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spread over remote locations. In maximum cases it has been 
found that the equipment failure is due to insulation break-
down, this issue arises from weaknesses, defects, impuri-
ties, and degradation in insulation materials. Research has 
indicated that structural defects and weaknesses in insu-
lation can cause localized discharges, partially bridging 
the insulation between conductors. This phenomenon is 
referred to as partial discharge (PD) [1]. The PD starting 

1  Introduction

One among the basic needs for sustaining life nowadays is 
Electricity, therefore for a consumer uninterrupted power 
supply is a vital issue. It becomes a primary concern in a 
power transmission and distribution system to constantly 
monitor the equipment that are distributed over a large area. 
It is a tedious job when the machineries are decade old and 
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Abstract
The weakness or defect in electrical insulations used in High Voltage operations always leads to generation of partial dis-
charges (PD). Partial discharges (PD) are a common by product of insulation defects in high-voltage systems. Detecting 
PD is a crucial aspect of power system condition monitoring. The nature of PD signals varies depending on their source, 
and large substations often have multiple PD sources. Ultra-high frequency (UHF) sensors offer a cost-effective and safe 
method for PD detection. Multiple sensors can be mounted around a substation, capturing a mixed PD signal. The Sepa-
rating individual PD signals from this mix is challenging. The Techniques like the Gaussian mixture model (GMM) and 
Self-Organizing Feature Map (SOFM) have shown promise in this task. GMM uses time and frequency domain features, 
while SOFM employs continuous wavelet transform (CWT) time-frequency features. This study compares the effective-
ness of these techniques for PD detection and localization using both laboratory and field experiments.
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from a point with a small magnitude of electrical discharge 
led to complete breakage of the insulation system with suc-
cessive occurrence over the time. So early detection of PD, 
can be a preventive measure for power supply failure [1, 2].

When partial discharge (PD) occurs within an insula-
tor, it leads to electron breakdown avalanche of streamers, 
which acoustic generate waves, electromagnetic waves in 
the band of RF/UHF, optical frequencies, and heat energy 
[3]. Conventional techniques for detecting partial discharge 
(PD), like the IEC 60270 method, involve using a coupling 
capacitor to make direct contact with the test system in 
order to measure the short current pulses produced by PDs. 
Although this approach is precise, it necessitates physical 
contact with the high voltage terminal. Due to the limita-
tions of this approach, various alternative techniques have 
been developed over the past few decades [4]. These include 
chemical detection methods that examine changes in the 
insulation’s chemical configuration, high-frequency acous-
tic wave detection, RF/UHF electromagnetic wave detec-
tion, and optical signal detection [5, 6].

In contrast to the limitations of the acoustic method, the 
UHF/RF based sensor non-contact type PD system have 
been established that provide more practical and economi-
cal solution. The UHF band frequency signal radiated from 
the PD is about 100–900 MHz, which is much higher than 
the acoustic signal, so it can travel longer distance with 
lesser attenuation. Moreover, placement of the RF/UHF 
is safer and it imposes lesser equipment than the acoustic 
method, and it is possible to monitor a large power system 
with more accuracy. Previous studies have explored various 
techniques for identifying and locating multiple PD sources 
using multiple sensors. In one of the previous works [7, 8], 
the Continuous Wavelet Features (CWT) have been used for 
PD detection. These methods have demonstrated correla-
tion with established standards like IEC60270 and acoustic 
emission analysis [8, 9].

Among the well-established techniques, ultrasonic 
method is most popular non-contact type method for PD 
detection and localization in all around the globe. This 
technique utilizes multiple ultrasonic sensors to detect the 
acoustic waves generated by the PD source within the fre-
quency range of 30–300 kHz [4, 9]. However, it has certain 
limitations, such as the challenge of placing piezoelectric 
sensors close to high electric fields and minimizing the 
attenuation of high-frequency acoustic waves. Therefore, 
the application of this method more equipment specific and 
primarily designed for critical equipment of the power sys-
tem, i.e., transformer.

In the RF/UHF sensor method, a suitable array antenna 
is located around the PD source to capture UHF signal. The 
antennas are placed at different locations, so that the time 
difference of arrival (TDOA) of signals at different locations 

can be calculated and further used to find the exact PD loca-
tion. Different works have emphasized on use of different 
antennas considering various aspects of the antenna proper-
ties like sensitivity, directivity, band width of the captured 
signals, gain of the antenna [10]. Also, some of the works 
focused on installing the antenna for complete detection of 
PD sources in a power system like substation, rather placing 
specific sensors like transformer tank [6]. The characteristic 
of PD signal is very much dynamic in nature, as it varies 
with electrode pair combination, insulation material defect 
used between the electrodes, voltage of operation and tem-
perature. The propagation velocity of RF/UHF EM wave 
signals is very high compared to acoustic signals and very 
prone to surrounding noises of the same frequency range 
comes from multiple PD occurrence in the power system, 
other high frequency sources and same signal reflected by 
the reflecting surfaces. Also, determining accurate arrival 
delay times is hindered by the limitations of high-frequency 
digitizers. Additionally, UHF PD waveforms can follow 
multiple propagation paths, altering their impulsive nature. 
Researchers have explored various techniques, includ-
ing first peak, cross-correlation, cumulative energy, and 
GCCPHAT, to estimate time differences of arrival (TDOA) 
accurately. These TDOA estimates are then used for both 
source detection and localization [11, 12].

