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Abstract
Accuratemodels of solar cells are required to improve the performance of solar photovoltaic (PV)
systems. Due to a lack of precise parameters in themanufacturer’s datasheet, the solar cellmodel is
often inaccurate. Estimating the parameters needed improperlymakes it impossible to build up a
reliable solar PV cellmodel. This paper proposes an algorithm for estimating cell parameters bymulti-
objective optimization to solve this issue. Several optimizers attempted to address the suboptimal
results of optimization due to localminima and premature convergence. This work aims to evaluate
the effectiveness of the proposed algorithmwith those other popular algorithms to understand its
reliability. The efficiency of this algorithm is proven using empirical results and statistical figures. It
has important features, including simplicity and high accuracy, which imply that the algorithm is
better suited to estimating solar PVmodels when comparedwith other algorithms. This algorithm is
robust as it is computationally efficient and easy to use, whichmakes thismethod applicable for
solving awide variety of problems related to solar energy.

Introduction

Overall, with the advancement of PV cell technology, it has becomemore andmore essential to simulate these
solar photovoltaic (PV) devices. Themodeling of solar cells is a two-step process inwhich researchers formulate
mathematical expressions for the cell and estimate its parameters based on representative values fromother
sources [1, 2]. Themost commonly usedmathematicalmodels discussing solar cells in the PV industry are
single-diode (SD) [3]models, double-diode (DD) [4]models, and three-diode (TD) [5], among others. These
models allowPVpanel parameters to be calculated based on the characteristics of specific panels, such as the
saturation current (Id), series resistance (Rse), shunt resistance (Rsh), ideality factor (a), and photocurrent (I),
That requires estimates of whichwill determine the parameters. The different criteria of selection determine
howmany parameters should be estimated to build a specific SD,DDor TDmodel. So for PVmodels to deliver
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outputs in away comparable with howphysical solar cells perform, optimumvalues of these parameters should
be identified such that they underpin outputs resembling those produced by the efficiencies expressed by their
counterparts [6, 7].

The optimization of solar cell parameters has been revolutionized through heuristicmethods. In contrast,
the heuristicmethods do not have any limitations concerning differentiability and convexity of parameters like
traditional least squares curvefitting deterministic techniques [8, 9]. This type of analysis incorporates elements
fromnatural phenomena and is supported by data relating to population, whichmakes their reliability and
strengthmore powerful [10]. Such a system is known to be better at solving engineering problems than the
classical deterministic approach [11]. Several algorithms are popular in this domain, such as particle swarm
optimization (PSO), genetic algorithms (GA) [12], teaching–learning optimization (TLO) [13], cuckoo search
(CS) [14], artificial bee colonies (ABCs) [15], Rao-1 [16], and the Jaya algorithm [17]. Thesemethods have led to
a calculation of solar PV cells in numerousmanners so that the values for each cell layer can be evaluated about
solar energy. Overall, there is no question that the use of heuristicmethods game-changers as options to
optimize solar cell parameters and can in addition provide considerable benefit over classical deterministic
approaches on optimization.

Scientific advancements have led to the development of several optimization algorithms for estimating solar
cell efficiency. Nevertheless, heuristic algorithms have some limitations in this area. Due to their exclusive search
mechanisms, PSO andGA can prematurely convergence inmulti-modal systems due to their concentration on
localminima. ABC andCS both performwell in the exploration phase, but they exhibit delays in convergence
once this phase is over. A further issue is thatmost heuristic algorithms lack the ability to deal withmulti-
objective functions as well as noisy raw data, which limits their effectiveness. To address the challenge of
balancing local and global search in parameter estimation for solar PV cells, researchers have proposed a
heuristic approach. Thismethod offers significant improvements in accuracy. The algorithm leverages both
three-diode and four-diodemodels for solar PV cells (as described in [18–20]). Notably, itmay gainmost
appropriate performance inspite of noisy facts. This is achieved by incorporating an additional series resistance
parameter into a simplified, single-diodemodel that already accounts for series resistance. These scholarly
papers contribute significantly inmultiple aspects, including:

• Tested algorithm’s performance usingCEC2019 benchmarks (average& standard deviation calculated).

