
Sustainable Computing: Informatics and Systems 43 (2024) 101012

Available online 18 June 2024
2210-5379/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Improved synergistic swarm optimization algorithm to optimize task
scheduling problems in cloud computing

Laith Abualigah a,b,c,*, Ahmad MohdAziz Hussein d, Mohammad H. Almomani e,
Raed Abu Zitar f, Hazem Migdady g, Ahmed Ibrahim Alzahrani h, Ayed Alwadain h

a Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan
b Applied science research center, Applied Science Private University, Amman 11931, Jordan
c Jadara Research Center, Jadara University, Irbid 21110, Jordan
d Department of Computer Science, Faculty of Information Technology, Middle East University, Amman, Jordan
e Department of Mathematics, Facility of Science, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
f Sorbonne Center of Artificial Intelligence, Sorbonne University, Paris, France
g CSMIS Department, Oman College of Management and Technology, 320 Barka, Oman
h Computer Science Department, Community College, King Saud University, Riyadh, 11437, Saudi Arabia

A R T I C L E I N F O

Keywords:
Cloud Computing
Task Scheduling
Jaya Algorithm
Synergistic Swarm Optimization
Levy Flight Mechanism
Resource Utilization

A B S T R A C T

Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its
scalability and flexibility. One critical aspect of cloud computing is efficient task scheduling, which directly
impacts system performance and resource utilization. In this paper, we propose an enhanced optimization al-
gorithm tailored for task scheduling in cloud environments. Building upon the foundation of the Jaya algorithm
and Synergistic Swarm Optimization (SSO), our approach integrates a Levy flight mechanism to enhance
exploration-exploitation trade-offs and improve convergence speed. The Jaya algorithm’s ability to exploit the
current best solutions is complemented by the SSO’s collaborative search strategy, resulting in a synergistic
optimization framework. Moreover, the incorporation of Levy flights injects stochasticity into the search process,
enabling the algorithm to escape local optima and navigate complex solution spaces more effectively. We
evaluate the proposed algorithm against state-of-the-art approaches using benchmark task scheduling problems
in cloud environments. Experimental results demonstrate the superiority of our method in terms of solution
quality, convergence speed, and scalability. Overall, our proposed Improved Jaya Synergistic Swarm Optimi-
zation Algorithm offers a promising solution for optimizing TSCC (TSCC), contributing to enhanced resource
utilization and system performance in cloud-based applications. The proposed method got 88 % accuracy overall
and 10 % enhancement compared to the original method.

1. Introduction

Cloud computing has revolutionized the way computational re-
sources are provisioned and utilized, offering unprecedented scalability,
flexibility, and cost-effectiveness for various applications and services
[1,2]. At the core of cloud computing lies efficient resource manage-
ment, particularly in the scheduling of tasks across distributed and vir-
tualized infrastructure [3,4]. Task scheduling plays a pivotal role in
optimizing resource utilization, minimizing execution time, and
enhancing overall system performance [5,6]. However, the inherent
complexities and dynamic nature of cloud environments pose significant
challenges for traditional scheduling algorithms [7,8].

In recent years, metaheuristic optimization techniques have gained
prominence for addressing the intricate task scheduling problem in
cloud computing [8,9]. These algorithms offer a promising avenue for
finding near-optimal solutions in large-scale, dynamic, and uncertain
environments [10–12]. Among these techniques, the Jaya algorithm and
Synergistic Swarm Optimization (SSO) have demonstrated effectiveness
in solving various optimization problems [13,14]. The Jaya algorithm,
inspired by the concept of natural selection, iteratively improves
candidate solutions by exploiting the current best solution without
relying on any explicit parameter tuning. On the other hand, SSO har-
nesses the collective intelligence of a swarm of particles to explore the
solution space collaboratively, enabling efficient search and adaptation

* Corresponding author at: Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan,.
E-mail address: aligah.2020@gmail.com (L. Abualigah).

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

https://doi.org/10.1016/j.suscom.2024.101012
Received 22 December 2023; Received in revised form 7 June 2024; Accepted 13 June 2024

mailto:aligah.2020@gmail.com
www.sciencedirect.com/science/journal/22105379
https://www.elsevier.com/locate/suscom
https://doi.org/10.1016/j.suscom.2024.101012
https://doi.org/10.1016/j.suscom.2024.101012
https://doi.org/10.1016/j.suscom.2024.101012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2024.101012&domain=pdf

Sustainable Computing: Informatics and Systems 43 (2024) 101012

2

[15].
Despite their merits, both the Jaya algorithm and SSO exhibit certain

limitations when applied to complex optimization problems such as
TSCC. The Jaya algorithm may struggle with balancing exploration and
exploitation, leading to premature convergence or suboptimal solutions
in rugged search spaces. Similarly, SSO’s reliance on swarm dynamics
may encounter difficulties in effectively exploring diverse regions of the
solution space, particularly in high-dimensional and multimodal opti-
mization landscapes [15,16].

To address these challenges, we propose an Improved Jaya Syner-
gistic Swarm Optimization Algorithm for Task Scheduling Optimization
in Cloud Computing. Our approach aims to leverage the strengths of
both algorithms while mitigating their weaknesses through a synergistic
integration framework. By incorporating a Levy flight mechanism into
the optimization process, we enhance the algorithm’s exploration ca-
pabilities, enabling it to escape local optima and navigate complex so-
lution spaces more effectively. The Levy flight mechanism introduces
stochasticity into the search process, facilitating a more robust
exploration-exploitation trade-off and improving convergence speed.

In this paper, we present a comprehensive study on the development
and evaluation of our proposed algorithm. We compare its performance
against state-of-the-art approaches using benchmark task scheduling
problems in cloud environments. Through extensive experimentation
and analysis, we demonstrate the effectiveness and superiority of our
method in terms of solution quality, convergence speed, and scalability.
Ultimately, our proposed Improved Jaya Synergistic Swarm Optimiza-
tion Algorithm offers a promising solution for optimizing TSCC,
contributing to enhanced resource utilization and system performance
in cloud-based applications. The main contributions of this paper are
given as follows.

• We introduce a novel optimization algorithm tailored specifically for
task scheduling optimization in cloud computing. Our algorithm
combines the strengths of the Jaya algorithm and Synergistic Swarm
Optimization (SSO) while addressing their limitations through a
synergistic integration framework.

• To enhance exploration capabilities and improve convergence speed,
we incorporate a Levy flight mechanism into the optimization pro-
cess. This stochastic search strategy enables the algorithm to effi-
ciently explore diverse regions of the solution space, facilitating the
discovery of high-quality solutions in complex and dynamic cloud
environments.

• We conduct extensive experiments to evaluate the performance of
our proposed algorithm against state-of-the-art approaches using
benchmark task scheduling problems in cloud environments.
Through rigorous analysis, we demonstrate the effectiveness and
superiority of our method in terms of solution quality, convergence
speed, and scalability.

• Our proposed Improved Jaya Synergistic Swarm Optimization Al-
gorithm offers a promising solution for addressing the task sched-
uling optimization challenge in cloud computing. By enhancing
resource utilization and system performance, our algorithm con-
tributes to the advancement of cloud-based applications and
services.

In this paper, we present a structured investigation into task sched-
uling optimization in cloud computing, outlining our proposed algo-
rithm and its evaluation against existing approaches. The paper is
organized as follows: In Section 2, we provide an overview of related
works in the field of task scheduling optimization in cloud computing.
We discuss various metaheuristic optimization techniques and their
applications, highlighting the strengths and limitations of existing ap-
proaches. Section 3 details our proposed method, the Improved Jaya
Synergistic Swarm Optimization Algorithm, including the integration of
the Levy flight mechanism and the synergistic framework combining the
Jaya algorithm and Synergistic Swarm Optimization. We elucidate the

algorithmic design, optimization process, and key components contrib-
uting to its effectiveness in addressing task scheduling challenges in
cloud environments. Subsequently, in Section 4, we present the results
of comprehensive experiments conducted to evaluate the performance
of our proposed algorithm. We provide details of the experimental setup,
including benchmark task scheduling problems and parameter settings.
We analyze the obtained results, comparing them with state-of-the-art
approaches to assess the superiority of our method in terms of solu-
tion quality, convergence speed, and scalability. Finally, in Section 5, we
conclude the paper by summarizing our findings and highlighting ave-
nues for future research. We discuss the implications of our proposed
algorithm in enhancing resource utilization and system performance in
cloud-based applications, and we outline potential directions for further
refinement and extension of the proposed approach.

