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In the era of renewable energy integration, precise solar energy modeling in power systems is crucial 
for optimized generation planning and facilitating sustainable energy transitions. The present 
research proposes a comprehensive framework for assessing the operational reliability of solar 
integrated systems, validated using the IEEE RTS 96 test system. A robust uncertainty model has 
been developed to characterize variations in solar irradiance to address the uncertainties in solar 
panel output, followed by a multi-state modeling approach to account for the dynamic nature of solar 
panel output. The research introduces a time series-based ‘non-linear autoregressive neural network’ 
(NAR-Net) to forecast the solar irradiance levels five days ahead to optimize solar power efficiency. A 
comparative analysis has been conducted of three other state-of-the-art approaches, such as auto-
regressive (AR), auto-regressive with moving average, and multi-layer perceptron, for predicting solar 
irradiance. Performance metrics, including mean square error, regression, and computational time, 
were evaluated to demonstrate the efficacy of the NAR-Net. The proposed prediction-based approach 
enhances the reliability of power generation planning by integrating modeling, which is based on 
forecasting. It is found that the proposed method achieves an accuracy of 98% w.r.t its counterpart. 
Moreover, the assessment to optimize the operational reliability of solar-integrated systems and 
improve generation planning for a sustainable energy future is achieved.

Keywords  Artificial neural network, Frequency domain, multi-state model, Operational reliability, Solar 
energy system

In recent years, solar energy has emerged as a promising and sustainable power source, driving advancements 
in power systems that integrate renewable energy. These advancements have led to the development of solar 
integrated systems, which utilize photovoltaic (PV) panels to convert solar irradiance into electricity and 
contribute to sustainable energy generation. These systems are broadly classified into three categories: Hybrid 
Solar Systems, Grid-Connected Solar Systems, and Utility-Scale Solar Power Plants. However, unlike conventional 
energy sources, renewable energy like solar is inherently variable, requiring efficient strategies for grid operation 

1Birla Institute of Technology, Mesra, Ranchi 835215, India. 2Department of EEE, Centurion University of 
Technology and Management, Bhubaneswar, Odisha, India. 3Department of Electrical & Electronics Engineering, 
Shri Ramswaroop Memorial University, Lucknow 225003, India. 4Applied Science Research Center, Applied 
Science Private University, Amman 11931, Jordan. 5Centre for Research Impact & Outcome, Chitkara University 
Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India. 6ENET Centre, CEET, 
VSB-Technical University of Ostrava, Ostrava, Czech Republic. 7Department of Electrical Engineering, Faculty of 
Engineering, Al-Baha University, 65779-7738 Alaqiq, Saudi Arabia. 8Department of Electrical Engineering, College 
of Engineering, Northern Border University, Arar, Saudi Arabia. 9Department of Electrical Engineering, College of 
Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj11942, Saudi Arabia. 10Jadara University Research 
Center, Jadara University, Irbid, Jordan. 11 National engineering school of gabes, University of gabes, Gabes, Tunisia. 
email: amitkumar2687@gmail.com

OPEN

Scientific Reports |         (2025) 15:9335 1| https://doi.org/10.1038/s41598-025-94106-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-94106-x&domain=pdf&date_stamp=2025-3-18


and integration. Solar power is harnessed through photovoltaic (PV) panels, which convert solar irradiance 
into heat or electricity, and these systems are increasingly employed in residential, commercial, and industrial 
applications1. However, the intermittent nature of solar irradiance, influenced by weather, seasonal changes, and 
daily variations, significantly impacts the efficiency and reliability of solar energy systems. Studies have explored 
various methods to address these challenges, including forecasting solar irradiance using artificial intelligence 
techniques such as seasonal auto-regressive models, which enhance system reliability2. To further tackle these 
issues, conducting uncertainty analysis of solar irradiance and developing robust prediction models, including 
time-series forecasting, is crucial. These efforts improve reliability and support informed decision-making, 
enabling the seamless integration of solar farms into energy grids while projecting the overall performance and 
dependability of solar energy systems3.

Literature survey
Climatic conditions significantly impact reliability forecasting for solar integrated systems, resulting in power 
generation fluctuations. Various methods handle dynamic models, including auto-regressive with moving 
average (ARMA), autoregressive integrated moving average (ARIMA), autoregressive moving average model with 
exogenous inputs (ARMAX), autoregressive integrated moving average with explanatory variable (ARIMAX), 
and stochastic state-space models4. However, the complexity of the irradiance pattern poses challenges in 
designing accurate regression models. Unpredictability in solar irradiance patterns due to instrument or human 
errors can lead to model failures. Forecasting methods like artificial neural networks (ANN), kernel recursive 
least squares algorithm and support vector machines (SVM)4–7 are used for prediction. These models are 
trained by recognizing patterns in time-series data and forecast future values. These techniques aid in producing 
accurate predictions, supporting decision-making and planning in various fields. Hybrid models and ANN-
based methods8 are gaining popularity for their ability to train effectively and reduce reliance on complex 
mathematics, showing promise for solar irradiance forecasting. However, effectively incorporating a time-series-
based prediction method is crucial to address the non-linearity within solar irradiance data9. This is essential as 
solar irradiance patterns often exhibit complex and non-linear behaviors influenced by various factors, including 
meteorological conditions, time of day, and seasonal variations. A more suitable network must be implemented 
to better capture and model these dynamics, improving the accuracy and reliability of solar irradiance forecasts.