Previous studies have primarily relied on time-domain 
characteristics of impulsive PD signals, including envelope 
[13], statistical properties, and time delay [11], for detec-
tion and localization. Additionally, time-power ratio maps 
have been used to differentiate various PD types [14]. While 
PD signatures exhibit variations in the frequency domain, 
researchers have investigated both time and frequency 
domain analyses for source separation. Combining time and 
frequency domain features offers distinct advantages over 
separate analyses for PD detection. The wavelet transform 
of any signal provides frequencies at time instances, so the 
time-frequency based information both separately and com-
binedly extracted from the nonstationary pulsating RF PD 
signals and can be used for PD detection. In [15] the authors 
have applied wavelet-based technique for de-noising of PD 
signal by considering automatic decomposition levels for 
filtering.

Since energy levels vary across different wavelet trans-
form levels, the authors in [15] employed wavelets to clus-
ter groups of RF PD signals. They used wavelet-based 
features, including skewness, kurtosis, and energy levels, to 
classify PD sources [16]. Researchers have proposed super-
vised neural network models for this classification task, 
requiring prior training data from the monitored substation. 
However, obtaining adequate training data for new substa-
tions can be challenging. To address this, blind source sepa-
ration algorithms have been implemented to separate mixed 
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time-domain signals received by sensors, facilitating signal 
identification [17]. Due to the limitations of the supervised 
learning, the unsupervised techniques are proved to be more 
efficient. In [7] Gaussian Mixture Model (GMM) based 
unsupervised technique and in [8] Self Organized Feature 
Map (SOFM) based unsupervised classification techniques 
have been applied on different PD extracted features. These 
features are from both time and frequency domain-based 
features and the results have been obtained are very much 
satisfactory. As, both the techniques have been tested on 
laboratory and field-based experiments, so more compara-
tive study between the two established techniques is needed. 
It may help us to establish one suitable solution in finding 
an efficient PD classification technique and further may help 
us for customize the error in PD detection and localization. 
In the present study the efficiency of two unsupervised tech-
niques is compared for classification of the PD sources.

This study presents a method for automatically detect-
ing and localizing individual PD sources within the power 
system, as shown in Fig.  1. Impulse waveforms of PD 
were collected from field-based UHF antenna sensors over 
extended periods. These waveforms were pre-processed for 
feature extraction. While multiple reflections from various 
surfaces can alter the impulse waveform shape, the funda-
mental frequency domain features of a specific PD source 
remain relatively invariant. After pre-processing of the sig-
nal, the wavelet transform of the signal segments are taken 
and further wavelet-based signal features are extracted from 

them. These features collected from a particular sensor then 
arranged to form a feature matrix which is further used by 
the classifier technique to find the PD signal source. Con-
sidering different situations and data parameters, many fea-
ture matrices have been made for testing. For finding the 
efficient classifier, the two well established unsupervised 
classification techniques have been tested, i.e., Gaussian 
Mixture Model (GMM) and the self-organizing feature 
map (SOFM) through ML algorithm based model. To esti-
mate time-delay-of-arrival (TDOA) for source localization, 
a subset of the best-classified signal segments, along with 
their corresponding waveforms from the other three sensors, 
were used. For improved accuracy, the average of the loca-
tions from this subset was calculated.

2  Materials and Testing Procedure

This study investigates the characteristics of PD-related sig-
natures in radiated UHF signals, including variations across 
different PD sources and noise. To facilitate these investiga-
tions, we developed an array of microstrip patch antennas 
with a bandwidth of 200–800 MHz and a center frequency 
of 500  MHz with signal conditioning and amplification 
circuitry are associated. The following sections detail the 
sensors of UHF, signal acquisition, and both laboratory and 
field-based testing procedures.

Fig. 1  Flow diagram of the pro-
posed scheme
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for better high frequency operations and for control and 
regulation.

2.2  Testing in Laboratory

Lab tests were performed with various artificial PD sources. 
These sources involved a pair of closely spaced electrodes, 
one charged and the other grounded, with an insulating sub-
stance between them. To analyses the impact of insulating 
material, electrode type, and electrode gap on radiated UHF 
signals, extensive experiments were performed. Different 
electrode combinations, including sphere-sphere, needle-
flat, and flat-flat, were tested with various insulating materi-
als (oil, air, solid) and gap lengths. Solid insulators included 
acrylic discs, kraft paper, and oil-impregnated paper, while 
transformer oil and natural air were used as liquid and gas 
dielectrics, respectively. Tests were also done using solid 
insulation with varying void sizes. Figure 3a and b illustrate 
the lab experiment and its functional block diagram.

For artificial PD source excitation, PD sources i.e., one of 
300 kV and other two of 100 kV (as shown in Fig. 3), have 
been used. Four identical UHF signal sensing units, each 
equipped with a micro-strip patch antenna, filter, and ampli-
fier, were strategically positioned to capture radiated RF 
impulsive waveforms from single or multiple sources. The 
amplified signals were sent to a high-speed digitizer with 
a maximum sampling rate of 5 giga samples per second. 
All connections were made using identical, noise-shielded 
cables of the same length.

Laboratory experiments were conducted using both 
single and multiple PD sources of varying types. To under-
stand the influence of reflecting surfaces, applied voltages, 
and source-sensor distance on radiated PD patterns, tests 
were performed with and without reflecting surfaces pres-
ent. Additionally, other impulsive signals generated by 
switching operations in high-voltage transformers, fluores-
cent lamps, tap changers, IGBT-based motor drives, relays, 
Wi–Fi, and mobile devices were captured by the sensors. 

