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Abstract 

An irreversible k-threshold conversion process on a graph 𝐺 = (𝑉, 𝐸) is an iterative process that studies the spread 

of a one way change (from state 0 to 1) on 𝑉(𝐺). The process begins by choosing a set 𝑆0 ⊆ 𝑉. For each step 

𝑡(𝑡 = 1,2, … , ), 𝑆𝑡 is obtained from 𝑆𝑡−1 by adjoining all vertices that have at least k neighbors in 𝑆𝑡−1. We call 

𝑆0 the seed set of the k-threshold conversion process and if 𝑆𝑡 = 𝑉(𝐺) for some 𝑡 ≥ 0, then 𝑆0 is called an 

irreversible k-threshold conversion set (IkCS) of 𝐺. The k-threshold conversion number of 𝐺 (denoted by (𝑐𝑘(𝐺)) 
is the minimum cardinality of all the IkCSs of 𝐺. In this paper, we study IkCSs of toroidal grids and the tensor 

product of two paths. We determine 𝑐2(𝐶3 × 𝐶𝑛) and we present upper and lower bounds for 𝑐2(𝐶𝑚 × 𝐶𝑛) for 

𝑚, 𝑛 ≥ 3. We also determine 𝑐2(𝑃2 × 𝑃𝑛), 𝑐2(𝑃3 × 𝑃𝑛) and present an upper bound for 𝑐2(𝑃𝑚 × 𝑃𝑛) when 𝑚, 𝑛 >
3. Then we determine 𝑐3(𝑃𝑚 × 𝑃𝑛) for 𝑚 = 2,3,4 and arbitrary 𝑛. Finally, we determine 𝑐4(𝑃𝑚 × 𝑃𝑛) for arbitrary 

𝑚, 𝑛. . Also, we study the same concepts over some neutrosophic graphs with suggestions for future neutrosophic 

and fuzzy generalizations. 

Keywords: Toroidal grid; Tensor product; Graph conversion process; k-threshold conversion set; Neutrosophic 

graph; Neutrosophic graph product 

1. Introduction 

Let 𝐺(𝑉, 𝐸) be a graph with |𝑉| = 𝑛 vertices and |𝐸| = 𝑚 edges. The open neighborhood of a vertex 𝑣 ∈ 𝑉 is 

𝑁(𝑣) = {𝑢 ∈ 𝑉: 𝑢𝑣 ∈ 𝐸} and the closed neighborhood of 𝑣 is 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The degree of a vertex 𝑣 

(denoted by deg(𝑣) ) is the number of all vertices that are adjacent to 𝑣. Therefore,  deg (𝑣) = |𝑁(𝑣)|. For any 

undefined term in the paper, we refer to Harary [5]. Let 𝑌 ⊆ 𝑉 and let 𝐹 be a subset of 𝐸 such that 𝐹 consists of 

all edges of 𝐺 which have endpoints in 𝑌, then 𝐻 = (𝑌, 𝐹) is called an induced subgraph of 𝐺 by 𝑌 and is denoted 

by 𝐺𝑌. An independent vertex set of a graph 𝐺(𝑉, 𝐸) is a subset of 𝑉 such that no two vertices in the subset 

represent and edge of 𝐺. The independence number, denoted by 𝛼(𝐺), is the cardinality of the largest independent 

vertex set of 𝐺. The cartesian product of two cycles (also called toroidal grid and denoted by 𝐶𝑚 ◻ 𝐶𝑛) has the 

vertex set 𝑉(𝐶𝑚 ◻ 𝐶𝑛) = {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and two vertices (𝑖, 𝑗), (𝑖′, 𝑗′) are adjacent if and only if 

they satisfy one of the two following conditions: 

 𝑖 is adjacent to 𝑖′ and 𝑗 = 𝑗′. 
 𝑖 = 𝑖′ and 𝑗 is adjacent to 𝑗′. 
For more information on Toroidal grids see [12-24] The tensor product of two paths (denoted by 𝑃𝑚 × 𝑃𝑛) has the 

same vertex set as the cartesian product therefore 𝑉(𝑃𝑚 × 𝑃𝑛) = {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and two vertices 

https://doi.org/10.54216/IJNS.250216
mailto:dralhosban@inu.edu.jo
mailto:k.matarneh@arabou.edu.sa
mailto:raed@jadara.edu.jo
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(𝑖, 𝑗), (𝑖′, 𝑗′) are adjacent if and only if 𝑖 is adjacent to 𝑖′ and 𝑗 is adjacent to 𝑗′. For more information on the tensor 

product, see [6-11]. Irreversible Conversion processes study the spread of a one way change of state (from state 0 

to state 1) through a specified society (the spread of disease through populations, the spread of opinion through 

social networks,..) where the conversion rule is determined at the beginning of the study. These processes can be 

modeled into graph theoretical models where the vertex set 𝑉(𝐺) represents the set of individuals on which the 

conversion is spreading. The irreversible k-threshold conversion process on a graph 𝐺 = (𝑉, 𝐸) is an iterative 

process which begins by choosing a set 𝑆0 ⊆ 𝑉, and for each step 𝑡(𝑡 = 1,2, … , ), 𝑆𝑡 is obtained from 𝑆𝑡−1 by 

adjoining all vertices that have at least k neighbors in 𝑆𝑡−1. 𝑆0 is called the seed set of the k-threshold conversion 

process and if 𝑆𝑡 = 𝑉(𝐺) for some 𝑡 ≥ 0, then 𝑆0 is an irreversible k-threshold conversion set (IkCS) of 𝐺. The 

k-threshold conversion number of 𝐺 (denoted by (𝑐𝑘(𝐺)) is the minimum cardinality of all the IkCSs of 𝐺. The 

first graph model of the Irreversible k-threshold conversion problem was presented by Dreyer and Roberts in [3] 

where they determined the value of  𝑐2(𝐺) for paths and cycles. They also determined  𝑐3(𝐺) for toroidal grids 

𝐶3◻𝐶𝑛 and presented lower and upper bounds for 𝑐3(𝐶𝑚 ◻ 𝐶𝑛) when 𝑚, 𝑛 are arbitraries, they also determined 

𝑐4(𝐶𝑚 ◻ 𝐶𝑛) for arbitrary 𝑚, 𝑛. Adams et al., [1] presented upper bounds for 𝑐𝑘(𝐺) of the cartesian product and 

tensor product of two arbitrary graphs 𝐺 and 𝐻. For further information on the irreversible k-threshold conversion 

problem on graphs see Centeno et al. [2], Kyn�̌�l et al. [7], Frances et al. [4], Takaoka and Ueno [11]. In [8] 

Mynhardt and Wodlinger presented a lower bound for 𝑐𝑘(𝐺) of graphs of maximum degree 𝑘 + 1.   In [9], 

Mynhardt and Wodlinger gave an upper bound for 𝑐𝑘(𝐺) of regular graphs. In [10] Shaheen et al. studied 

irreversible k-threshold conversion processes on circulant graphs. In this paper, we determine 𝑐2(𝐶3 ◻ 𝐶𝑛) and 

we present upper and lower bounds for 𝑐2(𝐶𝑚 ◻ 𝐶𝑛) for 𝑚, 𝑛 > 3. We also determine 𝑐2(𝑃2 × 𝑃𝑛), 𝑐2(𝑃3 × 𝑃𝑛) 
and present an upper bound for 𝑐2(𝑃𝑚 × 𝑃𝑛) when 𝑚, 𝑛 > 3. We determine 𝑐3(𝑃𝑚 × 𝑃𝑛) for 𝑚 = 2,3,4 and 

arbitrary 𝑛. We also determine 𝑐4(𝑃𝑚 × 𝑃𝑛) for arbitrary 𝑚, 𝑛. 

Proposition 1.1. [5] For 𝑚 ≥ 2 and 𝑛 ≥ 3: 

𝛼(𝑃𝑚) = ⌈
𝑚

2
⌉; 𝛼(𝐶𝑛) = ⌊

𝑛

2
⌋. 

Proposition 1.2. [6] If 𝐺 is a path or a cycle and 𝐻 is a path or a cycle, then: 

𝛼(𝐺 × 𝐻) = max {𝛼(𝐺)|𝑉(𝐻)|, 𝛼(𝐻)|𝑉(𝐺)|} 

Proposition 1.3. [3] For the toroidal grid graphs 𝐶𝑚 ◻ 𝐶𝑛: 

 𝑐3(𝐶3 ◻ 𝐶𝑛) = 𝑛 + 1. 