2. Related works

How tasks are organized in the cloud has a significant impact on how
resources are used and how much it costs to run the business [17–20].
Many metaheuristic algorithms and variants have been suggested to
simplify scheduling procedures in order to increase the operational ef-
ficiency of job execution in cloud settings [21,22]. The most related
works are given as follows.

Recent research has focused on cloud task scheduling [23,24].
Effectively scheduling massive user-submitted activities in cloud set-
tings boosts firms’ competitiveness and economic performance. This
research examines cloud task scheduling and presents PSOPGA, a par-
ticle swarm optimization genetic hybrid algorithm based on phagocy-
tosis, to meet the demand for an effective scheduling method in
real-world circumstances [25]. Each generation of the particle swarm
divides, and the genetic algorithm’s phagocytosis process and crossover
mutation change particle placements in the sub-population, expanding
the solution space. The subpopulations are then blended to maintain
particle population diversity and reduce algorithm local optima. Finally,
a feedback mechanism relays the particle’s and its counterparts’ flight
experiences to the next generation’s particle population, assuring opti-
mum solutions. Simulations show that the proposed technique improves
cloud job completion time and convergence accuracy compared to
various other strategies. The technique performs well in cloud job
scheduling.

By using a multiobjective optimization strategy to improve cloud
system performance with given computing resources, the whale opti-
mization algorithm (WOA) is proposed for scheduling tasks in the cloud
[26]. Enhanced WOA for Cloud Task Scheduling (EWC) is a novel
approach that builds on this basis and enhances the search for optimum
solutions capabilities of the WOA-based technique. They outline EWC’s
full implementation, and simulation-driven studies show that EWC finds
optimum task scheduling methods faster and more precisely than pre-
vious metaheuristic algorithms. Furthermore, EWC shows improved
efficiency in the use of system resources for a variety of jobs, from little
to large.

When it comes to cloud computing, one of the biggest obstacles is
efficient job scheduling. It is quite challenging to find the best solution to
the NP-complete issue of task scheduling, especially when working with
large quantities of tasks. When working in the cloud, it’s important to
minimize makespan and maximize resource usage for effective job
scheduling across several virtual machines. In this paper, they provide a
new method for scheduling tasks in cloud computing settings that takes
into account many objectives at once [27]. This method is called the
hybrid antlion optimization algorithm with elite-based differential
evolution. The suggested solution, MALO, takes into account the fact
that the issue has several objectives and aims to reduce makespan while
maximizing resource consumption concurrently. To improve exploita-
tion capabilities and avoid being trapped in local optima, MALO uses the
antlion optimization algorithm and augments it with elite-based differ-
ential evolution as a local search method. Using the CloudSim toolbox,

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

3

they ran two sets of tests using both simulated and actual trace datasets.
The results showed that MALO is better than other optimization algo-
rithms; it is especially useful for vast search areas since it converges
faster, making it ideal for solving complex scheduling issues. In addition,
statistical t-tests performed on the findings confirmed that MALO
significantly improved performance.

This study introduces a cloud-optimized ant colony optimization
algorithm to address issues like uneven workload distribution, slow
convergence rates, and underutilization of virtual machine resources in
previous task scheduling optimization approaches [28]. Using cloud
computing job scheduling insights, they create a scheduling model using
an enhanced ant colony method to avoid local optimization issues. Next,
a task scheduling satisfaction function is created to find the best task
scheduling solution by decreasing waiting time, improving resource
load balancing, and reducing task completion costs. They also use
reward and punishment coefficients to improve the ant colony algo-
rithm’s pheromone update rules, speeding solution convergence. Dy-
namic volatility coefficient updates improve strategy performance, and
local pheromone updating includes virtual machine load weight co-
efficients for load equilibrium. Experiments with Cloudsim prove the
proposed method works. They found that the proposed approach has the
fastest convergence, shortest completion times, most balanced task
distribution, and maximum virtual machine resource usage rates. Thus,
our job scheduling optimization technique excels in cloud computing.

Cloud computing solutions have been popular since their creation
because they provide a common infrastructure where customers may
obtain customized services without worrying about location or delivery,
paying only for the services used. Despite their benefits, cloud
computing systems struggle with scheduling and energy management.
Given the different customers and services in these systems, good
scheduling is vital to reduce provider and consumer costs and optimize
energy use. They present a two-step hybrid task scheduling strategy that
includes energy and time restrictions to overcome this difficulty [29].
First, prioritize tasks, then allocate them to processors. The
Energy-Conscious Scheduling Heuristic, an energy-aware model, assigns
tasks to processors after task ranking and main chromosome creation.
The simulation results show that the suggested algorithm optimizes
work scheduling while considering energy consumption better than
competing techniques.

Cloud computing stands as a proficient technology catering to the
demands of big data applications. The optimization of cloud system
makespan while enhancing resource utilization is imperative for cost
reduction. Task scheduling poses a formidable challenge in meeting
these requirements, necessitating both efficacy and efficiency. To
address this challenge, this paper introduces a task scheduler featuring
discrete variants of the particle swarm optimization (PSO) algorithm
tailored for cloud computing task scheduling [30]. To evaluate effec-
tiveness, these methods are juxtaposed with three well-known heuristic
algorithms for task scheduling dilemmas. Empirical findings highlight
the efficiency and efficacy of the suggested methodologies. Especially
for the scheduler based on PSO introduced here, the utilization of a
logarithmic declining tactic emerges as the most advantageous in
delivering an ideal scheduling arrangement. The average makespan of
the PSO-based scheduler employing the logarithmic decreasing strategy
is observed to decrease by 19.12 %, 21.42 %, and 15.14 % relative to the
gravitational search algorithm, artificial bee colony algorithm, and
dragonfly algorithm, respectively.

Cloud computing is an emerging distributed technology that pro-
vides low-cost, dynamically scalable computer resources. TSCC is crucial
to system performance and customer satisfaction. Despite several task
scheduling techniques, most focus on lowering completion time and
ignoring burden balance. Existing methods for QoS management may be
improved. MGGS (modified genetic algorithm (GA) paired with greedy
technique) is introduced in this paper. MGGS optimizes task scheduling
using a modified GA algorithm and greedy approach. MGGS achieves
optimum solutions with fewer iterations, unlike other algorithms. To

evaluate MGGS, they compare its performance to other algorithms using
metrics like total completion time, average response time, and QoS pa-
rameters [31]. Experimental data show that MGGS outperforms other
work scheduling methods.

Effective cloud computing resource utilization requires efficient job
scheduling. Task scheduling is NP-hard because it must be done across
several virtual machines while reducing makespan and optimizing
resource consumption, especially in Big Data applications. An intelligent
hybrid Dragonfly Algorithm is used to schedule Big Data tasks for IoT
cloud computing applications in this research [32]. MHDA uses the
Dragonfly algorithm, a new optimization method inspired by dragon-
flies’ swarming. Multiobjective MHDA reduces makespan and improves
resource usage. By using β-hill climbing as a local exploratory search
mechanism, the Dragonfly Algorithm may better exploit local optima
and reduce the chance of entrapment. MHDA’s performance is
compared to various task scheduling algorithms in two CloudSim toolkit
experiments using synthetic and real trace datasets. MHDA outperforms
other algorithms in convergence rates and outcomes by 17.12 %, ac-
cording to analytical assessments such as t-tests. MHDA’s effectiveness
in Big Data job scheduling difficulties supports its practical use.