• Compared solar cell parameter estimation (RMSE) to other algorithms (at standard temperature).

• Used statistical tests (Friedman,Wilcoxon) to validate results.

Mathematicalmodeling of solar PV cells

Modeling a solar cell involves two key steps. First, we need to create amathematical equation that reflects the
cell’s behavior. This equation is called amodel. Second, we determine specific values for the variables in the
model, which are called parameters. Among themost commonmodels used to understand solar cell behavior
are the single-diode (SD) and double-diode (DD)models. Thesemodels act as the foundation for analyzing how
solar cells work.

Improving solar cell parameter estimation: a deep dive into 3-diodemodels
When compared to double diodemodels, three-diodemodels provide amore detailed picture of how solar cells
work (as shown infigure 1). Thismodel considers leakage currents (represented by Idc3) thatflow through grain

Figure 1. Simplified 3-diode PV circuit.
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boundaries within the cell. Unlike a double-diodemodel, the three-diodemodel includes a shunt resistance path
for this leakage current. Additionally, the series resistancewithin themain part of the cell is captured by the
semiconductor-to-substrate resistance in themodel. By including these extra details, the three-diodemodel
offers amore accurate representation of solar cell behavior. Equation (1) shows themathematical equation used
in thismodel.
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The three-diodemodel offers high accuracy infitting the solar cell’s current output (I–V curve). This allows us to
calculate the contributions of various components within the cell. However, themodel itself can be quite
complex. Thismodel is particularly useful for simulating the current–voltage behavior of large-area silicon solar
cells.

Extracting solar parameters: deep dive into 4-diodemodels
Four-diode equivalent circuits offer several advantages over simplermodels (single, double, and triple diode) for
analyzing large industrial solar cells. This approach provides higher accuracywithminimal difference between
real-worldmeasurements and calculations. It also excels atfitting the cell’s current–voltage curve (I-V curve)
and performswell under standard test conditions (STC). However, this increased accuracy comes at a cost: the
four-diodemodel ismore complex.

For large industrial solar cells (exceeding 155.2 cm2 andwith efficiencies above 17.1%), simplermodels like
single or double diodemight not capture all the important characteristics. Leakage currents within the cell
(represented by Idc1 and Idc2) becomemore significant in larger cells, and a four-diodemodel better accounts
for these effects. Figure 2 illustrates the four-diode equivalent circuit.

FourDiodeModel equation (equation (2))
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This equation (shown elsewhere as equation (2)) represents the four-diodemodel for solar cells. Let’s break
down the variables:

Io:The electrical current produced by the cell.
Vo:The voltage output by the cell.
Iph:The current generated by light hitting the cell (photocurrent).
Irsd1, Irsd2, Irsd3, Irsd4:These represent tiny leakage currents that flow in the opposite direction of normal

currentflow (reverse saturation currents) for each of the four diodes.
n1, n2, n3, n4: These are factors related to how efficiently the diodes conduct current (ideality factors).
q:The fundamental unit of electric charge.
K:Aconstant value in science related to temperature and energy (Boltzmann’s constant).
T:The temperature of the solar cellmaterial (in Kelvin, a scientific temperature scale).

Figure 2. Simplified 4-diode PV circuit.
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Problem formulation
Scientists use an optimization technique to identify unknown properties within amathematicalmodel of a solar
cell. This technique is based on the four-diodemodel, where, [ ]x R R I I I I I n n n nse sh ph rsd1 rsd2 rsd3 rsd4 1 2 3 4= . The
goal is tominimize the difference between the actual electrical current produced by the solar cell (measured I-V
data) and the current calculated by themodel. To achieve this, the optimization technique adjusts these
unknown values in themodel.Mathematically, equations are reformulated (from1&2 to 3& 4) to define a
function that needs to beminimized (objective function). Finally, the technique calculates an average value
based on the experimental data.
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To assess how closely themodel’s calculated currentsmatch the real-worldmeasurements, scientists use ametric
called RMSE. This is a standardway to quantify errors between predicted and actual values. You can find the
specific formula for RMSE in equation (5).