2.1  Signal Conditioning with Sensor Module

Micro-strip patch antennas, meeting the specified require-
ments, were strategically placed around the PD source 
area to capture radiated RF signals within the RF/UHF fre-
quency band. The micro-strip antenna’s robust construction, 
ease of manufacturing, lightweight design, and adaptabil-
ity to specific frequency bands made it an ideal choice. The 
captured antenna signals, characterized by low magnitudes 
(tens of micro-Volts) and wideband noise, required a ampli-
fication and signal conditioning with high-gain amplifiers 
and filters. Figure 2 illustrates the functional block diagram 
of the detection system. Impedance matching circuits were 
included for proper signal conditioning, while a constant 
DC power supply unit, comprising a step-down transformer 
and bridge rectifier, provided power to the signal condi-
tioning unit. Shielding was employed to isolate the power 
supply and conditioning units from external interference, 
preventing power line coupling and other unwanted influ-
ences. A signal detection sensor and signal conditioning 
unit were set up to work between 200 and 800 MHz, with 
a middle frequency of 500 MHz. This range was good for 
our experiment. The processed signal was sent to a digital 
storage oscilloscope to see and save as parts of the signal.

For handling the challenges of voltage stress the EM 
wave sensing system often include improved EMI suppres-
sion techniques, such as snubber circuits, shielded inductors, 
and optimized PCB layouts to reduce parasitic inductance 
and capacitance. Moreover, soft-switching techniques or 
resonant converters can reduce high-frequency switching 
noise. For better thermal management strategies, more effi-
cient heat sinks, advanced packaging, or using materials 
with higher thermal conductivity are used. The advantages 
of using a soft-switched resonant tank in this topology is 
to minimize electromagnetic interference (EMI) reduction, 
minimize the switching losses associated with transistor, 
for better thermal management, improving efficiency and 

Fig. 2  Functional block diagram 
of the RF sensing unit with 
microstrip patch Antenna
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2.3  Testing on Field

To validate the proposed PD detection and localization 
method in real-time conditions, field testing was conducted 
at three different distribution substations. Table 1 provides 
details of these substations, while Fig. 4 shows a photograph 
of testing location with the RF sensing unit, Table 2 pro-
vides the detail of the field-testing details of substations.

2.4  Pre-processing of the Signal

Following the successful data recordings by the sensing unit 
from the various types of PD sources, the background noises 
have been eliminated and PD impulses identified with an 
developed automated system. Raw signals were initially fil-
tered using a 10-point moving average filter. The apparent 
starting point of each impulse was determined by identifying 
the maximum value of the signal’s derivative. The end point 
was considered when the average signal strength dropped to 
30% of the peak value. A Hamming window function was 

Testing was conducted in phases. Initial tests involved single 
PD sources in open space, followed by tests with obstacles 
present. To analyze directivity and attenuation characteris-
tics, antenna positioning was varied. In subsequent phases, 
multiple PD sources were tested in various combinations, 
including air-air, oil-solid, and air-solid. All laboratory test 
results, captured as raw time-domain signals, were recorded 
for analysis.

Table 1  The types PD sources for lab tests
S. 
No.

Medium with 
Gap/Void

Type of electrode
Needle–Flat Flat–Flat Sphere–

Sphere
1 Air (Gap in cm) 1, 3, and 4 1, 3, and 4 5, 20 and 30
2 Oil (Gap in cm) 0.5, 1, and 2 0.5, 1, and 2 1, 2, and 3
3 Solid (Dia in cm) 0.05, 0.1, and 

0.3
0.05, 0.1, 
and 0.4

0.1, 0.3, and 
0.5

Fig. 3  (a) Functional block dia-
gram of laboratory-based testing 
facility. (b) Photograph of actual 
laboratory testing
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parameters, including peak value, impulse duration, and 
front and tail times, were extracted using appropriate sig-
nal processing techniques. Time-delay-of-arrival (TDOA) 
measurements between different RF sensors are crucial for 
source localization. Following previous research [11], the 
first peak method was found to be more accurate for TDOA 
estimation.

3.1.1  Time Domain Based Features

The shape and characteristics of the impulsive PD wave-
forms were analysed by examining the absolute values of 
the recorded time series data. These features, which describe 
the waveform in the time domain, include the peak value 
(the highest point), the front time (the time from the start 
to the peak), the tail time (the time from the peak to 30% 
of the peak), and the pulse duration (the length of time the 
waveform remains above 50% of its peak).

3.1.2  Frequency Domain Based Features

To analyze the signal in the frequency domain, we calculated 
the Power Spectral Density (PSD) of the pre-processed time 
series data. For this, the data was divided into overlapping 
segments of length M, and each segment was multiplied 
by a window function w(n). Period grams were computed 
for each windowed segment, and their average was then 
calculated. For a segment of signal x(n), {xi (n)} are data 
segments where i = 1,2,… i = 1, 2, . . . S.. The Welch spec-
trum estimate [18] is given by (1) and (2), 

used to remove background noise from the unfiltered raw 
signal. The window length was proportional to the duration 
of the impulse in the signal segment.

3  Methodology of Detection for PD Source

This section outlines the procedures for PD source detec-
tion and localization using recorded signal segments from 
laboratory and field testing. Different signal characteristics, 
such as time, frequency, and time-frequency features, were 
calculated from the raw signal, its spectral density, and the 
continuous wavelet transform (CWT) signals. Then the fea-
ture matrices formed by the signal features tested by differ-
ent unsupervised learning techniques like GMM and SOFM 
for establishing an analysis for efficient blind source PD 
detection.

3.1  Feature Extraction

Once background noise was removed from the raw time-
domain signals, a thorough analysis was performed to 
examine the time-domain and frequency-domain charac-
teristics of the partial discharge waveforms. Time-domain 

Table 2  The field-testing details of substations
Parameters Substations

1 2 3
Voltage ratings 33/11 kV 33/11 kV 33/11 kV
Dimensions (m2) 157 × 121 89 × 121 44.5 × 121
Transformer ratings 2 MVA x 2 1 MVA x 2 2 MVA x 1

Fig. 4  Photograph of field testing 
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inverse continuous wavelet transform (ICWT). The choice 
of mother wavelet significantly impacts the wavelet pattern. 
Selecting an appropriate mother wavelet and its correspond-
ing algorithm is crucial for optimal results. In this study, the 
Gaussian wavelet was found to be suitable and was there-
fore used in the proposed model.