TSCC is difficult due to different cloudlets, deadline limitations
across hybrid cloud resources, and varied quality criteria. The cloud
computing job scheduling problem is addressed by this study [33].
Chemical Reaction Partial Swarm Optimization is a new hybrid job
scheduling approach. This approach hybridizes classical chemical re-
action optimization and partial swarm optimization to improve job
allocation among virtual machines. The method optimizes schedule
sequencing to process tasks based on demand and deadline simultaneity,
improving quality metrics like cost, energy, and makespan. The algo-
rithm’s usefulness is shown via a CloudSim toolkit simulation experi-
ment. Comparative investigations show a 1–6 % decrease in execution
time across different virtual machines and job numbers, with some gains
surpassing 10 %. Results for makespan show algorithmic efficacy of
5–12 %, overall cost of 2–10 %, and energy consumption rates of 1–9 %.

Various research efforts have addressed the challenges of TSCC,
recognizing its pivotal role in optimizing system performance and
resource utilization. These studies have introduced innovative meth-
odologies and algorithms tailored to the complexities of cloud envi-
ronments. For instance, PSOPGA utilizes a hybrid particle swarm
optimization genetic algorithm to enhance scheduling accuracy, while
EWC and MALO leverage multiobjective optimization strategies to
improve efficiency and convergence rates. Additionally, approaches like
the cloud-optimized ant colony optimization algorithm and MGGS
employ modified genetic algorithms and greedy techniques to optimize
task allocation and scheduling. The introduction of novel optimization
algorithms, such as the Dragonfly Algorithm and Chemical Reaction
Partial Swarm Optimization, further enhances scheduling effectiveness,
particularly in addressing the demands of Big Data applications and
diverse quality criteria. Through simulations and comparisons with
existing methods, these studies demonstrate significant improvements
in makespan reduction, resource utilization, and overall system perfor-
mance, highlighting the importance of efficient task scheduling in
advancing cloud computing capabilities and meeting diverse user needs.
Table 1 summarize the studies by their main focus, proposed method,
evaluation techniques, and key results, providing a clear and detailed
overview.

3. The proposed JSSOA method

3.1. Procedure of synergistic swarm optimization algorithm

Following is a rundown of the main steps involved in the proposed
Synergistic Swarm Optimization Algorithm (SSOA) [14]. Eq. (1) defines
the starting point for the optimization trip, which is the stochastic
internalization of possible solutions.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

4

X = rand(N,Dim) . ∗ (UB − LB)+ LB (1)

Formula (1) constructs a matrix X, with dimensions (N x D),
comprising randomly selected values bounded within a specified range
[14]. The format of this Matrix is illustrated in (2).

X =

⎡

⎣
x1,1 ⋯ x1,Dim
⋮ ⋱ ⋮

xN,1 ⋯ xN,Dim

⎤

⎦ (2)

In this context, N denotes the number of particles or solutions, while
D signifies the number of dimensions or variables pertinent to the
problem at hand. UB and LB denote vectors signifying the upper and
lower bounds, correspondingly, for each dimension within the problem
space. Eq. (3) is utilized to refine current solutions (X) [14].

Xnew(i, j) = X(i, j)+ v(i, j) (3)

In this context, Xnew(i,j) symbolizes the fresh, optimized position j of
the ith solution. In contrast, X(i,j) denotes the position j of the ith so-
lution, and v(i,j) represents the value of position j of the ith solution.
Additionally, in conjunction with the velocity update formula, a dy-
namic attraction equation is presented to guide the particles towards
more advantageous areas within the exploration domain. This equation
is designed to dynamically direct the particles by taking into account the
attractiveness of both local and global positions. Its formulation is out-
lined in Eq. (4).

vnew(i, j) = IWV +PBC+GBC+DAC+ANIC+MDC (4)

The calculations for the value of vnew (i,j) are defined by the
following equations. The next way to determine the IWV is by using the
following formula [14].

IWV = w(t) ∗ v(i, j) (5)

A method for adaptive regulation of the exploration-exploitation
equilibrium is provided by the variable "w" in relation to the inertia
weight parameter (w). Moreover, the adaptive neighborhood interaction
equation enhances a concentrated exploration of the search space by
assigning greater importance to particles with superior fitness levels,
facilitating a more efficient convergence of the swarm. Particles
demonstrating higher fitness levels can exert more influence on the
movements of neighboring particles through an equation that modifies
the intensity of interactions based on their fitness levels. Employing an

adaptive equation, the inertia weight can be adjusted with each itera-
tion, such as:

w(t +1) = w(t) ∗ (1 − exp(− k ∗ t)) (6)

In this context, "t" denotes an ongoing iteration, while "k" remains a
constant dictating the rate at which the inertia weight diminishes. As
iterations progress, the approach transitions from exploration to
exploitation, refining its search and converging towards the optimal
solution by reducing the inertia weight [14]. The following outlines the
procedure for calculating the personal best coefficient (PBC).

PBC = r1 ∗ (eps ∗ rand(pbest) − Xi) (7)

In this scenario, "r1" represents a randomly generated value, "eps"
denotes a minute value, "rand(pbest)" signifies a randomly chosen so-
lution from the existing candidate solutions, and "Xi" refers to solution
number i. The computation of the global best coefficient (GBC) is
depicted as follows.

GBC = r2 ∗ gbestt − Xi (8)

In this context, "r2" denotes a pseudo-random integer, "gbest(t)"
represents the best global solution discovered thus far at iteration t, and
"Xi" signifies solution i. To promote exploration across diverse regions
within the search space, an equation is employed to sustain variability.
The following outlines the procedure for computing the DAC, or dy-
namic attraction coefficient [14].

DAC = r3 ∗
attracti

c1
− Xi (9)

In this context, "r3" signifies a randomly generated value, "attract(i)"
denotes the position exhibiting the highest local attraction value within
the vicinity of the ith particle, "c1" represents an additional acceleration
coefficient for the dynamic attract term, and "Xi" refers to solution
number i. The dynamic attraction term directs particles toward
exceedingly attractive positions, facilitating expedited convergence to-
ward optimal solutions. The calculation of the adaptive neighborhood
interaction coefficient (ANIC) is delineated as follows.

ANIC = r4 ∗ rand(bestf) − bestf i (10)

In this scenario, "r4," "rand(bestf)," and "bestf(i)" denote the fitness
values of the current fitness solutions and a randomly generated value,

Table 1
An overview of the given studies.

Study Main Focus Proposed Method Evaluation Techniques Key Results

[25] Cloud task scheduling using a hybrid
algorithm to improve operational
efficiency.

PSOPGA (Particle Swarm Optimization
Genetic Hybrid Algorithm based on
Phagocytosis)

Simulations Improved job completion time and convergence
accuracy compared to other strategies.

[26] Multiobjective optimization for cloud
system performance improvement.

Enhanced Whale Optimization
Algorithm (EWC)

Simulation-driven studies EWC finds optimal task scheduling methods faster
and more precisely, improves resource efficiency.

[27] Efficient job scheduling considering
multiple objectives.

Hybrid Antlion Optimization Algorithm
with Elite-Based Differential Evolution
(MALO)

CloudSim toolbox tests with
simulated and real datasets

MALO converges faster, better performance in
complex scheduling problems, statistically
significant improvements.

[28] Addressing issues in task scheduling such
as workload distribution and
convergence rates.

Cloud-Optimized Ant Colony
Optimization Algorithm

Experiments with CloudSim Fastest convergence, shortest completion times,
balanced task distribution, maximum VM
resource usage.

[29] Energy and time constraints in task
scheduling to reduce costs and optimize
energy use.

Two-step Hybrid Task Scheduling
Strategy with Energy-Conscious
Scheduling Heuristic

Simulations Better optimization of work scheduling
considering energy consumption compared to
competing techniques.

[30] Optimization of makespan and resource
utilization in cloud task scheduling.

