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Nerve signal conduction, and particularly in myelinated nerve fibers, is a highly dynamic phenomenon 
that is affected by various biological and physical factors. The propagation of such moving electric 
signals may seemingly help elucidate the mechanisms underlying normal and abnormal functioning. 
This work aims to derive the exact physical wave solutions of the nonlinear partial differential 
equations with fractional beta-derivatives for the cases of transmission of nerve impulses in coupled 
nerves. To this end, the research uses a polynomial expansion approach to convert the problems 
of modeling nerve impulses into a second order elliptic nonlinear ordinary differential equation 
containing fractional beta-derivatives. Such transformation permits the study of solitary waves and 
their perturbation responses in the case of nerve fibers. The other direction of this study is applying 
the fixed-point theory to analyze the system dynamics and obtaining the Jacobian matrix to peruse 
the stability. Modulation instability regions are visualized, and nerve impulse waveforms are shown in 
three and two dimensions. The investigation depicts how impulse transmission amplitude and velocity 
are influenced by changing nerve fiber diameter and varying order physiological parameters. Soliton-
like kink, anti-kink, and rogue wave solutions are revealed to explain nerve impulse propagation 
thoroughly. The analysis provides significant regions of equilibrium and modulational instability 
showing that the behavior of the nerve fibers is more dynamic than appreciated by most authors. 
Additionally, the authors suggest a refined mathematical formulation of the nerve impulse conduction 
with particular emphasis on the effect of fractional beta-derivatives on the transmission of waves. The 
obtained solutions and the graphs support their usefulness in various medical and biological industries, 
specifically the research on myelinated nerve fibers. The findings provide additional insights into the 
processes of nerve conduction which may be useful in the treatment of various diseases of the nervous 
system.
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Prior to advancing with the current review, it is pertinent to recognize the numerous parallels between the 
architecture of nerve fibers and that of electrical conductors1–10. The researchers Hodgkin and Huxley conducted 
a study in 1952 focused on the neuroelectric nerve impulse in the dorsal or temporal aspect of ameristatid purse-
shaped giant axons6. As advancements in scientific research continue, numerous analytical studies on arterial 
behavior have been reported. The documents in question pertain to the behavior of these fibers, which are 
described by partial differential equations of nonsmoothed type, categorized as either fractional-order or integer-
order4,5,11–20. Signal conduction along the nerve fiber is a manifold process involving numerous interconnected 
mechanisms, similar to other biological activities. A multitude of efforts has been undertaken to scrutinize this 
dynamic; however, various experimental and theoretical methods converge in each of the approaches according 
to the application fields. Theoretical studies have focused on modeling and in vitro simulation of biological 
systems, population dynamics, and the mathematics of viral spread and control. Excitation along the nerve 
fiber represents a critical biological function within living systems. Subsequently, due to the aforementioned 
reasons, a thorough evaluation of nerve conduction is warranted, and several research studies were led21–25. The 
characterization of nerve fibers involves the application of nonlinear partial differential equations, specifically 
the nonlinear reaction-diffusion equations within fractional derivatives operators. Multiple nerve fibers are 
indeed composed of periodic active structures that consist of branching nerve segments surrounded by myelin. 
The dynamics of impulse transmission in myelinated axons can be mathematically modeled using nonlinear 
difference-differential equations (NDDE), nonlinear partial differential equations (NPDEs), or a fractional-
order of these NPDEs (FNPDEs)26–28. The equations formulated in this study belong to anatomical and 
physiological parameters related to the features of nerve units. Furthermore, it has been proved that myelinated 
nerves facilitate a more rapid conduction of nerve impulses compared to alternative conduction methods, and 
this phenomenon becomes increasingly evident as the diameter of the nerve fiber decreases. Furthermore, 
myelination offers an additional benefit in the conduction of nerve impulses: a significant reduction in the energy 
expenditure involved. The phenomenon referred to as ‘saltatory’ conduction has garnered significant attention 
from anatomical physiologists studying myelinated nerve models, leading to the identification of two crucial 
qualitative changes9–25. One of the factors previously noted is the increased speeds of conduction; additionally, 
another factor is the potential for failure when the distance (or resistance) between the active nodes exceeds a 
certain threshold. This study demonstrates that both phenomena are influenced by ephaptic coupling, which is 
linked to fractional-order derivatives, specifically space-time fractional beta-derivatives of coupled nerve fibers.

Regarding the myelinated nerve models, initial considerations must focus on the physical/physiological 
properties of nerve fibers, which impact the evolution of the modeling approaches. The NPDEs, have undergone 
extensive research in modeling various electrical and nonlinear complex phenomena, regardless of the relevance 
of these phenomena to their applicability. In this context, numerous documents are pertinent concerning 
fluid mechanics, plasma physics, solid state physics, optical fibers, geochemistry, chemical kinetics, chemical 
physics, and electrophysiology1–35. In greater detail, the biology involves a comprehensive approach beyond 
merely seeking solutions to NPDEs derived from nonlinear dynamics modeling of biological systems, which is 
a specialized domain of their expertise1–3,29–36. Mathematics involving fractional calculus and analysis will be 
familiarized with non-classical NPDEs or NDDE, referred to as a new category of non-linear difference equation 
structures. Subsequently, numerous researchers across various scientific disciplines, including pure and applied 
mathematics, nonlinear physics, nonlinear optics, engineering, biology, and physiology/electrophysiology, 
investigated diverse classifications of fractional nonlinear evolution equations (FNEEs), many of which have 
been analyzed in both discrete and continuous formats. The computation steps’ of FNEEs, FNPDEs, and 
fractional nonlinear differential-difference equations (FNDDEs) currently display significant challenges due 
to the substantial impact of memory effects during the modeling process. In mathematical modeling, it is 
essential to recognize that conventional mechanical models, which utilize integer derivatives, fail to adequately 
account for the potential existence of memory effects37–52. Other studies have demonstrated that fractional-
order derivatives, which differ from integer derivatives and serve as a promising operator, allow for a more 
in-depth exploration of memory effects. Similarly, numerous methodologies utilizing fractional order calculus 
have been established, encompassing modified Riemann-Liouville derivatives, Caputo derivatives, conformable 
derivatives, M-truncated derivatives, and beta-derivatives. The beta-derivatives operators fulfill the chain rules 
properties and tackle some discrepancies reveal by others fractional derivatives operators42. The methodologies 
for computation enabled the simulation of physical systems and the effective resolution of applied problems 
with notable precision. Moreover, employing numerical approximations of biosystems through fractional order 
operators serves as a highly effective method for accurately characterizing the properties of systems exhibiting 
memory and the natural phenomena that arise within them. This study develops foundational models utilizing 
fractional calculus techniques to enhance the understanding of the dynamics involved in nervous impulse 
conduction with improved accuracy. Of course, regardless the researcher’s competences either mathematicians 
or physicists, pursue exact solutions of NPDEs can be led to well catching the dynamics involving in studied 
models, or to make available improved information on physical problems and possible applications. Meanwhile, 
fractional-order derivatives fascinated several researchers, some pioneers probed that, it is an accurate and 
efficient tool for fulfilling mimic real-world problems. Indeed, while the memory effect (control theory, signal 
processing, systems identification) or the features of hereditary properties (rheology, biology) play a main role or 

Scientific Reports |         (2025) 15:8440 2| https://doi.org/10.1038/s41598-025-92195-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


are highlighted inside a model, the fractional calculus suitable provide the way to faithfully describe the nature 
phenomena’s. In addition, there are some advantages and disadvantages to use fractional-order derivatives in 
various studies42–53. Consistent with the findings of experiments performed by Westerlund, the electric current 
passing through the nonlinear capacitor conforms to the empirical law of Curie from 188952. Jonscher had also 
shown that it is not possible to realize the ideal capacitor using only conventional methods involving natural 
system components with an integer-order of the Ohm law’s as known. Therefore, the physical applications of the 
studied model are related to retrieving signal processing, theory control analysis of nerve impulse through the 
coupled nerve fibers.

