomes. Crossover and 
mutation operations were designed to preserve the integer 
nature of the variables. During crossover, offspring chro-
mosomes inherited integer values from their parents, while 
mutation introduced small integer perturbations to the genes. 
This approach allows GA to effectively explore the discrete 
search space and converge to near-optimal solutions, lever-
aging its global search capabilities to escape local optima. 
As can be seen in Fig. 6, the tuning process focused on three 
critical hyperparameters: Ntrees, Dmax, and Msplit. The plots 
offer insights into the optimal configurations for each hyper-
parameter combination, resulting in the best model perfor-
mance for the output variables. For Grid Search, the results 
show that the optimal number of trees ranged from 100 to 
120 for most output variables, striking a balance between 
computational efficiency and model performance. This 
range reflects GS’s exhaustive search through predefined 
hyperparameter grids, which is well-suited for finding reli-
able, moderate values that balance performance and com-
putational cost. For maximum depth, the optimal range was 

only the material thickness and process parameters. How-
ever, for Poisson’s ratio prediction, the model also incorpo-
rates maximum and average strain features. This behavior 
reflects PSO’s capability to identify the most impactful fea-
tures for each output variable, leveraging its dynamic explo-
ration and exploitation mechanisms to minimize redundant 
inputs. The GA-based model further refines feature utili-
zation, achieving optimal predictions with the least num-
ber of features. For yield and ultimate strengths, similar to 
PSO, GA requires only the material thicknesses and pro-
cess parameters. For Poisson’s ratio, the model needs just 
one additional feature: average strain. GA’s global search 
capabilities, coupled with evolutionary operations, enable 
it to prioritize features that contribute most significantly to 
model performance while disregarding less relevant inputs.

Figure 6 represents contour plots that illustrate the results 
of hyperparameter tuning for three RF models, optimized 
using GS, PSO, and GA. The hyperparameters optimized in 
this study are constrained to integer values, making the opti-
mization problem non-convex. To address this, we adapted 
each optimization method to handle discrete variables effec-
tively. For GS, an exhaustive search was performed over a 
predefined grid of integer values. By systematically evalu-
ating all possible combinations, GS ensures that the opti-
mal integer-valued configuration is identified, even in the 
presence of a non-convex optimization landscape. For PSO, 
particle positions were rounded to the nearest integer after 

Fig. 5 Feature selection for Random Forest models tuned using: (a) Grid Search, (b) Particle Swarm Optimization, and (c) Genetic Algorithm

 

Fig. 4 Relationship between dataset size and MSE in the models tuned by (a) Genetic Algorithm, (b) Particle Swarm Optimization, and (c) Grid 
Search
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Fig. 6 2D contour plots illustrating 
hyperparameter optimization using 
different methods
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this broader solution space enables GA to identify intricate 
relationships in the data, making it well-suited for capturing 
complex patterns.

Figure 7 exhibits the convergence behaviors of ML 
models under different hyperparameter tuning processes. 
The outcomes aim to show how the optimization process 
improves model performance over time as the algorithms 
explore different hyperparameter configurations. Before 
examining the results, it is worth mentioning that in the grid 
search method, iterations primarily highlight the effect of 
reducing the grid size on the final prediction performance. 
In contrast, iterations in PSO and GA represent the pro-
gression of the optimization process, incorporating new 
variations and adaptive mechanisms to refine the search for 
optimal hyperparameter configurations. The results indicate 
that the GS exhibits a relatively steady improvement in per-
formance, but it shows a slower convergence rate compared 
to PSO and GA. This is because GS performs an exhaustive 
search over a predefined grid of hyperparameters, evaluat-
ing each combination systematically [40]. Since GS relies 
on a fixed grid, it cannot dynamically adapt or explore the 
solution space in the same way as PSO or GA. As a result, 
the convergence curve for GS typically starts with moder-
ate performance and then progresses steadily. The algo-
rithm reaches its optimal performance after a fixed number 
of iterations, typically within 90 to 120 evaluations, corre-
sponding to the number of grid combinations it must check. 
This makes GS more methodical but slower in reaching the 
optimal solution.

