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Abstract: This article employs fuzzy derivatives and fuzzy differential equations (FDEs) to handle 

uncertainty in real-world applications. When exact answers are unavailable, numerical approaches are 

utilized to derive approximations for FDE. The autonomous two-step block method (TBM) with two 

higher fuzzy derivatives is used to discover optimum solutions to first-order FDEs with greater 

absolute accuracy. The technique competency is evaluated by analyzing first-order real-world models 

with fuzzy initial value problems (FIVPs). Using fuzzy calculus principles, we establish a novel 

universal fuzzification formulation of the TBM approach with the Taylor series. TBM is a convergent, 

zero-stable, and absolute stability region approach for solving linear and nonlinear fuzzy models, with 

a focus on regulating the convergence of approximate solutions. The developed method offers 

approximations for difficulties encountered in real life and is a transformational and workable method 

for solving first-order FIVPs. 
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1. Introduction  

Differential equations (DEs) are used in various fields like physics, computer science, engineering, 
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biology, economics, finance, chemistry, environmental science, medicine, and control systems to 

express the relationship between a quantity and its rate of change. Uncertain behavior in DEs refers to 

situations where minor adjustments can lead to radically different outcomes, often associated with 

chaotic behavior. Chaotic behavior is observed in physical, biological, and ecological systems, 

requiring sophisticated mathematical methods and numerical simulations. 

DEs are useful for describing real-life problems, but unexpected conditions can create uncertainty. 

Fuzzy derivatives and fuzzy differential equations (FDEs) are used to address these challenges. This 

chapter covers real-world issues like temperature systems, SIR models, and liquid tank systems. The 

models exhibit fuzzy shapes and uncertain behavior, and the built block techniques numerically solve them. 

In 1972, Zadeh and Chang [9] introduced fuzzy derivatives, with the Hukuhara derivative, 

Seikkala derivative, and generalized derivative being the main definitions. Puri and Ralescu [32], 

Seikkala [38], and Bede and Gal [8], respectively, further developed these derivatives. FDEs are 

challenging to solve accurately, so numerical approaches are used. Researchers use the crisp function 

of ordinary differential equations (ODEs) with parametric fuzzy numbers as an initial condition, 

focusing on lower and upper bounds. The basic fuzzy definitions, suggestions, and notions, including 

fuzzy sets, functions, operations, derivatives, and Zadeh extension theory, can be easily retrieved from 

the literature, e.g., Hashim et al. [11], Rajkumar and Rubanraj [34], Keshavarz et al. [24], and 

Babakordi and Allahviranloo [7]. 

Ma et al. [25] provided numerical solutions to first-order FDEs with FIVPs using the Euler 

technique. Later, researchers such as Shokri [40], Jayakumar and Kanakarajan [22], Smita and 

Chakraverty [41], and Najafi et al. [28] investigated alterations to the traditional Euler technique. They 

used triangular and trapezoidal fuzzy numbers to solve first-order linear and nonlinear FIVPs, 

comparing their accuracy in terms of error. Sevindir and Cetinkaya [39] and Ahmady et al. [5] used 

the standard Euler technique, the homotopy analysis method (HAM), and the Adomian decomposition 

approach. The Euler approach has advantages like simplicity and suitability for FIVPs, but presents 

drawbacks like lower accuracy and approximation error. 

The predictor-corrector approach is a family of techniques used for first-order FDEs. It was 

developed by Allahviranloo et al. [6], Prakash and Kalaiselvi [31], and Salih [37] to improve numerical 

solutions of FIVPs. However, these approaches still have low absolute error accuracy. Ivaz et al. [17] 

proposed using fuzzy triangular numbers as initial conditions for the crisp ODE in the trapezoidal 

technique for the numerical solution of FIVPs. Ahmad et al. [3] and Maghool et al. [26] employed the 

Simpson method for further investigation. 

The Runge-Kutta (RK) approach was first developed by [1] for numerically solving FDEs. The 

third-order RK method was developed by Kanagarajan and Sambath [23]. Jameel et al. [21] developed 

the fifth-order RK approach for first-order linear FIVPs. Parandin [30] and Nirmala [29] developed a 

second-order RK technique using trapezoidal fuzzy starting conditions for FDEs. Ahmadian et al. [4] 

created the fourth-order RK approach for first-order linear FIVPs. However, the RK method is 

generally unsuitable for solving stiff equations due to increasing iteration steps [19]. 