Recent research focused on reliability modeling of solar irradiance and its integration with conventional 
systems. The aim is to track maximum irradiance for solar power maximization10–12, evaluate reliability based 
on power loss due to variable insolation13, assess electric vehicle reliability14–16, and optimize cost for reliability 
assessment17. However, a significant challenge for current and future grid-connected solar distributed generation 
(DG) systems is reliably meeting load demands18. While ample research exists on adequacy assessment for solar 
farm integrated power systems19,20, limited work addresses solar DG adequacy, considering solar irradiation’s 
intermittent nature. PV cell power generation depends on solar irradiation intensity, which varies with the 
solar unit’s location. Uncertainty in solar generation is represented by probability density functions, changing 
with seasonal variations21. Normal and Weibull distribution functions22,23 represent global solar irradiation 
data. Thus, a standardized model is needed to represent solar data for seamless integration with conventional 
reliability assessment methods. Adequacy assessment schemes also require further attention and refinement.

Here are some gaps found from the above existing literature:

	 i.	� Reliance on computationally intensive convolution-based techniques with limited research on simplified 
multi-state modeling for solar-integrated systems.

	ii.	� Inadequate probabilistic frameworks for accurately capturing and quantifying solar power fluctuations 
caused by intermittency.

	iii.	� Limited focus on developing reliable two-day-ahead forecasting models, such as NAR-Net, for solar irra-
diance and power generation, and their seamless integration into practical energy grid management and 
operational planning to support proactive energy management.

Motivation
In sustainable energy exploration, the central objective revolves around enhancing the reliability of solar-
integrated power systems. Solar energy, while environmentally conscious, presents challenges stemming from its 
inherent unpredictability. Short-term solar irradiance prediction typically leans on time series analysis techniques 
involving mathematical modeling, using the Kalman filter and linear regression, to tackle these challenges. 
However, traditional methods are susceptible to inaccuracies due to rounding errors and fluctuations in solar 
irradiance, potentially overlooking various influencing factors. To address these limitations, machine learning 
(ML) and artificial intelligence (AI) methods have been widely implemented in recent years. However, their 
approaches could be more complex and computationally inferior. Notably, artificial neural networks (ANN), 
such as the multi-layer perceptron (MLP), are employed to develop predictive networks with less complexity. 
It’s important to acknowledge that MLP is more effective due to its multiple layers and nodes. In our research, 
we employ a single-layer neural network, i.e., a non-linear autoregressive neural network, for time-series data 
prediction. This network is well-known for its ability to account for non-linearity in data patterns, enhancing its 
capacity to model and predict solar irradiance with greater accuracy and reliability.

Contribution of the work
Certainly, here are the key contributions of the work.

	 i.	� Simplified reliability evaluation through multi-state modeling for solar-integrated systems, shifting away 
from conventional convolution-based techniques25.
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	ii.	� Development of an extended probabilistic framework that allows for accurate evaluation of fluctuations in 
solar power generation due to solar intermittency24.

	iii.	� Two-day-ahead solar irradiance and power generation prediction using the NAR-Net for facilitating proac-
tive energy integration and operational reliability projection26.

Thus, Table 1 shows the comparison of the proposed work with the existing state-of-the-art Sect. Uncertainty 
modeling of solar irradiance and prediction model for reliability analysis encompasses solar energy and 
prediction model reliability analysis. Section  Prediction using Non-Linear autoregressive neural network 
discusses the NAR-Net used in predicting the solar irradiance. Section Case studies and results presents the case 
studies and a detailed discussion of the proposed methodology. Finally, Sect. Conclusion provides a summary of 
the conclusions derived from the case studies and analysis.

Uncertainty modeling of solar irradiance and prediction model for reliability analysis
In the pursuit of a sustainable energy future, the integration of solar power systems stands as a promising 
solution to meet global energy demands. However, reliably harnessing the solar power for electricity necessitates 
meticulous attention. Ensuring the dependability of solar-integrated power systems requires an exploration of 
the uncertainties tied to solar irradiance, the lifeblood of solar energy generation. Thus, this section deals with 
uncertainty modeling of solar irradiance, multi-state power generation and lastly, reliability assessment using 
the Fourier domain approach.

Uncertainty modeling of solar irradiance for generation planning
Solar energy relies on understanding solar irradiance dynamics, influenced by weather, time of day, and location, 
introducing uncertainty into energy output. Reliability assessment of solar-integrated power systems requires 
a comprehensive grasp of these uncertainties. To model solar irradiance uncertainties, Eq.  (1), a Weibull 
probability density function (PDF), denoted as f (x), is employed.

	
f (x) = 1

σ
√

2π
e(− 1

2 ( x−µ
σ )2)� (1)