PSO method, on the other hand, demonstrates faster 
convergence compared to GS. PSO is a population-based 
optimization algorithm, where particles explore the solution 
space dynamically, adjusting their positions based on the 
best solutions found by the swarm. The convergence curve 
for PSO typically shows rapid improvement during the early 
iterations ( ∼ 70), followed by a stabilization (damped) 
phase as the particles refine the best solutions. PSO’s ability 
to explore a broader range of hyperparameter values gives 

found to be 20 to 26 for both σy and σu, while for ν, a more 
conservative depth of 15 to 18 was preferred. This lower 
depth for Poisson’s ratio helps avoid overfitting by limiting 
tree complexity. Moreover, the Msplit was most effective in 
the range of 10 to 12 samples, ensuring sufficient data for 
splitting while preventing overfitting. In contrast, the PSO 
provided more refined hyperparameter choices. The optimal 
Ntrees range increased to 150 to 185 trees, reflecting PSO’s 
ability to navigate a broader solution space and fine-tune the 
model’s complexity. For maximum depth, the optimal range 
was 25 to 32 for both σy and σu, allowing the model to cap-
ture more precise patterns in the data. For Poisson’s ratio, 
a slightly lower range of 18 to 20 for Dmax helped maintain 
the model’s ability to generalize while capturing necessary 
complexities. The Msplit parameter in PSO was most effec-
tive in the range of 12 to 16 samples, achieving a balance 
between model accuracy and generalizability. On the other 
hand, GA optimization presented the most significant varia-
tion in hyperparameter values, with the highest performance 
achieved for Ntrees in the range of 190 to 260 trees, particu-
larly for σu, where the larger number of trees was essential 
to identify intricate non-linear relationships. For Dmax, the 
optimal range was 32 to 42 for both σy and σu, allowing the 
trees to model deeper interactions within the data without 
overfitting. For Poisson’s ratio, GA favored a range of 22 to 
26 for Dmax, ensuring robust generalization while maintain-
ing complexity. The Msplit values in the GA-optimized plots 
were also found to be effective between 12 and 16 samples, 
contributing to strong model performance without excessive 
data splitting. The higher values for the GA are attributed to 
its global search and evolutionary processes, which involve 
mutation and crossover. Unlike more localized search meth-
ods such as GS and PSO, GA starts with a random popu-
lation and progressively evolves towards optimal solutions 
[39]. This allows it to explore a wider range of hyperparam-
eter configurations, often leading to higher values as it seeks 
more complex or powerful configurations that may provide 
better performance for the dataset. The ability to explore 

Fig. 7 Model performance trends over iterations through using: (a) Grid Search, (b) Particle Swarm Optimization, and (c) Genetic Algorithm
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0.923 for yield stress, 0.912 for yield strength, and 0.888 for 
Poisson’s ratio. The GA model outperforms both, achieving 
R² values of 0.947 for yield stress, 0.937 for yield strength, 
and 0.928 for Poisson’s ratio. These results clearly indicate 
that all models exhibit better predictive accuracy for yield 
stress and yield strength compared to Poisson’s ratio. The 
disparity in prediction accuracy can be attributed to the 
intrinsic characteristics of the mechanical properties. Yield 
stress and yield strength are directly influenced by material 
and process parameters, making them more straightforward 
for the models to capture. Conversely, Poisson’s ratio is a 
more intricate property, reflecting the material’s elastic and 
deformation behavior, which involves more complex rela-
tionships and dependencies [41]. As a result, Poisson’s ratio 
is more challenging for the models to predict accurately. 
Analyzing the GS model, signs of underfitting (bias) are evi-
dent, particularly in predicting Poisson’s ratio. This under-
fitting arises from the rigid nature of the grid search method, 
which systematically explores a predefined set of hyperpa-
rameters. While effective for structured exploration, this 
approach lacks the flexibility to adapt dynamically to com-
plex, non-linear relationships within the data. Consequently, 
the GS model struggles with properties like Poisson’s ratio, 

it an edge in finding near-optimal solutions more quickly. 
Optimal performance is generally reached within 150 to 190 
iterations, depending on the complexity of the problem and 
the search space. Finally, the GA shows the fastest conver-
gence among the three methods, with the most pronounced 
improvements during the early iterations. The convergence 
curve for GA often exhibits rapid progress, particularly in 
the first 50 iterations, followed by a deceleration as the algo-
rithm focuses on narrowing down the optimal solution. The 
GA algorithm’s global search capability enables it to escape 
local minima and identify better solutions. In this case, 
optimal performance is typically reached within 180 to 210 
iterations, reflecting GA’s ability to refine solutions progres-
sively. In conclusion, it is important to note that while the 
GA model requires more iterations due to its complexity, its 
steady-state error is lower compared to other models.