 For , 𝑛 ≥ 4; 
𝑚𝑛+2

3
≤ 𝑐3(𝐶𝑚 ◻ 𝐶𝑛) ≤

𝑚𝑛

3
+

23𝑚+13𝑛−5

12
. 

 For 𝑚, 𝑛 ≥ 3; 𝑐4(𝐶𝑚 ◻ 𝐶𝑛) = {
𝑚𝑎𝑥 {𝑛 ⌈

𝑚

2
⌉ , 𝑚 ⌈

𝑛

2
⌉} 𝑖𝑓 𝑚 𝑜𝑟 𝑛 𝑖𝑠 𝑜𝑑𝑑;

𝑚𝑛

2
 𝑖𝑓 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛.                     

 

Proposition 1.4. [1] Let 𝐺 and 𝐻 be two graphs, then 𝑐𝑘(𝐺 ◻ 𝐻) ≤ 𝑐𝑘(𝐺)𝑐𝑘(𝐻). 

Proposition 1.5.[1] Let 𝐺 and 𝐻 be two graphs without any isolated vertices.  Then 𝑐𝑘(𝐺 × 𝐻) ≤
min {min{𝑐𝑘(𝐺)|𝑉(𝐻)|} ,min{𝑐𝑘(𝐻)|𝑉(𝐺)|}}. 

Remark 1.1. Throughout this paper, we divide 𝑉(𝑃𝑚 × 𝑃𝑛) into three subsets (𝑄1, 𝑄2, 𝑄3) defined as: 

𝑄1 = {𝑣 ∈ 𝑉; deg(𝑣) = 1} = {(1,1), (1, 𝑛), (𝑚, 1), (𝑚, 𝑛)};  

𝑄2 = {𝑣 ∈ 𝑉; deg(𝑣) = 2} = {(𝑖, 1), (𝑖, 𝑛), (1, 𝑗), (𝑚, 𝑗): 2 ≤ 𝑖 ≤ 𝑚 − 1;  2 ≤ 𝑗 ≤ 𝑛 − 1 };  

𝑄3 = {𝑣 ∈ 𝑉; deg(𝑣) = 4} = {(𝑖, 𝑗): 2 ≤ 𝑖 ≤ 𝑚 − 1;  2 ≤ 𝑗 ≤ 𝑛 − 1 }.  

We notice that |𝑄1| = 4; |𝑄2| = 2𝑚 + 2𝑛 − 8; |𝑄3| = (𝑚 − 2)(𝑛 − 2) = 𝑚𝑛 − 2𝑚 − 2𝑛 + 4. 

Remark 1.2. We denote the rows by 𝑅𝑖: 1 ≤ 𝑖 ≤ 𝑚 and 𝑅𝑙 = {(𝑙, 𝑗): 1 ≤ 𝑗 ≤ 𝑛}. In a similar way, we denote the 

grid columns by 𝐶𝑂𝑗 : 1 ≤ 𝑗 ≤ 𝑛 and 𝐶𝑂𝑙 = {(𝑖, 𝑙): 1 ≤ 𝑖 ≤ 𝑚} and we use these notations for 𝐶𝑚 ◻ 𝐶𝑛 and for 

𝑃𝑚 × 𝑃𝑛. 

Remark 1.3. Throughout this paper, we call a column 𝐶𝑂𝑗 a seeded column if 𝐶𝑂𝑗 ∩ 𝑆0 ≠ ∅, otherwise we call it 

an empty column. A column 𝐶𝑂𝑗 is even (odd) if 𝑗 is even (odd) respectively. We use the same terminology for 

rows. 

Remark 1.4.  As an immediate consequence of the definition, 𝑐𝑘(𝐺) ≥ 𝑘 for any graph 𝐺. 

https://doi.org/10.54216/IJNS.250216
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Remark 1.5. As a consequence of the definition, for any graph 𝐺; 1 ≤ 𝑘 ≤ ∆(𝐺) where ∆(𝐺) =
𝑚𝑎𝑥{𝑑𝑒𝑔(𝑣): 𝑣 ∈ 𝑉(𝐺)}. 

Remark 1.6. As an immediate consequence of the definition, when studying an Irreversible k-threshold 

conversion process on a graph 𝐺 = (𝑉, 𝐸) all vertices {𝑣 ∈ 𝑉 ; deg (𝑣) < 𝑘} must be included in the seed set 𝑆0, 

otherwise the process will fail because none of these vertices can satisfy the conversion rule. These vertices are 

called k-immune vertices, see [9]. 

Remark 1.7. In every figure of this article, we represent the vertices as white circles, and we assign every 

converted vertex the number of the conversion step in which it gets converted by placing the number inside the 

circle. 

 

2. Main Results 

 

Definition 2.1. Let 𝑈 ⊆ 𝑉(𝐺), then 𝑈 is 𝑘-unconvertable if it satisfies two conditions: 

 𝑈 ∩ 𝑆0 = ∅. 
 For every 𝑢 ∈ 𝑈; 𝑑𝑒𝑔(𝑢) − |𝑁(𝑢) ∩ 𝑈| < 𝑘.  

Therefore, no vertex of 𝑈 can satisfy the conversion rule at any step of the conversion process. It is straightforward 

to see that 𝑆 ⊆ 𝑉 is a k-conversion set of 𝐺 if and only if 𝑉 − 𝑆 does not contain a 𝑘-unconvertable set. 

Remark 2.1. As an immediate consequence to Definition 2.1, when choosing the seed set 𝑆0, we try to avoid 

leaving any versions of 𝑈 on the studied graph. 

2.1. 𝒄𝒌(𝑪𝒎 × 𝑪𝒏). 

In this sub-section we determine 𝑐2(𝐶3 × 𝐶𝑛). We also present a lower and an upper bound of 𝑐2(𝐶𝑚 × 𝐶𝑛) when 

𝑚, 𝑛 are arbitraries. 

Proposition 2.1. Let there be a 2-threshold conversion process initiated by a seed set 𝑆0 on 𝐶𝑚 × 𝐶𝑛. The process 

fails if there are two adjacent empty columns or rows.  

Proof: Let 𝐶𝑂𝑙 , 𝐶𝑂𝑙+1: 𝑙 ∈ {1,2, … , 𝑛 − 1} be two adjacent empty columns. This means the following set 𝑈 =
{(𝑖, 𝑙), (𝑖, 𝑙 + 1): 1 ≤ 𝑖 ≤ 𝑚} satisfies the two conditions introduced in Definition 2.1 because 𝑈 ∩ 𝑆0 = ∅ and 

every vertex 𝑢 ∈ 𝑈 is of degree 4 and is adjacent to 3 other vertices of 𝑢 ∈ 𝑈 therefore 𝑑𝑒𝑔(𝑢) − |𝑁(𝑢) ∩ 𝑈| =
1 < 2 = 𝑘. This means no vertex of 𝑈 can satisfy the conversion rule at any step of the conversion process, so it 

fails. The same argument applies if we have two adjacent empty rows.◻ 

 

Proposition 2.2. 𝑐2(𝐶𝑚 × 𝐶𝑛) ≥ {
⌈
𝑚

2
⌉  𝑖𝑓 𝑚 ≥ 𝑛; 

⌈
𝑛

2
⌉  𝑖𝑓 𝑚 < 𝑛.  

 

 

Proof. This result can be immediately concluded from Proposition 2.1.◻ 

Theorem 2.1. For 𝑛 ≥ 3,  𝑐2(𝐶3 × 𝐶𝑛) = ⌈
𝑛+1

2
⌉. 

Proof. Due to Proposition 2.2 we have 𝑐2(𝐶3 × 𝐶𝑛) ≥ ⌈
𝑛

2
⌉. We consider the following cases: 

Case 1. 𝑛 is even.  