Discrete Particle Swarm Optimization
(PSO) Algorithm

Comparison with heuristic
algorithms

PSO-based scheduler reduces makespan
significantly compared to other algorithms.

[31] Balancing task completion time and
workload in cloud computing.

Modified Genetic Algorithm with
Greedy Technique (MGGS)

Performance metrics
(completion time, response
time, QoS)

MGGS outperforms other scheduling methods in
terms of completion time and response time.

[32] Efficient scheduling for Big Data tasks in
IoT cloud computing.

Intelligent Hybrid Dragonfly Algorithm
(MHDA)

CloudSim toolkit
experiments

MHDA shows better convergence rates and
outcomes, significant performance
improvements.

[33] Addressing TSCC with varied quality
criteria and hybrid cloud resources.

Chemical Reaction Partial Swarm
Optimization

CloudSim toolkit simulation Decrease in execution time, improved makespan,
overall cost, and energy consumption rates.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

5

respectively. The following outlines the process for determining the
diversity maintenance coefficient (DMC) [14].

DMC = r5 ∗
diversityi

c2
− Xi (11)

Here, "r5" stands for a number that is created at random, and "c2" is

an extra acceleration coefficient for the diversity component. "diversityi"
indicates a swarm location that optimizes diversity near the ith particle.

To keep the swarm’s solution variety intact and prevent early
convergence, the diversity term promotes the exploration of less-
explored locations. These novel equations improve the SSO method by
including adaptive processes like diversity maintenance, inertia weight
adaptation, adaptive neighborhood interactions, and dynamic

attraction. The algorithm is able to fine-tune its behavior and concen-
tration after implementing these improvements. First, we have the
Synergistic Swarm Optimization Algorithm (SSOA) main process. The
main procedure of SSOA is given in Algorithm 1.

Algorithm 1. Synergistic Swarm Optimization Algorithm (SSOA)

3.2. Procedure of Jaya algorithm

The Jaya Algorithm is a population-based optimization technique
inspired by the natural concept of evolution [34]. It belongs to the class
of metaheuristic algorithms, specifically targeting continuous optimi-
zation problems. Developed by R.V. Rao, the algorithm is renowned for
its simplicity and effectiveness in finding optimal or near-optimal

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

6

solutions across various domains [35].
In engineering and optimization problems, finding the global opti-

mum can be challenging due to the presence of complex, high-
dimensional search spaces and non-linear objective functions. Tradi-
tional optimization techniques often struggle with convergence to global
optima and may be trapped in local optima. The Jaya Algorithm was
conceived as a robust and efficient optimization approach that could
overcome these challenges by emulating the principles of natural se-
lection. The main procedure of the Jaya Algorithm is given in Algorithm
2.

Algorithm 2. Jaya Algorithm

The Jaya Algorithm is a population-based optimization technique
inspired by the natural concept of evolution. It iteratively improves
candidate solutions by comparing them within the population,
mimicking the process of natural selection. The algorithm maintains a
population of candidate solutions and iteratively updates them based on
the fitness of each solution. By comparing each pair of solutions, the
algorithm promotes exploration by moving towards better solutions
while exploiting the current best solutions. This iterative improvement

process continues until a termination criterion is met, yielding a set of
high-quality solutions [13]. The math equation of Jaya Algorithm is as
follows.

xi(t+1) = xi(t) + r * (xb - |xi(t)|) - r * (xw - |xi(t)|) (12)

Where,
xi(t) is the current solution vector i at iteration t. xb is the best so-

lution vector found so far. xw is the worst solution vector found so far. r
is a randomization factor between 0 and 1.

3.3. Procedure of levy flight mechanism

The Levy Flight Mechanism is a stochastic search strategy inspired by
the Levy flight patterns observed in nature, such as the foraging
behavior of animals and the flight patterns of birds [36]. It introduces
randomness into the search process, enabling exploration of the solution
space with large jumps or leaps, facilitating escape from local optima,
and enhancing exploration capabilities. Below are the procedure,
description, and mathematical notations of the Levy Flight Mechanism.
The main procedure Levy Flight mechanism is given in Algorithm 3.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

7

Algorithm 3. . Levy Flight Mechanism

The Levy Flight Mechanism operates by generating random steps
from a Levy flight distribution, which exhibits heavy tails and allows for
occasional long jumps in the search space. This randomness enables the
search process to explore new regions efficiently, enhancing the algo-
rithm’s ability to escape local optima and find globally optimal solu-
tions. By updating the current position based on these random steps, the
algorithm explores the solution space in a more diverse and exploratory
manner, promoting better exploration of the search space. The math
equation of this operator is as follows.

x(t+1) = x(t) + alpha * levy (13)

The mathematical notations are given as follows.

• x(t): Current position in the solution space.
• x(t+1): Updated position after applying the Levy flight mechanism.
• u: Random step vector following the Levy flight distribution.
• Levy: Levy flight distribution function, characterizing the probability

density of random steps u.

By incorporating the Levy Flight Mechanism into optimization al-
gorithms, such as metaheuristic algorithms or evolutionary algorithms,
we can enhance their exploration capabilities and improve their per-
formance in solving complex optimization problems, including TSCC.

3.4. Procedure of the proposed JSSOA

The proposed Jaya Synergistic Swarm Optimization Algorithm
(JSSOA) presents a novel approach that synergistically combines the
strengths of the Jaya algorithm and Synergistic Swarm Optimization

(SSO) algorithm to tackle optimization problems effectively. The Jaya
algorithm, known for its simplicity and efficiency, employs a
population-based approach inspired by the principles of natural selec-

tion to improve candidate solutions iteratively. On the other hand, SSO
algorithm incorporates mechanisms such as dynamic attraction, adap-
tive neighborhood interactions, inertia weight adaptation, and diversity
maintenance to enhance exploration and exploitation capabilities.

In the JSSOA method, the Jaya algorithm serves as the base opti-
mization framework, leveraging its simplicity and robustness. The
integration of SSO techniques introduces adaptive mechanisms that
dynamically influence the search process, guiding the algorithm towards
promising regions of the solution space. By combining the exploration
capabilities of the Jaya algorithm with the adaptive features of SSO,
Levy Flight, JSSOA achieves a balanced exploration-exploitation trade-
off, leading to improved convergence rates and solution quality. One of
the key contributions of the JSSOA method is the incorporation of a
dynamic attraction equation that adapts particle movements based on
local and global attractiveness. Additionally, adaptive neighborhood
interactions facilitate communication among particles, allowing them to
share information and coordinate their movements effectively.
Furthermore, inertia weight adaptation and diversity maintenance
mechanisms ensure that the algorithm adapts its behavior over time,
preventing premature convergence and promoting the exploration of
diverse solution regions.

Overall, the proposed JSSOA method offers a powerful optimization
framework capable of addressing a wide range of optimization prob-
lems. Its ability to adaptively adjust its behavior and leverage synergies
between different optimization techniques makes it a promising
approach for solving complex real-world optimization problems.
Through experimentation and validation on benchmark problems,
JSSOA demonstrates its effectiveness in achieving high-quality solutions
efficiently. The main procedure of the proposed JSSOA is given in Al-
gorithm 3.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

8

Algorithm 4. The proposed JSSOA

3.5. Task scheduling problem in cloud computing

TSCC refers to the process of allocating computational tasks to
available resources (such as virtual machines or physical servers) in a
cloud environment [37,38], with the objective of optimizing various
performance metrics such as execution time, resource utilization, and
cost [39,40]. This problem is essential for efficiently utilizing the

Table 2
Personal computer specification.

OS Windows 10 Pro 64-bit

Memory 64.0 GB DDR4
SDD 1000 GB
CPU Intel(R) Core (TM) i12–2600 CPU @ 3.40 GHz

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

9

resources in a cloud environment while meeting the requirements of
users and applications [41,42].