This study aims to develop an innovative signal processing method using a direct and uncomplicated 
approach, specifically designed to effectively delve physiological structures, particularly myelinated coupled 
nerve fibers1–4. Nonetheless, the current proposed method presents a more direct procedure compared to 
alternatives that utilize sine-cosine and sinh-cosh techniques for modeling thin films, which may yield both 
rational and irrational solutions. Furthermore, the insights of this approach are: easy, can be replicable to any 
NPDE. However, it is denoted that, some solutions are included in one the most general technique; named 
the F-expansion method52. This solution encompasses various categories, including hyperbolic, elliptic, and 
trigonometric solutions. This situation is intricate regarding how specific solution types are influenced by the 
parameter values of the physiological system, which can be categorized as either rational or irrational. This 
biological model has been further examined subsequently, although not in relation to the beta-derivatives 
through polynomial expansion techniques. We emphasize the critical need for effective communication of the 
established methods and findings to the appropriate medical professionals, focusing on the underlying causes of 
neurological diseases and their treatment strategies. The distinguishing aspect of the current research compared 
to earlier studies is the implementation of linear stability analysis, which encompasses the identification of 
modulational instability, alongside the application of fixed points theory and the scrutiny of the Jacobian matrix. 
Particularly, specific threshold physiological parameters have been recognized that signify the occurrence of 
noteworthy and significant nonlinear complex phenomena (NCP) in the context of modulational instability 
(MI). During this research, we implemented an alternative strategy to generate a particular type of neural 
signal within the model of interconnected nerve fibers under investigation. The nonlinear partial differential 
equations have been addressed using various techniques, regardless of their fractional nature. Some notable 
methods include: the (G′ (ξ ) /G (ξ ))–expansion mapping method including the generalized Riccati Eqs8,37,45, 
the exp (−ψ (ξ ))–expansion function method, the extended 

(
G′ (ξ ) /G2 (ξ )

)
–expansion method8,38,39, 

modified extended Tanh method, modified 
(
G′ (ξ ) /G2 (ξ )

)
–expansion method8,53. Consequently, through 

the implementation of a fractional complex transform (FCT), we advance the model equation and reconfigure 
it into a second-order elliptical nonlinear ordinary differential equation (NODE)54–60. To elucidate the rationale 
and gene regulatory mechanisms in physiology and impulse intricate dynamics, we present a comprehensive 
and detailed explanation of the mathematical theories, meticulously outlining each step. The results obtained 
yield significant findings and potential applications: the study focuses on examining modulational instability 
regions, equilibrium points, soliton solutions, and the influence of optical fiber and biological components on 
the velocity and intensity of nerve impulses. The objective is to delve the impact of alterations (anomalies) in 
the properties of nerve fibers on signal conduction, taking into account age-related factors and degenerative 
conditions.

The structure of this document is organized as follows: “An equational model of a circuit based on coupled 
nerve fibers” provides a comprehensive overview of the physical model governing the system of interconnected 
nerve fibers, along with the corresponding circuit equations elaborated in detail. In “Unstable modulation, 
stationary points and the Jacobian matrix”, we conduct an analysis of modulational instability, including the 
delving of fixed points and the Jacobian matrix. “Beta-derivatives and their properties: a preliminary look” 
holds fundamental details regarding beta-derivatives and their characteristics. “Evaluation of the method and its 
application to the space-time fractional beta-derivative coupled nerve fibers equations by means of mathematics” 
presents a concise overview of the methodology, accompanied by an illustrative example pertaining to the 
equations that describe space-time fractional beta-derivative coupled nerve fibers. “Analysis of the data using 
physical means and visual representation of those findings” focuses on the visual representation and validation 
of the operational outcomes. Finally, “Conclusions” reports a comprehensive overview of our efforts and the 
resulting outcomes.

An equational model of a circuit based on coupled nerve fibers
The electrical modeling of myelinated nerves is based on specific foundational postulates derived from the 
structural and functional framework, encompassing the biological aspects and the signal propagation within 
those models. In the scenario involving the juxtaposition of myelinated nerve fibers, the arrangement of the 
active nodes holds significant importance. The analysis of a fiber can be likened to the description of an electrical 
cable in terms of its structural components as depicted below. The matrix comprises a conductive component, 
the cellular protoplasm, encased within a fibrous sheath. The filaments in a bundle are coordinated by a synapse, 
which serves as an electric junction connecting the ends of other fibers. This study addresses the problem 
through a sophisticated model of nerve fibers, which comprises two interconnected systems of a chain of active 
Fitz Hugh-Nagumo circuits, as illustrated in Fig. 14. The electric equivalent circuit of coupled nerve fibers is 
illustrated using a circuit diagram featuring two partially overlapping axons such as exhibited on Fig. 1. The 
diagram illustrates the configuration of internal and external resistors (Ri, Ro), along with a capacitor (C), 
interconnected through the conductance (G).

In the provided electrical circuit in Fig.  1, V
(j)

n  represents the voltages across the active nodes, such as 
j = 1,2, which correspond to specific fibers. Similarly, the network currents I

(j)
n , refer to the magnitudes and 
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directions of currents in a network. The currents are calculated using Kirchhoff ’s voltage laws and are treated 
as independent variables in this analysis. Subsequently, applying Kirchhoff ’s voltage laws as illustrated in Fig. 1 
yields the following set of Eq. 4:

	





V
(1)

n − V
(1)

n+1 − (Ri + Ro) I
(1)
n − Ro

(
AI

(2)
n + (1 − A) I

(2)
n−1

)
= 0,

V
(2)

n − V
(2)

n+1 − (Ri + Ro) I
(2)
n − Ro

(
AI

(1)
n + (1 − A) I

(1)
n−1

)
= 0,

I
(j)
n−1 − I

(j)
n = I

(j)
c,n + I

(j)
ion,n, j = 1,2,

I
(j)
n =

(
G

Vb(Vb−Va)

)
V

(j)
n

(
V

(j)
n − Va

) (
V

(j)
n − Vb

)
.

� (1)

The variable n denotes the index that represents the sequence of active nodes. The current I
(j)
n  is propagating 

longitudinally through the fiber from node n to node n + 1. The current I
(j)
c,n at active node n provides its 

capacity. The ionic current, consisting of sodium and potassium components, is represented as I
(j)
ion,n. Several 

prior studies1–4 have documented the importance of an alignment parameter in the theoretical analysis of these 
categories. For instance, the notion of nodal alignment degrees is introduced to precisely define the alignment of 
nodes. In the case of fiber optic communication A = 1, the active nodes on the two fibers are precisely aligned, 
while they are uniformly spaced for optimal performance A = 0.5. In the final term of Eq. (1), Va represents the 
threshold voltage for sodium current entering an active node. The Nernst potential Vb characterizes the electrical 
potential at which there is an equilibrium state, resulting in no net ion movement across the membrane. The 
overall ionic conductance pertains to the capacity of all ions to facilitate the flow of electric current in a given 
area. Additionally, several publications, along with theoretical and numerical analyses, elucidate certain specific 
assumptions that led us to establish the following values: v

(j)
n = V

(j)
n
Vb

, i
(j)
n = Rf I

(j)
n

Vb
, a = Va

Vb
, R = Ri + Ro

, η = Ro
R , M = Rf

R , β = Rf G

(1−a) . The mathematical expression for the electric current through the capacitor 
can be derived under specific assumptions:

	
I(j)

c,n = C
dV

(j)
n

dt
.� (2)

The Eq. (1) becomes:

Fig. 1.  (a): A diagram illustrating the ephaptic coupling of two myelinated nerves; (b): An electrical circuit 
representing the coupling of the myelinated nerves.
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


M
(

v
(1)
n − v

(1)
n+1

)
= i

(1)
n + η

(
Ai

(2)
n + (1 − A) i

(2)
n−1

)
,

M
(

v
(2)
n − v

(2)
n+1

)
= i

(2)
n + η

(
Ai

(1)
n + (1 − A) i

(1)
n−1

)
,

i
(j)
n−1 − i

(j)
n = Rf C

dV
(j)

n
dt

+ i
(j)
ion,n, j = 1,2,

i
(j)
ion,n = β v

(j)
n

(
v

(j)
n − a

) (
v

(j)
n − 1

)
.

� (3)

Where η  denotes the linear coupling parameter of the two fibers, indicating that, they are evenly aligned while 
A = 1. Afterwards, by assigning values to variables un = v

(1)
n , vn = v

(2)
n , we obtain the following form 

through a series of mathematical calculus steps:

	




M ((1 − η ) (un+1 − 2un + un−1) − η (vn+1 − 2vn + vn−1))
−Rf C dun

dt
− β un (un − a) (un − 1) = 0,

M ((1 − η ) (vn+1 − 2vn + vn−1) − η (un+1 − 2un + un−1))
−Rf C dvn

dt
− β vn (vn − a) (vn − 1) = 0.