The Weibull distribution is commonly used in solar irradiance modeling due to its ability to capture the variability 
and uncertainty in solar energy generation. With two shape parameters, it models both typical and extreme 
irradiance events, such as sudden spikes or drops. It depends on various meteorological and environmental 
factors, with x representing irradiance values, µ  as the mean, and σ as the standard deviation. One study 
used the Weibull distribution to estimate solar energy yield by analyzing irradiance values over selected days27. 
Another study found the Maximum Likelihood method best fit global solar irradiance data in France, enhancing 
PV energy output reliability28. Further research compared Weibull, Rayleigh, and Lognormal distributions, 
with Weibull providing useful insights for PV power generation prediction29. A probabilistic model based 
on the Weibull distribution was also developed to improve grid-connected system simulations by calculating 
Weibull parameters and assessing irradiance smoothness and continuity30. Thus, this approach seamlessly 
incorporates uncertainty into solar irradiance modeling, addressing data variability efficiently. Thus, adopting 
of this distribution not only accounts for central tendencies but also comprehensively addresses data variability 
and uncertainty. Finally, it allows the computation of forecasted values of probabilistic energy generation by 
estimating the likelihood of extreme events and by conducting sensitivity analyses efficiently, capitalizing on the 
mathematical properties of the Weibull distribution.

Multi-State modeling for variable solar power generation
The inherent variability in solar panel power generation is attributable to the dynamic nature of solar irradiance. 
Thus, a comprehensive approach is required to capture the intricate dynamics of solar irradiance fluctuations. As 
a result, a multi-state model is utilized to effectively characterize the diverse solar power output states that arise 
due to changes in solar irradiance25. To capture this variability, we use a multi-state model. This model illustrates 
different solar power output states resulting from irradiance fluctuations, covering a wide range of data points 
(up to 5σ ), is expressed in Eq. (2). The decision to use 5σ is guided by its capacity to capture extreme values, 
which are rare but may have significant implications for system performance. For shape parameters k > 1, 
the Weibull distribution becomes more symmetric, and 5σ effectively encompasses nearly the entire range of 
the data, akin to the normal distribution. Thus, the Weibull distribution has been divided into Na intervals, 

Proposed Work Existing Work

State-of the-art Proposed Work State-of the-art Proposed Work Reliability analysis for power system Time-series solar irradiance Forecasting

Proposed work ✓ ✗ ✓ ✓ ✓
20 ✗ ✗ ✗ ✗ ✓
23 ✓ ✗ ✗ ✗ ✗
25 ✗ ✗ ✗ ✗ ✗
26 ✗ ✓ ✗ ✓ ✗

Table 1.  Comparison of the proposed work with the existing state-of-the-art.
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each spanning 5σ
Na

, with midpoint values as SMP N  for s = 0, 1, 2, . . . , 9. Equation (3) generates SMP N  
values for even and odd N positions.

	
SMPN = 5σ
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This approach models solar irradiance intermittency and facilitates efficient convolution. Equation  (3) 22 
represents solar power generation (SGP N ) in response to cut-in, nominal, and cut-out irradiance, where, 
SP R is the rated solar power, SIcinand SIcoutis cut-in and cut-out solar irradiance. Segmenting the solar 
irradiance model into discrete bands based on standard deviation, optimizes the modeling, improving solar 
power prediction and reliability assessment. Equation (4) evaluates each state’s probability (P N ), crucial for 
modeling, using simulated solar irradiance within SMP  intervals. Thus, the multi-state modeling approach 
enhances our understanding of solar power generation dynamics, advancing solar energy prediction and 
management.

	 PN = N/Nys� (4)

Operational reliability evaluation for solar energy system using fourier approach
Getting generation and load in sync is essential for incorporating solar power variability into power networks. A 
quantized probabilistic load model (QPLM) that incorporates both conventional and non-traditional generating 
units has been created in order to address this problem. The QPLM has been formulated as a probability 
distribution pb = f (x) = F (x)

T  of load sampled at intervals of Ts MW , for conventional units, which typically 
operate in either a normal or failure state. Here, pb stands for the probability distribution of load values, F (x) 
for the cumulative distribution function of load, and T  for the sampling interval. As illustrated below in Eq. (5), 
the QPLM has been iteratively developed for each unit with the inclusion of a generator outage. Here, fi (x) 
represents the QPLM following the factorization of unit Gi failure with an outage capacity of P Gi, li denotes 
the likelihood that a generating unit Gi will be in a normal state, and mi denotes the likelihood of its outage. 
However, in order to account for the uncertainty surrounding the generation of non-conventional solar power, 
a multi-state modeling technique has been implemented. The “s states,” or solar power states, are related to 
probabilities SGP N . The convolution of all these states with the previously derived load model is taken into 
consideration in the QPLM technique for a solar farm, as indicated by Eq. (6)26, where fk (x) stands for the 
QPLM for the solar farm. SGP  stands for the state ′ N ′ s generating capacity.

	 fi (x) = fi−1 (x) ⊗ Gi = li. fi−1 (x) + mi. fi−1 (x − P Gi)� (5)

	
fk (x) =

∑
N
N=1[SGP N fk−1 (x − W GP N )]� (6)

As explained earlier in Eqs. (5) and (6), traditional convolution techniques grow more complex as the number 
of generating units increases, requiring significant storage for reliability evaluations. The procedure has been 
moved from the time domain to the frequency domain in order to address this, using the Fast Fourier Transform 
(FFT) approach26. As a result, Eq. (7) is used to determine the discrete-time and frequency responses, and Eq. (8) 
describes the use of the Inverse Fast Fourier Transform (IFFT).