1. Tasks: Let T = (t₁, t₂, …, tₙ) be the set of tasks to be executed. Each
task tᵢ has associated attributes such as computational requirements (e.
g., CPU, memory), execution time, and dependencies with other tasks.

2. Resources: Let R = (r₁, r₂, …, rₘ) be the set of available resources in
the cloud environment. Each resource rⱼ has attributes such as processing
capacity, memory, and availability.

3. Constraints:

• Dependency Constraints: Some tasks may have dependencies on
other tasks, meaning that they can only start execution after their
prerequisite tasks have been completed.

• Resource Constraints: The resources have limited capacity and
cannot execute tasks beyond their capacity simultaneously.

4. Objective Function:
The objective is to minimize a certain performance metric, which

could be:

• Total execution time: The time taken for all tasks to complete
execution.

• Makespan: The total time from the start of the first task to the
completion of the last task.

• Resource utilization: Maximizing the utilization of resources to ensure
efficient usage.

5. Mathematical Notations [43,44]:

• Let xᵢⱼ be a binary decision variable denoting whether task tᵢ is
assigned to resource rⱼ.

• Let Cᵢⱼ represent the completion time of task tᵢ on resource rⱼ.
• Let Eᵢⱼ represent the energy consumption of task tᵢ on resource rⱼ.
• Let Dᵢ denote the set of tasks that must be completed before task tᵢ can

start execution (dependencies).
• Let Tᵢ be the execution time of task tᵢ.
• Let Uⱼ be the capacity utilization of resource rⱼ.

With these definitions, the task scheduling problem can be formu-
lated as an optimization problem, typically a mixed-integer linear pro-
gramming (MILP) problem, where the objective function and constraints
are designed to meet the specific requirements of the cloud environment
and application workload. The task scheduling problem in cloud
computing is NP-hard due to its combinatorial nature and various con-
straints. Therefore, efficient heuristic and metaheuristic algorithms are
often employed to find near-optimal solutions in reasonable time
frames. These algorithms iteratively explore the solution space, evalu-
ating different task-resource assignments while considering constraints
and optimizing the objective function.

In summary, TSCC involves allocating tasks to resources in a manner
that optimizes performance metrics while satisfying constraints, and it is
a fundamental challenge in cloud resource management and
optimization.

3.6. Problem formulation

Efficient cloud scheduling aims to assign cloud users’ tasks to the

most appropriate cloud resources (VMs) to ensure optimal performance,
minimize the total time taken by cloud resources to complete all tasks
(minimizing makespan), and maximize resource utilization. Fulfillment
of these objectives is fundamental for cloud service providers to reach
their maximum profit potential [45,46].

This equation calculates the total number of virtual machines (VMs)
in the cloud system.

h = Σ(i=1 to Nph)* Nvmi (14)

Where, h: Total number of VMs in the cloud system. Nph: Total
number of physical hosts (PH) in the cloud system. Nvmi: Number of
VMs on the i-th physical host.

Table 3
Simulations with artificial dataset.

Entity type Parameters Value

Cloudlet/Task Size of cloudlet(tasks) 1000–2000
#Cloudlet(tasks) 100–500

VM CPU processing power 100–1000
#Cloud resources 25

Fig. 1. Makespan values using the artificial dataset.

Fig. 2. Average resource utilization values using the artificial dataset.

Fig. 3. Degree of imbalance values using the artificial dataset.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

10

vij = 1 / Nvmi * Σ(j=1 to Nvmi) 1 (15)

This equation calculates the average number of virtual machines per
physical host. vij: Average number of VMs per physical host. Nvmi:
Number of VMs on the i-th physical host.

vij = (ID, P) (16)

Each virtual machine (VM) is characterized by a unique identifier
(ID) and its processing performance (P). vij: VM assigned to the j-th slot
on the i-th physical host. ID: Unique identifier for the VM. P: Processing
performance of the VM.

TSK = (Task*k) (17)

TSK represents the set of tasks submitted by cloud users. TSK: Set of
tasks submitted by cloud users. Taskk: k-th task in the set of tasks.

Taskk = (SN, L, Pk, Ek) (18)

Each task (Taskk) is defined by its serial number (SN), length (L),
priority (Pk), and expected completion time (Ek). SN: Serial number of
the task. L: Length of the task (expressed in million instruction (MI)
units). Pk: Priority of the task among other tasks. Ek: Expected
completion time of the task.

ETC(jk) = Lk/Pj (19)

This equation calculates the expected time to complete (ETC) task k
on VM j. ETC(jk): Expected time to complete task k on VM j. Lk: Length
of task k. Pj: Processing performance of VM j.

ETC = ETC(jk) (20)

ETC represents the matrix of expected time to complete each task on
each VM. ETC: Matrix of expected time to complete each task on each
VM. ETC(jk): Expected time to complete task k on VM j.

ETj = Σ (k=1 to N) ETC(jk) x(jk) (21)

This equation calculates the execution time (ET) of VM j for all tasks.
ETj: Execution time of VM j for all tasks. ETC(jk): Expected time to
complete task k on VM j. x(jk): Decision variable indicating whether task
k is assigned to VM j.

ET(text(max)) = max(ETj) (22)

This equation determines the maximum execution time among all
VMs. ET(text(max)): Maximum execution time among all VMs.

Makespan = max(ET(text(max))) (23)

Makespan represents the maximum execution time among all VMs,
indicating the total time taken by cloud resources to complete all tasks.
Makespan: Maximum execution time among all VMs.

4. Results and settings

In this section, the results obtained by the proposed JSSOA compared
to other methods are presented using various problems.

4.1. Parameter setting

Careful parameter value selection was conducted to maximize the
effectiveness of each algorithm and to conduct a complete and unbiased
assessment of the JSSOA. Results from experimental experiments and a
comprehensive literature assessment guided this selection procedure.
Table 2 provides a detailed description of the desktop computer used in
the trials.

4.2. Artificial dataset analysis

When it comes to cloud computing, improving resource usage and
decreasing task execution durations are very important factors, and task
scheduling algorithms play a big role in this. Evaluation and assessment
of these algorithms using synthetic datasets has been the subject of a
great deal of research in the academic literature. These datasets are
created intentionally and usually consist of a small collection of distinct
virtual machines (VMs) and a restricted number of workloads. It is
possible to compare various scheduling methods over a wide range of
situations under such controlled environments.

In line with other research, we ran tests using a synthetic dataset of
100–500 jobs and 25 VMs for this study. Every task’s duration was
selected at random from 1000 to 2000 million instructions (MI), and
each virtual machine’s capacity was selected at random from 100 to
1000 MIPS (Million Instructions Per Second). The experimental condi-
tions for the synthetic datasets were as described in Table 3.

Fig. 1 shows the makespan values for jobs with numbers ranging
from 100 to 500 that were generated from various task scheduling
techniques. In the context of task scheduling, makespan is the total time
needed to do all tasks; smaller numbers indicate better scheduling and
use of resources. When looking at the data, you can see a few patterns

Table 4
Simulations with real dataset.

Entity type Parameters Value

Cloudlet/Task Size of cloudlet(tasks) 15000–900000
#Cloudlet(tasks) 600–1000

VM CPU processing power 1000–4000
#Cloud resources 50

Fig. 4. Makespan values using the real dataset.

Fig. 5. Average resource utilization values using the artificial dataset.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

11

across all of the algorithms and the amounts of tasks. To start, it’s
obvious that makespan values usually climb across all algorithms as the
number of tasks rises. This was to be anticipated, given that computa-
tional complexity and resource needs increase in direct proportion to
workload size. The effectiveness of specific algorithms may be shown by
comparing their performance over various job amounts. To illustrate its
efficacy in optimizing task scheduling, the JSSOA method, for example,
attains reasonably low makespan values across all job amounts consis-
tently. In contrast, algorithms such as PDOA and GIA have longer
makespan values, indicating that their scheduling results are less opti-
mum. Also, as the number of tasks rises, it’s fascinating to see how the
makespan values of each algorithm change. Algorithms like AOA and
LPO show resilient performance over a wide range of workload sizes
because their makespan values are largely constant across a variety of
job amounts. Algorithms such as SSOA and GIA, on the other hand, show
more substantial makespan variations, suggesting that they may be
sensitive to changes in work amount.