The block technique, first developed by Mehrkanoon et al. [27], is a method used for numerically 

solving first-order Fourier transforms (FDEs) with Fourier transforms of the polynomial (FIVPs). It 

was later used by Zawawi [43] in the predictor-corrector mode, completing two stages simultaneously. 

Ramli and Majid [35] introduced the implicit multistep block technique, which was used exclusively 

for linear FDEs. Fook and Ibrahim [10] developed the two-points hybrid block technique, which used 

the Seikkala differentiable idea for linear FDEs. Ramli and Majid [36] developed the fourth-order 

implicit diagonally multistep block approach, which was used for linear and nonlinear FIVPs. Isa et al. [16] 

presented a diagonally implicit multistep block technique of order four. The use of the approach as 
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non-self-starting is the main flaw in the emphasized research.  

In general, a variety of numerical techniques have been created to use FIVPs to solve first-order 

FDEs [42]. But there remain gaps in the solution, including self-starting problems and accuracy in 

terms of absolute error for first-order FDEs.  

This study presents a TBM with fuzzy derivatives for first-order FIVPs in order to overcome the 

shortcomings of the previously stated numerical techniques (low solution accuracy in terms of absolute 

error). The convergence properties of the proposed approach, such as consistency and zero-stability, 

are also examined. The developed method is then used with numerical examples where the initial 

conditions are defined as fuzzy triangular and trapezoidal number. The improved accuracy in terms of 

absolute error is provided in the numerical results section. 

This article provides a structured overview of fuzzy set theory, deriving the TSBM with second 

and third fuzzy derivatives, highlighting the proposed technique’s basic properties, and considering 

linear and nonlinear numerical examples.  

This article is organized as follows: The Taylor series technique for developing the TBM is 

provided in Section 2. Section 3 accounts for the presence of the second and third fuzzy H derivatives, 

focusing on the key features of the block technique. Section 4 analyses certain numerical problems. 

Section 5 concludes and summarizes this study. 

2. Fuzzifications of FIVP with TBM 

An ODE system can be used to depict the dynamics of real-world situations in a mathematical 

model. However, an ODE system cannot be utilized as a credible model because of the unexpected 

behavior of models, which might lead to uncertainty. FDEs are utilized to manage these circumstances [21]. 

Consider the first-order FIVP written as 

𝐷𝐹̃(𝜂) = 𝛺̃(𝜂, 𝐹̃(𝜂)), 𝐹̃(𝜂0) = 𝑓0,       (1) 

Where 𝛺̃ and 𝐹̃ are a fuzzy function of the crisp variable 𝜂, 𝐷𝐹̃(𝜂) is an H-derivative of 𝛺̃(𝜂), 

and 𝐹̃(𝜂0) is a fuzzy initial value that is equal to the fuzzy number 𝑓0. Thus, the fuzzy function 𝐹̃ 

is denoted as 

[𝐹̃(𝜂)] = [𝐹̱̃(𝜂, 𝛼), 𝐹̄̃(𝜂, 𝛼)]𝛼̱
𝛼̄ , 𝛼 ∈ [0,1],       (2) 

and the 𝛼-cuts of 𝐹̃(𝜂) is denoted as 

{
[𝐹̃(𝜂)] = [𝐹̱̃(𝜂, 𝛼), 𝐹̄̃(𝜂, 𝛼)]𝛼̱

𝛼̄

[𝐹̃(𝜂0)] = [𝐹̱̃̃(𝜂0, 𝛼), 𝐹̄̃(𝜂0, 𝛼)]𝛼̱
𝛼̄

.        (3) 

Given that the first-order FIVP of the form defined in Eq (1) is a mapping 𝛺̃: ℝ𝛺̃ → ℝ𝛺̃ and 𝐹̃0 ∈ ℝ𝛺̃ 

with an α-level set in Eqs (2) and (3), at which point ℎ =
𝑡−𝑡0

𝑁
, 𝑡𝑛 = 𝑡0 + 𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑁.  

The expression to develop a second and third fuzzy derivative TBM method for first-order FIVPs using 

the Taylor Series block approach is obtained as 

2

0

( , ) ( , ) ( ( , ) ( , ) ( , )) , 1,2n k n ik n i ik n i ik n i

i

F F k





              + + + +

=

 
= +  + + = 

 
 .  (4) 

Where 𝜁𝑖𝑘, 𝜙𝑖𝑘, and 𝜓𝑖𝑘 are the coefficients of the first, second, and third derivatives, respectively. 