� (4)

Considering the continuum limit in the context of a small internodal spacing δ , we obtain a system of nonlinear 
coupled partial differential equations (NCPDEs) by taking δ n → x, un = u (x, t), vn = v (x, t):

	




M
(

(1 − η ) δ 2 d2u
dx2 − η δ 2 d2v

dx2

)
− Rf C du

dt
− β u (u − a) (u − 1) = 0,

M
(

(1 − η ) δ 2 d2v
dx2 − η δ 2 d2u

dx2

)
− Rf C dv

dt
− β v (v − a) (v − 1) = 0.

� (5)

The motion equation for the nerve fiber systems presented earlier (5) delineates the dynamics of the ephaptically 
coupled nerve fibers. The prior studies recorded in the scientific literature highlighted the following: identifying 
the conditions necessary for the formation of modulated waves in two ephaptically coupled nerve fibers5, 
assessing the maximum excitation levels and the temporal changes of pulses within the coupled nerve fibers1,2, 
estimating behavior using the fundamental model of myelinated fibers, and deriving precise solutions through 
innovative modeling techniques for interacting nerve fibers3,4, among other features. The current study examines 
the modulation instability within the system and its dynamic model, analyzing the fixed points of the vector field 
and the Jacobian to explore and comprehend novel complex behaviors and intriguing nontrivial aspects related 
to the propagation of excitation in two interconnected nerve cells. According to the current scientific literature, 
there have been no recent developments regarding the analysis of linear stability, the dynamics of fixed points, or 
the Jacobian matrix. A novel methodology utilizing polynomial expansion has been formulated to derive soliton 
solutions exhibiting various configurations. In addition, simulations have been performed using MATLAB 
R2016b (The MathWorks, Inc.), available at https://www.mathworks.com/products/matlab.html.

Unstable modulation, stationary points and the Jacobian matrix
This paragraph specifically aims to justify and elucidate the dynamic theory analysis of Eq. (5), which characterizes 
the behavior of interconnected models of nerve fibers through methodologies including Modulational Instability 
(MI), fixed points (FPs), and the Jacobian matrix (JM), among others. The analysis of bundles of nerve fibers 
highlights the critical inquiry into the fusion of the fibers. The interactions of muscles examined in this theoretical 
context focus on understanding the interconnections of nerve fiber clusters, a characteristic of the nervous 
systems of higher mammals, while also aiming to generate concepts for empirical research. Additionally, they 
provide both qualitative and quantitative approaches for the design of electrode and stimulus prototypes utilized 
in functional electrical stimulation, a process that involves transmitting signals, information, and pulses through 
two interconnected nerve fibers.

Unstable modulation
An electrical cable model can serve as a precise representation of the nerve fibers within the nervous system 
that facilitate the transmission of excitation pulses. The waveguide model, recognized in existing literature, 
effectively describes the propagation of nonlinear excitation during its transit in these systems. The generation 
and transmission of a nerve impulse depend on variations in the electrical conductivity of the local fiber 
tissue. Consequently, specific pathological processes, such as self-modulation instability (SMI), arise when 
typical nonlinearities, presumed to be weak, validate the application of averaged equations in the context of 
nonlinearly amplified propagation. The amplification process leads to the generation of additional, side-by-side 
waves, ultimately resulting in the disruption of the original waveform into a series of high waves. An electrical 
cable model can serve as a precise representation of the nerve fibers within the nervous system that facilitate 
the transmission of excitation pulses. The waveguide model, extensively documented in existing literature, 
effectively elucidates the behavior of nonlinear excitation during propagation in these systems. The generation 
and conduction of a nerve impulse relies on the localized changes in the electric conductivity of the fiber-
tissue. Consequently, specific pathological processes, including self-modulation instability (SMI), occur when a 
sinusoidal wave exhibits nonlinearity and can be amplified via periodic feedback mechanisms. The amplification 
process leads to the emergence of extra spectral sidebands, ultimately causing the waveform to break down into 
a sequence of pulses rather than maintaining a continuous signal wave:
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{
u (x, t) =

(√
P0 + hψ (x, t)

)
,

v (x, t) =
(
σ

√
P0 + hϕ (x, t)

)
.

� (6)

In the context of anti-symmetry, the value is represented as σ = −1. In the context of symmetry, the value is 
represented by the symbol σ = 1. The term

√
P0 stands for incident power, while h is the smallest perturbation 

parameter. Moreover, the symbols ψ (x, t), ϕ (x, t) represent the perturbation terms. The substitution of 
Eq. (6) into Eq. (5) is followed by the execution of analytical calculus operations. Using the linearizing principle, 
we obtain the following equations for the perturbed solutions ψ (x, t), ϕ (x, t).

	




Rf C ∂ ψ
∂ t

+ β
√

P0
(√

P0 − a
)

ψ + β
(√

P0 − 1
) (

2
√

P0 − a
)

ψ

−M
(

(1 − η ) δ 2 ∂ 2ψ
∂ x2 − η δ 2 ∂ 2ϕ

∂ x2

)
= 0,

Rf C ∂ ϕ
∂ t

+ β
√

P0
(√

P0 − a
)

ϕ + β
(√

P0 − 1
) (

2
√

P0 − a
)

ϕ

−M
(

(1 − η ) δ 2 ∂ 2ϕ
∂ x2 − η δ 2 ∂ 2ψ

∂ x2

)
= 0,

� (7)

Let us acknowledge that these sought perturbed solutions, denoted as ψ (x, t), ϕ (x, t), have the following 
form61,62:

	

{
ψ (x, t) = P11ei(qx−Ω t) + P12e−i(qx−Ω ∗t),

ϕ (x, t) = P21ei(qx−Ω t) + P22e−i(qx−Ω ∗t).
� (8)

The symbols q and Ω  represent the normalized wave number and the frequency of the perturbation, 
respectively. By performing substitution of Eq. (8) into Eq. (7) and isolating the coefficients in terms of ei(qx−Ω t) 
and e−i(qx−Ω ∗t), it leads to the formation of the following system of homogeneous equations:

	




[
Mδ 2q2 (1 − η ) + 3β P0 + aβ

(
1 − 2

√
P0

)
− 2β

√
P0 + iRf CΩ

]
P11 − Mη δ 2q2P21 = 0,[

Mδ 2q2 (1 − η ) + 3β P0 + aβ
(
1 − 2

√
P0

)
− 2β

√
P0 + iRf CΩ

]
P12 − Mη δ 2q2P22 = 0,[

Mδ 2q2 (1 − η ) + 3β σ 2P0 + aβ
(
1 − 2σ

√
P0

)
− 2β σ

√
P0 + iRf CΩ

]
P21 − Mη δ 2q2P11 = 0,[

Mδ 2q2 (1 − η ) + 3β σ 2P0 + aβ
(
1 − 2σ

√
P0

)
− 2β σ

√
P0 + iRf CΩ

]
P22 − Mη δ 2q2P12 = 0.

� (9)

To obtain the nontrivial solution of the system of equations developed within the context of Eq. (9), it is essential 
to compute the determinant formed by the matrix of coefficients derived from (9). The desired solutions are 
obtained by solving the relevant polynomial equation Ω = Ω (q) represented by:

	 m4Ω 4 + m3Ω 3 + m2Ω 2 + m1Ω + m0 = 0,� (10)

with γ = Rf C , b = −Mδ 2q2, A = b + Mδ 2q2 − 2β
√

P0 (1 + a) + aβ + 3β P0
, m4 = γ 4, m3 = −2iγ 3 (A + B), B = b + Mδ 2q2 − 2β σ

√
P0 (1 + a) + aβ + 3β σ 2P0

, m2 = −
(
(A + B)2 + 2AB − b + b2)

, m1 = −iγ
(
(A + B)

(
2AB − b − b2))

, 
m0 = A2B2 − AB

(
b + b2)

+ b4. Analytically solving Eq.  (10) can be quite labor-intensive and require 
significant time investment. The subsequent steps involve numerical computations utilizing MATLAB software, 
which serves as an efficient platform for these mathematical applications. The linear equation presented 
above (10) illustrates the linear stability analysis of the steady-state solution, which is consistent with physical 
principles. The modulational instability domain encompasses a specific range of instability that exists under 
certain conditions. A steady-state is considered stable when Ω  is a real number. Conversely, the presence of an 
imaginary Ω  indicates a perturbation in the steady state solution, characterized by the exponential growth of 
disturbances. The gain spectrum associated with modulational instability is analyzed:

	 g (q) = 2Im (Ω (q)) .� (11)

In this scenario, it is evident that the solution Ω  is defined by Eq. (10). This section outlines several significant 
inter-information dependencies identified in specific experiments and subjected to thorough analysis.