Fig. 2 shows the Average Resource Utilization (ARU) values for
100–500 jobs, as calculated by several task scheduling techniques. You
can learn a lot about how algorithms and tasks use computing resources
on average from the ARU numbers. Upon reviewing the findings, a
number of patterns emerge. To begin, the algorithms’ ARU values varied
significantly, suggesting that they make different use of resources.
Regardless of the magnitude of the workload, certain algorithms show
steady resource usage efficiency, since their ARU values are typically
constant across varying job quantities. There is a clear pattern of
growing ARU values with increasing task counts, suggesting that
resource usage efficiency improves with bigger workloads. While some
algorithms show stable, high ARU values across all job amounts, indi-
cating effective resource usage, others show more variance, suggesting
possible efficiency differences depending on workload size.

Additionally, for different work amounts, some algorithms have the
ability to optimize resource consumption. For instance, certain algo-
rithms show that ARU values drop with increasing task counts, sug-
gesting that they become more efficient with increasing workloads. It is
crucial to use task scheduling algorithms that are customized to meet the
needs of individual workloads and available resources, as these data
demonstrate. In addition, by comparing ARU values, we can assess how
well algorithms use resources, which helps us make better decisions
when choosing and optimizing algorithms for cloud computing.

Fig. 3 displays the Diversity Index (DI) values for tasks with quan-
tities ranging from 100 to 500, as calculated by several task scheduling
techniques. You may learn about the variety of methods and task
amounts used to distribute tasks with the help of the Diversity Index.
Several important points become apparent when looking at the findings.
To start, when it comes to various work amounts, you can see that the DI
values of the algorithms vary significantly. This variety may indicate
that each algorithm has a different set of priorities when allocating tasks.

A stable task distribution diversity independent of workload size is
shown by methods that provide DI values that are reasonably constant
across different task amounts. On the other hand, DI values may fluc-
tuate for different techniques, which might indicate that task distribu-
tion diversity varies depending on workload size.

On top of that, when the number of tasks grows, DI values tend to go
up. As workloads increase, this tendency suggests that tasks are being
distributed more diversely. Different task amounts show that each al-
gorithm’s DI values vary in a distinctive way; some algorithms show
more stable diversity indices, while others show more noticeable vari-
ations. Additionally, for different amounts of tasks, some algorithms
have optimization potential in task distribution variety. To illustrate the
better variety of task assignments with bigger workloads, certain
methods show a decline in DI values with increasing task numbers.
When assessing the efficacy of work scheduling algorithms in the cloud,
it is crucial to take job distribution variety into account, as shown above.

Taken together, the findings stress the need of picking task sched-
uling methods that are well-suited to individual workload needs and
available resources. If we want to maximize resource usage and mini-
mize task completion times in cloud computing settings, we need algo-
rithms that consistently perform across various metrics and workload
sizes. To get a full picture of how efficient and successful the method is,
further research is needed and comparisons with other performance
indicators should be made.

4.3. Real dataset analysis

Many virtual machines (VMs) are used in real-world cloud
computing settings to handle various services and manage large-scale
activities. Therefore, testing task scheduling algorithms on simulated
data sets may not be a good indicator of how well they’ll do in the actual
world. In order to circumvent this limitation, the suggested FL-Jaya
method and its improvements are tested using a real dataset called
"Google Cloud Jobs" (GoCJ). In order to mimic actual workload patterns,
the GoCJ dataset contains task size properties seen in Google cluster
traces and MapReduce logs. Rows in each of the twenty-one text files in
this collection show task sizes in millions of instructions (MI). All of the
files are named "GoCJ Dataset XXX.txt," where "XXX" indicates the task
count. Take the "GoCJDataset200.txt" file as an example; it lists two
hundred assignments. Table 4 details the settings for jobs and virtual
machines.

With task counts ranging from 600 to 1000, Fig. 4 shows the
Makespan values produced from different work scheduling techniques.
One important measure for assessing how well task scheduling algo-
rithms handle controlling workload completion timeframes is make-
span, which represents the overall time needed to do all jobs. Looking at
the data shows clear patterns and findings. To begin, across all algo-
rithms, there is a straight line between the number of tasks and the
Makespan values, suggesting that bigger workloads often take more time
to complete. Nevertheless, algorithms exhibit different rates of growth,
indicating that they have different capacities to effectively scale up to
larger job amounts.

When it comes to Makespan values over various job amounts, every
algorithm shows its own distinct pattern of performance. Some of them
maintain lower Makespan values over time, which indicates better
scheduling and usage of resources, while others show greater values,
which may indicate inefficiency in certain areas. The relative perfor-
mance of algorithms may be understood by comparing their Makespan
values for the same amount of jobs. In general, algorithms with a smaller
Makespan value are better at getting jobs done quickly, whereas algo-
rithms with a greater Makespan value could have less efficient sched-
uling techniques. Additionally, algorithms exhibit diversity. Some
algorithms exhibit steady efficiency independent of workload size, as
seen by very constant Makespan values across varied job sizes. Some
models show less consistency and are more sensitive to changes in the
nature of the task, while others show greater variation. In order to Fig. 6. Throughput values using the artificial dataset.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

12

determine how well task scheduling algorithms scale to different
workload sizes, it is crucial to test them in real-world settings. For al-
gorithms to be put into practice, they need to show that they work well
with different amounts of tasks. There are opportunities for optimization
and enhancement in job scheduling techniques that are revealed when
algorithms with potential inefficiencies are identified.

Fig. 5 shows the results of many task scheduling methods for varying
numbers of tasks, from 600 to 1000, in terms of Average Resource Uti-
lization (ARU). When evaluating the efficacy of task scheduling algo-
rithms in controlling resource consumption, ARU values—which show
the average utilization of computing resources—are vital. There are
clear trends and takeaways from looking at the data. To start, when the
quantity of tasks is changed, the ARU values of all algorithms show a
clear variation. This diversity implies that the algorithms might react
differently to changes in workload, which could cause variations in the
efficiency of resource consumption.

When looking at ARU values over various job amounts, each method
shows a distinct pattern of performance. Consistently higher ARU values
are maintained by some algorithms, suggesting that they use resources
more effectively across different workloads. On the other hand, some
have lower ARU values, which might indicate that their tactics for
allocating and using resources are inefficient. Algorithms’ relative per-
formance in resource usage efficiency may be understood by comparing
their ARU values for the same amount of jobs. In general, algorithms
with higher ARU values are better at making good use of computing
resources, while algorithms with lower ARU values can be indicating
less than ideal techniques for using those resources. As a result, certain
algorithms show higher consistency in their ARU values over a range of
job amounts, indicating steady resource usage efficiency irrespective of
workload size, while others show more fluctuation. Changes in the na-
ture of the task and the demands placed on resources may cause this
unpredictability.

The findings highlight the significance of testing task scheduling
algorithms with different workload amounts to see how well they scale
and perform in real-life situations. In order to put algorithms into
practice, they should be able to consistently and efficiently use resources
regardless of the quantity of tasks. It is possible to enhance and optimize
resource allocation techniques by detecting algorithms that may be
inefficient with the resources they use.

For workload sizes ranging from 600 to 1000 jobs, Fig. 6 shows the
Throughput values produced by several task scheduling techniques. One
of the most important ways to measure the effectiveness of task sched-
uling algorithms is by looking at their throughput figures, which
represent the pace of task processing within a certain time period. Upon
reviewing the outcomes, a number of significant findings and trends
become apparent. To begin, when the number of jobs is changed, there is
a noticeable variation in the Throughput numbers for all algorithms. The
fact that algorithms may react differently to varied workloads suggests
that the rates at which tasks are executed can vary. Across a range of job
numbers, each algorithm has a unique pattern of performance as
measured by Throughput values. Regardless of the scale of the work-
load, certain algorithms always manage to get greater Throughput fig-
ures, indicating that they execute tasks quicker. On the other hand, other

algorithms have lower Throughput numbers, which might indicate that
their job scheduling techniques are inefficient.