Expanding Eq (4) leads to the expression in Eq (5) 
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.  (5) 

Expanding the individual term in Eq (5) by applying a Taylor series expansion in fuzzy form as 

( ) ( ) ( ) ( )( , ) , ( , ) , ( , ) , ( , )n n n n n n n nF F F F F
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Put these above values in Eq (5) and we obtain the expression below as 
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obtained using the matrix inverse method, and the result is given below: 
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Substituting these values in Eq (5) gives the TBM with second-third derivatives as 
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 (6) 

Following Hussain [13], the correctors of the block method in Eq (6) take the form 

(𝐴0𝐹̃𝑛+1 = 𝐴1𝐹̃𝑛−1 + ℎ(𝐶0𝛺̃𝑛−1 + 𝐶1𝛺̃𝑛+1) + ℎ
2(𝐷0𝜆̃𝑛−1 + 𝐷1𝜆̃𝑛+1) + ℎ

3(𝐸0𝛿𝑛−1 + 𝐸1𝛿𝑛+1))

 (7) 
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. 

Fuzzification is the method of converting a crisp quantity into a fuzzy quantity, and the inverse process 

is known as defuzzification. For defuzzification of first-order FIVPs, Eq (1) is written as 

[𝐹̃(𝜂, 𝛺̃)] = [𝐹̱̃(𝜂, 𝛺̱̃; 𝛼), 𝐹̄̃(𝜂, 𝛺̄̃; 𝛼)], 𝜂 ∈ 𝑇, 𝛼 ∈ [0,1].     (8) 

Here, 

{𝐹̱̃(𝜂, 𝛺̱̃; 𝛼), = 𝐹[𝜂, 𝛺̱̃(𝜂), 𝛺̄̃(𝜂)], 𝐹̄̃(𝜂, 𝛺̄̃; 𝛼) = 𝐺[𝜂, 𝛺̱̃(𝜂), 𝛺̄̃(𝜂)].   (9) 

Since 𝐷𝛺̃(𝜂) = 𝜂̃(𝜂, 𝛺̃(𝜂))  is a fuzzy function, and 𝐹, 𝐺  are nonlinear operators with the 

membership degree of 𝐹[𝜂, 𝛺̱̃(𝜂), 𝛺̄̃(𝜂)] and 𝐺[𝜂, 𝛺̱̃(𝜂), 𝛺̄̃(𝜂)] defined as 

{
𝐹̱̃(𝜂, 𝛺̱̃; 𝛼) = 𝑚𝑖𝑛{𝛺̃(𝜂, 𝜇(𝜂))|𝜇(𝜂) ∈ 𝐷𝐹̃(𝜂, 𝛺̱̃(𝜂, 𝛼))}

𝐹̄̃(𝜂, 𝛺̄̃; 𝛼) = 𝑚𝑎𝑥{𝛺̃(𝜂, 𝜇(𝜂))|𝜇(𝜂) ∈ 𝐷𝐹̃(𝜂, 𝛺̄̃(𝜂, 𝛼))}
    (10) 

and 

{
𝐹̱̃(𝜂, 𝛺̱̃; 𝛼) = 𝐹(𝜂, 𝛺̱̃(𝜂, 𝛼), 𝛺̄̃(𝜂, 𝛼)) = 𝐹(𝜂, 𝛺̃(𝜂, 𝛼))

𝐹̄̃(𝜂, 𝛺̄̃; 𝛼) = 𝐺(𝜂, 𝛺̱̃(𝜂, 𝛼), 𝛺̄̃(𝜂, 𝛼)) = 𝐺(𝜂, 𝛺̃(𝜂, 𝛼)).
     (11) 

3. Theoretical properties of the TBM  

The following properties of the developed TBM are discussed in this section: order, zero-stability, 

consistency, and region of absolute stability.  