Symmetric case: σ = 1
The defined parameters for obtaining the MI graphs are reasonable and invite debates about certain 

physiological mechanisms. In fact, we carry out a deep examination to the mutual information graphs shown in 
the panels of Figs. 2 and 3. In fact, with certain constraints on the parameters of the nervous system, a zone of 
MI is obtained with a positive gain. In the given scenario where σ = 1 (denotes symmetry), a = 0.25 ( a less 
than 1) and M = 0.5 ( M  less than 1), we notice the presence of a zone of MI as Binczak et al. have suggested3. 
From3, we have also noticed a jump like threshold that could be interpreted as a blockage of the impulse current 
(which actually can be a bad feature of real nerves), to this effect see Fig. 2a. In addition, sometimes at the same 
premises which were indicated above, when the value of a was equal to 0.75, one can see a stability region for 
g (q) = 0 as q approaches 0.75 or – 0.75 in Fig. 2b. Instead the gain g (q) is also reduced. As a result, when 
a = 0.99 (or a = 1.01) M  is lower than 1 (M = 0.5) and MI lobes are clearly visible. And in Fig. 2c this 
occurrence happens when η < 0 considering a narrower band of disturbance of wave number q which is 
−0.25 < q < 0.25. Likewise, on Fig. 2c, in the case of −0.75 < q < −0.25 (0.25 < q < 0.75), the η  value 
is negative giving stable nervous impulse as. Also, for any value of the increased η  or any value of q in the range 
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q ∈ [−0.75, 0.75], it is apparent from the physiological point of view that the operating parameters of the 
currently available range of the nervous system is the safety net for the system as seen in Fig. 2c. For complex 
phenomena, when the value of M  is negative (regressive propagating impulse) two symmetric patterns of MI 
will occur for a value of a = 0.25 at which η  is greater than 0 and q in the range − 2 to 2. When the value of η  
becomes negative, the gain g (q) takes on the value of zero. This means, the stability condition is still maintained 
even in the absence of MI area (as we can see in panels Fig. 2d–f). Additionally, when the value of the parameter 
a sticks at 0.75, the lobe of MI and the distance between these two lobes is said to go up. Usage of parameter 
a → 1 also suggests that there exists a Brillouin’s zone, which corresponds to the stability with g (q) = 0, lying 
in between the two MI zones. There emerges a threshold value of the parameter above which the Brillouin’s 
zone corresponds to one of the MI zones. See Fig. 2 (e), (f) for this. We consider MI for such abnormal states of 
nerve fibers (M < 0, η > 0.5) and show that there is no risk of any injury of nerve impulses even under such 
conditions.

Anti-symmetric case: σ = −1
For example, in the case of anti-symmetry, when denoted by the would-be σ = −1, and when M  

is greater than 0, the panels in Fig. 3a and b show that MI domains exist inside the Brillouin’s zone displays 
by −0.75 < q < 0.75. It can be noticed that the observed domains are positively proportional to the amplitude 
of gain that the parameter a will take. But, while the parameter a comes close to 1, there is active interest in 
the range where q is limited from − 0.75 to 0.75, regardless of the η  parameter value (which can be positive or 
negative), Fig. 3c will be referred to for further details. In addition, when the value of η  is greater than 0.5 it 
is found out that the interconnected nerve fibers transmit nervous impulses through the assisting nerve fibers, 
without the help of amplification devices regardless of the value of q mentioned in the range of – 2 to 2. While 
M  is less than 0, the MI zones drop down together with the amplitude of the gain which is lower in value of 
0.25. As the value of a turns out to be bigger (for instance a = 0.75 so does the amplitude of the gain. This 
feature could be treated as a somatic mechanism for transmitting more complex signals (for example, signal 
integration) among axons and between hemispheres of the brain. Also, for 0 < η < 2 and −2 ≤ q ≤ 2 signal 
transmitted through the two, inter-connecting nerve fibers does not diverge from steady state as g (q) = 0 
validate. For η > 2, the condition that the Modulational Instability plot in Fig.  3f indicates two regions of 
instability which are surrounded by one stable area for all q values lying within [−0.75, 0.75]. With increase 
in the parameter a the area of instability decreases hence the maximum gain attained as displayed in Fig. 3c 
when compared with Fig. 3d and e. The limit of amplification region constricts however extend stability region 
tends that increasing the values of q that cluster on size-extreme interactively moderate area dilation or depletes 

Fig. 2.  These panels display the MI plots under conditions P0 = 1, δ = 1, γ = 5.10−4, such as for 
top row: M > 0 panel (a) a = 0.25, β > 0; panel (b) a = 0.75, β > 0; panel (c) a = 0.99, β > 0
(a = 1.01, β < 0); for bottom row: M < 0 panel (d) a = 0.25, β > 0; panel (e) a = 0.75, β > 0; panel 

(f) a = 0.99, β > 0 (a = 1.01, β < 0).
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the region, while values of q that clustering pose on the stability region sails, however. The MI analysis has 
as its principal purpose the act of verifying the model under study with respect to the existence of soliton-
like solutions. In this, we have demonstrated that, under realistic circumstances, the MI zones are quite large, 
providing enough scope for the physiological system to generate solitonic impulses over a wide range of M , η
, and q values. They have hitherto been seen in both symmetric and asymmetric cases, σ = 1 and σ = −1 
respectively, showing the presence of MI zones. They are caused by non-very normal values of M  and η , and 
possibly, in relation to anatomical, medical, and neurological diseases. In addition to these, we also offer some 
form of experimental evidence supporting the notion of MI lobes as being discernible, within particular limited 
parameter regimes of M , η , and q. It confirms that, solitonic impulses can indeed be triggered towards the very 
specific parameters at which MI zones come into being. Hence, the pathological physiology of the nerve fibers 
gives rise to a different form of solitonic impulse.

Jacobian matrix and fixed points theory
Equation  (5), as defined by the applicable mathematical model, allows for the determination of equilibrium 
points and the requisite Jacobian matrix, which aids in the analysis of the linear stability of the two interacting 
components governed by the system. From a mathematical perspective, conducting numerical experiments 
related to Eq. (5) or its transformed variants aids in establishing and understanding the existence of various useful 
solutions. In this context, we will examine the wave transformation characterized by the variables ζ = k (x − λ t)
, u (x, t) = U (ζ ), v (x, t) = V (ζ ). The provided expressions generate a comparable autonomous dynamical 
system in the specified format:

	





dU
dζ

= U ′ = Y,
dY
dζ

= 1
(1−η )k2δ 2

(
η k2δ 2 dU

dζ
− 1

M
(Rf Ckλ Y − β U (U − a) (U − 1))

)
,

dV
dζ

= V ′ = Z,
dZ
dζ

= 1
(1−η )k2δ 2

(
η k2δ 2 dY

dζ
− 1

M
(Rf Ckλ Z − β V (V − a) (V − 1))

)
.