	
F (K) =

∑
Nsamp−1
i=0 aiW

−Ki� (7)

	

qi =
∑ Nsamp−1

n=0 P (n) W ni

f (k) =
∑ Nsamp−1

i=0 qi × δ (x − i∆ x)

}
� (8)

The frequency domain approach21 simplifies the convolution involved in reliability analysis. System dynamic 
reliability is quantified using loss of load probability (LOLP) and expected energy not supplied (EENS)17. 
Reliability indices are computed from the final discrete probabilistic load model fα (x) resulting from the 
convolution of all generating units, given ”α ” generating units and total generation capacity (P GT ). The 
maximum load in the final DPLM is (xmax + P GT ). Therefore, EENS and LOLP is assessed using Eqs. (9) 
and (10).

	
EENS =

∑
(xmax+P GT )
P GT

fα (x)� (9)

	 LOLP = fα (P GT )� (10)

Optimal replacement of generating unit with renewable energy sources
The generation planning problem is a challenging task that involves selecting the optimal combination of 
generators to meet the power system’s energy demands while ensuring its reliability and security. Renewable 
energy’s technical and financial viability must be evaluated to achieve an optimal solution for improved generation 
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expansion planning. Thus, the Power Set31 concept and Linear Programming32,33 can be used to find the optimal 
solution for better generation expansion in the power sector. The power set concept can help to determine all 
possible combinations of power generation sources that can be used to meet the demand. These combinations 
can then be evaluated using Linear Programming, which can identify the optimal solution to optimize the cost 
of interrupted energy and expected energy not served for each combination while meeting the demand. Linear 
Programming uses a set of constraints to ensure that the solution is feasible and realistic. The conditions of the 
problem ensure the power demand is always met, the system remains within its operating limits, and sufficient 
reserve capacity is available to respond to unexpected events. By combining the Power Set concept with Linear 
Programming, it is possible to find the best mix of power generation sources that will maximize efficiency, 
enhance system reliability and minimize costs while meeting the energy needs of consumers. Hence, for better 
planning, integrating wind energy sources is required to meet the maximum demand with low generation costs 
and low energy losses.

Prerequisite
Creation and technologies used in solar farm
The virtual solar farm has been created by carefully considering several factors such as the capacity factor, the 
type of generator to be replaced, the amount of generation required to meet existing conventional generation 
needs, and the duration of available solar irradiance. This approach ensures a robust modeling of the solar farm’s 
capacity to supplement or replace conventional energy sources. The modeling, testing, and execution of the solar 
farm were performed using MATLAB/SIMULINK, which provides a comprehensive simulation environment to 
model real-world conditions and the performance of photovoltaic (PV) systems.

In the virtual solar farm, the solar technology used is based on photovoltaic (PV) modules. The simulation 
considers various parameters like solar irradiance, cell temperature, and electrical characteristics of PV modules 
to evaluate their performance in real-world conditions. Below is a table outlining the numerical models and 
specifications for the solar technologies used in the farm, including both input parameters (such as solar 
irradiance and temperature) and output metrics (such as PV voltage and current). These models ensure that the 
performance of the farm is accurately simulated under different environmental conditions. Thus, Table 2 shows 
the details and specifications of solar PV System.

Prediction model for solar irradiance
Solar power is vital in the global transition to cleaner energy production. Accurate solar irradiance prediction is 
crucial for efficient energy management, grid stability, and optimizing solar power generation. This study focuses 
on the importance of precise solar irradiance prediction in ensuring reliable solar-integrated power systems. We 
use advanced forecasting techniques and data-driven models, including auto regression with moving average 
(ARMA) and nonlinear autoregressive neural network, to improve predictability and resilience in solar energy 
systems, contributing to future sustainable energy. Adaptive-based methods have emerged as highly effective 
tools for solar irradiance prediction, offering the capability to model complex and nonlinear relationships 
within the data. Among these neural network models, two prominent approaches are auto regression (AR), auto 
regression with moving average (ARMA), Multi-Layer Perceptron (MLP), and nonlinear autoregressive neural 
network.

Sl. No. Category Parameter Details/Specifications

1 Input Parameters Solar Irradiance (W/m²) Scalar input, range: [0, 1000]; defines the irradiance applied to solar panels.

Cell temperature (°C) Scalar input; can be negative, zero, or positive, indicating actual cell temperature.

2 Output Metrics PV Array Voltage (V) Output voltage of the PV array under specific environmental conditions.

PV Array Current (A) Output current from the PV array based on irradiance and temperature.

Diode Current (A) Current flowing through the internal diode of the PV module, critical for accurate modeling.

Effective Irradiance (W/m²) Measured irradiance applied directly to the PV array, recorded during simulation.

Operating temperature (°C) Temperature of the PV module during operation, influencing performance.

3 System Design Parallel Strings 40 parallel-connected strings of series-connected PV modules.

Modules per String 10 series-connected PV modules per string forming a larger array.

4 Module Attributes Maximum Power (W) 213.15 W, representing the maximum power output under standard conditions.

Open Circuit Voltage (Voc, V) 36.3 V, voltage when the circuit is open, with no current flow.

Short Circuit Current (Isc, A) 7.84 A, current when the circuit is shorted.

Voltage at Maximum Power (Vmp, V) 29 V, voltage at which maximum power output is achieved.