Several features were extracted from the continuous 
wavelet transform (CWT) coefficients of the signal seg-
ments. These included the CWT peak (defined by its scale, 
position, and strength), the time differences between con-
secutive peaks and the highest peak, the energy of the 
frequency band associated with the highest peak, and the 
bandwidth (the range of dominant frequencies at the CWT 
peak, determined using FWHM). These features were found 
to be suitable for the proposed model. The Sub-band scale 
entropy, a measure of disorder or uncertainty, was found to 
be a suitable feature for PD classification in conjunction 
with bandwidth [19]. The entropy was calculated for the 
scale corresponding to the CWT peak and along the transla-
tion axis. The entropy of the scale set Si is then defined as: 

Hi = −
m∑

j=1
p (xij) logap (xij)� (4)

This case, the base of the logarithm (a) is usually set to 2, 
which means the entropy is measured in ‘bits.’ Sub-band 
scale entropy measures how much the time series fluctu-
ates at the scale of the highest peak. A lower entropy value 
means there are more random fluctuations, while a higher 
value indicates more regular patterns in the time series.

3.1.4  Feature Matrix

All the extracted features, including time-domain, fre-
quency-domain, and CWT characteristics, were arranged 
in a matrix. Each row of this matrix represents the features 
of a specific signal segment. These rows are called feature 
vectors, and the matrix containing feature vectors from a 
particular PD source type is called a feature matrix [20]. 
For each type of artificial PD source, three feature matri-
ces were created based on recordings with small, medium, 
and large gaps or voids (as shown in Table 1). These fea-
ture matrices represent a specific PD source with a fixed 
gap, insulation, electrode type, and sensor-source distance, 
but with varying applied voltages within a suitable range. 
Table 3 shows an example feature matrix with normalized 
feature values. Another group of feature matrices was cre-
ated using recordings from artificial PD sources tested near 
reflecting surfaces and obstacles. Two more groups of fea-
ture matrices were formed using lab tests with multiple PD 
sources, both with and without reflecting surfaces. These 

P̂w (f) = 1
S

S∑
i=1

p̂i (f)� (1)

p̂i (f) = 1
M

1
P

∣∣∣∣∣
M∑

n=1
w (n) xi (n) exp (−j2πfn)

∣∣∣∣∣
2

� (2)

Where p̂i (f) is the periodogram estimate of ith segment, 
w(n) is data-window, M is window sequence. P is given as 

P = 1
M

M∑
n=1

|w (n)|2 P represents the normalization for the 

power in the window function. P̂w (f) is PSD.
The frequency with the highest power is called the peak 

power frequency (PPF) and represents the main frequency 
of the radiated RF PD signal. The median frequency (MF) is 
the point where half of the signal’s power is above and half 
is below. The bandwidth, measured using the full-width-
at-half-maximum (FWHM), shows if there are multiple 
frequency components present. Spectral entropy (SE) quan-
tifies the disorder or flatness of the PSD, calculated using 
Shannon’s entropy SE = −

∑
i

Pi ln (Pi) where Pi is the 

normalized value of the PSD at each spectral component 
with a bandwidth of one spectral unit.

3.1.3  Continuous Wavelet Transform (CWT) Based Features

The CWT features were extracted from the pre-processed 
PD signal segments. Unlike individual time and frequency 
domain analyses, CWT offers the advantage of providing 
two-dimensional time-frequency information. The multi-
resolution analysis capability of CWT allows for time win-
dows for high frequencies and long-time windows for low 
frequencies, enhancing both time and frequency resolution. 
As the name implies, a wavelet ‘ψ’ can be described as a 
small wave that has a limited duration and its amplitude 
oscillates equally on both sides of the axes with a mean 

value of zero, i.e., 
+∞
∫

−∞
ψ (t) dt = 0. For a given time domain 

signal x(t) with scale parameter ‘s’ and translation param-
eter ‘τ’, the CWT can be represented as 

W (s, t) = 1√
s

+∞
∫

−∞
x (t) ψ

(
t − τ

s

)
dt � (3)

ere, W (s, t) is the CWT coefficient representing the corre-
lation between the time series signal section under consider-
ation and the scaled and time-shifted version of the mother 
wavelet. The greater the value of the coefficient W (s, t) 
more is the similarity between them. CWT calculates the 
coefficients at every possible scale and time instant. The 
time series signal can again be recovered from W (s, t) by 
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distribution characterized by the probability density func-
tion p (x⃗θ). The joint probability density of the entire data-

set can be expressed as p (X|θ) =
N∏

n=1
p (x⃗n|θ) ≡ L (θ)

where L (θ) denotes the likelihood function for θ given 
X. The maximum likelihood (ML) estimation seeks to deter-
mine θ that maximizes this likelihood function.

θ̂ML = arg max
θ

L (θ) = arg max
θ

N∏
n=1

p (x⃗n|θ)� (7)

In order to be maximum, θ̂ML must satisfy the necessary 
condition that is, the gradient of the likelihood function with 
respect to θ be zero.

L (θ) = ln L (θ) = ln
N∏

n=1
p (x⃗n|θ) =

N∑
n=1

ln {p (x⃗n) |θ} =
N∑

n=1
ln

{
M∑

k=1

ωkpk (x⃗n)

}
� (8)

An iterative approach is crucial for locating the global maxi-
mum of ln [p (X|θ)] since the optimal θ̂ML cannot be deter-
mined analytically for mixture models. The Greedy GMM 
method begins with a single component M = 1, and progres-
sively adds one component at a time to the mixture.