Order of the TBM: Following the steps in Hussain [14], to expand individual terms of the obtained 

TBM in Eq (6) using a Taylor series expression gives 
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Equating the coefficients of ℎ
𝑛𝐹̃(𝑛)(𝜂𝑛, 𝛼) in Eqs (12) and (13), the order of the method is computed as  
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Thus, the order of the TBM is 𝑞 = 9 with error constant values 𝐶10 = (6.8893𝑒 − 08,−7.6349𝑒 −
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09)𝑇 and principal LTE 𝐶7ℎ
(10)𝐹̃(10)(𝜂𝑛, 𝛼). 

Consistency: Since the order of the TBM 𝑞 = 9 > 1, following [15], the TBM is consistent. 

Zero-stability and convergence: Following Hussain [15] to test the TBM for zero-stability, the 

corrector of the method is normalized according to Eq (7) to give the first characteristic polynomial 

𝑃(𝜙) as 

0 1 2

2

0 1 0 0 1
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= − = − = − = =      

      
 

which is a simple root. So, the TBM is zero-stable. 

Likewise, since the TBM is consistent and zero-stable, the developed method is convergent. 

Region of absolute stability: Following [13], the stability polynomial for the TBM takes the form 
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 (14) 

The region of absolute stability of Eq (14) is plotted using the boundary locus approach, as shown in 

Figure 1.  

 

Figure 1. Interval of the absolute stability region of TBM. 

Figure 1 demonstrates the interval of the stability region; also, all polynomial roots for the 

absolute stability region are located on the unit circle, which indicates that the large step-size h value 

selected can be used for the TBM. 
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4. Results 

Implementation of the TBM for different models: The TBM is implemented by acquiring the 

derivatives of the supplied first-order FIVPs from numerical problems and then transforming the 

parameters into the α-level parametric form of fuzzy numbers. After that, the conditions 𝜂𝑛, 𝑛 =

0,1, . . . , 𝑁  produce two solutions 𝐹̃(𝜂𝑛, 𝛼) = (𝐹̱̃(𝜂𝑛, 𝛼), 𝐹̄̃(𝜂𝑛, 𝛼)) , known as lower and upper 

solutions, respectively. To test the accuracy of the TBM developed above, the following first-order 

real-life models are considered. 

4.1. Model 1: Logistic growth model [18] 

The differential equation with fuzzy form is as follows: 

𝐷𝐹̃(𝜂, 𝛼) = 𝑟 ∗ 𝐹̃(𝜂, 𝛼)(𝑀 − 𝐹̃(𝜂, 𝛼)).      (15) 

With second-third derivatives  

𝐷′𝐹̃(𝜂, 𝛼) = 𝑟 ∗ 𝐹̃′(𝜂, 𝛼)(𝑀 − 𝐹̃(𝜂, 𝛼)) + 𝑟 ∗ 𝐹̃(𝜂, 𝛼)(𝑀 − 𝐹̃′(𝜂, 𝛼)), and 

𝐷″𝐹̃(𝜂, 𝛼) = 𝑟 ∗ 𝐹̃″(𝜂, 𝛼)(𝑀 − 𝐹̃(𝜂, 𝛼)) + 𝑟 ∗ 𝐹̃(𝜂, 𝛼)(𝑀 − 𝐹̃′(𝜂, 𝛼)) + 𝑟 ∗ 𝐹̃′(𝜂, 𝛼)(𝑀 − 𝐹̃′(𝜂, 𝛼) 

+𝑟 ∗ 𝐹̃(𝜂, 𝛼)(𝑀 − 𝐹̃″(𝜂, 𝛼))  

with positive growth constant 𝑟 and carrying capacity 𝑀 models’ logistic growth of a quantity 𝐹̃ at 

time 𝜂 with solution  

𝐹̃(𝜂, 𝛼) =
𝑀

1+𝐴𝑒−𝑀𝑟𝜂 where 𝐴 =
𝑀−𝐹̃0(𝜂,𝛼)

𝐹̃0(𝜂,𝛼)
, at 𝜂 = 0. 

The initial condition is fuzzy carrying capacity 𝑀 = (500,1000,1500) with positive growth constant 

0.002r = , 𝐹̃0(𝜂, 𝛼) = 1, and 0.1h = . The TBM is used to the approximate solution of Eq (15) and 

compared with the exact solution. The solution’s accuracy in terms of absolute error with lower and 

upper bounds is presented in Table 1 at 𝜂 = 8. 

Table 1. Comparison of the TBM with the exact solution for solving Model 1. 