Let 𝐷0 be a seed set of cardinality ⌈
𝑛

2
⌉ =

𝑛

2
 on 𝐶3 × 𝐶𝑛. There are two ways to place the 

𝑛

2
 converted vertices on the 

columns without leaving two adjacent empty columns. We either include one vertex from each odd column in 𝐷0 

or we include one vertex from each even column in it. In both cases the process stops at the end of step 𝑡 = 1 

because of the following situation: Let 𝑛 = 6. Let 𝐶𝑂1, 𝐶𝑂3, 𝐶𝑂5 be the seeded columns. No matter how we choose 

(𝑖1, 1) ∈ 𝐶𝑂1 ∩ 𝐷0; (𝑖2, 3) ∈ 𝐶𝑂3 ∩ 𝐷0; (𝑖3, 5) ∈ 𝐶𝑂5 ∩ 𝐷0, at 𝑡 = 1 the conversion only spreads to: 

 (𝑖1, 2) if 𝑖1 = 𝑖2 ≠ 𝑖3. 

 (𝑖2, 4) if 𝑖2 = 𝑖3 ≠ 𝑖1. 

 (𝑖3, 6) if 𝑖3 = 𝑖1 ≠ 𝑖2. 

 (𝑖1, 2), (𝑖1, 4), (𝑖1, 6) if 𝑖2 = 𝑖3 = 𝑖1. 

However, in order to spread the conversion vertically (to different rows) at 𝑡 = 2 we need another converted vertex 

that belongs to a different row from any column that is containing a converted vertex from 𝐷1. Since there is no 

such vertex, it is impossible to convert any new vertices at 𝑡 = 2 and the process fails. The same argument applies 
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if the seeded columns are 𝐶𝑂2, 𝐶𝑂4, 𝐶𝑂6. Without loss of generality, we obtain the same result for any even value 

of 𝑛. We conclude that if 𝑛 is even: 

                                                          𝑐2(𝐶3 × 𝐶𝑛) >
𝑛

2
                                                                   (1) 

Now let 𝑆0 = {(1,2𝑙 + 1): 0 ≤ 𝑙 ≤
𝑛

2
− 1} ∪ {(3,1)} which is of cardinality 

𝑛

2
+ 1 be the seed set. The process 

goes as follows: 

𝑡 = 0: 𝑆0 = {(1,2𝑙 + 1): 0 ≤ 𝑙 ≤
𝑛

2
− 1} ∪ {(3,1)}.   

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(1,2𝑙): 1 ≤ 𝑙 ≤
𝑛

2
} ∪ {(2,1)}.   

For 2 ≤ 𝑡 ≤
𝑛

2
: 𝑆𝑡 = 𝑆𝑡−1 ∪ {(2, 𝑡), (2, 𝑛 − 𝑡 + 2), (3, 𝑡), (3, 𝑛 − 𝑡 + 2)}. 

The process ends at 𝑡 =
𝑛

2
+ 1 for which 𝑆𝑛

2
+1 = 𝑆𝑛

2
∪ {(2,

𝑛

2
+ 1), (3,

𝑛

2
+ 1)} = 𝑉(𝐶3 × 𝐶𝑛) therefore 𝑆0 is an 

I2CS on 𝐶3 × 𝐶𝑛 which means: 

                                                     𝑐2(𝐶3 × 𝐶𝑛) ≤
𝑛

2
+ 1                                                                 (2) 

Figure 1 illustrates a 2-conversion set on 𝐶3 × 𝐶16 starting with 𝑆0 of cardinality 9. 

 

 

 

 

 

 

 

Figure 1.  a 2-conversion set on 𝐶3 × 𝐶16 starting with 𝑆0 of cardinality 9.  

From (1) and (2) we conclude that 𝑐2(𝐶3 × 𝐶𝑛) =
𝑛

2
+ 1 = ⌈

𝑛+1

2
⌉ if 𝑛 is even. 

Case 2. 𝑛 is odd.  

Due to Proposition 2.2 we know that 𝑐2(𝐶3 × 𝐶𝑛) ≥ ⌈
𝑛

2
⌉ =

𝑛+1

2
. Let us now prove that 𝑐2(𝐶3 × 𝐶𝑛) ≤

𝑛+1

2
 when 𝑛 

is odd. Let 𝑆0 = {(1,2𝑙): 1 ≤ 𝑙 ≤
𝑛−1

2
} ∪ {(2,1)} which is of cardinality 

𝑛+1

2
 be the seed set. The process goes as 

follows: 

𝑡 = 0: 𝑆0 = {(1,2𝑙): 1 ≤ 𝑙 ≤
𝑛−1

2
} ∪ {(2,1)}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(1,2𝑙 + 1): 0 ≤ 𝑙 ≤
𝑛−3

2
} ∪ {(2,2)}.   

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(1, 𝑛), (2,3), (3,1), (3,2)}.   

For 3 ≤ 𝑡 ≤
𝑛+1

2
: 𝑆𝑡 = 𝑆𝑡−1 ∪ {(2, 𝑡 + 1), (2, 𝑛 − 𝑡 + 3), (3, 𝑡), (3, 𝑛 − 𝑡 + 3)}. 

The process ends at 𝑡 =
𝑛+3

2
 for which 𝑆𝑛+3

2

= 𝑆𝑛+1
2

∪ {(3,
𝑛+3

2
)} = 𝑉(𝐶3 ◻ 𝐶𝑛) which means 𝑐2(𝐶3 ◻ 𝐶𝑛) ≤

𝑛+1

2
. 

We conclude that 𝑐2(𝐶3 ◻ 𝐶𝑛) =
𝑛+1

2
= ⌈

𝑛+1

2
⌉ if 𝑛 is odd. 

From Case 1 and Case 2 we conclude the requested.◻ 

Theorem 2.2. For 𝑚, 𝑛 ≥ 4,  𝑐2(𝐶𝑚 ◻ 𝐶𝑛) ≤ ⌈
𝑚+𝑛

2
⌉ − 1. 

Proof. We consider the following cases for 𝑚, 𝑛: 

Case 1. 𝑚, 𝑛 are even. 
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Let the seed set be 𝑆0 = {(2𝑙 + 1,1), (1,2𝑑 + 1): 0 ≤ 𝑙 ≤
𝑚

2
− 1; 1 ≤ 𝑑 ≤

𝑛

2
− 1} which is of cardinality 

𝑚+𝑛

2
−

1 = ⌈
𝑚+𝑛

2
⌉ − 1.  

We consider the following subcases: 

Case 1.a. 𝑚 = 𝑛. 

This means ⌈
𝑚+𝑛

2
⌉ − 1 = 𝑛 − 1. The process goes as follows: 

𝑡 = 0: 𝑆0 = {(2𝑙 + 1,1), (1,2𝑑 + 1): 0 ≤ 𝑙 ≤
𝑛

2
− 1; 1 ≤ 𝑑 ≤

𝑛

2
− 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2𝑙, 1), (1,2𝑙): 1 ≤ 𝑙 ≤
𝑛

2
}.   

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(2,2), (2, 𝑛), (𝑛, 2), (𝑛, 𝑛)}.   

For 3 ≤ 𝑡 ≤
𝑛

2
+ 1: 

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑙, 𝑛 − 𝑙), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2) ∶ 0 ≤ 𝑙 ≤ 𝑡 − 2}. 

For 
𝑛

2
+ 1 < 𝑡 < 𝑛 which means for 𝑡 =

𝑛

2
+ 1 + ℎ; 1 ≤ ℎ ≤

𝑛

2
− 2 and ℎ ∈ ℤ:  

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑙, 𝑛 − 𝑙), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2) ∶ ℎ ≤ 𝑙 ≤ 𝑡 − 2 − ℎ}. 

The process ends at step 𝑡 = 𝑛 for which ℎ =
𝑛

2
− 1 and: 

𝑆𝑛 = 𝑆𝑛−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑙, 𝑛 − 𝑙), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2) ∶
𝑛

2
− 1 ≤ 𝑙 ≤

𝑛

2
− 1} 

      = 𝑆𝑛−1 ∪ {(
𝑛

2
+ 1,

𝑛

2
+ 1)} = 𝑉(𝐶𝑚 ◻ 𝐶𝑛). This means 𝑆0 is an I2CS on 𝐶𝑚 ◻ 𝐶𝑛, therefore 𝑐2(𝐶𝑛 ◻ 𝐶𝑛) ≤

𝑛 − 1 if 𝑛 is odd. Figure 2 shows that 𝑐2(𝐶8 ◻ 𝐶8) ≤ 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 𝑐2(𝐶8 × 𝐶8) ≤ 7.  
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Case 1.b. 𝑚 < 𝑛. 