( ( )) ( )RMSE
1

N
f V , I , x 5

i 1

N
i O Oå=

=

The equation for RMSE considersNmeasurements from the real solar cell. It also factors in the solution values
determined by the optimization algorithm (represented by x vector). The lower the RMSE value, the better the
model alignswith real-world data. Therefore,minimizing RMSE is crucial for accurately estimating the solar
cell’s parameters.

Proposed algorithm

Crow search algorithm
Amongall species of avian creatures, the corvids, commonlyknownas crows, arewidely acknowledged topossess an
extraordinary level of intelligence. In fact, theyboast the largest brain sizewhencompared to their physical dimensions.
It isworthnoting, however, that their brain-to-body ratio is actually smaller than that of humans,which implies that
their brains are comparatively smaller.The astuteness exhibitedby crowshasbeenabundantly illustrated innumerous
instances. For instance, duringmirror tests conductedon them, theyhavedemonstrated a remarkable senseof self-
awareness, indicating ahigher cognitive capacity.Additionally, theyhave exhibited the remarkable ability to fashion
tools, further attesting to their resourcefulness. It is fascinating toobserve thatwhen facedwith an intrusion, crowsgo
above andbeyond in their communication skills, alerting their fellowcrowsby recognizing eachother’s facial features.
Remarkably, these aviancreatures arenot only adept communicators, but they alsodisplay ahigh level of proficiency in
tool use.Moreover, their cognitiveprowess extends to their ability to remember theprecise locationswhere theyhave
hidden their food for an astonishingdurationof severalmonths [21].

Crows are highly intelligent creatures that engage in a complex and strategic behavior known as thievery. In
this behavior, crowsmeticulously examine the habits and behaviors of other birds, allowing them to identify the
precise locationwhere their potential victims store their valuable resources, such as food.Once the crows have
gathered this crucial information, they patiently await the opportunemomentwhen the rightful owner of the
resources is absent, allowing them to swoop in and seize their ill-gotten gains. Interestingly, crows do not simply
rely on their initial successful theft; rather, they take additionalmeasures to ensure that their future thievery
endeavors are equally as fruitful. They do so by relocating their hiding spots, therebyminimizing the chances of
their hidden treasures being discovered and pilfered. This adaptive behavior showcases the crows’ exceptional
ability to learn from their personal experiences as thieves and effectively anticipate the actions of potential
thieves in order to safeguard their precious caches from theft [22].

Based on the aforementioned intelligent behaviors that have been elucidated above, the present study
embarks on the development of a cutting-edgemetaheuristic algorithm termedCSA, which is anchored on a
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population-based approach. It is crucial to delineate the fundamental principles that underlie the CSA
algorithm, as they serve as the guiding framework for its implementation and subsequent success. The following
are some of the principles of CSA:

• The crow is a species that lives inflocks.

• Crows become familiar with the locations of their hiding places.

• Stealing occurs when crows follow each other.

• In order to protect their stockpiles from thieves, crows guard their nests.

A d-dimensional environment is believed to contain a large number of crows. Itermax is themaximum
number of iterations and crow j position in the search space at time (iter) iter is described by a vector. It is
estimated that there areN crows in theflock. It is believed that every crowhas amemory inwhich it stores
information regarding where it hides. During iteration iter by, the location of Crow j hiding spot is shown.Until
now, this has been the best position j have been able to obtain. Certainly all crows retain amemory of the location
of theirmostmemorable experiences. In order tofind amore appropriate place to hide and eat, crowswander
around their surroundings.