There are many ways to model uncertainty, each suited to 
different types of problems and systems. Bayesian Inference 
is a framework that allows us to update our beliefs about the 
world as new data comes in. The uncertainty is represented 
by probability distributions over parameters or hypotheses 
[22–25].

Self Organized Feature Map (SOFM) Based Classifica-
tion The Self-Organizing Feature Map (SOFM), a machine 
learning algorithm based on neural networks, is often called 
Kohonen’s net. This classifier mapping model consists of 
four main steps: initialization, competition, cooperation, 
and adaptation. In an n-dimensional input vector space, each 
node i is considered a Kohonen’s input neuron, connected to 
other neurons in a rectangular or hexagonal arrangement. 
The winning Kohonen’s neuron k is the one with the small-
est Euclidean distance. 

D = ∥ x − ωk ∥ =min
i {∥ x − ωi ∥}� (9)

The weight vectors of the winning neuron and its neighbor-
ing neurons, the learning rate function η(t), drawing them 
closer to the input vector. The learning rate function η(t) 
ranges from 0 to 1. This iterative updating process continues 
until a stable mapping is achieved. 

ωi (t + 1) = ωi (t) + η (t) [x − ωi (t)]� (10)

experiments included various combinations of artificial PD 
sources, starting from two and increasing to ten simultane-
ously active sources. The presence of multiple PD sources 
was identified using an unsupervised method called Greedy 
GMM, which is briefly explained below (see [21] for more 
details).

3.2  Gaussian Mixture Model (GMM)

A Gaussian mixture density is a weighted sum of mixture 
component densities. Let x⃗ be a d-dimensional feature vec-
tor, ⃗x ∈ Rd. The Gaussian mixture density can be described 
as, 

p (x⃗|θ) =
M∑

k=1

ωk pk (x⃗)� (5)

where, M is the no of mixture components and ωk

k = 1, . . . .., M are the mixing parameters. pk (x⃗), for 
k = 1, . . . .., M are the individual component densities. The 
individual component densities are given by Gaussian dis-
tribution functions of the form, 

pk (x⃗) ∼ N (µk, Sk) = 1
(2π)

d
2 |Sk|

1
2

exp
{

−1
2

(x⃗ − µk)T
S−1

k (x⃗ − µk)
}

� (6)

where, mean µk is a d-dimensional vector and Sk is a d × d 
covariance matrix, and |Sk|  is the determinant of Sk. The 
complete Gaussian mixture density is parameters are repre-
sented by θ where θ = {ωk, µk, Sk} ; k = 1, . . . .., M. The 
objective is to determine the number of Gaussian mixture 
components (K) and their parameters (μk, Σk, πk) for a 
given feature matrix. The EM algorithm is commonly used 
to estimate these parameters [21]. Recently, Greedy learn-
ing of GMM has been proposed, which inherently estimates 
the model order through an iterative process. This approach 
maximizes the likelihood of the parameters for the given 
data set.

This estimation aims to identify the optimal parameter 
values by maximizing the likelihood function derived from 
the feature matrix. Let X = {x⃗1, x⃗2, . . . .. x⃗N } represent a 
set of NNN vectors independently sampled from a single 

Table 3  Example of feature matrix
Feature vector 
number

Features
Tail 
time

Peak 
value

Front 
time

Spectral 
entropy

Band-
width

1 0.45 0.75 0.34 0.39 0.71
2 0.45 0.79 0.33 0.41 0.72
3 0.46 0.74 0.33 0.41 0.67
: : : : : :
N 0.48 0.78 0.35 0.38 0.70
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features have been studied. In the initial phase of the study, a 
single artificial partial discharge (PD) source was activated 
in a controlled laboratory setting. Each source had a unique 
electrode pair configuration. An array of four antennas was 
positioned around the source to ensure a direct path for the 
emitted ultra-high-frequency (UHF) signal. This experiment 
was repeated multiple times using different PD sources and 
varying test conditions.

Analysis of the recorded signals reveals their impul-
sive and dynamic characteristics, along with the pres-
ence of continuous background noise. Figure  5 illustrates 
sample PD signals captured using a Needle-Flat electrode 
pair and various dielectric mediums. Figure 5a and b show 
the impulsive radio frequency (RF) waveforms emitted by 
a typical PD source with air insulation. These waveforms 
were recorded by two antennas placed at different distances 
from the source. While the impulsive nature of the wave-
forms remains largely consistent, a significant time delay 
is observed between them. This is attributed to the closer 
proximity of the antenna that captured the signal in Fig. 5 
compared to the one in Fig. 5. Figure 5c and d present sig-
nal segments from the same Needle-Flat electrode pair but 
with different dielectric media: liquid (transformer oil) and 
solid (acrylic disc). Comparing Fig. 5a, c, and d, it becomes 
evident that the characteristics of the impulsive waveforms 
change significantly as the nature of the PD source varies. 
The shape nature of the impulses and frequency of oscilla-
tions is changing quite significantly. A similar type of study 
can also be done with the CWT features. The CWT repre-
sentations shown in Fig. 8a, b, and c are of the PD sources 
of different dielectric mediums, i.e., air, liquid, and solid. 
The nature of these figures is quite different. Figure 8c and 
d represent PD sources with solid dielectric insulation and 
with the same electrode configuration but with different 
inter-electrode gaps.