This means ⌈
𝑚+𝑛

2
⌉ − 1 =

𝑚+𝑛

2
− 1. The process goes as follows: 

𝑡 = 0: 𝑆0 = {(2𝑙 + 1,1), (1,2𝑑 + 1): 0 ≤ 𝑙 ≤
𝑚

2
− 1; 1 ≤ 𝑑 ≤

𝑛

2
− 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2𝑙, 1), (1,2𝑑): 1 ≤ 𝑙 ≤
𝑚

2
; 1 ≤ 𝑙 ≤

𝑑

2
}.   

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(2,2), (2, 𝑛), (𝑚, 2), (𝑚, 𝑛)}.   

For 3 ≤ 𝑡 ≤
𝑚

2
+ 1: 

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑙, 𝑛 − 𝑙), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2) ∶ 0 ≤ 𝑙 ≤ 𝑡 − 2}. 

For 
𝑚

2
+ 1 < 𝑡 ≤

𝑛

2
+ 1 which means for 𝑡 =

𝑚

2
+ 1 + ℎ; 1 ≤ ℎ ≤

𝑛−𝑚

2
 and ℎ ∈ ℤ: 

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑝, 𝑛 − 𝑝), (𝑚 − 𝑙, 𝑡 − 𝑙), (𝑚 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2): 

0 ≤ 𝑙 ≤ 𝑡 − 2 − ℎ; ℎ ≤ 𝑝 ≤ 𝑡 − 2}. 

For 
𝑛

2
+ 1 < 𝑡 ≤

𝑛+𝑚

2
− 1 which means for 𝑡 =

𝑛

2
+ 1 +

𝑛−𝑚

2
+ 𝑥; 1 ≤ 𝑥 ≤

𝑚

2
− 2 and 𝑥 ∈ ℤ:  

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑝, 𝑛 − 𝑝), (𝑚 − 𝑙, 𝑡 − 𝑙), (𝑚 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2): 

𝑥 ≤ 𝑙 ≤ 𝑡 − 2 −
𝑛−𝑚

2
− 𝑥;

𝑛−𝑚

2
+ 𝑥 ≤ 𝑝 ≤ 𝑡 − 2 − 𝑥}. 

The process ends at step 𝑡 =
𝑚+𝑛

2
 for which 𝑥 =

𝑚

2
− 1 and: 

𝑆𝑚+𝑛
2

= 𝑆𝑚+𝑛
2
−1
∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑝, 𝑛 − 𝑝), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2):  

 
𝑚

2
− 1 ≤ 𝑙 ≤

𝑚

2
− 1;

𝑛

2
− 1 ≤ 𝑝 ≤

𝑛

2
− 1} = 𝑆𝑚+𝑛

2
−1
∪ {(

𝑚

2
+ 1,

𝑛

2
+ 1)} = 𝑉(𝐶𝑚 × 𝐶𝑛).  

Therefore, 𝑐2(𝐶𝑛 ◻ 𝐶𝑛) ≤
𝑚+𝑛

2
− 1 if 𝑚, 𝑛 are even and 𝑚 < 𝑛. 

Case 1.c. 𝑚 > 𝑛. 

This also means ⌈
𝑚+𝑛

2
⌉ − 1 =

𝑚+𝑛

2
− 1. The process goes as follows: 

𝑡 = 0: 𝑆0 = {(2𝑙 + 1,1), (1,2𝑑 + 1): 0 ≤ 𝑙 ≤
𝑚

2
− 1; 1 ≤ 𝑑 ≤

𝑛

2
− 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2𝑙, 1), (1,2𝑑): 1 ≤ 𝑙 ≤
𝑚

2
; 1 ≤ 𝑑 ≤

𝑛

2
}.   

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(2,2), (2, 𝑛), (𝑚, 2), (𝑚, 𝑛)}.   

For 3 ≤ 𝑡 ≤
𝑛

2
+ 1: 

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑙, 𝑛 − 𝑙), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2) ∶ 0 ≤ 𝑙 ≤ 𝑡 − 2}. 

For 
𝑛

2
+ 1 < 𝑡 ≤

𝑚

2
+ 1 which means for 𝑡 =

𝑛

2
+ 1 + ℎ; 1 ≤ ℎ ≤

𝑚−𝑛

2
 and ℎ ∈ ℤ: 

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑝, 𝑛 − 𝑝), (𝑚 − 𝑙, 𝑡 − 𝑙), (𝑚 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2): 

ℎ ≤ 𝑙 ≤ 𝑡 − 2; 0 ≤ 𝑝 ≤ 𝑡 − 2 − ℎ}. 

For 
𝑚

2
+ 1 < 𝑡 ≤

𝑛+𝑚

2
− 1 which means for 𝑡 =

𝑛

2
+ 1 +

𝑚−𝑛

2
+ 𝑥; 1 ≤ 𝑥 ≤

𝑛

2
− 2 and 𝑥 ∈ ℤ:  

𝑆𝑡 = 𝑆𝑡−1 ∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑝, 𝑛 − 𝑝), (𝑚 − 𝑙, 𝑡 − 𝑙), (𝑚 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2): 

𝑚−𝑛

2
+ 𝑥 ≤ 𝑙 ≤ 𝑡 − 2 − 𝑥; 𝑥 ≤ 𝑝 ≤ 𝑡 − 2 −

𝑚−𝑛

2
− 𝑥}. 

The process ends at step 𝑡 =
𝑚+𝑛

2
 for which 𝑥 =

𝑛

2
− 1 and: 

𝑆𝑚+𝑛
2

= 𝑆𝑚+𝑛
2
−1
∪ {(2 + 𝑙, 𝑡 − 𝑙), (𝑡 − 𝑙, 𝑛 − 𝑙), (𝑛 − 𝑙, 𝑡 − 𝑙), (𝑛 − 𝑙, 𝑛 − 𝑡 + 𝑙 + 2):  
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𝑚

2
− 1 ≤ 𝑙 ≤

𝑚

2
− 1;

𝑛

2
− 1 ≤ 𝑝 ≤

𝑛

2
− 1} = 𝑆𝑚+𝑛

2
−1
∪ {(

𝑚

2
+ 1,

𝑛

2
+ 1)} = 𝑉(𝐶𝑚 × 𝐶𝑛) which means  𝑐2(𝐶𝑛 ◻

𝐶𝑛) ≤
𝑚+𝑛

2
− 1 if 𝑚, 𝑛 are even and 𝑚 > 𝑛. 

From subcases 1.a, 1.b and 1.c we conclude that 𝑐2(𝐶𝑛 × 𝐶𝑛) ≤
𝑚+𝑛

2
− 1 if 𝑚, 𝑛 are even.  

Case 2. 𝑚, 𝑛 are odd. 

Let the seed set be 𝑆0 = {(2𝑙, 1), (1,2𝑑): 0 ≤ 𝑙 ≤
𝑚−1

2
; 1 ≤ 𝑑 ≤

𝑛−1

2
} which is of cardinality  

𝑚+𝑛

2
− 1 = ⌈

𝑚+𝑛

2
⌉ − 1. 

Case 3. 𝑚 is odd and 𝑛 is even. 

Let the seed set be 𝑆0 = {(2𝑙 + 1,1), (1,2𝑑 + 1): 0 ≤ 𝑙 ≤
𝑚−1

2
; 1 ≤ 𝑑 ≤

𝑛

2
− 1} which is of cardinality 

𝑚+𝑛−1

2
=

⌈
𝑚+𝑛

2
⌉ − 1. 

Case 4. 𝑚 is even and 𝑛 is odd. 

Let the seed set be 𝑆0 = {(2𝑙 + 1,1), (1,2𝑑 + 1): 0 ≤ 𝑙 ≤
𝑚

2
− 1; 1 ≤ 𝑑 ≤

𝑛−1

2
} which is of cardinality 

𝑚+𝑛−1

2
=

⌈
𝑚+𝑛

2
⌉ − 1. 

In Case 2, Case 3 and Case 4 we can track the conversion process in a similar way to Case 1. In Case 2, the process 

ends successfully at step 𝑡 =
𝑚+𝑛

2
 for which 𝑆𝑚+𝑛

2

= 𝑉(𝐶𝑚 × 𝐶𝑛). 