Current at Maximum Power (Imp, A) 7.35 A, current at which maximum power output occurs.

5 Temperature Factors Voc Coefficient (%/°C) -0.36099; defines the variation in Voc (open-circuit voltage) as temperature changes.

Isc Coefficient (%/°C) 0.102; defines the variation in Isc (short-circuit current) as temperature changes.

6 Advanced Features Robust discrete Model On; iterates to resolve algebraic loops during simulations for accurate results.

Measurement filter time constant (s) 5e-5; used for filtering measurement data during simulations.

I-V and P-V Charac-teristics Displayed for individual modules or arrays at 1000 W/m² and specified temperatures.

Table 2.  Details and specifications of solar PV system.
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	i.	� Auto Regression (AR).

Auto Regression (AR) is a data-driven method for predicting time-dependent data like solar irradiance. It relies 
on the idea that a time series data on solar irradiance, is a data-driven approach intricately linked to its past values. 
AR helps us understand patterns and trends by comparing current and past observations at different time steps. 
Its simplicity and adaptability are valuable for short-term solar irradiance prediction, capturing daily, seasonal, 
and weather-related changes, ultimately enhancing the reliability and efficiency of solar-integrated power 
systems. The AR model, typically denoted as AR (p) captures the future value of a time series, solar irradiance 
data Yt, as a linear combination of its past values at different lags (Yt−1, Yt−2, . . . , Yt−p). Mathematically, 
the AR (p)model can be expressed as (Y t = c + φ 1 × Yt−1 + φ 2 × Yt−2 + . . . + φ p × Yt−p + ?t), 
where ”c” represents a constant, ”φ ” denotes the model coefficients, ”p” signifies the order of the model, and 
”ϵt” is a white noise error term.

	ii.	� Auto Regression with Moving Average (ARMA).

The ARMA model combines Autoregressive (AR) and Moving Average (MA) components to forecast solar 
irradiance more accurately. This integration offers a versatile framework for understanding temporal patterns. 
ARMA uses past values and errors to predict future data points in a time series, improving solar irradiance 
predictions and enhancing solar-integrated power system efficiency. Mathematically, the ARMA model can be 
expressed as an ARMA (p, q) model as shown in Eq. (11).

	 (Y t = c + φ 1 × Yt−1 + φ 2 × Yt−2 + . . . + φ p × Yt−p + ?t + θ 1 × ϵt−1 + θ 2 × ϵt−2 + . . . + θ q × ϵt−q � (11)

where, ”Y t” is the solar irradiance at time ”t”, ”c” is a constant, ϵt” represents the white noise error term at 
time ”t, and (φ 1, φ 2, . . . , φ p) are autoregressive coefficients for past values up to lag ”p”. Additionally, 
(θ 1, θ 2, . . . , θ q) represent moving average coefficients for past error terms up to lag ”q”. This equation 

illustrates how ARMA combines past time series values and error terms to forecast future values, making it an 
effective tool for capturing and predicting temporal patterns in the time-series data.

	iii.	� Multi-Layer Perceptron (MLP).

The Multi-Layer Perceptron (MLP) for solar irradiance prediction involves understanding its core operational 
principles. The MLP consists of interconnected layers: an input layer, one or more hidden layers, and an output 
layer, each containing multiple artificial neurons. Input data, including historical irradiance values and weather 
conditions, enters the input layer, undergoes weighting and summation within neurons, and encounters a 
nonlinear activation function (typically sigmoid or ReLU) for introducing nonlinearity. This process repeats 
through the hidden layers, where each layer extracts abstract features from the data. The final output layer 
generates predictions based on learned patterns. The MLP’s strength lies in adapting its internal weight 
parameters during training, minimizing prediction errors, and capturing complex dependencies within solar 
irradiance data. Mathematically, this process can be expressed using Eq.  (12), where Zj  represents neuron 
output j, Xi is the input features, Wij  is the weights, bj  is the bias, and f  is the activation function.

	
Zj = f(

∑
n
i=1Xi × Wij + bj � (12)

Consequently, the training phase involves iteratively adjusting these weights to minimize prediction errors, 
enhancing the MLP’s capacity to capture intricate patterns in solar irradiance data and enabling precise forecasts.

Prediction using Non-Linear autoregressive neural network
In the domain of renewable energy management, the accurate forecasting of solar irradiance is a pivotal endeavor. 
Solar irradiance, the radiant energy received from the sun, directly influences the efficiency and reliability of solar 
energy systems. The inherent complexity of solar irradiance data, marked by nonlinear and dynamic patterns 
shaped by diverse variables like cloud cover, diurnal variations, and seasonal fluctuations, necessitates advanced 
modeling techniques. Within this context, nonlinear autoregressive neural networks (NAR-Nets) emerge as a 
powerful, cutting-edge approach. These networks are meticulously designed to handle the complexities of solar 
irradiance data and uncover the nonlinear relationships. NAR-Nets operate on historical solar irradiance data, 
ingeniously organized in input sequences to furnish the necessary historical context for accurate predictions. 
Mathematically, a NAR-Net commences with the input sequence, as shown in Eq. (13), undergoing a nonlinear 
transformation via a neural network layer. This transformation is pivotal, introducing nonlinearity to the model 
as mathematically represented in Eq. (14), where H (t) represents the hidden state of the network at a given 
time ”t”. The activation function f introduces nonlinearity, while W and b denote the weight matrix and bias 
vector, respectively.