α TBM lower 

approximate solution 

TBM 

absolute error 

TBM upper 

approximate solution 

TBM 

absolute error 

0 1.499999915116105e+03  0 4.283037321343937e+02 0 

0.2 1.399999633773942e+03 0 5.766073216762441e+02 0 

0.4 1.299998436035981e+03 0 6.933725626545569e+02 0 

0.6 1.199993399999203e+03 0 7.982391982493232e+02 0 

0.8 1.099972533921815e+03 0 8.995492413246657e+02 0 

1 9.998875899978846e+02 0 9.998875899978846e+02 0 

The TBM produced in this work has enhanced accuracy in terms of absolute error, as shown in 

Table 1. The developed TBM’s three-dimensional solution for Model 1 is displayed in Figure 2. The 

approximate solutions, computed using the TBM, are displayed in Figures 3 and 4, with a comparison 

with the exact solution to illustrate the uncertain behavior of the logistic growth model for various 

values of α. The model in Eq (15) has a solution (membership values with α cuts) that grows with the 

lower bound and decreases with the upper bound, as seen in Figures 3 and 4. Furthermore, a time range 

was used as the initial condition of the model by using the triangular fuzzy number. This provides 
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further details on the model’s approximate solution over the initial condition. 

 

Figure 2. 3-Dimensional surface graph solution via the developed TBM for Model 1. 

 

Figure 3. Uncertainty of Model 1 with α-cuts using TBM and a comparison with the exact solution. 

 

Figure 4. Uncertainty of Model 1 with α-cuts using TBM and a comparison with the exact solution. 
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4.2. Model 2: Thermal system [18] 

Figure 5 shows a tank with a heating system.  

 

Figure 5. Thermal system. 

Assume 𝑅 = 0.5 is the flow obstruction, 𝐶 = 2 is the thermal capacitance, and the temperature at 

time 𝜂 is 𝐹̃(𝜂, 𝛼). The model is 

𝐷𝐹̃(𝜂, 𝛼) = −
1

𝑅𝐶
𝐹̃(𝜂, 𝛼).         (16) 

With second-third derivatives 

𝐷′𝐹̃(𝜂, 𝛼) = −
1

𝑅𝐶
𝐷𝐹̃(𝜂, 𝛼) and 𝐷″𝐹̃(𝜂, 𝛼) = −

1

𝑅𝐶
𝐷′𝐹̃(𝜂, 𝛼) 

with the initial condition 𝐹̃(0, 𝛼) = (𝛼 − 1,1 − 𝛼), 𝛼 ∈ [0,1] , and the exact solution of Eq (16) is 

𝐹̃(𝜂, 𝛼) = (𝛼 − 1,1 − 𝛼)𝑒−𝜂 with 𝜂 ∈ [0,4]. The TBM is used to approximate the solution of Eq (20) 

and is compared with the SNN and DNN methods in Jafari et al. (2017). The solution’s accuracy in 

terms of absolute error with lower and upper bounds is presented in Table 2 at 𝜂 = 1 and 0.1h = . 

Table 2. Comparison of the TBM with Jafari et al. (2017) for solving Model 2. 

α TBM lower 

approximate solution 

SNN 

absolute error 

DNN 

absolute error 

TBM absolute 

error 

0 -367.879441171442e-03  4.0700e-02 1.8400e-02 0 

0.2 -294.30355293715e-03  3.5100e-02 2.5100e-02 0 

0.4 -220.72766470286e-03  3.3400e-02 1.1100e-02 0 

0.6 -147.15177646857e-03  2.8200e-02 1.0400e-02 0 

0.8 -73.575888234288e-03  2.5300e-02 1.0200e-02 0 

1 0 3.2300e-02 1.1200e-02 0 

α TBM upper 

approximate solution 

SNN 

absolute error 

DNN 

absolute error 

TBM absolute 

error 

0 367.8794411714420e-03  6.0400e-02 3.1700e-02 2.2304e-17 

0.2 294.303552937153e-03 5.7800e-02 1.0500e-02 0 

0.4 220.7276647028653e-03 5.2300e-02 2.8400e-02 0 

0.6 14.71517764685769e-03 4.1700e-02 3.0100e-02 0 

0.8 73.57588823428849e-03 5.0100e-02 3.1300e-02 0 

1 0 3.2300e-02 1.1200e-02 0 
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Table 2 shows the improved accuracy of the developed TBM in terms of absolute error. Figure 6 

shows the 3-dimensional solution via the developed TBM for model 2. Figures 7 and 8 display the 

computed approximate solutions using the TBM to show the uncertain behavior of the tank thermal 

system with time interval [0,4] and different values of α. According to Figures 7 and 8, the solution 

(membership values with α-cuts) of the thermal system model in Eq (16) increases with the lower 

bound and decreases with the upper bound. In addition, the use of the triangular fuzzy number for the 

initial condition of the thermal system model was a time range of [-1,1]. This provides more 

information for the approximate solution of Model 2 than the initial condition. 