In Case 3 and Case 4, the process ends successfully at 𝑡 =
𝑚+𝑛−1

2
 and 𝑆𝑚+𝑛−1

2

= 𝑉(𝐶𝑚 × 𝐶𝑛) in both cases.  

From all the previous cases and subcases we conclude the requested.◻ 

2.2. 𝒄𝒌(𝑷𝒎 × 𝑷𝒏). 

In this sub-section, we determine 𝑐2(𝑃𝑚 × 𝑃𝑛) for 𝑚 = 2,3 and we present an upper bound for 𝑐2(𝑃𝑚 × 𝑃𝑛) when 

𝑚, 𝑛 are arbitraries. Then we determine 𝑐3(𝑃𝑚 × 𝑃𝑛) for 𝑚 = 3,4,5. Finally, we determine 𝑐4(𝑃𝑚 × 𝑃𝑛) when 𝑚, 𝑛 

arbitraries are. 

Theorem 2.3. For 𝑛 ≥ 2,  𝑐2(𝑃2 × 𝑃𝑛) = 2 ⌈
𝑛+1

2
⌉. 

Proof. It is obvious that 𝑉(𝑃2 × 𝑃𝑛) = 𝑄1 ∪ 𝑄2 only, where 𝑄1 = {(1,1), (1, 𝑛), (2,1), (2, 𝑛)} while 𝑄2 =
{(1, 𝑗), (2, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1}. Due to Proposition 1.1 and Proposition 1.5, we conclude that 𝑐2(𝑃2 × 𝑃𝑛) ≤

2 ⌈
𝑛+1

2
⌉. Since 𝑘 = 2, all vertices of 𝑄1 are 2-immune therefore they must be contained in the seed set 𝑆0 or else 

the process automatically fails. This means 𝑆0 = 𝑄1 ∪ 𝑀 where 𝑀 ⊂ 𝑄2. We notice that any two adjacent 

unconverted vertices 𝑢1, 𝑢2 ∈ 𝑄2 form a 2-unconvertable set since deg(𝑢1) = deg(𝑢2) = 2 and deg(𝑢1) −
|N(𝑢1) ∩ {𝑢1, 𝑢2}|=  deg(𝑢2) − |N(𝑢2) ∩ {𝑢1, 𝑢2}| = 1 < 𝑘. This means that neither of them can satisfy the 

conversion rule at any step of the process, therefore 𝑄2 −𝑀 must be independent, which means |𝑄2 −𝑀| ≤
𝛼(𝐺𝑄2). Since 𝐺𝑄2  represents a 𝑃2 × 𝑃𝑛−2 graph and due to Proposition 1.2, we conclude that |𝑄2 −𝑀| ≤

2 ⌈
𝑛−2

2
⌉. However, to make 𝑆0 as small as possible we make 𝑄2 −𝑀 as large as possible, therefore |𝑀| = |𝑄2| −

2 ⌈
𝑛−2

2
⌉. We consider the following cases for 𝑛: 

Case 1. 𝑛 is odd. 

Then |𝑀| = 2𝑛 − 4 − 2(
𝑛−1

2
) = 𝑛 − 3 and 𝑐2(𝑃2 × 𝑃𝑛) = |𝑆0| = |𝑀| + |𝑄1| = 𝑛 − 3 + 4 = 𝑛 + 1 = 2 ⌈

𝑛+1

2
⌉. 

We notice that 𝑆0 = {(1,2𝑙 + 1), (2,2𝑙 + 1): 0 ≤ 𝑙 ≤
𝑛−1

2
} is the only I2CS of cardinality 2 ⌈

𝑛+1

2
⌉ on 𝑃2 × 𝑃𝑛 when 

𝑛 is odd. 

Case 2. 𝑛 is even. 

Then |𝑀| = 2𝑛 − 4 − 2(
𝑛−2

2
) = 𝑛 − 2 and 𝑐2(𝑃2 × 𝑃𝑛) = |𝑆0| = |𝑀| + |𝑄1| = 𝑛 − 2 + 4 = 𝑛 + 2 = 2 ⌈

𝑛+1

2
⌉. 

We notice that: 
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𝑆0 = {(1,2𝑙 + 1), (2,2𝑙 + 1): 0 ≤ 𝑙 ≤
𝑛

2
− 1} ∪ {(1, 𝑛), (2, 𝑛)}, 

𝐵0 = {(1,2𝑙), (2,2𝑙): 1 ≤ 𝑙 ≤
𝑛

2
} ∪ {(1,1), (2,1)} 

are the only I2CSs of cardinality 2 ⌈
𝑛+1

2
⌉ on 𝑃2 × 𝑃𝑛 when 𝑛 is even. From both cases we prove the requested◻ 

Theorem 2.4. 𝑐2(𝑃3 × 𝑃𝑛) = {
 6 𝑖𝑓 𝑛 ∈ {3,4};  
𝑛 + 2 𝑖𝑓 𝑛 ≥ 5; 

 

 

Proof. As we implied in Remark 1,1, 𝑉(𝑃3 × 𝑃𝑛) can be divided into: 

𝑄1 = {(1,1), (1, 𝑛), (3,1), (3, 𝑛)}; 
 

𝑄2 = {(1, 𝑗), (3, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1 } ∪ {(2,1), (2, 𝑛)}; 
 

𝑄3 = {(2, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1 }. 
 

Let 𝑛 ≥ 10. Since 𝑘 = 2, then all vertices of 𝑄1 are 2-immune which means 𝑄1 ⊂ 𝑆0 otherwise, the process 

automatically fails. It also fails if one of the sets 𝑈𝑖: 1 ≤ 𝑖 ≤ 4 defined as: 

 𝑈1 = {(1,2), (2,1)}, 𝑈2 = {(2,1), (3,2)}, 𝑈3 = {(1, 𝑛 − 1), (2, 𝑛)}, 𝑈4 = {(2, 𝑛), (3, 𝑛 − 1)} satisfies that 𝑈𝑖 ∩
𝑆0 = ∅ because each vertex of 𝑈𝑖 is of degree 2 and is adjacent to one vertex of 𝑈𝑖 which makes 𝑈𝑖 2-

unconvertable. Therefore, we must include at least one vertex of 𝑈𝑖 in 𝑆0. For 3 ≤ 𝑗 ≤ 𝑛 − 2 We define some 2-

uncorvetable sets on 𝑃3 × 𝑃𝑛 as: 

𝑊𝑗 = {(1, 𝑗 − 1), (1, 𝑗 + 1), (2, 𝑗), (3, 𝑗 − 1)}; 

𝑋𝑗 = {(1, 𝑗 − 1), (1, 𝑗 + 1), (2, 𝑗), (3, 𝑗 + 1)}; 

𝑌𝑗 = {(1, 𝑗 − 1), (2, 𝑗), (3, 𝑗 − 1), (3, 𝑗 + 1)}; 

𝑍𝑗 = {(1, 𝑗 + 1), (2, 𝑗), (3, 𝑗 − 1), (3, 𝑗 + 1)}. 

Each version of these sets is 2-unconvertable because it consists of: 

 Three vertices of degree 1 that are adjacent to one vertex of the same set. 

 One vertex of degree 4 that is adjacent to three vertices of the same set. 

Figure 3 shows that 𝑊3, 𝑋3, 𝑌3 and 𝑍3 are 2-unconvertable on 𝑃3 × 𝑃5 even if all the remaining vertices of 𝑉 were 

included in 𝑆0. (In Figure 3 we denote the vertices of 𝑊3 by {𝑤1, 𝑤2, 𝑤3, 𝑤4} and we use the same notation for 

𝑋3, 𝑌3 and 𝑍3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2-unconvertable 𝑊3, 𝑋3, 𝑌3 and 𝑍3 on 𝑃3 × 𝑃5. 

 

Let us now try to distribute only three vertices from 𝑆0 on the four columns 𝐶𝑂4, 𝐶𝑂5, 𝐶𝑂6, 𝐶𝑂7 without leaving 

any unconverted version of  𝑊𝑗 , 𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗: 𝑗 ∈ {5,6}. We consider the following cases: 
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Case 1. (2,5), (2,6) ∉ 𝑆0. Let (1,4), (3,4), (1,7) ∈ 𝑆0. This would leave 𝑌6 unconverted therefore 2-unconvertable 

and the process fails. Without loss of generality, a version of a 2-unconvertable set will be left if we do not include 

any of (2,4), (2,5) in 𝑆0. 