� (12)

By setting dU
dζ

= 0, dY
dζ

= 0, dV
dζ

= 0 and dZ
dζ

= 0 within the framework of Eq.  (12), The solutions of (12) 
identify the equilibrium points, which are also referred to as fixed points. Upon successfully solving Eq. (12), the 
resulting fixed points Xi (i = 1,2, 3, ., 6) can be articulated as follows:

Fig. 3.  These panels exhibit the MI plots under conditions P0 = 1, δ = 1, γ = 5.10−4, such as for 
top row: M > 0 panel (a) a = 0.25, β > 0; panel (b) a = 0.75, β > 0; panel (c) a = 0.99, β > 0
(a = 1.01, β < 0); for bottom row: M < 0 panel (d) a = 0.25, β > 0; panel (e) a = 0.75, β > 0; panel 

(f) a = 0.99, β > 0 (a = 1.01, β < 0).
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(0, 0, 0, 0) , (1, 0, 1, 0) , (a, 0, a, 0) ,
(0, 0, 1, 0) , (0, 0, a, 0) , (a, 0, 1, 0) . � (13)

All fixed points collected are real and do not bear any peculiar conditions. Nevertheless, it is possible to use the 
determinant of the Jacobian matrix to determine the stability of the obtained fixed points. The study described 
in this paper is a linear stability analysis, and the mode of solution employs the usage of the Jacobian matrix 
(MJ ). This suggests that positive values for the determinant of the Jacobian matrix pertaining to any fixed 

point Xi would continue to positively support that fixed point irrespective of the movement of the system being 
considered. In case the determinant of the Jacobian matrix 

(
|MJ |Xi

)
 pertaining to this particular point is 

negative then, that particular point or the fixed point Xi is said to be unstable. The parameters of the equilibrium 
state represented in Eq. (12) can be restated in the following form:

	




dU
dζ

= Y ≡ F1,

dY
dζ

= 1
(1−2η )Mk2δ 2

( −Rf Ckλ ((1 − η ) Y − η Z) − β η V (V − a) (V − 1)
+ (1 − η ) U (U − a) (U − 1)

)
≡ F2,

dV
dζ

= Z ≡ F3,

dZ
dζ

= 1
(1−2η )Mk2δ 2

( −Rf Ckλ (η Y − (1 − η ) Z) + β η U (U − a) (U − 1)
− (1 − η ) V (V − a) (V − 1)

)
≡ F4.

� (14)

The Jacobian matrix serves as a mathematical instrument commonly utilized to analyze the dynamics of 
autonomous systems, exemplified by the system represented in Eq. (14):

	

MJ =




∂ F1
∂ X1

∂ F1
∂ X2

∂ F2
∂ X1

∂ F2
∂ X2

· · ·
∂ F1
∂ Xn
∂ F2
∂ Xn

...
. . .

...
∂ Fn
∂ X1

∂ Fn
∂ X2

· · · ∂ Fn
∂ Xn


 .� (15)

According to the results of the current study, it has been noted:

	

MJ =




∂ F1
∂ U

∂ F1
∂ Y

∂ F2
∂ U

∂ F2
∂ Y

∂ F1
∂ V

∂ F1
∂ Z

∂ F2
∂ V

∂ F2
∂ Z

∂ F3
∂ U

∂ F3
∂ Y

∂ F4
∂ U

∂ F4
∂ Y

∂ F3
∂ V

∂ F3
∂ Z

∂ F4
∂ V

∂ F4
∂ Z


 .� (16)

With ∂ F1
∂ U

= 0, ∂ F1
∂ Y

= 1, ∂ F1
∂ V

= 0, ∂ F1
∂ Z

= 0, ∂ F2
∂ U

= (1−η )β ((U−a)(U−1)+U(U−1)+U(U−a))
(1−2η )Mk2δ 2 , 

∂ F2
∂ Y

= −Rf Ckλ (1−η )
(1−2η )Mk2δ 2 , ∂ F2

∂ V
= −η β ((V −a)(V −1)+V (V −1)+V (V −a))

(1−2η )Mk2δ 2 , ∂ F2
∂ Z

= Rf Ckλ η

(1−2η )Mk2δ 2 , ∂ F3
∂ U

= 0

, ∂ F3
∂ Y

= 0, ∂ F3
∂ V

= 0, ∂ F3
∂ Z

= 1, ∂ F4
∂ U

= η β ((U−a)(U−1)+U(U−1)+U(U−a))
(1−2η )Mk2δ 2 , ∂ F4

∂ Y
= −Rf Ckλ η

(1−2η )Mk2δ 2 , 
∂ F4
∂ V

= −(1−η )β ((V −a)(V −1)+V (V −1)+V (V −a))
(1−2η )Mk2δ 2 , ∂ F4

∂ Z
= Rf Ckλ (1−η )

(1−2η )Mk2δ 2 . By evaluating the determinant of 
the Jacobian matrix MJ , it yields:

	
|MJ | = β2 (a (2U − 1) + U (2 − 3U)) (a (2V − 1) + V (2 − 3V ))

(2η − 1) M2k4δ 4 .� (17)

In the context of analyzing the behavior of interconnected neural fibers and their fixed-point structures, the 
establishment of equilibrium points can be achieved through the application of directional matrix methods, 
which involve determining the sign of the Jacobian matrix’s determinant at each invariant point. In this 
framework, calculating the determinant of a Jacobian matrix is crucial as it elucidates the stability of each of 
the analytical conditions established. The determinant of the Jacobian matrix in each iteration addresses the 
constraints imposed by the injection of 2η − 1 and a −1, thereby establishing the values of specific parameters 
within the nervous system, namely η  and a. As an example,

Case 1  η < 0.5 (2η - 1 < 0). According to the value of, a (a < 1, a > 1), |MJ|Xi(i=1,2,3)<0, then, the related fixed points 
are overall unstable, whereas, |MJ|X6 > 0  makes up X6 a stable fixed point. In addition, for a < 1, |MJ|X4 < 0, so 
X4 is an unsteadyequilibrium point, while, |MJ|X5 > 0 and consequently, X5 is a stable fixed point.Unlike, if a > 1, 
|MJ|X4 > 0, thus X4 is a steady fixed point, however, |MJ|X5 < 0therefore, X5 is an unstable fixed point.

Case 2  η > 0.5 (2η – 1 > 0). Whatever the value of a (a < 1, a > 1), |MJ|Xi(i=1,2,3) > 0,thus,, the linked fixed points 
are overall stable, whereas, |MJ|X6 < 0, X6 stands anunsteady equilibrium point. Furthermore, if a < 1, |MJ|X4 > 0, 
so X4 is a steadyequilibrium point, whereas, |MJ|X5 < 0 and accordingly, X5 is an unstable fixed point.However, 
for a > 1, |MJ|X4 < 0, then, X4 is an unsteady fixed point, whereas, X5 is astable fixed point because |MJ|X5 > 0.
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Beta-derivatives and their properties: a preliminary look
Recently, numerous definitions of fractional derivatives have been proposed by various researchers, including 
Riemann Liouville, modified Riemann Liouville, Caputo, Caputo-Fabrizio, conformable fractional, and 
Atangana-Baleanu derivatives37–40,43–49,52,63–65. The fractional definitions outlined previously possess certain 
advantages; however, they also exhibit incompatibilities that depend on the characteristics of the physical system 
or functions, such as differentiability and continuity. An important observation in this context is that many 
Fractional Orders in use lack some of the more advanced characteristics of classical calculus, such as the chain 
rule, the Leibnitz theorem, and the treatment of zero when differentiating a constant. A novel type of fractional 
derivative, referred to as the beta derivative, has been introduced by Atangana et al. The derivatives arise from 
the fundamental principles of classical calculus42.

Definition  Let consider, a function and therefore, the beta derivative of order with respect to which is defined 
as ensues:

	
Dα

x (ψ (x)) = lim
ϵ → 0

ψ

(
x + ϵ

(
x + 1

Γ (α )

)1−α
)

− ψ (x)

ϵ
for all x ≥ 0 and ψ (x) 0 < α ≤ 1,

� (18)

with Γ  is the gamma function and Dα
x (ψ (x)) = dψ (x)

dx  for α = 1.

Properties  We assume that for all, and are -order differentiable,, two real parameters. Then, this fractional-or-
der derivative type (named beta-derivative) involves the following crucial properties42.

	1.	� Dα
x (γ 1ψ (x) + γ 2u (x)) = γ 1Dα

x (ψ (x)) + γ 2Dα
x (u (x))

	2.	� Dα
x (k) = 0, such as k stands an arbitrary constant.