	 X = [x( t − 1), x(t − 2), . . . , x(t − n )]� (13)

	 H (t) = f(W ∗ X + b)� (14)

Subsequently, the forecasted solar irradiance at the next step, x(t + 1), is crafted as a linear combination of the 
hidden state H (t) through an output layer, as shown in Eq. (15), where U signifying the weight matrix for the 
output layer.
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	 x(t + 1) = U ∗ H (t)� (15)

In the context of training NAR-Nets, Bayesian regularization, a statistically grounded technique, is employed to 
optimize internal parameters, notably W  and U , by minimizing a suitable loss function like mean squared error 
(MSE) or mean absolute error (MAE). The model’s performance is rigorously evaluated through validation on an 
independent dataset and testing on unseen time-series data to ensure its ability to generalize to new situations. 
Furthermore, fine-tuning hyper parameters, encompassing different aspects, like the number of hidden layers, 
neuron counts in each layer (10 neurons), and the learning rate, is a critical facet of optimizing NAR-Nets. 
Additionally, a lag window of 2 delays accommodates historical observations in the predictive process, enhancing 
the model’s contextual understanding. Thus, in solar irradiance forecasting, NAR-Nets manifest a remarkable 
capacity to capture complex and non-linear trends, enabling improved management and the utilization of solar 
energy resources. The algorithm for non-linear autoregressive neural is presented in Fig. 1.

However, it is imperative to recognize that NAR-Nets demand substantial historical data and computational 
resources for effective training. This underscores the necessity for judicious application within the renewable 
energy sector, considering the balance between their potential advantages and available resources. These cutting-
edge methods promise a more efficient, reliable, and sustainable future for solar energy management. Thus, 
Fig. 2 shows the block diagram representation for the evaluation of operational reliability using NAR-Net.

Case studies and results
This study aims to implement and validate the operational reliability of a solar-integrated system using the 
IEEE-RTS framework33,34. With 32 generating units and a total installed capacity of 3405 MW, the IEEE RTS can 
handle peak loads of 2457 MW. In the revised configuration, a 350 MW conventional energy source is replaced 
by a 1130 MW solar farm. Each turbine is stationed at bus number 15, which operates at a capacity factor of 0.31. 
Thus, the modified IEEE-RTS encompasses various generator types, i.e., coal/steam, hydro, nuclear, and oil/
steam, alongside their generation capacities.

In Sect. Uncertainty modeling of solar irradiance and prediction model for reliability analysis, MATLAB 
is used to simulate a virtual solar farm. We evaluated the solar power generating data over a two-day period 
thanks to this simulation. The study uses the time series non-linear autoregressive neural network (NAR-Net) 
technique to forecast the irradiance conditions for the next five days based on the historical data. A time series 
of hourly data for four years (2019–2023) from New Hampshire, US, has been utilized in the study. The solar 

Fig. 1.  Algorithm for a non-linear autoregressive neural network for solar irradiance prediction.
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irradiance dataset is split into training (70%) and testing (30%) subsets. It is found that for the training set, MSE 
and R are 2726 and 0.9818, respectively, and for the testing set, “MSE” and “R” are 2888 and 0.9815, respectively. 
The testing subset features a mean solar irradiance of 170.254 Wh/m2 and a variance of 118.0394 Wh/m2. The 
training dataset’s loss function, as shown in Fig.  3, utilizes ten input neurons, and the mean square error is 
evaluated to analyze the model’s behavior.

Hence, it can be observed from Fig. 3 that the model gives the best training performance, i.e., MSE = 2726.8836 
Wh/m2 at 661 epochs. Thus, Fig. 4 shows regression R for training testing, and the overall values are 0.98189, 
0.98154, and 0.98182, respectively. Consequently, as Fig. 4 illustrates, a strong 98% correlation between predicted 
and real solar irradiance has been discovered. Additionally, Fig. 5; Table 3 represent the hourly average predicted 
and actual solar irradiance data for five days with a time-stamp (6 AM to 4 PM). It can be observed that the 
solar irradiance data for actual and predicted values are very close to each other. The predicted data follows the 
trend of the expected solar irradiance pattern. The utilization of the predicted value assists operators in making 
informed decisions to reduce variability in the system.

Three artificial neural network (ANN) techniques were compared, and the results showed that NAR-Net 
performed better than the other two, including the non-linear input-output neural network and the non-linear 
regression neural network. Table  4 illustrates this superior predicted accuracy, with the MSE that NAR-Net 
obtained being 1.21 times lower than that of NAR-Net. NAR-Net significantly outperformed a non-linear 
input-output neural network with 1.88 times lower MSE. Furthermore, NAR-Net provides enhanced regression 
accuracy and computational efficiency compared to existing techniques, making it a favourable choice for the 
problem domain for the evaluation of operational reliability.

As previously mentioned, a predictive model for solar irradiance has been developed using historical 
solar irradiance data. This model forecasts solar irradiance levels up to five days in advance. Both the actual 
and predicted solar irradiance data have been utilized to assess the variability in solar irradiance for power 
generation. This analysis is facilitated through the utilization of a Weibull distribution function. The outcome of 
this analysis is illustrated in Fig. 6, where a Weibull distribution plot is presented.