Case 2. Only one of (2,5), (2,6) belongs to 𝑆0. We assume that (2,5) ∈ 𝑆0 taking into consideration that without 

loss of generality, the same argument applies if (2,6) ∈ 𝑆0. Since (2,5) ∈ 𝑆0, this leaves two converted vertices to 

be distributed in a way that does not leave any of 𝑊6, 𝑋6, 𝑌6, 𝑍6 unconverted. This is achievable if the two converted 

vertices were two vertices from {(1,5), (1,7), (3,5), (3,7)}.  

Let us discuss the possibilities of the two chosen converted vertices in regards to the following sets: 

𝐵1 = {(1,5), (2,4)}, 𝐵2 = {(2,4), (3,5)}, 𝐵3 = {(1,6), (2,7)}, 𝐵4 = {(2,7), (3,6)}. 
Case 2.a. The two converted vertices are (1,5), (3,5). This would prevent leaving any of 𝑊6, 𝑋6, 𝑌6, 𝑍6 

unconverted. However, it would also leave 𝐵3, 𝐵4 fully unconverted, we notice that we need to include both 

(1,8), (3,8) in 𝑆0 to avoid having unconverted 𝑊7, 𝑋7, 𝑌7, 𝑍7.This means we need to include five vertices from the 

five columns 𝐶𝑂𝑗: 4 ≤ 𝑗 ≤ 8 in 𝑆0 or else the process automatically fails. 

Case 2.b. Only one of the two chosen converted vertices belongs to {(1,5), (3,5)}, if it is (1,5), then 𝐵2 , 𝐵3, 𝐵4 

are all left unconverted therefore in addition to (1,8), (3,8) we need to include one vertex from {(1,3), (3,3)} in 

𝑆0 to avoid leaving 𝑌4 unconverted. This means we need to include six vertices from the six columns 𝐶𝑂𝑗: 3 ≤ 𝑗 ≤

8 in 𝑆0 or else the process automatically fails. Without loss of generality, the same result is obtained if (3,5) ∈ 𝑆0. 

Case 2.c. In order to prevent leaving any of 𝐵1, 𝐵2 , 𝐵3, 𝐵4 entirely unconverted, we need the two chosen converted 

vertices to be (2,4), (2,7). However, that would leave 𝑊6, 𝑋6, 𝑌6, 𝑍6 unconverted and the process automatically 

fails. 

From all the cases and subcases and without loss of generality we conclude that the  𝑛 − 4 columns 𝐶𝑂𝑗 : 3 ≤ 𝑗 ≤

𝑛 − 2 must include 𝑛 − 4 vertices of 𝑆0, and since we need to include 𝑄1 and one vertex from each of 𝑈1, 𝑈2, 𝑈3, 𝑈4 

in 𝑆0 (which means we need at least two vertices from 𝑈1, 𝑈2, 𝑈3, 𝑈4), then |𝑆0| ≥ |𝑄1| + 2 + 𝑛 − 4. We conclude 

that for 𝑛 ≥ 10: 

 

                                                     𝑐2(𝑃3 × 𝑃𝑛) ≥ 𝑛 + 2                                                        (3) 

 

Let the seed set be 𝑆0 = 𝑄1 ∪ {(2,1). (2, 𝑛)} ∪ {(2, 𝑗): 3 ≤ 𝑗 ≤ 𝑛 − 2} which is of cardinality  𝑛 + 2. The process 

goes as follows: 

 

 𝑡 = 0: 𝑆0 = 𝑄1 ∪ {(2,1), (2, 𝑛)} ∪ {(2, 𝑗): 3 ≤ 𝑗 ≤ 𝑛 − 2}.  

 𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(1, 𝑗), (3, 𝑗): 4 ≤ 𝑗 ≤ 𝑛 − 3} ∪ {(1,2), (1, 𝑛 − 1), (3,2). (3, 𝑛 − 1)}. 
 

 𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(1,3), (1, 𝑛 − 2), (3,3), (3, 𝑛 − 2)} = 𝑉(𝑃3 × 𝑃𝑛). This means 𝑆0 is an I2CS on 𝑃3 × 𝑃𝑛 and 

𝑐2(𝑃3 × 𝑃𝑛) ≤ 𝑛 + 2. From (3) we conclude that 𝑐2(𝑃3 × 𝑃𝑛) = 𝑛 + 2 for 𝑛 ≥ 10. Let us now discuss the lower 

values for 𝑛. 

It is easy to notice that the same argument used above applies to 𝑃3 × 𝑃𝑛 when 5 ≤ 𝑛 < 10 and for each 5 ≤ 𝑖 <

10; 𝑆0
𝑖 consists of: 

 𝑄1. 

 two vertices from 𝑈1 ∪ 𝑈2 ∪ 𝑈3 ∪ 𝑈4. 

 𝑛 − 4 vertices from ⋃ 𝐶𝑂𝑗
𝑗=𝑛−2
𝑗=3 . 

It is also obvious that 𝑐2(𝑃3 × 𝑃3) = 𝑐2(𝑃3 × 𝑃4) = 6 and 𝑆0 = 𝑄1 ∪ {(2,1). (2, 𝑛)} could be the seed set for both 

of them. From all the above we conclude the requested.◻ 

 

Theorem 2.5. For 𝑚, 𝑛 ≥ 4;  𝑐2(𝑃𝑚 × 𝑃𝑛) ≤

{
 
 

 
 4 ⌊

𝑚−2

4
⌋ + 𝑛 + 6  𝑖𝑓 𝑚 ≡ 0,1(𝑚𝑜𝑑 4);

4 ⌊
𝑚−2

4
⌋ + 𝑛 + 2  𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 4);    

4 ⌊
𝑚−2

4
⌋ + 𝑛 + 4  𝑖𝑓 𝑚 ≡ 3(𝑚𝑜𝑑 4).   

 

Proof. We consider the following cases for 𝑚, 𝑛: 
Case 1. 𝑚 ≡ 0(𝑚𝑜𝑑 4) and 𝑛 is arbitrary.  
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Let the seed set be 𝑆0 = {(4𝑙 + 1,1), (4𝑙 + 2,1), (4𝑙 + 1, 𝑛), (4𝑙 + 2, 𝑛): 0 ≤ 𝑙 ≤ ⌊
𝑚−2

4
⌋ − 1} ∪

{(𝑝, 1), (𝑝, 𝑛):𝑚 − 3 ≤ 𝑝 ≤ 𝑚} which is of cardinality 4 ⌊
𝑚−2

4
⌋ + 𝑛 + 6. The process goes as follows: 

𝑡 = 0: 𝑆0 = {(4𝑙 + 1,1), (4𝑙 + 2,1), (4𝑙 + 1, 𝑛), (4𝑙 + 2, 𝑛): 0 ≤ 𝑙 ≤ ⌊
𝑚−2

4
⌋ − 1} ∪ {(𝑝, 1), (𝑝, 𝑛):𝑚 − 3 ≤ 𝑝 ≤

𝑚}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {(𝑚 − 2,2), (𝑚 − 2, 𝑛 − 1), (𝑚 − 1,2),  

(𝑚 − 1, 𝑛 − 1)}.  

For 2 ≤ 𝑡 ≤ 𝑚 − 5:  

If 𝑡 ≡ 0,1(𝑚𝑜𝑑 4); 𝑆𝑡 = 𝑆𝑡−1 ∪ {(𝑡 + 1, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {(𝑡 − 1,1), (𝑡 − 1, 𝑛)}. 

If 𝑡 ≡ 2,3(𝑚𝑜𝑑 4); 𝑆𝑡 = 𝑆𝑡−1 ∪ {(𝑡 + 1, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {(𝑡 − 1,1), (𝑡 − 1, 𝑛)}. 

The final steps go as follows: 

𝑡 = 𝑚 − 4: 𝑆𝑚−4 = 𝑆𝑚−5 ∪ {(𝑚 − 3, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {(𝑚 − 5,1), (𝑚 − 5, 𝑛)}.  