Assume that at iteration iter, crow jwants to visit its hiding place, mj iter, . At this iteration, crow i decides to
follow crow j to approach to the hiding place of crow j. In this case, two statesmay happen:

Stage 1: Crow j does not know that crow i is following it. As a result, crow iwill approach to the hiding place
of crow j. As a result, the new position of crow i is shown in equation (6):

( ) ( )x x r fl m x 6i iter i iter
i

i iter j iter i iter, 1 , , , ,= + ´ ´ -+

where ri is a randomnumberwith uniformdistribution between 0 and 1 and fli iter. denotes the flight length of
crow i at iteration iter.

Figure 3 illustrates the state schematic and the impact of the parameter fl on search capabilities. Lower fl
values lead to localized search around a specific point xi iter, , while higher values facilitate broader, global search.

Figure 3. Schematic of CS in State 1.
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Infigure 3(a), when fl is below 1, the crow’s next position lies along the dashed line between points xi iter, and
mj iter, . Conversely, infigure 3(b), forfl values exceeding 1, the crow’s next position extends mj iter, beyond the
dashed line.

Stage 2: Crow j knows that crow i is subsequent it. As a result, in order to protect its cache frombeing
pilfered, crow jwill fool crow i by going to another position of the search space.

Totally, states 1 and 2 can be expressed as in equation (7):

( )
( )⎧
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
x

x r fl m x r AP

a random position otherwise
7i iter

i iter
i

i iter j iter i iter
j

j iter
, 1
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=
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where rj is a randomnumber between 0 and 1 and APj iter, denotes the awareness probability.
Ametaheuristic algorithm should be used in order to achieve a good balance between diversification and

intensification [23]. There are several factors that affect CSA’s initiation, intensification, and diversification and
the awareness probability (AP) is one of these variables. A decrease in the awareness probability value results in
CSA focusing its search effortsmore likely to be centered on a small area inwhich aworkable solution can be
found at themoment. In other words, employing lowAP values results inmore intense intensification than
employing highAP values. CSA preferred to search globally (randomization) instead of searching in the
neighborhood of already viable solutions when the awareness probability value decreased, and as a result, CSA
prefers to search in the neighborhood of already viable solutionswhen the awareness probability value increased.
Therefore, it is important to use AP values that are high in order to promote variety.

CSA implementation for optimization
Aflowchart for theCSA, which is a computational algorithmused for solving a specific problem, has been
visually displayed in figure 4. The primary intent of this pseudocode is to clearly represent the numerous actions
that take place in the process of implementing theCSA. It provides a roadmap for programmers and researchers
whowant to use theCSA in their software or research projects, helping themunderstand the linear progression
that characterizes the implementation process. However, in this particular part of thework, a systematic and
methodical description of the steps that are needed to implement theCSA successfully is provided. Each step is
clearly described, which enables one to have a thorough understanding of the implementation process.
Following these steps, individuals can apply theCSA algorithm successfully and get the required outcomes.

Stage 1: Initialize the settings and identify the problem.
An optimization problem is defined alongwith constraints, choice variables, and choice variables. After that,

the fourmovable CSA parameters are assigned values: awareness probability (AP),flight duration (fl), maximum
number of repetitions (itermax), andflock size (N).

Stage 2: Initialize position andmemory of crows
This approach, calledCrow SearchAlgorithm (CSA), works like a simulation of crows searching for food.

Imagine aflock ofN crows scattered randomly across a vast areawith d dimensions. Each crow represents a
potential solution to the problemwe’re trying to solve. The possible solution (d) reflects the number of variables
we’re considering. Equation (8) defines how each crow’s position is represented in this d- possible solution.
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All crows have had theirmemory initialized before they are released. Due to the fact that the crows are
inexperienced at this time, it is believed that they buried their food in their original locations at this time is shown
in equation (9):
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Stage 3: Evaluate fitness (objective) function
Depending on the values of the choice variable, the quality of each crow’s location is calculated by inserting

them into the goal function.
Stage 4: Generate new position
It is possible for a crow to create a new position in the search space in a number of ways. To illustrate this, let

us say that jwant to create a new role. A crow is taskedwithfinding the location of the food that he or she has
hidden by choosing aflockmember at random (crow j, for instance) and following it in order tofind the food the
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crowhas hidden (ni). The second crow j is now located at the new location provided by equation (2). This
procedure should be repeated for each of the crows.