To understand the frequency nature of the signal, the 
PSD of the time domain signal has been found. The Scaled 
PSD coefficients of different PD sources with different insu-
lations are shown in Fig. 7a. In this figure, there are three 
different groups of signals formed by three different dielec-
trics, i.e., solid, liquid, and air. It has been observed that the 
frequency nature of a specific dielectric remains the same 
with variations in inter-electrode gap and distance between 
the PD source and antennas.

The PD signal segment as shown in Fig.  6 is the PD 
source with solid insulation but at a different inter-electrode 
gap other than represented in Fig. 5(d). The number of 
oscillations in both waveforms is nearly identical. Figure 6 
shows the same PD source captured with a reflecting sur-
face obstructing the propagation path emitted UHF signal. 
A detailed analysis shows that the time-domain characteris-
tics are affected not only by changes in the PD source but 

4  Results

4.1  PD Characterization

Different tests have been conducted to know the characteris-
tics of the RF PD signal at different conditions like electrode 
pairs, the variation of the gap between the source and the 
sensors, and with presence and absence of reflecting sur-
faces around the sensing unit. Before considering the signal 
features as discussed in the last unit, the feature variation 
with different conditions should be studied. So, at different 
above-mentioned conditions, the time, frequency, and CWT 

Fig. 5  Flat-needle electrode of PD signal with, (a), (b) Air insulator 
captured by antennas of same PD, (c) Oil and (d) Solid insulation
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4.2  Detection of PD Sources

After the acknowledgment of the PD behaviour with the 
changing conditions, it is necessary to identify the PD 
source from the detected behavioural characteristics. As 
PD nature is highly stochastic, the application of unsuper-
vised classification techniques will have a special advantage 
over the supervised learning technique. In this study two 
unsupervised techniques as mentioned before have been 
implemented for successful PD source detection, i.e., GMM 
and SOFM techniques, and the results are compared. These 
techniques have been tested upon the input feature matrices 
formed from the PD characteristics described as follows.

As previously noted, features from various domains 
such as time, frequency, and continuous wavelet trans-
form (CWT) were combined to form a Feature Matrix for 
multiple PD sources. These features were categorized into 
two groups: position or time-based features (P/T) and scale 

also by the presence of obstacles or reflecting surfaces in the 
signal’s path. However, comparing the frequency-domain 
characteristics of a PD source with and without a reflecting 
surface, as shown in Fig. 7b, suggests that reflecting sur-
faces or obstacles have little impact on these characteristics.

Wavelets are effective for analysing signals in both time 
and frequency domains, so we applied the CWT to all 
recorded waveforms from various experiments. Figure 8a, 
b, c, and d display the surface plots of the CWT (magnitude) 
coefficients derived from the signal segments shown in Fig. 
5a, c, d, and 6(a), respectively. These surface plots repre-
sent the magnitude of the CWT coefficients on the vertical 
axis, while the other two axes indicate scale and transla-
tion/position (sample number). By examining these plots, 
we can observe that the peaks correspond to the peak points 
of the oscillatory impulsive signals, and the associated scale 
values reveal the frequencies of these peaks. The wavelet 
transform provides a detailed view of the frequency compo-
nents present at each time instant. Furthermore, Fig. 8a, b, c 
and d more clearly illustrate variations in frequency-domain 
characteristics throughout the impulsive UHF signal. How-
ever, the transformation from a one-dimensional time series 
signal to a two-dimensional representation result in a sig-
nificant increase in data points (due to the number of scales). 
This can pose challenges for subsequent processing tasks, 
such as PD source detection. To address this, five key CWT 
features were extracted in this study, as detailed in Sect. 3.1.

Fig. 7  (a) PD sources of PSD coefficients (b) Direct and reflected sig-
nal-based SD coefficients

 

Fig. 6  The flat-needle electrode of PD signal with solid insulation (a) 
electrode gap (b) multiple reflections
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or frequency-based features (S/F). Time-domain features 
include the CWT peak, peak-to-peak duration, and all other 
time-domain measurements. In contrast, frequency-domain 
or scale features encompass CWT sub-band scale energy, 
bandwidth, sub-band scale entropy, and all power spec-
tral density (PSD) features. Figure 9 illustrates how three 
distinct features pulse duration, front time, and bandwidth 
vary across five different PD sources with various insula-
tion types. Despite some variations, features from different 
sources generally form distinct clusters, suggesting that they 
can be differentiated. Notably, some PD sources exhibit sig-
nificantly higher variance than others, reflecting differences 
in the time and frequency-domain behaviour of specific PD 
sources across successive events.

4.2.1  PD Detection Through GMM

To assess the GMM model, a variable mixed feature matrix 
was first generated by randomly combining feature matri-
ces from individual PD sources tested in free space. The 
number of combinations (C) was adjusted by varying elec-
trode type, insulation, and electrode gap/void size. Although 
theoretically, up to 3240 combinations are possible with two 
PD sources, the study was confined to 250 random com-
binations (for C = 1, up sampling was used). The mixed 
feature matrix was then analyzed with the GMM to deter-
mine the optimal number of model components (M best) 
that minimized either the Bayesian Information Criterion 
(BIC) or the Akaike Information Criterion (AIC). Accurate 
identification occurs when M matches C. Table 4 provides 
a summary of the GMM’s average performance in correctly 
identifying the number of PD sources across multiple runs 
for different datasets. The leftmost column indicates the 
actual number of PD sources in the mixed feature matrix, 
while the other columns display the percentage of times the 
GMM accurately identified this number in 250 cases under 
various conditions, including the number of feature vectors 
(N) per PD source. With N = 30, the average performance 
across all 10 cases was 97.5%, reflecting strong accuracy. 
However, performance declined with fewer sources, partic-
ularly for a single PD source (C = 1). Additionally, reducing 
the number of examples (N) to 10 led to a notable decrease 
in performance, down to 93.0%.