𝑡 = 𝑚 − 3: 𝑆𝑚−3 = 𝑆𝑚−4 ∪ {(𝑚 − 2, 𝑙): 3 ≤ 𝑙 ≤ 𝑛 − 2} ∪ {(𝑚 − 4,1), (𝑚 − 4, 𝑛)}. 

𝑡 = 𝑚 − 2: 𝑆𝑚−2 = 𝑆𝑚−3 ∪ {(𝑚 − 1, 𝑙): 3 ≤ 𝑙 ≤ 𝑛 − 2}. 

The process ends successfully at step 𝑡 = 𝑚 − 1 for which: 

𝑆𝑚−1 = 𝑆𝑚−2 ∪ {(𝑚, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1} = 𝑉(𝑃𝑚 × 𝑃𝑛). We conclude that 𝑆0 is an I2CS on 𝑃𝑚 × 𝑃𝑛 . Therefore 

𝑐2(𝑃𝑚 × 𝑃𝑛) ≤ 4 ⌊
𝑚−2

4
⌋ + 𝑛 + 6 if 𝑚 ≡ 0(𝑚𝑜𝑑 4) and 𝑛 is arbitrary. Figure 4 illustrates that 𝑐2(𝑃8 × 𝑃10) ≤ 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 𝑐2(𝑃8 × 𝑃10) ≤ 20.  

 

Case 2. 𝑚 ≡ 1(𝑚𝑜𝑑 4) and 𝑛 is arbitrary.  

We choose 𝑆0 = {(4𝑙 + 1,1), (4𝑙 + 2,1), (4𝑙 + 1, 𝑛), (4𝑙 + 2, 𝑛): 0 ≤ 𝑙 ≤ ⌊
𝑚−2

4
⌋ − 1} ∪ {(𝑚 − 4,1), (𝑚 −

4, 𝑛), (𝑚 − 3,1), (𝑚 − 3, 𝑛), (𝑚 − 1,1), (𝑚 − 1, 𝑛), (𝑚, 1), (𝑚, 𝑛)} which is of cardinality 4 ⌊
𝑚−2

4
⌋ + 𝑛 + 6. 

Case 3. 𝑚 ≡ 2(𝑚𝑜𝑑 4) and 𝑛 is arbitrary.  
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We choose 𝑆0 = {(4𝑙 + 1,1), (4𝑙 + 2,1), (4𝑙 + 1, 𝑛), (4𝑙 + 2, 𝑛): 0 ≤ 𝑙 ≤ ⌊
𝑚−2

4
⌋ − 1} ∪ {(𝑚 − 1,1), (𝑚 −

1, 𝑛), (𝑚, 1), (𝑚, 𝑛)} which is of cardinality 4 ⌊
𝑚−2

4
⌋ + 𝑛 + 2. 

Case 4. 𝑚 ≡ 3(𝑚𝑜𝑑 4) and 𝑛 is arbitrary.  

We choose 𝑆0 = {(4𝑙 + 1,1), (4𝑙 + 2,1), (4𝑙 + 1, 𝑛), (4𝑙 + 2, 𝑛): 0 ≤ 𝑙 ≤ ⌊
𝑚−2

4
⌋ − 1} ∪ {(𝑝, 1), (𝑝, 𝑛):𝑚 − 3 ≤

𝑝 ≤ 𝑚} which is of cardinality 4 ⌊
𝑚−2

4
⌋ + 𝑛 + 4. 

In Case 2, Case 3 and Case 4 we can track the conversion process in a similar way to Case 1 and in all these cases 

the process ends successfully at 𝑡 = 𝑚 − 1 with 𝑆𝑚−1 = 𝑆𝑚−2 ∪ {(𝑚, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1} = 𝑉(𝑃𝑚 × 𝑃𝑛).  

From all the cases we conclude the requested.◻ 

Theorem 2.6. For 𝑛 ≥ 3: 

i. 𝑐3(𝑃3 × 𝑃𝑛) = 2𝑛 + 2. 

ii. 𝑐3(𝑃4 × 𝑃𝑛) = 2𝑛 + 4. 

Proof. We consider the following cases for 𝑚: 

 Case 1. 𝑚 = 3.  

Since 𝑘 = 3, then all vertices of 𝑄1 ∪ 𝑄2 are 3-immuned and they must be contained in the seed set or else the 

process fails. This means 𝑐3(𝑃3 × 𝑃𝑛) ≥ |𝑄1 ∪ 𝑄2| = 2𝑛 + 2, Now Let 𝑆0 = 𝑄1 ∪ 𝑄2 be the seed set. The process 

goes as follows: 

 𝑡 = 0: 𝑆0 = 𝑄1 ∪ 𝑄2.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ 𝑄3 = 𝑉(𝑃3 × 𝑃𝑛). Therefore 𝑆0 is an I3CS on 𝑃3 × 𝑃𝑛 and 𝑐3(𝑃3 × 𝑃𝑛) ≤ 2𝑛 + 2 which means 

𝑐3(𝑃3 × 𝑃𝑛) ≤ 2𝑛 + 2. 

 Case 2. 𝑚 = 4. In this case: 

𝑄1 = {(1,1), (1, 𝑛), (4,1), (4, 𝑛)}; 
  

𝑄2 = {(1, 𝑗), (4, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1 } ∪ {(2,1), (2, 𝑛), (3,1), (3, 𝑛)}; 
 

𝑄3 = {(2, 𝑗), (3, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1 } 
In a similar way to Case 1, 𝑆0 = 𝑄1 ∪ 𝑄2 which is of cardinality 2𝑛 + 4 and the process goes as follows: 

𝑡 = 0: 𝑆0 = 𝑄1 ∪ 𝑄2.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ 𝑄3 = 𝑉(𝑃4 × 𝑃𝑛). Then 𝑆0 is an I3CS on 𝑃4 × 𝑃𝑛 and we conclude that  𝑐3(𝑃4 × 𝑃𝑛) = 2𝑛 + 4.  

From Case 1 and Case 2 we conclude the requested.◻ 

Theorem 2.7. For 𝑛 ≥ 5; 𝑐3(𝑃5 × 𝑃𝑛) = {
2𝑛 + 6 + ⌊

𝑛−2

4
⌋  𝑖𝑓 𝑛 ≡ 0,2,3(𝑚𝑜𝑑 4);

2𝑛 + 7 + ⌊
𝑛−2

4
⌋ 𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 4).        

 

Proof. For 𝑚 = 5 we have: 

𝑄1 = {(1,1), (1, 𝑛), (5,1), (5, 𝑛)}; 
  

𝑄2 = {(1, 𝑗), (5, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1 } ∪ {(2,1), (2, 𝑛), (3,1), (3, 𝑛), (4,1), (4, 𝑛)}; 
 

𝑄3 = {(2, 𝑗), (3, 𝑗), (4, 𝑗): 2 ≤ 𝑗 ≤ 𝑛 − 1 }. 

Since 𝑘 = 3, all vertices of 𝑄1 ∪ 𝑄2 must be included in 𝑆0, it is obvious that |𝑄1 ∪ 𝑄2| = 2𝑛 + 6. We define the 

sets 𝑈𝑗: 2 ≤ 𝑗 ≤ 𝑛 − 3 as 𝑈𝑗 = {(3, 𝑗), (2, 𝑗 + 1), (4, 𝑗 + 1), (3, 𝑗 + 2)}. We notice that for any j if 𝑈𝑗 ∩ 𝑆0 = ∅ 

then 𝑈𝑗 is 3-unconvertable because each vertex of 𝑢 ∈ 𝑈𝑗 is of degree 4 and is adjacent to two vertices of  𝑈𝑗. 

Figure 5 shows that 𝑈3 is 3-unconvertable on  𝑃5 × 𝑃5 if 𝑈3 ∩ 𝑆0 = ∅ even when 𝑆0 = 𝑉 − 𝑈3. 
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Figure 5. 3-unconvertable 𝑈3 on 𝑃5 × 𝑃5. 