 

Figure 6. 3-dimensional surface graph solution via the developed TBM for Model 2. 

 

Figure 7. Uncertainty of Model 2 with α-cuts using TBM and a comparison with the exact solution. 
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Figure 8. Uncertainty of Model 2 with α-cuts using TBM and a comparison with the exact solution. 

4.3. Model 3: SIR model [2] 

The potential number of individuals infected with an infectious disease over time in a closed 

community is calculated using the SIR model, an epidemiological model. These equations link the 

numbers of susceptible individuals 𝑆(𝜂), infected individuals𝐼(𝜂), and recovered individuals 𝑅(𝜂), 

justifying the moniker of this class of models. For several infectious illnesses, such as measles, mumps, 

and rubella, this is an effective and basic approach. It is given by the following three coupled equations: 

[
 
 
 
 
𝑑𝑆

𝑑𝑡
= 𝜇(1 − 𝑆) − 𝛽𝐼𝑆

𝑑𝐼

𝑑𝑡
= 𝜇𝐼 − 𝛾𝐼 + 𝛽𝐼𝑆

𝑑𝑅

𝑑𝑡
= −𝜇𝑅 + 𝛾𝐼

         (17) 

where 𝜇, 𝛽, and 𝛾 are positive parameters. Define 𝐹 to be 

𝐹 = 𝐼 + 𝑆 + 𝑅            (18) 

the evolution equation following for 𝐹 

𝐹′ = 𝜇(1 − 𝐹).           (19) 

Taking 𝜇 = 0.5 for an initial condition (for a particular closed population). To consider uncertainty 

and hesitation, 𝑓0  is a triangular intuitionistic fuzzy number. Let 𝜇 = 0.5  and 𝜂 ∈ [0,1] , 𝑓0 =

(0,0.5,1). Then Eq (18) in fuzzy form is as follows: 

𝐹̃′ = 𝜇(1 − 𝐹̃).           (20) 

The exact solution of Eq (20) is 𝐹̃(𝜂, 𝛼) = (1 − 0.5𝛼, 1 − (1 − 0.5𝛼))𝑒−0.5𝜂 , 𝛼 ∈ [0,1]. The TBM 

is used to approximate the solution to Eq (20). The solution of this SIR model as a FIVP is compared 

with Adeyeye and Omar (2016) at α=1, where the two-step implicit Obrechkoff-type block method 

(2SBM) solved this model in crisp form. The solution’s accuracy in terms of absolute error with lower 

and upper bounds is presented in Table 4 at 𝜂 = 1 and 0.1h = . 
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Table 4. Comparison of the TBM with Adeyeye and Omar (2016) for solving Model 3. 

α TBM lower 

approximate 

solution 

2SBM 

absolute 

error 

TBM 

absolute 

error 

TBM upper 

approximate 

solution  

2SBM  

absolute error 

TBM 

absolute 

error 

0 1 N/A 0 393.469340e-03 N/A 0 

0.2 939.34693402e-03 N/A 0 454.122406e-03 N/A 0 

0.4 878.69386805e-03 N/A 0 514.775472e-03 N/A 0 

0.6 818.04080208e-03 N/A 0 575.428538e-03 N/A 0 

0.8 757.38773615e-03 N/A 0 636.081604e-03 N/A 0 

1 696.73467014e-03 2.520e-13 0 696.734670e-03 2.5e-13 0 

Table 4 shows the improved accuracy of the developed TBM in terms of absolute error. Figure 9 

shows the 3-dimensional solution via the developed TBM for Model 3. Figures 10 and 11 display 

the computed approximate solutions using the TBM to show the uncertain behavior of the Model 3 

with time interval [0,10] and different values of 𝛼 ∈ [0,1]. According to Figures 10 and 11, the solution 

(membership values with α-cuts) of the thermal system model in Eq (20) decreases with the lower bound 

and increases with the upper bound. In addition, the use of the triangular fuzzy number for the initial 

condition of the thermal system model with a range of decreases was observed for time. This provides 

more information for the approximate solution of the model over the initial condition. 