Further analysis revealed that the GMM overestimated 
the number of PD sources when the number of sources was 
low and when the number of examples (N) was insufficient. 
This was attributed to convergence issues with low variance 
during optimization. To maximize the likelihood, the GMM 
might have mistakenly assigned one or two examples to a 
new, incorrect category. To address this, a variance-limiting 
constraint was introduced during the EM algorithm estima-
tion. The experimentally determined optimal value of 0.04 

Fig. 8  CWT of PD signal, with (a) Air, (b) Oil, (c) Solid and (d) Solid 
with different inter electrode gap condition
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wasn’t significantly impacted by obstacles. The minor drop 
in performance might be attributed to the increased com-
plexity of reflected impulsive waveforms

4.2.2  PD Detection Through SOFM

A feature matrix combining three different PD sources 
with varying insulation media was initially tested using the 
SOFM model. Each source, consisting of 50 PD signal fea-
tures, created a 150 × 5 matrix that was input into the test-
ing model. The neural network was trained with a 12 × 12 
dimension size. Figure 10 shows the neural output SOFM 
neighbor distance plot, where neurons are represented by 
hexagons and inter-neural distances by colour codes. In Fig. 
10, the three clusters represent the three PD sources.

To examine the contribution of different features in the 
input feature vector for PD source clustering, tests were 

resulted in improved overall performance, especially for 
low numbers of sources. However, with N reduced to 4 from 
30, performance degraded, particularly for higher numbers 
of sources (9 and 10). This is likely due to the insufficient 
number of examples, leading the GMM to fail to identify 
separate classes.

The different tests were conducted with considering only 
position or time domain features (P/T) in the feature matrix 
then with only scale or frequency domain features (S/F) 
and finally considering all features. This result with N = 30 
has been presented in Table 4. Analysis indicates that time-
domain features alone achieve an accuracy of 92.4%, while 
frequency-domain features reach 98.4%. Combining both 
features further enhances accuracy to 99.5%. The GMM 
was similarly evaluated using feature matrices obtained 
from PD source testing in the presence of reflecting surfaces 
and obstacles. While performance decreased slightly, it 

Table 4  Performance PD sources (detection) through GMM model
No. of PD Variance > 0 Variance > 0.04

Free space Free space In presence of obstacle
N = 30 N = 10 N = 30 N = 4 3 ≤ N ≤ 30 N = 15 3 ≤ N ≤ 30

P/T S/F All
1 87.9 74.6 85.1 97.3 96.8 98.2 98.3 97.2 97.4
2 94.6 84.3 89 100 99.2 99 98.9 100 99.7
3 98.8 92.7 93.3 99.9 100 100 100 100 100
4 100 97.1 95.9 98 99.5 99.7 99.5 98 100
5 99.6 98 98.2 100 99.7 99.8 98.8 100 99.1
6 98.5 97.6 91.7 99.7 99.7 100 100 99.5 100
7 99.7 94.8 92.6 99.2 100 99.1 97 100 96.8
8 100 96.5 94.4 97.5 100 99.8 98.4 97.5 95.9
9 99.3 100 91.9 99.6 100 96 97.5 100 94.4
10 97 94 92 96.5 100 93.9 95.3 96.5 92.5
Average 97.5 93 92.4 98.8 99.5 98.6 98.4 98.9 97.6

Fig. 9  Scatter plot of pulse dura-
tion vs. front time vs. bandwidth 
for five different PD sources
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also examined inter-class and intra-class PD source signals. 
Inter-class PD sources have different dielectric materials, 
while intra-class PD sources have the same dielectric mate-
rial but vary in the distance between electrodes/void size 
and the combinations of electrode pairs. Different feature 
matrices were analyzed individually and collectively for 
separate classes of PDs. There are 351 possible intra-class 
PD source combinations and 3240 total combinations. For 
this test, 100 intra-class and 100 inter-class combinations 
were created with varying numbers of PD sources (ranging 
from 1 to 10).

Observations indicate that for intra-class feature matri-
ces, time or position features are more crucial for clustering 
accuracy than scale features. Conversely, in inter-class tests, 
both types of features contribute equally to accuracy. In 
inter-class scenarios, increasing ‘N’ for each PD source gen-
erally enhances accuracy, particularly with a larger number 
of sources. Tests involving PD sources with obstacles sug-
gest that reducing ‘N’ might lower accuracy, likely due to 
the increased complexity and less variability in the feature 
vector. A summary of these findings is presented in Table 5.

4.3  Localization of PD Sources

Once the accurate number of PD sources is determined, 
the next step is to locate their positions. The localization 
method, using four sensors, involves solving nonlinear 
equations using the Newton-Raphson method as described 
in [11]. Tables 6 and 7 show how well the GMM and SOFM 
techniques localized PD sources in lab and field tests. We 
placed PD sources at various distances from four antennas 
and calculated the localization error as the ratio of the dis-
tance between the estimated and actual locations to the aver-
age distance between the source and the antennas. S1–S4 
represents the distances to antennas 1–4. 

conducted in open space and with reflecting surfaces or 
obstacles. Initially, tests were performed with two feature 
categories separately, followed by a combined analysis. 
When only position features were considered, accuracy in 
PD determination significantly decreased in the presence 
of reflecting surfaces compared to open space. However, 
scale features showed less variation. Combining all features 
significantly improved accuracy. These results indicate that 
time-domain signals are more susceptible to multiple reflec-
tions than frequency-domain signals.