This means every set {(2, 𝑗), (3, 𝑗), (4, 𝑗), (2, 𝑗 + 1), (3, 𝑗 + 1), (4, 𝑗 + 1), (2, 𝑗 + 2), (3, 𝑗 + 2), (4, 𝑗 + 2), (2, 𝑗 +
3), (3, 𝑗 + 3), (4, 𝑗 + 3): 2 ≤ 𝑗 ≤ 𝑛 − 4 } must contain at least two vertices of 𝑆0, otherwise at least one version 

of 𝑈𝑗 ∩ 𝑆0 = ∅  will be left on 𝑃5 × 𝑃𝑛 and the process will fail. To avoid that we need to include at least ⌊
𝑛−2

4
⌋ 

vertices of 𝑄3 in 𝑆0 if 𝑛 ≡ 0,2,3(mod 4) while we need to include ⌊
𝑛−2

4
⌋ + 1 vertices of 𝑄3 in 𝑆0 if 𝑛 ≡ 1(mod 4).  

We conclude that: 

                           𝑐3(𝑃5 × 𝑃𝑛) ≥ {
2𝑛 + 6 + ⌊

𝑛−2

4
⌋  𝑖𝑓 𝑛 ≡ 0,2,3(𝑚𝑜𝑑 4);

2𝑛 + 7 + ⌊
𝑛−2

4
⌋ 𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 4).        

                              (4) 

We consider the following cases for 𝑛: 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 4). 

Let the seed set be 𝑆0 = 𝑄1 ∪ 𝑄2 ∪ {(3,4𝑙 + 4), (3,4𝑙 + 5): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1} which is of cardinality 2𝑛 + 6 +

⌊
𝑛−2

4
⌋. The process goes as follows: 

𝑡 = 0: 𝑆0 = 𝑄1 ∪ 𝑄2 ∪ {(3,4𝑙 + 4), (3,4𝑙 + 5): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2, 𝑙), (4, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1}. 

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(3,4𝑙 + 2), (3,4𝑙 + 3): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1} = 𝑉(𝑃5 × 𝑃𝑛) which means 𝑆0 is an I3CS on 𝑃5 ×

𝑃𝑛. Therefore, 𝑐3(𝑃5 × 𝑃𝑛) ≤ 2𝑛 + 6 + ⌊
𝑛−2

4
⌋. From (4) we conclude that 𝑐3(𝑃5 × 𝑃𝑛) = 2𝑛 + 6 + ⌊

𝑛−2

4
⌋ if 𝑛 ≡

0(𝑚𝑜𝑑 4) 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 4). 

We choose 𝑆0 = 𝑄1 ∪ 𝑄2 ∪ {(3,4𝑙 + 4), (3,4𝑙 + 5): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1} ∪ {(3, 𝑛 − 1)} which is of cardinality 

2𝑛 + 7 + ⌊
𝑛−2

4
⌋. The process as follows: 

𝑡 = 0: 𝑆0 = 𝑄1 ∪ 𝑄2 ∪ {(3,4𝑙 + 4), (3,4𝑙 + 5): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2, 𝑙), (4, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1}. 

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(3,4𝑙 + 2), (3,4𝑙 + 3): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1} = 𝑉(𝑃5 × 𝑃𝑛). 

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 4). 

𝑡 = 0: 𝑆0 = 𝑄1 ∪ 𝑄2 ∪ {(3,4𝑙 + 4), (3,4𝑙 + 5): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2, 𝑙), (4, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1}. 

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(3,4𝑙 + 2), (3,4𝑙 + 3): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1} = 𝑉(𝑃5 × 𝑃𝑛).  

Case 4. 𝑛 ≡ 3(𝑚𝑜𝑑 4). 
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𝑡 = 0: 𝑆0 = 𝑄1 ∪ 𝑄2 ∪ {(3,4𝑙 + 4), (3,4𝑙 + 5): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1}.  

𝑡 = 1: 𝑆1 = 𝑆0 ∪ {(2, 𝑙), (4, 𝑙): 2 ≤ 𝑙 ≤ 𝑛 − 1}. 

𝑡 = 2: 𝑆2 = 𝑆1 ∪ {(3,4𝑙 + 2), (3,4𝑙 + 3): 0 ≤ 𝑙 ≤ ⌊
𝑛−2

4
⌋ − 1} ∪ {(3, 𝑛 − 1)} = 𝑉(𝑃5 × 𝑃𝑛).  

From all the cases we conclude the requested.◻ 

Theorem 2.8. For 𝑚, 𝑛 ≥ 3; 

𝑐4(𝑃𝑚 × 𝑃𝑛) = {
𝑛𝑚 −max{(𝑛 − 2) ⌈

𝑚−2

2
⌉ , (𝑚 − 2) ⌈

𝑛−2

2
⌉}  if m or n is odd;

𝑚𝑛+2𝑚+2𝑛−4 

2
 if m and n are even.                                             

. 

Proof. Since 𝑘 = 4, all vertices of 𝑄1 ∪ 𝑄2 must be included in 𝑆0. Otherwise, the process automatically fails. 

Since every 𝑢 ∈ 𝑄3 is of degree 4, there cannot be two adjacent unconverted vertices of 𝑄3 at 𝑡 = 0 or else neither 

one of these two vertices will satisfy the conversion rule at any step of the process, therefore the process fails. To 

avoid that, 𝑄3 − 𝑆0 must be independent. In order to make 𝑆0 as small as possible, we try to make 𝑄3 − 𝑆0 as large 

as possible, thus 𝑄3 − 𝑆0 must be the largest independent set of the graph 𝐺𝑄3  which is induced by 𝑄3 on 𝑃𝑚 × 𝑃𝑛, 

which means |𝑄3 − 𝑆0| = 𝛼(𝐺𝑄3). We notice that 𝐺𝑄3  represents a 𝑃𝑚−2 × 𝑃𝑛−2 graph. Therefore, due to 

Proposition 1.2, we have 𝛼(𝐺𝑄3) = 𝛼(𝑃𝑚−2 × 𝑃𝑛−2) = max {𝛼(𝑃𝑚−2)|𝑃𝑛−2|, 𝛼(𝑃𝑛−2)|𝑃𝑚−2|} and the smallest 

seed set 𝑆0 on 𝑃𝑚 × 𝑃𝑛 that contains  𝑄1 ∪ 𝑄2 and guarantees not leaving two adjacent unconverted vertices from 

𝑄3 is of cardinality: 

 |𝑆0| = |𝑄1| + |𝑄2| + |𝑄3| − 𝛼(𝑃𝑚−2 × 𝑃𝑛−2). 

This means: 

𝑐4(𝑃𝑚 × 𝑃𝑛) = 𝑛𝑚 −max{(𝑛 − 2) ⌈
𝑚−2

2
⌉ , (𝑚 − 2) ⌈

𝑛−2

2
⌉}. However, in case 𝑚, 𝑛 are even, then ⌈

𝑚−2

2
⌉ =

𝑚−2

2
 and 

⌈
𝑛−2

2
⌉ =

𝑛−2

2
, then max{(𝑛 − 2) ⌈

𝑚−2

2
⌉ , (𝑚 − 2) ⌈

𝑛−2

2
⌉} =

(𝑚−2)(𝑛−2)

2
 which means 𝑐4(𝑃𝑚 × 𝑃𝑛) = 𝑛𝑚 −

(𝑚−2)(𝑛−2)

2
=

𝑚𝑛+2𝑚+2𝑛−4

2
 and we prove the requested.◻ 

3. Recommendations and conclusion 

In this paper, we study IkCSs of toroidal grids and the tensor product of two paths. We determine 𝑐2(𝐶3 × 𝐶𝑛) and 

we present upper and lower bounds for 𝑐2(𝐶𝑚 × 𝐶𝑛) for 𝑚, 𝑛 ≥ 3. We also determine 𝑐2(𝑃2 × 𝑃𝑛), 𝑐2(𝑃3 × 𝑃𝑛) 
and present an upper bound for 𝑐2(𝑃𝑚 × 𝑃𝑛) when 𝑚, 𝑛 > 3. Then we determine 𝑐3(𝑃𝑚 × 𝑃𝑛) for 𝑚 = 2,3,4 and 

arbitrary 𝑛. Finally, we determine 𝑐4(𝑃𝑚 × 𝑃𝑛) for arbitrary 𝑚, 𝑛. 

In the future, we recommend the interested researchers in graph theory generally, and in neutrosophic graph theory 

as a special case, to try to generalize our results from classical graph products to direct neutrosophic graph 

products. In addition, the same result can be applied on fuzzy graphs products to obtain similar results. 
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