	3.	� Dα
x (ψ (x) u (x)) = u (x) Dα

x (ψ (x)) + (ψ (x)) Dα
x (u (x))

	4.	� D
α
x

(
ψ (x)
u(x)

)
= u(x)Dα

x (ψ (x))−(ψ (x))Dα
x (u(x))

(u(x))2

	5.	� Dα
x ((ψ ◦ u) (x)) = Dα

x (ψ (u (x))) u′ (x)

	6.	� D
α
x

(
1

ψ (x)

)
= −Dα

x (ψ (x))
(ψ (x))2

	7.	�
Dα

x (ψ (x)) =
(

x +
(

t
Γ (α )

)1−α
)

dψ (x)
dx

Leveraging the characteristics of the beta-derivatives is especially beneficial for converting a fractional nonlinear 
partial differential equation FNPDE into the structure of NODE. The advanced formulation introduced 
by Atangana et al.42 has yet to reveal any limitations to date. Furthermore, it outlines the characteristics of 
interconnected integer-order derivatives. However, it does not apply this to the derivative of its constant 
functions. The beta derivative functions as a mathematical operator, facilitating the capture of the general 
characteristics of functions and aiding in the identification of their singularity points. Additionally, the beta 
derivative demonstrates greater appeal compared to earlier versions, highlighting the necessity for its application 
in a wider range of simulations addressing practical issues across various research domains, as supported by 
numerous scientific reports and studies. Investigation can be conducted on nonlinear dispersive electrical 
transmission networks and electrochemical systems, along with the modeling of complex geometries for 
electromagnetic waves in dielectric media and applications in cancer treatment37,66–68. The aforementioned 
applications concerning beta-derivatives lead us to consider it as a logical extension of the Caputo and Riemann-
Liouville types of derivatives. The fractional beta derivative is a mathematical tool that enhances flexibility and 
accuracy in the computation of NCS modeling. Furthermore, the distinct advantages outlined regarding this 
specific fractional derivative provide greater benefits due to its broad applicability compared to other fractional 
derivatives within similar domains.

Evaluation of the method and its application to the space-time fractional beta-
derivative coupled nerve fibers equations by means of mathematics
A mathematical description of the procedure for expanding polynomials
Let us consider a given physical model where the dynamics of a complex function ψ (t, x) are governed by:

	 P
(
ψ , Dα

t ψ , Dα
x ψ , D2α

tt ψ , D2α
xx ψ , ψ 2, ψ 3, ψ 2D

α

t ψ , ψ 3D
α

t ψ , . . .
)

= 0.� (19)

The notation P  represents a polynomial in a complex variable that encompasses both linear and nonlinear 
monomials, along with their partial derivatives, including the beta variant of fractional order. In the following 
sections, we will delineate the fundamental algorithmic procedures of the method referred to as polynomial 
expansion, utilized for examining the solutions ψ (t, x) of the complex function within the Eq. (19) presented 
in a less clear format.

Step 1: We execute a variable transformation as specified by

	
ψ (t, x) = ϕ (ξ ) , ξ = k

(
x − λ

α

(
t + 1

Γ (α )

)α )
, � (20)
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with the arbitrary constants k and λ , one can utilize Eq.  (20). This allows for the transformation of the 
nondimensional fractional linear partial differential Eq.  (19) into a nonlinear ordinary differential equation 
(NODE) concerning the varble x. The execution of this operation yields outcomes of:

	 Q
(
ϕ , D1

ξ ϕ , D2
ξ ϕ , ϕ 2, ϕ 3, ϕ 2D1

ξ ϕ , ϕ 3D1
ξ ϕ , . . .

)
= 0,� (21)

such as D1
ξ (ϕ ) = dϕ

dξ
= ϕ ′ , D2

ξ (ϕ ) = d2ϕ
dξ 2 = ϕ ′ ′ ,…

Step 2: We hypothesize that the solutions to Eq. (21) exhibit a specific pattern:

	
ϕ (ξ ) =

N∑
i=1

ai(φ (ξ ))i +
N∑

i=1

bi(φ (ξ ))−i + a0.� (22)

Where ai, bi, stand the unknown variables and φ (ξ ) fulfils the following newly polynomial auxiliary equation 
in the form

	 φ ′ (ξ ) = F0 + F1φ + φ 2.� (23)

The current methodology has been documented in the established scientific literature. Consequently, multiple 
sets of solutions that fulfill the Eq. (23)69–71 can be provided. It is essential to highlight that solutions addressing 
the author’s evaluation align with the cases discussed more broadly in the literature, while ensuring a balance 
between the highest order of the linear context of the derivative term and the highest order of the non-linear 
term structure of Eq. (21). We aim to present multiple solution examples within a single document.

Case I: For F0 = 0, F1 = 0, the sought solution reads

	
φ (ξ ) = 1

ξ
.� (Equ24)

Case II: For F0 = 0, F1 ̸= 0, the sought solution reads

	
φ (ξ ) = −ξ

B0e−F1ξ − 1 ,� (25)

with B0 an arbitrary constant.
Case III: While F0 < 0, F1 = 0, the solutions of Eq. (23) are

	

φ (ξ ) =
√

−F0tanh
(√

−F0ξ
)

,

φ (ξ ) = −
√

−F0coth
(√

−F0ξ
)

.
� (26)

Case IV: While F0 > 0, F1 = 0, the solutions of Eq. (23) are

	

φ (ξ ) =
√

F0tan
(√

F0ξ
)

,

φ (ξ ) = −
√

F0cot
(√

F0ξ
)

.
� (27)

Case V: For F0 ̸= 0, F1 ̸= 0, the solutions of Eq. (23) are

	
φ (ξ ) = A1 − A2B1e(A1−A2)ξ

1 − B1e(A1−A2)ξ
.� (28)

B1 a constant, A1 and A2 are the roots of A2 + F1A + F0 and their expressions are given by

	 A1 = −F1−
√

F 2
1 −4F0

2 , A2 = −F1+
√

F 2
1 −4F0

2 . � (29)

Step 3: After obtaining N , we substitute the expression of φ (ξ ) given at the second step which satisfies 
Eq. (23). We compute and collect all the same power terms in φ (ξ ) into the polynomial derived from Eq. (21) 
and equal them to zero. Subsequently, we reach an algebraic set of equations with a0, ai (i = 1, . . . , N)
, bi (i = 1,2, . . . , N), k, λ  the unknown parameters to deduce.

We would like to point out that the current study has not yet been undertaken regarding the coupling of beta-
derivative fractional space-time equations with nerve fibers. The aim of this research is to focus on more soliton 
like forms so as to process signals in the nervous systems of higher order organisms, which are quite distinct and 
tend to deviate from the regular forms.

Euler equations for space-time fractional beta-derivative coupled nerve fibers obtained by 
the procedure detailed
The purpose of this section is to apply the method described in the previous one, which has more specific 
procedures. Now that we have come to the agreement to have the assumption confirmed, let us do a little self-
review: Some authors have noted that the fractional-order derivative is more appropriate and accurate to model 
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actual cases rather than using classical derivatives43–49,52. There is a current work being done on the dynamical 
characteristics of soliton-like pulses propagating in nerve fibers with couplings, space-time fractional beta-
derivatives. Linear stability analysis forms part of this research work. Explaining the motivation for the use of 
fractional derivatives such as beta-derivatives is worth emphasizing once again. Another interesting aspect of 
the system is that the subject of this work is a functional subsystem of the system which is responsible for the 
encoding and decoding of complex messages. Nonlinear complex phenomena headquarters (NCPH) is probably 
one way to define and focus on this particular subject. The studied electrical circuit was actually the right choice 
for this purpose, regarding the nonlinear excitation of this circuit, mainly the transfer of stimulation pulses 
through it. The authors state that the microwave integrated waveguides allow modelling systems of different 
kinds; for instance, the one mimicking the nervous system can be built with electrical elements like capacitors 
and resistors. Two nonlinear partial differential equations (NPDEs) arise from the fact that Kirchhoff ’s laws 
are applied to the particularized electrical model of nerve fibers: coupled nerve fibers. These equations arise 
from mesh and node analysis of the circuit’s construction involving its electrical elements (the resistor and 
the capacitor). This has been taken a step further with recent research on the modeling of problems that are 
usually given in terms of integer NPDE as integer NDDE. Consistent with the findings of experiments carried 
out by Westerlund, the electric current passing through the nonlinear capacitor conforms to the empirical law 
of Curie from 188952,72. Jonscher had also shown that it is not possible to realize the ideal capacitor using only 
conventional methods using natural system components73. The response of dielectric materials can be explained 
with the help of fractional order equations. Preassigned in647475 is the complex impedance of the internal 
electrode of the capacitor:

	 ZC = 1
C(jω )α , 0 < α ≤ 1. � (30)

Thus, the value of the Ohm’s law for the capacitor is:

	 I
(j)
c,n = C

dα V
(j)

n
dtα , 0 < α ≤ 1. � (31)

It is feasible to derive the fractional order variant of Eq. (4) by incorporating the principles outlined in Kirchhoff ’s 
laws and Curie’s laws, which represent the fractional Ohm laws applicable to electrical components, as detailed 
in Eq. (30) using the aforementioned calculus methodologies.