Stage 5: Check the feasibility of new positions
The new location of every crow is verified by a teamof experts tomake sure it is feasible.When its new

location is viable, a crow changes its position. Crows don’tmove to the new spot if they don’t have to; instead,
they stay where they are.

Stage 6: Evaluate fitness function of new positions
Using thefitness function value of the crow’s new position, thefitness function valuewill be calculated.
Stage 7:Updatememory
The crows perform the following actions tomaintain theirmemory prevailing as shown in equation (10):

( ) ( ) ( )⎧
⎨⎩

n
y f y is better than f n

n o w. .
10j iter

j iter j iter j iter

j iter
, 1

, 1 , 1 ,

,
=+

+ +

If a crowfinds a spot with a better outcome (higherfitness value) than its previous location, it remembers this
new spot. Here, ‘fitness value’ refers to howwell a solutionworks for the problemwe’re trying to solve. Basically,
crows learn from each other and keepmoving towards areas with better results.

Stage 8: Check termination criterion

Figure 4. FlowChart of CS.
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This process is repeated until the itermax has been reached, at which point stages 4 through 7will be repeated.
After the termination requirement is satisfied, the optimization problem’s solution is the optimalmemory
location that occupies the highest percentage of the objective function value in relation to the optimalmemory
location.

Table 2.CEC2019 benchmark statistical test with dimension (20).

Algorithm Functions CEC1 CEC2 CEC3 CEC4 CEC5

Proposed Algorithm Mean 5.00E+08 8.84E-19 6.73E-19 1.72E+08 4.45E-19

S.D. 2.88E+08 1.00E-19 7.32E-20 1.05E+08 2.76E-20

PSO Mean 1.52E+01 1.53E-01 3.42E-01 2.79E+01 2.26E-01

S.D. 1.45E+01 5.78E-02 3.67E-02 2.05E+01 1.87E-01

RSA Mean 1.75E+05 5.13E-14 4.87E-13 1.40E+05 5.16E-14

S.D. 1.43E+05 2.85E-15 1.22E-13 4.19E+04 8.10E-15

CSA Mean 2.03E+03 2.40E-06 3.33E-06 1.91E+04 3.03E-06

S.D. 8.40E+02 3.63E-06 2.34E-06 9.51E+03 2.92E-06

PO Mean 4.36E+02 3.77E-05 4.66E-05 3.89E+03 5.27E-05

S.D. 2.90E+02 3.05E-05 3.61E-05 3.51E+03 2.47E-05

Table 1.CEC2019 benchmark test function.

Nameof function Function Range

l1=CEC1 f f f f Sphere function1, 2, 3 10¼ = [−5, 5]
[ ]1, 2, 3 10 1, 1, 1, 1d d d d¼ = ¼

⎡
⎣

⎤
⎦

1, 2, 3 10
5

100
,

5

100
,

5

100
,

5

100
l l l l¼ = ¼
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[ ]1, 2, 3 10 1, 1, 1, 1d d d d¼ = ¼
[ ]1, 2, 3 10 1, 1, 1, 1l l l l¼ = ¼
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f f Rastrigin sfunction3, 4 = ¢
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f f Griewanks sfunction5, 6 = ¢
f f Ackely sfunction7, 8 = ¢
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Table 3.Unknown parameters of three diodemodel.

Parameter/

Algorithms Ipv n1 n2 n3 Rs Rsh Io1 Io2 Io3 RMSE SSE

PSO 5.2835 0.5 0.668 0.580 0.001 97.451 0 1.16E-07 7.70E-09 1.57E-02 2.46E-04

CSA 6.9159 0.714 0.701 0.947 0.017 155.13 2.91E-08 4.51E-07 2.82E-09 3.31E-04 1.10E-07

RSA 5.8224 1.650 1.213 1.135 0.096 273.09 7.31E-08 2.78E-07 6.28E-08 4.33E-06 1.87E-11

PO 4.9012 1.511 1.400 0.925 0.001 73.37 0 0 1.00E-06 3.75E-09 1.40E-17

Proposed

Algorithm

5.8587 1.081 1.161 1.261 0.077 158.20 2.69E-07 3.80E-07 6.28E-07 3.47E-16 1.20E-31
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Table 4.Unknown parameters of four diodemodel.