Following the uncertainty analysis employing the Weibull distribution, the mean and variance data are 
utilized to establish a multi-step model for variable power generation. This comprehensive 14-step modeling 
process is meticulously executed, ensuring the accurate characterization of power states. Thus, Table 5; Fig. 7 
show probability, mid-point value, and power for each of 14-state for both actual and predicted solar data which 
has been utilized in this modeling approach.

Fig. 2.  Block diagram representation for operational reliability evaluation using NAR-Net.
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As a result, Fig. 7and Table 3 and is a valuable resource, offering a comprehensive view of the solar farm’s 
probabilities across a range of distinct solar irradiance values, correlated power levels, and associated probabilities.

During the investigation of the proposed approach for solar integrated system, the reliability indices of the 
IEEE-RTS (Institute of Electrical and Electronics Engineers Reliability Test System) and its modified counterpart 
were scrutinized, employing QPLM techniques. To assess the impact of solar energy on the power system, a 
modified reliability test system was developed by integrating a 1130 MW solar farm into conventional power 

Fig. 4.  Analysis of the correlation between forecasted and real solar irradiance data.

 

Fig. 3.  Training Performance plot of solar irradiance using NAR-Net.
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systems, replacing 350 MW of coal-based energy. In this setup, all six hydro units were considered continuously, as 
they represent renewable energy sources. Additionally, the two nuclear units were always included in generation 
planning, given their lower carbon emissions and compliance with regulatory requirements. To explore various 
generator combinations, the remaining 24 generators (out of 32) were grouped using the power set technique, 
and these combinations were analyzed via linear programming. A power generation constraint of 3350 MW 
was set, based on a maximum load demand of 2850 MW and the highest capacity generating unit of 1130 MW. 
Consequently, the 1130 MW was considered as reserve from a reliability perspective. Combinations where the 
generation capacity fell below 3700 MW were excluded. In the end, 101 viable combinations remained. The 
optimal combination for minimizing interrupted energy costs and expected energy not supplied was identified 
by replacing a 350 MW conventional generator, leading to a more efficient generation plan with the integration 
of solar energy. As a result, maximum demand was met with reduced energy losses. A comparative analysis for 
reliability indices under varying load conditions is presented in Table 6. These indices, which hold paramount 
significance in power system performance evaluation with a particular emphasis on reliability and resilience, 
reveal noteworthy trends. A reliability indices for three load scenarios have been evaluated i.e., 80%, 100%, and 

Sl. No. Methodologies Neurons MSE Regression (R) Computational time (seconds)

1. MLP 10 3217.746 0.57725 25.2

2. Auto Regression NA 3377.397 0.88963 23.5

3. Auto Regression with Moving Average NA 2958.685 0.91963 21.4

4. NAR-ANN 10 2726.883 0.9818 18.6

Table 4.  Comparison of the proposed method with the counterpart method.

 

No. of Procured 
Data

Time (hh: 
mm: ss)

True Solar Irradiance 
(Wh/m^2)

Predicted Solar 
Irradiance (Wh/m^2)

No. of Procured 
Data

Time (hh: 
mm: ss)

True Solar Irradiance 
(Wh/m^2)

Predicted 
Solar 
Irradiance 
(Wh/
m^2)

1 0:0:00 9.42 9.89 ……… ……… ……… ………

2 1:00:00 11.26 11.95 45 43:00:00 6.75 6.85

3 2:00:00 11.43 11.32 46 44:00:00 6.39 6.27

4 3:00:00 11.51 11.5135 47 45:00:00 7.5 8.04

5 4:00:00 11.69 11.75 48 46:00:00 6.29 5.67

6 5:00:00 11.6 11.47 49 47:00:00 5.63 5.17

… ……… …. ……… 50 49:09:00 6.15 6.50

Table 3.  True and predicted hourly solar irradiance and corresponding solar irradiance with a time-stamp for 
five days.

 

Fig. 5.  Time series forecasting using ANN.
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120%. Under an 80% load variation, the predicted expected energy not supplied (EENS) and loss of load probability 
(LOLP) exhibit a subtle conservatism, as the predicted values are marginally higher than the actual readings. 
This suggests a prudent approach to reliability estimation, ensuring preparedness for potential uncertainties. 
Moving to full load conditions (100%), this inclination towards conservatism persists, with predicted EENS and 
LOLP values exceeding actual levels. This consistency underscores the cautious stance adopted in the prediction 
of reliability indices. Similarly, when confronted with a 120% load variation, the predicted EENS and LOLP 
values maintain their slightly conservative pattern, surpassing the actual data. These observations reinforce 
the overarching trend of prudence in estimating reliability indices across various load conditions, reflecting a 
commitment to ensuring system reliability and resilience in the face of potential challenges.