	





−M ((1 − η ) (un+1 − 2un + un−1) − η (vn+1 − 2vn + vn−1))
+Rf C dα un

dtα + β un (un − a) (un − 1) = 0,
−M ((1 − η ) (vn+1 − 2vn + vn−1) − η (un+1 − 2un + un−1))

+Rf C dα vn
dtα + β vn (vn − a) (vn − 1) = 0.

� (32)

The continuous version is obtained through contouring, that is, modeling the medium as a continuous mass 
with the internodal distance being assumed to be small enough. This results in the creation of a set of fractional 
nonlinear coupled partial differential equations (FNCPDEs) provided certain conditions are satisfied δ n → x
, un = u (x, t), vn = v (x, t) .

	




Rf C dα u
dtα + β u (u − a) (u − 1) − M

(
(1 − η ) δ 2 d2u

dx2 − η δ 2 d2v
dx2

)
= 0,

Rf C dα v
dtα + β v (v − a) (v − 1) − M

(
(1 − η ) δ 2 d2v

dx2 − η δ 2 d2u
dx2

)
= 0.

� (33)

Having examined the properties of the beta-derivatives outlined before, let us apply now the wave transformation 
and use the ansatz of the following manner:

	

ξ = k
(

x − λ
α

(
t + 1

Γ (α )

)α )
,

u (t, x) = U (ξ ) ,
v (t, x) = V (ξ ) .

� (34)

Let k and λ  denote the wave number and the velocity of the new wave transformation respectively. Therefore, let 
us rewrite Eq. (33) concerning the equations for the nerve fibers that are coupled with the space-time fractional 
beta-derivative and which are represented with a fractional coupled nonlinear partial differential equation 
(FNPDE) into a coupled nonlinear ordinary differential equation (NODE)

	




−Rf Ckλ dU
dξ

+ β U (U − a) (U − 1) − M
(

(1 − η ) δ 2k2 d2U
dξ 2 − η δ 2k2 d2V

dξ 2

)
= 0,

−Rf Ckλ dV
dξ

+ β V (V − a) (V − 1) − M
(

(1 − η ) δ 2k2 d2V
dξ 2 − η δ 2k2 d2U

dξ 2

)
= 0.

� (35)

Using the previously established balance principle and the Eq.  (34), we describe the borderline conditions 
necessary for the use of the Eq. (22). To obtain N, we implement the homogeneous balance principle between 
the higher nonlinearity order term (the higher nonlinearity of term U (U − a) (U − 1) is U3) and the higher 

linear derivatives order
(

d2U
dξ 2

)
. Then, for the current study by applying the homogeneous balance principle, for 

[U ] = N , we get (respectively, we proceed for V  as we do for U )
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[
U3]

=
[

d2U

dξ 2

]
⇒ 3N = N + 2.

Then, N = 1, we make use of the ansatz structured as follows:

	

{
U (ξ ) = a10 + a11 (φ (ξ )) + a12(φ ( ξ ))−1,
V (ξ ) = b10 + b11 (φ (ξ )) + b12(φ ( ξ ))−1.

� (36)

Where φ (ξ )satisfies the polynomial auxiliary Eq. (23), a10, a11, a12, b10, b11, b12, k and λ  are the unknown 
parameters to seek. By substituting Eq. (36) inside Eq. (35) and throughout some analytical tedious calculus 
aiding by the software Maple, we find a coupled set of polynomial function equation in power of (φ ( ξ ))i 
such as (φ ( ξ ))−1i = 0,1, 2, . . . , 6 (for each polynomial function equation in φ (ξ )). We perform the 
recommended enhanced methodology and incorporate it into the NODE (35) obtained from the equations of 
coupled nerve fibers with space-time fractional beta-derivatives. To generate a report on the desired solutions 

for families, we set ∆ 1 = −F 2
1 + 4F0, ∆ 2 =

√
1

F 2
1 −4F0

 and it yields:

Set 1: for a11 = 0, b11 = 0 with the restrictions 2a − 1 ̸= 0, 2η − 1 ̸= 0, ∆ 1 ̸= 0, ∆ 2 ̸= 0
Family 1:

	

a10 = ∆ 1∆ 2−F1
2∆ 1∆ 2

, b10 = a10, k = ± 1
δ

√
β

2M∆ 1(2η −1) ,

a12 = ∆ 2F0, b12 = a12, λ = (2a−1)β ∆ 2
Rf Ck

� (37)

Family 2:

	

a10 = a(∆ 1∆ 2−F1)
2∆ 1∆ 2

, b10 = a10, k = ± a
δ

√
β

2M∆ 1(2η −1) ,

a12 = a∆ 2F0, b12 = a12, λ = −a(a−2)β ∆ 2
Rf Ck

� (38)

Family 3:

	

a10 = ∆ 1∆ 2(1+a)+F1(1−a)
2∆ 1∆ 2

, b10 = a10, k = ± (a−1)
δ

√
β

2M∆ 1(2η −1) ,

a12 = (a − 1) ∆ 2F0, b12 = a12, λ = −(a−1)(a+1)β ∆ 2
Rf Ck

� (39)

Family 4:

	

a10 = ∆ 1∆ 2+F1
2∆ 1∆ 2

, b10 = a10, k = ± 1
δ

√
β

2M∆ 1(2η −1) ,

a12 = −∆ 2F0, b12 = a12, λ = −(2a−1)β ∆ 2
Rf Ck

� (40)

Family 5:

	

a10 = a(∆ 1∆ 2+F1)
2∆ 1∆ 2

, b10 = a10, k = ± a
δ

√
β

2M∆ 1(2η −1) ,

a12 = −a∆ 2F0, b12 = a12, λ = a(a−2)β ∆ 2
Rf Ck

� (41)

Family 6:

	

a10 = ∆ 1∆ 2(1+a)−F1(1−a)
2∆ 1∆ 2

, b10 = a10, k = ± (a−1)
δ

√
β

2M∆ 1(2η −1) ,

a12 = − (a − 1) ∆ 2F0, b12 = a12, λ = (a−1)(a+1)β ∆ 2
Rf Ck

� (42)

Set 2: for a12 = 0, b12 = 0 under the restrictions 2a − 1 ̸= 0, 2η − 1 ̸= 0, ∆ 1 ̸= 0, ∆ 2 ̸= 0
Family 1:

	

a10 = ∆ 1∆ 2−F1
2∆ 1∆ 2

, b10 = a10, k = ± 1
δ

√
β

2M∆ 1(2η −1) ,

a11 = ∆ 2, b11 = a11, λ = −(2a−1)β ∆ 2
Rf Ck

� (43)

Family 2:

	

a10 = a(∆ 1∆ 2−F1)
2∆ 1∆ 2

, b10 = a10, k = ± a
δ

√
β

2M∆ 1(2η −1) ,

a11 = a∆ 2, b11 = a11, λ = a(a−2)β ∆ 2
Rf Ck

� (44)
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Family 3:

	

a10 = ∆ 1∆ 2(1+a)+F1(1−a)
2∆ 1∆ 2

, b10 = a10, k = ± (a−1)
δ

√
β

2M∆ 1(2η −1) ,

a11 = (a − 1) ∆ 2, b11 = a11, λ = (a−1)(a+1)β ∆ 2
Rf Ck

� (45)

Family 4:

	

a10 = ∆ 1∆ 2+F1
2∆ 1∆ 2

, b10 = a10, k = ± 1
δ

√
β

2M∆ 1(2η −1) ,

a11 = −∆ 2, b11 = a11, λ = (2a−1)β ∆ 2
Rf Ck

� (46)

Family 5:

	

a10 = a(∆ 1∆ 2+F1)
2∆ 1∆ 2

, b10 = a10, k = ± a
δ

√
β

2M∆ 1(2η −1) ,

a11 = −a∆ 2, b11 = a11, λ = −a(a−2)β ∆ 2
Rf Ck

� (47)

Family 6:

	

a10 = ∆ 1∆ 2(1+a)−F1(1−a)
2∆ 1∆ 2

, b10 = a10, k = ± (a−1)
δ

√
β

2M∆ 1(2η −1) ,

a11 = − (a − 1) ∆ 2, b11 = a11, λ = −(a−1)(a+1)β ∆ 2
Rf Ck

� (48)

Global sets one and two, as designated above, are the further advancements made by us. Solution families 
mentioned above rational, rational exponential, hyperbolic and trigonometric solitary waves are represented 
by Eqs. (24)–(28). After that we will also show several other solution profiles that will be useful for constructing 
these solutions.