Parameter/Algorithms Ipv n1 n2 n3 n4 Rs Rsh Io1 Io2 Io3 Io4 RMSE SSE

PSO 6.1342 0.538 0.584 0.5 0.545 0.024 222.80 4.86E-09 2.48E-08 0 3.58E-08 2.25E-01 5.06E-02

CSA 6.8896 1.567 1.072 0.612 0.849 0.020 153.43 2.10E-07 0 6.60E-07 0 2.97E-04 8.82E-08

RSA 3.8102 0.760 1.026 1.286 1.598 0.023 301.84 5.24E-07 3.12E-07 3.97E-07 4.21E-07 5.97E-06 3.56E-11

PO 4.8691 1.231 0.925 1.044 1.324 0.002 104.84 0 1.00E-06 0 0 2.36E-09 5.59E-18

ProposedAlgorithm 7.8285 1.085 1.214 1.089 1.053 0.087 220.96 2.55E-07 4.87E-07 3.72E-07 2.65E-07 5.06E-16 2.56E-31

9

P
hys.Scr.100

(2025)016006
M

K
Sin

gla
etal



Experiment and results

Benchmark test functions
Among the test functions available inCEC2019,five have been selected to assess the performance of the
algorithm as shown in table 1. CEC1 throughCEC5 are all derived from theCEC,which has 20 dimensions

Figure 5. (a)RMSE (b) SSE.

Table 5.Computational time (Secs) of bothmodels.

Algorithms Three diodemodel Four diodemodel

PSO 3.154 3.297

RSA 2.698 2.852

CSA 2.154 2.197

PO 1.887 1.745

Proposed Algorithm 1.023 1.325
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respectively, with the dimensions corresponding to the dimensions of each characteristic. The purpose of this
study is to present a comparative analysis between the PSO [20], RSA [24], CSA [25], PO [26] and proposed
algorithm. Benchmark test functionswere tested using other algorithms, where eachwas limited to 1000 feature
evaluations per test function. This constraint was used tomaintain the unbiasedness of thefive benchmark test
functions and algorithms analyzed. In this study,MATLAB 2018bwas used to program the algorithms, which
were executed independently for 30 iterations for each algorithm, with a total of 30 iterations for each algorithm.

This study estimates the statisticalmeasures of themean and standard deviation offive benchmark tests
whose dimension is ten respectively, based on the formulated algorithm. This can be accomplishedwithin the
confines of table 2 as a result of the algorithm. A detailed analysis and an all-round assessment of the results and
findings recorded in table 2 as a consequence of the in-depth analysis and comprehensive evaluation can
confidently be said that the proposed algorithm is bothmore efficient and effective than the rest algorithms
because of its in-depth analysis and comprehensive evaluation. The comparison has also strengthened this
claim, as after careful consideration of the comparative analysis of the proposed algorithmwith its counterparts,
it is evident that the proposed algorithmhas a considerably lowermean and standard deviation value compared
with the other algorithms, especially when it comes to studying five benchmark test functions as awhole. As a
result, the reference result derived from the standard check function appreciably enhances the above-mentioned
hybrid algorithm. It in reality outshines all current algorithms in phrases of convergence quotes, stability,

Figure 6.Computational time of both diode.

Figure 7. (V)-I curve of solarmodel.
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accuracy, and usual performancewhen as compared to the algorithms presently employed. The proposed hybrid
set of rules surpasses present ones in phrases of convergence charge, robustness, precision, and standard
effectiveness. The obvious conclusion is that hybrid algorithms aremore effective than any other algorithm,
making them an optimal choice for optimization applications. Themanymerits this algorithmpossesses are
imperative to emphasize, including its dependability, efficiency, and ability to effectively handle intricate
problems.