Additionally, increasing the number of features (N) 
enhances clustering and accuracy. Different feature matri-
ces were tested with varying numbers of ‘N’ for the same 
PD source. As ‘N’ increases, the clusters become more 
prominent with darker and thinner boundaries. The study 

Table 5  Performance evaluation of number of input feature vectors
No. of PD Intra class

Open space In the presence of obstacle
N = 30 All N = 15 N = 4 N = 30 N = 15 N = 4
P/T S/F P/T S/F P/T S/F (All T/F/CWT features)

2 98.8 97 99.1 99 98 98.2 98 97.8 94.2 97.4
4 98.2 97.1 99.3 99 96.6 97.1 95.3 96.2 96.9 99.7
6 98 97.3 99.3 98.4 96 95.6 91 98.3 94.6 94.6
8 98.4 96 100 97.6 93.2 95.7 90 98.9 96.1 94.2
10 99 97.2 99.8 97.5 93 94.9 86 99 100 99.1
Average 98.48 96.92 99.5 98.3 95.3 96.3 92 98 96.3 97

Inter class
2 100 99.8 100 100 99.5 99 98.6 99.7 99.5 100
4 100 100 100 99.4 99.5 98.1 98 100 99 96.8
6 99.7 100 100 99.3 99.1 96.8 96.4 99.1 97.5 95.9
8 99.4 100 100 98 98.6 95.2 95.4 100 100 94.4
10 99.1 99 100 97.2 97 93.9 93.9 100 96.5 92.5
Average 99.64 99.76 100 98.7 98.7 96.6 96.4 99.7 98.5 95.9

Fig. 10  12 × 12 neighbor weight distance SOFM plot
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features obtained from the time domain signal, the corre-
sponding frequency domain transformation PSD signal, and 
continuous wavelet transform signals. Frequency-domain 
features, or CWT scale features, extracted from a specific 
PD source exhibit lower variance compared to time-domain 
features or CWT position features. This underscores the 
significance of frequency-domain analysis in PD source 
identification.

The proposed comparison of unsupervised classification 
models demonstrates promising performance, making it 
appropriate for testing in new positions without the need for 
prior models. The GMM classification technique achieved 
accuracies of 94.9% and 90.7% in identifying the PD source 
numbers through laboratory and field-based testing, respec-
tively. Whereas, for the SOFM classification technique the 
accuracy was 88.4% for laboratory-based testing and 87% 
for field-based testing. The PD source localization error is 
limited to around 1.4% by GMM model whereas 1.9% by 
SOFM model. The GMM model is more efficient in clas-
sifying and further finding the location with minimal error 
when a greater number of PD sources in the power system. 
Otherwise, both techniques are good with lesser number of 
sources. The technique validation methods include paramet-
ric studies, material property validation, and system-level 
prototype testing, all of which help confirm the model’s 
accuracy and reliability for practical use.

This study emphasizes a method for automatic, non-con-
tact, and unsupervised detecting and localizing individual 
PD sources within the power system. The implications of 
findings in substation maintenance and monitoring have sig-
nificant practical consequences for the real-time operation 
of electrical power grids. These implications can span sev-
eral areas, cost efficiency, including reliability, safety, and 
technology adoption.

As this method includes high frequency dynamic PD 
signal operations, a particular proposed method may not fit 
to every situation. So, more rigorous study is encouraged 
in different areas like reduction of installation cost, new 

Localization Error (%) = (E − A)
(S1 + S2 + S3 + S4 )/4

× 100� (11)

From the results obtained in Table 6, it can be observed that 
when the number of PD sources is less, both the classifica-
tion techniques perform well and very close to accuracy. But 
when the PD number increases, the GMM performs better 
than the SOFM classification. Another observation can be 
noticed that when the number of tests with source, and sen-
sor at different positions are taken the error in classification 
increases and this is somehow more for the SOFM classifi-
cation technique. The overall accuracy with different tests 
done, is 94.9% for GMM classification, whereas this accu-
racy is 88.4% for SOFM classification.

4.4  Field Test Results

Field test results for three substations are summarized 
in Table  7, based on long-duration recordings at multiple 
antenna locations. As shown in Table 7, Substation 1 had 
three actual PD sources, but only two were detected from 
Position 1 of the antenna array using both techniques. This 
discrepancy was attributed to wall obstructions that pre-
vented the PD signals from the transformer winding from 
being captured by any of the antennas.

Similar misidentification occurred with Substation 2 
using only the SOFM technique. No PD sources were 
detected at Substation 3. To verify the PD sources and their 
locations, thermography tests on insulators and acoustic 
tests on the transformer tank using multiple ultrasonic sen-
sors were conducted.

5  Conclusion

In this study, two unsupervised classification techniques, 
GMM and SOFM, were used for detecting and locating 
PD sources instead of supervised models, which need pre-
trained data. Both techniques were tested with different PD 

Table 6  Laboratory based testing of multiple PD sources
No. of sources Determination of number of sources Localization of sources

Number of tests at different positions No. of correct 
identification

Accuracy (%) Average Error (%) ±SD %

GMM SOFM GMM SOFM GMM SOFM GMM SOFM
2 12 12 12 100 100 0.7 0.8 0.3 0.4
3 35 34 34 970.1 97.1 1.8 1.9 0.8 0.9
4 24 22 23 910.6 95.8 1.4 1.5 0.9 1
5 18 18 17 100 94.4 0.5 1.6 0.3 1.1
6 14 12 11 850.7 78.5 2.4 3.1 1.1 1.9
7 10 9 7 90 70 1.8 3.4 0.8 2
8 6 6 5 100 83.3 0.6 2.3 0.2 1.5
Average 940.9 88.4 1.3 2.1 0.6 1.2
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techniques in noise reduction and cancellation, and quality 
signal sensing and storing system etc.
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