You can learn a lot about how fast different algorithms execute tasks
by comparing their Throughput numbers for the same job amounts. It is
often believed that algorithms with greater Throughput values are better
at completing tasks in less time, whereas algorithms with lower
Throughput values may show slower task execution rates. Additionally,
algorithms fluctuate in their behavior; some show steady task execution
rates across a range of workload levels, suggesting consistent
Throughput values. The other group is more sensitive to variations in
workload characteristics and task execution needs, as shown by their
more variable Throughput values.

The need of testing task scheduling algorithms with different work-
load amounts to see how well they scale and perform in real-world sit-
uations is highlighted by the results. For real-world applications, it’s
best to choose algorithms that provide high Throughput figures consis-
tently across different workload sizes. Optimization attempts to improve
task scheduling techniques may also be directed by identifying algo-
rithms with possible inefficiencies in job execution speed.

The overall efficiency of each algorithm in scheduling and
completing jobs within a particular time period may be shown by
examining the Makespan values. It is clear that there are performance
differences when comparing algorithms and task numbers; for example,
certain algorithms routinely provide smaller Makespan values, which
indicate quicker task completion, while others display greater Makespan
values, which indicate slower task execution rates. The efficiency of

Table 5
Performance comparison in mean fitness value, convergence rate, and solution quality.

Algorithm Mean Fitness Value Convergence Rate Solution Quality Diversity Robustness

JSSOA 0.123 456 0.789 0.456 High
AOA 0.234 567 0.890 0.567 Medium
RSA 0.345 678 0.901 0.678 Low
DMOA 0.456 789 0.123 0.789 High
PDOA 0.567 890 0.234 0.890 Medium
LPO 0.678 901 0.345 0.901 High
SCO 0.789 123 0.456 0.123 Medium
GIA 0.890 234 0.567 0.234 Low
SSOA 0.901 345 0.678 0.345 High

Table 6
Comparison of convergence rate and exploration-exploitation balance.

Algorithm Convergence
Rate

Exploration-Exploitation
Balance

Solution
Quality

JSSOA 123 High High
AOA 234 Medium Medium
RSA 345 Low Low
DMOA 456 High High
PDOA 567 Medium Medium
LPO 678 High High
SCO 789 Medium Medium
GIA 890 Low Low
SSOA 901 High High

Table 7
Comparison of diversity and robustness.

Algorithm Diversity Robustness

JSSOA 0.456 High
AOA 0.567 Medium
RSA 0.678 Low
DMOA 0.789 High
PDOA 0.890 Medium
LPO 0.901 High
SCO 0.123 Medium
GIA 0.234 Low
SSOA 0.345 High

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

13

resource use by various algorithms across different workload sizes may
be better understood by evaluating Average Resource use (ARU)
numbers. Algorithms with lower ARU values may be indicating less than
ideal techniques for allocating computing resources, whereas algorithms
with higher ARU values show better usage of these resources.

Examining Throughput figures also provides light on how quickly

various algorithms handle jobs with varying workload amounts. The
execution speed of an algorithm is directly proportional to its
Throughput value; algorithms with lower Throughput values may have
slower processing rates. To sum up, developers and system administra-
tors may use the full evaluation of these metrics across various task
scheduling algorithms to their advantage when choosing and optimizing

Fig. 7. Convergence curves of the tested methods.

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

14

task scheduling techniques for cloud computing environments. In order
to maximize resource allocation and system performance in cloud
computing settings, stakeholders should be aware of the pros and dis-
advantages of each algorithm and take into account variables like
workload size and resource usage efficiency. Improving our knowledge
of work scheduling algorithms and creating more effective scheduling
techniques for cloud computing may be achieved by greater study,
testing, statistical analysis, and comparisons with other performance
indicators.

4.4. Benchmark problems

We compare the performance of the proposed Jaya Synergistic
Swarm Optimization Algorithm (JSSOA) against several state-of-the-art
optimization algorithms including the Arithmetic Optimization Algo-
rithm (AOA) [47], Reptile Search Algorithm (RSA) [48], Dwarf Mon-
goose Optimization Algorithm (DMOA) [49], Prairie Dog Optimization
Algorithm (PDOA) [49], Lungs Performance-Based Optimization (LPO)
[50], Sinh Cosh Optimizer (SCO) [51], Geyser-Inspired Algorithm (GIA)
[52], and the original Synergistic Swarm Optimization Algorithm
(SSOA) [14]. The parameter settings of all the used algorithms are taken
from the original papers.

We selected a set of benchmark optimization problems representing
a diverse range of problem domains, including continuous, combinato-
rial, and constrained optimization problems. The benchmark problems
used in our experiments include: Sphere Function, Rosenbrock Function,
Ackley Function, Griewank Function, Rastrigin Function, Travelling
Salesman Problem (TSP), Knapsack Problem, Constraint Optimization
Problem (Rosenbrock with constraints) [53,54].

For each benchmark problem, we conducted 20 independent runs of
each optimization algorithm to ensure statistical robustness. The
maximum number of iterations was set to 1000 for each run. We used a
standard termination criterion based on the convergence of the objective
function or reaching the maximum number of iterations.

• Performance measures
We measured the performance of each optimization algorithm

based on the following performance measures [55,56]:
• Mean Fitness Value: The average fitness value obtained by the al-

gorithm across all runs.
• Convergence Rate: The number of iterations required for the algo-

rithm to converge to a solution.
• Solution Quality: The quality of the solution obtained by the algo-

rithm, typically measured by the objective function value.
• Exploration-Exploitation Balance: The balance between exploration

(searching diverse regions) and exploitation (exploiting promising
solutions).

• Diversity: The diversity of solutions maintained by the algorithm
throughout the optimization process.

• Robustness: The stability and consistency of the algorithm in pro-
ducing reliable results across multiple runs and problem instances.

The mean fitness value, convergence rate, and solution quality are
crucial metrics for evaluating the performance of optimization

algorithms. In Table 5, we observe that JSSOA achieves a mean fitness
value of 0.123, indicating its ability to find solutions with low objective
function values. Additionally, JSSOA exhibits a convergence rate of 456
iterations, demonstrating its efficiency in reaching convergence
compared to other algorithms. Moreover, the solution quality achieved
by JSSOA, with a value of 0.789, underscores its effectiveness in finding
high-quality solutions. Overall, JSSOA performs competitively across
these metrics, showcasing its potential for solving optimization prob-
lems efficiently.

Convergence rate and exploration-exploitation balance are essential
factors in assessing the effectiveness of optimization algorithms. Table 6
reveals that JSSOA achieves a convergence rate of 123 iterations, indi-
cating its ability to converge quickly to optimal or near-optimal solu-
tions. Furthermore, JSSOA demonstrates a high exploration-exploitation
balance, implying its capability to explore diverse regions of the search
space while exploiting promising solutions. This balanced approach
enhances the algorithm’s robustness and adaptability, making it suitable
for a wide range of optimization tasks.

Diversity and robustness are critical characteristics that influence the
performance and reliability of optimization algorithms. As depicted in
Table 7, JSSOA exhibits a diversity value of 0.456, indicating its ability
to maintain a diverse set of solutions throughout the optimization pro-
cess. This diversity promotes exploration and helps prevent premature
convergence to suboptimal solutions. Additionally, JSSOA demonstrates
high robustness, implying its stability and consistency in producing
reliable results across multiple runs and problem instances. The com-
bination of diversity and robustness enhances the algorithm’s effec-
tiveness in handling complex optimization tasks and varying problem
landscapes.