Engineer problem
This section addresses the parameter extraction challenges associatedwith individual solar PVmodels, with the
aimof facilitating a thorough performance analysis. The solar systemunder consideration is a solar universe,
characterized by polycrystalline cells as the SW80RNAprototype. Itsmain specifications includeVmof 17.90 V,
Im of 4.49A, Voc of 21.90 V, and Isc it is 4.78A Like theNemypanel, it has 60 cells, 25 degrees and operates at a
ratedCelsius temperature. Parameter extraction is performed for three and four diodemodels. The first
parameter, Ipv, ranges from0 to 1 amp. The next four parameters Irsd1, Irsd2, Irsd3, and Irsd4 aremeasured in
microamperes (μA) and range from0 to 1. The Rse andRsh parameters aremeasured in ohms (Ω), where Rse
ranges from0 to 0.5, andRsh from0 to 100. Thefinal parameters n1, n2, n3, n4 are dimensionless and vary from
1 to 2. This section provides a detailed discussion of polycrystalline solar panels.

Case 1: Poly-Crystalline Solar Panel: In this condition, the solar panel beneath attention is from Solar
World andmakes use of poly-crystalline era. The parameter extraction procedure for both three diode and four
diodemodels is targeted right here. Tables 3 and 4 show the unknown parameters of each solarmodels alongside

Figure 8. (P)-V curve of solarmodel.

Table 6. Friedman ranking test.

Algorithms Friedman ranking test

PSO 5

RSA 3

CSA 4

PO 2

Proposed Algorithm 1

Table 7.Wilcoxon’s rank sum test.

Algorithms PSO RSA CSA PO

ProposedAlgorithm versus (ThreeDiodeModel) 8.78E-13 7.52E-13 8.74E-13 7.54E-13

ProposedAlgorithm versus (FourDiodeModel) 8.41E-13 7.85E-13 8.12E-13 7.95E-13
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their respectivemistakes (RMSE). Figure 5 illustrates the RMSE and SSE errors for both approaches.
Additionally, table 5 andfigure 6 gift the computational time for the 3 and 4 diode approaches. Analysis of those
tables andfigures indicates that the proposed hybrid algorithm is better than the compared algorithms.
Specifically, it excels in terms of convergence time, reliability, andmemory usage as compared to standalone
algorithms. Thefigures 7 and 8 shows the I–VandP-V graphswhich shows the simulated result. Following the
extraction of eachmodels, the Friedman ranking test (table 6,figure 9) andWilcoxon’s rank sum test (table 7)
have been carried out. Results from these tests similarly affirm that the proposed hybrid algorithm surpasses the
other standalone algorithms in overall performance.

Conclusion

This study proposes a new algorithm to introduce the global optimization problems in solar cell parameter
extraction. This approach is essentially amethod to explore awider range of possibilities. This test the algorithm
on a single-diode solar cellmodel, which is a simplified butmathematically accurate representation of real-
world solar cells with three or four diodes, like the SolarWorld-SW80RNAmodel. The results of the
investigation that have been carried out so far can be summarized as follows:

• The proposed algorithmoutperforms other algorithms in global optimization by deliveringmore precise
solutions and faster convergence rates.

• In comparison to Friedman ranking andWilcoxon’s rank-sum tests, proposed algorithm shows a better
performancewith regard to consistency and efficiency than any other technique

• Proposed algorithm is amore effectivemethod formanaging both PVmodels statistically than obtaining
parameters bymeans of regression analysis.

Thefindings of the study highlight the promise and practicality of the proposed algorithm for parameter
estimation for solar PV cells. In addition to optimizing solar PV cells, this systemdemonstrates versatility in
solving a variety of energy production projects,making it invaluable for solving various energy challenges. Its
role in power systems extends to optimized distributed generation systems, economical load dissipation and
energy systems. It offers a variety of opportunities like distributed generation configurations, economic load
dispatch, and energy scheduling.
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Figure 9. Friedman ranking test of poly-crystalline solar panel.
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