Figure 8 presents the results of regression analysis, 
depicted as deviation data, highlighting the prediction per-
formance of the GS, PSO, and GA models for yield stress, 
yield strength, and Poisson’s ratio. For the GS model, the R² 
values for yield stress, yield strength, and Poisson’s ratio are 
0.901, 0.895, and 0.823, respectively. The PSO model dem-
onstrates slightly improved performance, with R² values of 

Fig. 8 Data deviation in predictions for models tuned using: (a) Grid Search, (b) Particle Swarm Optimization, and (c) Genetic Algorithm
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material thickness exhibit the highest impact on predicting 
yield stress and ultimate strength. These features dominate 
the model’s performance, underscoring their direct influ-
ence on the material’s mechanical behavior. Conversely, for 
Poisson’s ratio predictions, strain- and stress-related input 
features take precedence, collectively accounting for 0.33 
of the feature importance. This shift suggests that Poisson’s 
ratio depends more on deformation-specific characteristics 
rather than bulk material properties, highlighting the GS 
model’s focus on fundamental relationships. On the other 
hand, the PSO-based model shows a different pattern. For 
yield stress and ultimate strength predictions, the process-
ing parameters and material thickness remain dominant, 
with the former contributing the largest share. However, 
for Poisson’s ratio, strain-related features, particularly εmax 
and εave, emerge as the most significant, collectively con-
tributing over 0.35 of the total feature importance. This 
highlights the heightened sensitivity of Poisson’s ratio to 
strain characteristics in the PSO model, likely reflecting the 
algorithm’s capability to emphasize features that capture 
complex, non-linear dependencies. However, this tendency 
may also heighten the risk of overfitting, particularly with-
out sufficient regularization. Finally, the GA-based model 
demonstrates a balanced contribution of material thick-
ness and processing parameters for predicting yield stress 
and ultimate strength. This balance reflects the GA model’s 
ability to explore and integrate diverse feature interactions 
effectively. For Poisson’s ratio, only one strain-related fea-
ture, εave, is found to be significant, contributing 0.17 of the 
total feature importance. This focused reliance suggests that 
the GA model efficiently identifies the most relevant input 
for Poisson’s ratio prediction while maintaining a balanced 
approach for strength predictions. Comparing the PSO and 
GA models provides further insights. The GA model’s bal-
anced feature contributions for yield stress and ultimate 

which demand greater representational capacity. In contrast, 
the PSO model shows signs of overfitting, especially for 
yield strength and Poisson’s ratio. The PSO algorithm’s abil-
ity to explore a wide range of hyperparameters and refine its 
search dynamically can sometimes lead to excessive focus 
on the training data [42, 43]. This overfitting is particularly 
evident in scenarios with limited training datasets or insuf-
ficient regularization mechanisms, where the model priori-
tizes training performance at the expense of generalization. 
Finally, the GA model demonstrates no significant signs of 
underfitting or overfitting, delivering the most robust per-
formance across all outputs. This superior balance is attrib-
uted to GA’s evolutionary approach, which combines global 
exploration with mechanisms like crossover and mutation 
to escape local minima and thoroughly explore the solution 
space. This ability ensures consistent and accurate predic-
tions, even for more complex properties like Poisson’s ratio, 
making the GA model the most effective among the three.

Figure 9 presents the mean feature importance analysis 
of RF models for all output targets. The feature importance 
values were calculated using permutation importance, a 
robust method that evaluates the contribution of each fea-
ture to the model’s predictive performance [44, 45]. This 
process involves permuting the values of each feature indi-
vidually and measuring the resulting increase in the model’s 
prediction error. To facilitate meaningful comparisons, the 
feature importance values were normalized so that their sum 
equals 1, allowing for a clear and interpretable assessment 
of the relative contributions of each feature. Moreover, one 
should note that the input features analyzed in this figure 
align with those depicted in Fig. 5, ensuring consistency 
across the analyses. The results reveal distinct patterns in 
how different features influence model performance across 
the three optimization methods: GS, PSO, and GA. In the 
GS-based model, the processing parameters of pressing and 