 

Figure 9. 3-dimensional surface graph solution via the developed TBM for Model 3. 
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Figure 10. Uncertainty of Model 3 with α-cuts using TBM and a comparison with the exact solution. 

 

Figure 11. Uncertainty of Model 3 with α-cuts using TBM and a comparison with the exact solution. 

4.4. Model 4. Charging and discharging capacitor [12] 

Consider the following crisp capacitor model in Hohenauer, (2018) in fuzzy form  

𝐷(𝑈̃𝑐(𝜂, 𝛼)) = −
1

𝑅𝐶
𝑈̃𝑐(𝜂, 𝛼) +

1

𝑅𝐶
𝑈̃𝐺(𝜂, 𝛼),      (21) 

with exact solution 

𝑈̃𝑐(𝜂, 𝛼) = 𝐾. 𝑒−∫
𝑑𝜂

𝑅𝐶 + [∫(
𝑈̃𝐺(𝜂,𝛼)

𝑅𝐶
. 𝑒−∫

𝑑𝜂

𝑅𝐶)𝑑𝑡] . 𝑒−∫
𝑑𝜂

𝑅𝐶,    (22) 

charging of the capacitor for the fuzzy initial condition  

𝑈̃𝐶(0, 𝛼) = 𝑈̃𝐵. [1 − 𝑒
𝜂

𝑅𝐶]          (23) 
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while the fuzzy initial condition discharging of the capacitor 

𝑈̃𝐶(0, 𝛼) = 𝑈̃𝑐,0. 𝑒
𝜂

𝑅𝐶.           (24) 

Charging of a capacitor 

The solutions are presented at 𝜂 = 4𝑠, with the triangle fuzzy number. Table 5 displays the accuracy 

of the bottom and upper solutions for charging a capacitor in a DC state. The resulting graphs, with 

battery voltage set to 12𝑉, 𝐶 = 0.25𝐹, 𝑈𝑐(0) = 0, and resistance with triangular fuzzy number 𝑅 =
(2 + 𝛼, 4 − 𝛼), 𝛼 = [0,1], are displayed in Figures 13 and 14. 

Discharging of a capacitor 

The solutions are presented at 𝜂 = 4𝑠, with the triangle fuzzy number. Table 6 displays the accuracy 

of the bottom and upper solutions for discharging a capacitor in a DC state. The resulting graphs, with 

battery voltage set to 12𝑉, 𝐶 = 0.25𝐹, 𝑈𝑐(0) = 12𝑉, and resistance with triangular fuzzy number 

𝑅 = (2 + 𝛼, 4 − 𝛼), 𝛼 = [0,1], are displayed in Figures 16 and 17. 

Table 5. Comparison of the TBM with the exact solution for solving the charging of a 

capacitor in Model 4. 

α TBM lower 

approximate solution 

TBM 

absolute error 

TBM upper 

approximate solution 

TBM 

absolute error 

0 11.995974448465169 0 11.780212333335189 0 

0.2 11.991669406884018 0 11.821937321808754 0 

0.4 11.984728394383922 0 11.859076458515744 0 

0.6 11.974496498029186 0 11.905917027388661 0 

0.8 11.960417930928731 0 11.931188450176629 0 

1 11.942064600074023 0 11.942064600074023 0 

Table 6. Comparison of the TBM with the exact solution for solving the discharging of a 

capacitor in Model 4.  