Table 7 compares the proposed and existing methods in terms of the expected energy not served (EENS) 
(MWh/day). The proposed method demonstrates a significant improvement over the existing methods, with 
percentage improvements of 14.03%, 17.54%, and 13.01% compared to the Analytical Method, Monte Carlo 
Simulation, and Crude Monte Carlo Simulation, respectively. Additionally, for the NARX-ANN and Non-linear 

Steps
Probability for Actual Solar Irradiance 
(SR) Actual Mid-point for SR (Wh/m^2)

Probability for Predicted Solar 
Irradiance (SR)

Predicted 
Mid-
point for 
SR (Wh/
m^2)

State 1 0.06 25.2942 0.12 31.0067

State 2 0.1 75.8825 0.1 93.0202

State 3 0.08 126.4708 0.12 155.0337

State 4 0.04 177.0591 0.02 217.0472

State 5 0.08 227.6475 0.1 279.0607

State 6 0.08 278.2358 0.06 341.0742

State 7 0 328.8241 0.14 403.0877

State 8 0.2 379.4124 0.24 465.1012

State 9 0.04 430.0008 0.08 527.1147

State 10 0.28 480.5891 0.02 589.1282

State 11 0.04 531.1774 0 651.1417

State 12 0 581.7657 0 713.1552

State 13 0 632.3541 0 775.1687

State 14 0 682.9424 0 837.1822

Table 5.  Probability and its corresponding solar irradiance mid-point for 14-step model.

 

Fig. 6.  Weibull distribution function for predicted solar irradiance.
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input-output ANN methods, the proposed NAR_ANN shows a percentage improvement of 1.48% and 40.29% 
over the existing methods. These results highlight the effectiveness of the proposed methods in reducing the 
expected energy not served when compared to existing approaches.

Thus, from the above study it has been found that accurate prediction of solar irradiance is crucial for 
enhancing the reliability of power systems incorporate solar energy. By forecasting solar irradiance two days in 
advance using a Nonlinear Autoregressive Network (NAR-Net), operators can anticipate variations in solar power 
generation, which directly depends on irradiance levels. This foresight enables the assessment of operational 
reliability for the current day and projections for the subsequent two days, facilitating informed decision-making 
and optimized generation planning. Consequently, operators can implement proactive measures to maintain 
grid stability, allocate resources efficiently, and ensure a consistent power supply, thereby improving the overall 
reliability of the power system.

Conclusion
The transition to sustainable, renewable energy sources, particularly solar power, is pivotal in mitigating climate 
change and securing a dependable future energy supply. This study addresses key challenges in solar irradiance 
variability, operational reliability, and computational efficiency for integrated systems. A simplified reliability 
evaluation approach, utilizing multi-state modeling, has been proposed and validated using the IEEE RTS 

Methods Results

Existing Methods Proposed Method Existing Proposed
Percentage 
Improvement

Expected Energy Not Served 
(EENS) (MWh/day)

Analytical Method, Monte Carlo 
Simulation, Crude Monte Carlo 
Simulation

QPLM using FFT 1.078 1.1109, 1.0681 
(MWh/day) 0.9451 (MWh/day)

14.03%, 
17.54%, 
13.01%

NARX-ANN, Non-linear input 
output-ANN NAR_ANN Regression: 0.967, 0.586 Regression: 0.98154 1.48%, 

40.29%

Table 7.  Comparison of proposed method with the existing method.

 

Load Variation (%) Solar farm capacity (MW) Solar penetration percentage Reliability Indices Actual Reliability Indices Projected Reliability Indices

80%
950 27.9 EENS 0.75608 0.79192

950 27.9 LOLP 0.0001488 0.0001584

100%
950 27.9 EENS 0.9451 0.9899

950 27.9 LOLP 1.86E-04 1.98E-04

120%
950 27.9 EENS 1.13412 1.18788

950 27.9 LOLP 0.0002232 0.0002376

Table 6.  The indices for the projected operational reliability of the proposed solar system under 80%, 100% 
and 120% loading.

 

Fig. 7.  14-step power states model for actual and predicted solar irradiance.
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96 test system, demonstrating its scalability and reduced computational complexity compared to traditional 
convolution-based methods. An extended probabilistic framework for modeling solar power fluctuations due 
to intermittency was developed, accurately capturing and quantifying variations in solar irradiance and power 
generation. Additionally, a non-linear auto-regressive neural network (NAR-Net) was employed for two-day-
ahead solar irradiance and power generation forecasting. The proposed model achieved an accuracy of 98%, 
outperforming traditional methods such as AR, ARMA, and MLP in terms of predictive accuracy, correlation, 
and computational efficiency. The comparative validation of the NAR-Net highlights its effectiveness in 
facilitating proactive energy management and operational reliability projection. The integration of the multi-
state reliability model and the extended probabilistic framework enabled accurate reliability assessment and 
operational planning for solar-integrated systems, bridging the gap between theoretical predictions and practical 
energy grid management. The incorporation of uncertainty modeling with the forecasting approach is found 
to be relevant for enhancing the operational reliability of solar integrated systems. Hence, the analysis of the 
proposed work gives valuable guidance for the adoption of solar power and other renewable energy sources, 
ensuring a sustainable and dependable future.

Future work
This study has certain limitations, particularly in modeling solar power generation, as rapid fluctuations in solar 
irradiance were not considered, and the impact of these fluctuations on the prediction model was not addressed. 
Additionally, transmission losses were excluded in the IEEE RTS-96 system due to the absence of load flow 
analysis. These aspects present important areas for future work, where the incorporation of rapid irradiance 
fluctuations and transmission losses could improve the accuracy and reliability of solar power generation 
models. Exploring these factors will further enhance the understanding of dynamic changes in solar power 
predictions and system performance.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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