Fig. 9 Mean relevance scores of input features for achieving the highest predictive performance with the Random Forest model tuned using: (a) 
Grid Search, (b) Particle Swarm Optimization, and (c) Genetic Algorithm
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and σu. However, the rate of increment is similar for both 
properties, indicating that the intermetallic layer does not 
contribute significantly to the laminate’s work-hardening 
behavior, contrary to what is observed in Fig. 10a. This is 
consistent with the typically brittle nature of intermetallics, 
which have lower ductility compared to Ti and Al. In the 
simulations, intermetallics are typically modeled as materi-
als with limited plasticity, acting more as stiffening agents 
rather than enhancing the laminate’s ability to undergo 
plastic deformation. As a result, the increase in intermetal-
lic thickness strengthens the laminate but does not notably 
increase its work-hardening capacity. On the other hand, the 
Poisson’s ratio tends to decrease with increasing intermetal-
lic thickness, reflecting the restricted lateral expansion of 
the laminate due to the brittle nature of the intermetallics. 
This results in reduced deformation in the transverse direc-
tion compared to the more ductile base metals. The effects of 
pressing parameters— pressing pressure, pressing tempera-
ture, and pressing time—are also depicted in Fig. 10c and 
d, and 10e. The results indicate that increasing the pressing 
pressure enhances material densification and improves the 
uniformity of pressure distribution within the laminate. This 
leads to better interfacial bonding between the layers, result-
ing in higher σy and σu. The most significant improvement 
is observed in ultimate strength, which is directly tied to the 
reduction of any delamination or defects at the interfaces, 
ensuring a more even stress distribution under load. Simi-
larly, elevated pressing temperatures promote better ther-
mal activation, facilitating improved flow at the interfaces, 
which strengthens the bonding between the Ti and Al layers. 
The results also show that increasing pressing time leads to 
further improvements in bonding, yielding stronger lami-
nates with superior mechanical properties. However, these 

strength predictions, combined with its targeted emphasis 
on a single strain-related feature for Poisson’s ratio, demon-
strate its robust exploration and optimization capabilities. In 
contrast, the PSO model’s greater reliance on strain features 
for Poisson’s ratio highlights its optimization-driven ability 
to capture complex relationships. However, this focus may 
also increase susceptibility to overfitting, emphasizing the 
need for careful mitigation strategies when using PSO.

In the final step, the GA-based ML model, identified as 
the most accurate predictor in this study, enables a com-
prehensive analysis of how processing and geometrical 
parameters influence the mechanical properties of lami-
nated samples. As illustrated in Fig. 10a, increasing the Ti/
Al thickness ratio results in a significant rise in both yield 
stress and ultimate tensile strength of the laminates. Nota-
bly, the rate of increase in σu is higher than that of σy, which 
suggests that the increasing proportion of Ti enhances the 
laminate’s work-hardening capacity, thereby contributing 
more significantly to strength [46, 47]. This is consistent 
with the mechanical properties of Ti, which exhibit superior 
strength and work hardening compared to Al. The increased 
Ti content causes a higher resistance to plastic deformation, 
thus improving the laminate’s overall strength. In contrast, 
the Poisson’s ratio remains relatively stable within a nar-
row range (0.334–0.349), indicating that changes in the base 
metal thicknesses have little effect on the laminate’s defor-
mation behavior under uniaxial loading. This stability can 
be attributed to the similar Poisson’s ratios of Ti (~ 0.34) and 
Al (~ 0.33), meaning that variations in their thicknesses do 
not significantly alter the laminate’s overall lateral deforma-
tion characteristics. Turning to the influence of intermetallic 
layer thickness, Fig. 10b shows that increasing the interme-
tallic thickness leads to a proportional increase in both σy 

Fig. 10 A case study illustrating the relationships between: (a) DTi/Al, (b) intermetallic thickness, (c) pressing pressure, (d) pressing temperature, 
and (e) pressing time with the mechanical properties (output targets), while keeping other parameters constant
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Msplit, an optimal range of 12–16 samples ensured strong 
performance without excessive data fragmentation.

(c) The GA-tuned RF model revealed key relationships 
between material geometries (e.g., laminate thick-
nesses) and pressing parameters for σy and σu, while 
induced strain emerged as a significant contributor in 
predicting ν.

(d) The GA-based model accurately analyzed the effects of 
processing and geometrical parameters on Ti/Al/Ti lam-
inates. Increasing the Ti/Al thickness ratio improved σy 
and σu, while Poisson’s ratio remained stable. Thicker 
intermetallic layers strengthened laminates but reduced 
lateral deformation. Pressing pressure and temperature 
had the most significant effects, enhancing densification 
and bonding, while pressing time showed diminishing 
returns beyond critical thresholds.
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