α TBM lower 

approximate solution 

TBM absolute 

error 

TBM upper 

approximate solution 

TBM 

absolute error 

0 0.0040255515348301 4.33680e-18 0.2197876666648101 8.32667e-17 

0.2 0.0083305931159827 7.80626e-18 0.1780626781912458 8.32667e-17 

0.4 0.0152716056160777 8.67317e-18 0.1409235414842563 1.94289e-16 

0.6 0.0255035019708145 1.73723e-18 0.1085031902559575 2.22044e-16 

0.8 0.0395820690712690 1.00834e-17 0.0808553639890256 8.32663e-17 

1 0.0579353999259772 1.04834e-17 0.0579353999259772 1.52655e-16 

The TBM with FIVP was successfully used to solve the crisp capacitor model, and the outcomes 

were compared with the exact solution. Tables 5 and 6 display the estimated outcomes of charging and 

discharging the capacitor, respectively. Figures 12–17 show the computed approximate solutions using 

the TBM developed in this study to illustrate the uncertain behavior of the charging and discharging 

capacitor model with various values of 𝛼 ∈ [0,1]. The tables show that the accuracy of the solution 

in terms of absolute error is very high. 
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Figure 12. 3-Dimensional surface graph solution via the developed TBM for Model 4 with 

charging capacitor. 

 

Figure 13. Uncertainty of Model 4 with α-cuts using TBM and a comparison with the exact solution.  

 

Figure 14. Uncertainty of Model 4 with α-cuts using TBM and a comparison with the exact solution. 
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The capacitor is fully charged when the uncertain parameter 𝛼 = 0; according with Figures 13 

and 14, the solution (membership values with r-cuts) of the charging capacitor model in Eq (21) 

decreases with the lower bound and increases with the upper bound with the time interval [0,4]. In 

addition, the use of the triangular fuzzy number for the initial condition of the capacitor charging model 

ranges [2,4] for time. This gives more information for the approximate solution 𝑢̃(𝑥) of the model 

than the initial condition. 

 

Figure 15. 3-Dimensional surface graph solution via the developed TBM for Model 4 with 

charging capacitor. 

 

Figure 16. Uncertainty of Model 4 with α-cuts using TBM and a comparison with the exact solution. 
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Figure 17. Uncertainty of Model 4 with α-cuts using TBM and a comparison with the exact solution. 

The capacitor is fully discharged when the uncertain parameter 𝛼 = 0; according to Figures 16 

and 17, the solution (membership values with r-cuts) of the discharging capacitor model in Eq (21) 

increases with the lower bound and decreases with the upper bound with the time interval [0,4]. In 

addition, the use of the triangular fuzzy number for the initial condition of the capacitor discharging 

model has a range of [2,4] for time. This gives more information for the approximate solution 𝑢̃(𝑡) 

of the model than the initial condition. 

The graphs comparing the exact and approximate solutions demonstrate high accuracy, as the 

overlapping plots indicate the precision of the proposed method. Furthermore, the computation time 

(in seconds) required to obtain the approximate solutions for the numerical examples is presented in 

Table 7 below.  

Table 7. Time taken to compute approximate solutions of the real-life models. 

α Model 1 

time/s 

Model 2 

time/s 

Model 3 

time/s 

Model 4 

time/s 

0 0.4767 0.4678 0.4768 0.4278 

0.2 0.5673  0.4576  0.4626  0.4376  

0.4 0.4602 0.4352 0.4342 0.4252 

0.6 0.7021 0.4701 0.4521 0.4201 

0.8 0.4423 0.4243 0.4253 0.4243 

1 0.4200 0.4200 0.4200 0.4200 

α Model 1 

time/s 

Model 2 

time/s 

Model 3 

time/s 

Model 4 

time/s 

0 0.4767 0.4678 0.4768 0.4278 

0.2 0.5673  0.4576  0.4626  0.4376  

0.4 0.4602 0.4352 0.4342 0.4252 

0.6 0.7021 0.4701 0.4521 0.4201 

0.8 0.4423 0.4243 0.4253 0.4243 

1 0.4200 0.4200 0.4200 0.4200 
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5. Conclusions 

This study aimed to develop a numerical technique for solving first-order FIVPs with improved 

accuracy in absolute error. It utilized the Taylor series approach to develop TBMs with two fuzzy 

higher derivatives. The results showed superior accuracy of the TBM, demonstrating its zero-stable, 

absolutely stable, and convergence properties. The method was applied to real-life problems, solving 

various models with improved accuracy in absolute error. The fuzzy form of models allowed for easier 

analysis of uncertain behavior, making the methods developed viable approaches for solving FDEs. 

The study’s findings suggest that fuzzy models can be used to analyze uncertain behavior, making 

them more accurate and feasible for real-world applications. At the end of this study, the developed 

method can be extended in future research to other types of differential equations, such as fuzzy 

fractional differential equations and fuzzy partial differential equations (PDEs). 
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