Analysis of the data using physical means and visual representation of those 
findings
The results obtained are presented graphically through informative representations such as 2D and 3D 
graphs, as relevant, to effectively illustrate the solutions derived in a physical context with the restrictions 
2a − 1 ̸= 0, 2η − 1 ̸= 0, ∆ 1 ̸= 0, ∆ 2 ̸= 0. An overarching analysis indicates that the solutions within 

each set lack the physical characteristics of solitary waves in both case I and case II, particularly in families 1 
to 6 of set 1. Analysis reveals that case I from set 2 does not exhibit solitary waves across any of the solution 
families outlined (from family 1 to 6). The graphical representations of the set 1 where a11 = 0, b11 = 0, show 
that the families 1 to 6 do not display any profiles in the cases I ( F0 = 0, F1 = 0 see Eq. (24)) and II ( F0 = 0
, F1 ̸= 0 see Eq. (25)). Therefore, for this first set, we can plot the cases III, IV and V for any retrieved solutions 
families from families 1 to 6. Indeed, while F0 = 0, F1 = 0, the cases I, II display a constant signal due to the 
fact a11 ̸= 0, b11 ̸= 0, a12 = 0, b12 = 0. Thus, we depict on the below graph the families 1 and 2 of the case 
I in the set 2.

The provided graphs concern outputs of families 3 and 4 from set 1. We move forward with the third and 
fourth families of the second set. Our results include the visual representation of the family 5 of the sets 1 (top 
row) and II (bottom row). We have obtained a range of new geometrical shapes with the possible categories being 
kink rogue waves and kink pulse solitary waves. The several of these are variations of the desired solutions which 
are presented as pulses (further details are in Fig. 4), as kinks (certain figures are as follows: Figs. 5a, b, e,  6a, b, 
e), as anti-kinks (Figs. 5c, d, f, 6c, d, f), as kink-rogue waves, and anti-kink rogue waves (see Figs. 5 and 6). The 
fractional-order (FO) operator not only changes the degree of the signal and also changes the rate of propagation 
of the signal. In particular, when the value of α is less than one (such as, α = 0.75 or 0.5), all solitary waves are 
obtained and regardless of their appearance, are propagated at a higher rate than if α = 1. All these findings 
have been pinpointed and pointed out by the authors of the various papers where these different physical systems 
were studied, such as electrical circuits/networks or optical fibers, amongst others. Still, however, these findings 
have not as yet been recorded or reported on the nonlinear coupled nerve fibers consisting of the beta-derivative.

Most limits (in comparison with those in previous investigations) of the classical theory for nonlinear 
coupled nerve fibers are: changing solitary wave speed, fluctuation in amplitude and including new solitary 
wave types forming such as kink-rogue and anti-kink-rogue. Using physiological parameters and employing 
non-integer order derivatives we are able to use these findings to justify the complex phenomena present in 
the current model described by conventional derivatives. It has been shown that the introduction of the FO 
derivative allows us to characterize the memory effect, incapability of periodicity and genetic characteristics of 
complex systems. In other instances, pre-existing investigations relying on the integer-order (IO) derivatives 
have, in certain instances, been silent to the existence of these phenomena. As a result, the memory phenomenon 
can be used to clarify some previously unexplained observations related to the propagation of impulses through 
myelinated fibers. Effects caused by ephaptic coupling, exact value of the FO parameter, and the distance 
between the active nodes affect also the ultra-significant amplitude change and increased speed of impulse 
conduction. Hence, while seeking to understand these phenomena as observed from the findings above, we 
are able to integrate the intricate mechanisms involved in phenomena like as the regulation and coordination 
of various anatomical structures of the body. Practically speaking, the recent mathematical concepts are linked 
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Fig. 5.  These panels display the set 1 for δ = 10−3, a = 0.25, η = 0.25, β = 0.5, B0 = 4, B1 = 0.5
, M = 0.5, Rf C = 4.10−4: case III.1 (a)-(b) with F0 = −2, F1 = 0, family 1 α = 1, α = 0.75 
respectively; case IV.1 (c)-(d) with F0 = 2, F1 = 0, family 1 α = 1, α = 0.75 respectively; (e) 2D graphs 
for the case III.1 family 1; (f) 2D graphs for the case IV.1 family 3.

 

Fig. 4.  These panels exhibit families Eqs. (37) and (38) for δ = 10−3, a = 0.25, η = 0.25, β = 0.5, 
B0 = 4, B1 = 1.5, M = 0.5, Rf C = 4.10−4: case I (a)–(b) family 1 α = 1, α = 0.75 respectively; (c)–
(d) family 2 α = 1, α = 0.75 respectively; (e) 2D graphs for the case I family 1; (f) 2D graphs for the case II 
family 1.
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with possible electro-physiological activities such as the propagation of action potentials in neurons and the 
changes of such physiological activity in some diseases. Further, these observations also offer us the chance 
to engage in discussions about the potentials on the applications and even in the ways on how the diagnostic 
techniques and treatment strategies for the neurological diseases can be improved.

Conclusions
The objective of this study was to search for new solitary waves given by the equation which is a beta differential-
difference equation. The present equations containing the space fractional-time beta-derivative expanded the 
understanding of the physics of saltatory conduction in a network of axon fibers. We have revealed the regions 
of stability and instability of the model including modulation instability based on the linear stability analysis of 
the model. In addition, we have also set the equilibrium points and assessed the Jacobian matrix using dynamical 
theory analysis. After concerning the values and other indicators of some physiological parameters, we were able to 
visualize the three-dimensional modulational instability regions. The seen areas provide experimental validation 
for the existence of solitonic impulses in a wide band of (η, q) or in some narrow bands of (η, q) representative 
space. Additional, we have argued such areas in connection with neurological diseases when disordered 
propagation of nerve signals may cause complex pathological conditions such as epilepsy or neuropathic pain. 
We have carried out the study of the model equation by applying the new technique of polynomial expansion 
scheme. Certainly, it can be reported that we have introduced a superior wave transformation technique, the 
fractional complex transform. In this process, a certain value of a fractional beta-derivative is introduced and 
it is constructed employing a semi-discrete approach. Then, the equation describing the action of the nerve 
fiber was transformed into a complex of reduced ordinary differential elliptic equations. This system consists 
of two independent parameters. The algorithms of polynomial expansion in this case used two parameters 
from the related auxiliary equation. The limitation of the two auxiliary equation parameters, made it possible 
to find several families of sets. Being dependent on the magnitude and/or sign of these parameters, we have 
classified those solutions as rational, exponential, hyperbolic or trigonometric solutions. We have shown in 3D 
and 2D solution graphs, Kink/anti-kink solitary waves and their singular forms, short pulse waves and kink-
rogue solitary waves with physiological as well as sustained stability and efficiency. There have been examples 
where graphs have been used to show a fractional-order effect seen in some nonlinear electronic transmission 
networks, specifically that of the physical bundles. The phenomenon relates to the change in the amplitude and 
the change in the speed of the nerve impulse. Changes resulting from the above can be traced thanks to such 
parameters as the nerve fiber’s diameter and the application of the fractional order means. Utilizing the set of 
plotted graphs, we were able to demonstrate visually the presence of a fractional-order effect that is observed in 
some nonlinear electrical communication networks, in particular, that of physical bundle configurations. This in 
turn involves the change in both the intensity or the rate of transmission of a nerve impulse. Changes resulting 

Fig. 6.  These panels display the set 2 for δ = 10−3, a = 0.25, η = 0.25, β = 0.5, B0 = 4, B1 = 0.5
, M = 0.5, Rf C = 4.10−4: case III.1 (a)-(b) with F0 = −2, F1 = 0, family 1 α = 1, α = 0.75 
respectively; case IV.1 (c)-(d) with F0 = 2, F1 = 0, family 1 α = 1, α = 0.75 respectively; (e) 2D graphs 
for the case III.1 family 1; (f) 2D graphs for the case IV.1 family 3.
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from the above can be traced thanks to such parameters as the nerve fiber’s diameter and the application of the 
fractional order methods.

Data availability
The data generated and/or analyzed during the current study are not publicly available due to the fact that they 
are part of an ongoing thesis of one author, but are available from the corresponding author on reasonable re-
quest.
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