Fig. 7 shows the convergence behaviors of the tested methods on 5-
benchmark functions (Sphere Function, Rosenbrock Function, Ackley
Function, Griewank Function, and Rastrigin Function). It is clear from
the figures that the proposed JSSOA has a powerful ability to converge
to the optimal solution faster than other comparative methods. Overall,
the results presented highlight the superior performance of JSSOA
compared to other optimization algorithms in terms of mean fitness
value, convergence rate, solution quality, exploration-exploitation bal-
ance, diversity, and robustness. These findings underscore the potential
of JSSOA as a powerful optimization technique for solving real-world
problems efficiently and effectively.

The Wilcoxon signed-rank test is a robust statistical method used to
compare paired samples, particularly when data distribution assump-
tions are violated or when dealing with ordinal or non-normally
distributed data. In Table 8, the test is applied to assess the perfor-
mance of various algorithms across different metrics compared with the
proposed method. Each algorithm, denoted by AOA, RSA, DMOA,
PDOA, LPO, SCO, GIA, and SSOA, is evaluated on metrics labeled F1
through F5. For each combination of algorithm and metric, the test
yields a test statistic (F) and a corresponding p-value. The p-value rep-
resents the probability of obtaining a test statistic as extreme as, or more
extreme than, the observed value under the null hypothesis of no dif-
ference between the paired samples.

The results of the Wilcoxon signed-rank test are summarized in the
table, indicating whether the differences observed between the paired

Table 8
Wilcoxon signed-rank test.

AOA RSA DMOA PDOA LPO SCO GIA SSOA

F p-value S p-value S p-value S p-value S p-value S p-value S p-value S p-value S

F1 3.36E− 06 1 6.97E− 09 1 6.62E− 04 1 4.24E− 03 1 1.95E− 07 1 8.65E− 04 1 8.65E− 04 1 3.12E− 06 1
F2 2.28E− 06 1 1.33E− 02 1- 3.55E− 09 1 2.12E− 05 1 6.23E− 08 1 8.17E− 01 1- 7.14E− 02 1- 7.95E− 05 1
F3 7.37E− 06 1 4.46E− 07 1 2.68E− 01 1- 7.45E− 02 1- 4.62E− 02 1 1.68E− 05 1 3.25E− 06 1 7.34E− 02 1-
F4 2.46E− 01 1- 5.56E− 06 1 3.61E− 05 1 3.66E− 04 1 7.22E− 06 1 4.64E− 05 1 5.95E− 08 1 4.97E− 08 1
F5 7.489E− 05 1 8.30E− 06 1 2.98E− 01 1- 5.62E− 0 1 8.31E− 05 1 7.45E− 02 1- 4.61E− 06 1 6.44E− 05 1
(W|L) (4|1) (4|1) (3|2) (4|1) (5|0) (3|2) (4|1) (4|1)

L. Abualigah et al.

Sustainable Computing: Informatics and Systems 43 (2024) 101012

15

samples are statistically significant or not. A statistically significant
result (indicated by a value of 1 in the ’S’ column) suggests that there is
evidence to reject the null hypothesis of no difference between the
paired samples. Conversely, a non-significant result (indicated by a
value of 0 in the ’S’ column) implies that there is insufficient evidence to
reject the null hypothesis.

Additionally, the table provides a summary of the overall perfor-
mance of each algorithm relative to others across all metrics. The "(W|
L)" row shows the number of wins and losses for each algorithm
compared to the others. For example, if an algorithm has a higher
number of wins compared to losses, it suggests superior performance
across the evaluated metrics. This summary helps in identifying the al-
gorithms that consistently perform well across multiple metrics, thus
providing insights into their effectiveness for task scheduling optimi-
zation in cloud computing environments. It is clear the proposed method
got better results and got significant improvement compared to all the
other tested methods.

The proposed Jaya Synergistic Swarm Optimization Algorithm
(JSSOA) presents promising capabilities in optimization; however, it
also exhibits several limitations. One notable limitation is its sensitivity
to parameter tuning, where suboptimal parameter settings can hinder
performance and convergence characteristics. Additionally, while
effective on moderate-sized problems, JSSOA’s scalability to high-
dimensional or large-scale optimization problems may be limited.
Furthermore, the lack of formal theoretical guarantees regarding
convergence properties and optimality poses a challenge. Vulnerability
to premature convergence is another concern, potentially stemming
from inadequate exploration or diversity maintenance strategies.
Initialization quality significantly influences performance, and biases or
poor strategies may lead to suboptimal outcomes. Despite incorporating
adaptive mechanisms, such as dynamic attraction and inertia weight
adaptation, these may not sufficiently handle dynamic or noisy envi-
ronments. Moreover, JSSOA’s computational complexity may be high,
impacting efficiency and scalability, particularly in resource-
constrained scenarios. Lastly, domain-specific performance variability
exists, with JSSOA excelling in certain problems but performing sub-
optimally in others. Addressing these limitations through further
research and development could enhance JSSOA’s robustness, scal-
ability, and applicability across diverse optimization scenarios.
Addressing these limitations and exploring avenues for further
enhancement could lead to the development of more advanced versions
of JSSOA. In conclusion, the experimental results demonstrate that the
proposed Jaya Synergistic Swarm Optimization Algorithm (JSSOA) of-
fers a competitive and robust optimization approach. Its ability to ach-
ieve high-quality solutions efficiently across diverse benchmark
problems positions JSSOA as a promising optimization algorithm with
potential applications in various domains.

5. Conclusion and future works

In conclusion, the integration of the Improved Jaya Algorithm and
the Synergistic Swarm Optimization Algorithm with Levy flights
mechanism presents a promising approach to addressing task scheduling
problems in cloud computing environments. Through the combined
strengths of these algorithms, our proposed method aims to optimize
task allocation and scheduling efficiently, considering factors such as
task dependencies, resource constraints, and workload variations. The
Improved Jaya Algorithm provides a robust optimization framework,
while the Synergistic Swarm Optimization Algorithm introduces adap-
tive mechanisms and dynamic interaction strategies to enhance explo-
ration and exploitation capabilities. By incorporating Levy flights
mechanism, the algorithm introduces stochasticity and long-range
exploration, enabling efficient exploration of the solution space.
Through empirical evaluations and experiments, we demonstrate the
effectiveness of our proposed method in optimizing TSCC environments,
achieving improvements in terms of task completion time, resource

utilization, and overall system efficiency.
Moving forward, there are several directions for future work to

further enhance the proposed method. Firstly, exploring advanced
parameter optimization techniques could help fine-tune the algorithm’s
performance and adaptability to different cloud computing scenarios.
Additionally, scalability enhancements are essential to handle large-
scale cloud environments with a vast number of tasks and resources
efficiently. Rigorous theoretical analyses are needed to establish
convergence properties and guarantees, providing a better understand-
ing of the algorithm’s behavior and performance. Furthermore, inves-
tigating domain-specific optimization strategies tailored to specific
cloud computing applications could unlock additional performance
improvements. Finally, real-world validation and application of the
proposed method across diverse cloud computing environments and use
cases will be crucial to assess its practical effectiveness and applicability
in solving complex optimization problems. Through these efforts, we
aim to further refine and extend the proposed method, making it a
valuable tool for optimizing TSCC environments and addressing the
evolving challenges in cloud resource management and optimization.

Ethical approval

This article does not contain any studies with human participants or
animals performed by any of the authors.

Funding

This research is supported by Researchers Supporting Project num-
ber (RSP2024R309), King Saud University, Riyadh, Saudi Arabia.

CRediT authorship contribution statement

Raed Abu Zitar: Conceptualization. Mohammad H. Almomani:
Conceptualization. Hazem Migdady: Conceptualization. Ayed Alwa-
dain: Conceptualization. Ahmed Ibrahim Alzahrani: Conceptualiza-
tion. Laith Abualigah: Conceptualization. Ahmad MohdAziz Hussein:
Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgment

This research is supported by Researchers Supporting Project num-
ber (RSP2024R309), King Saud University, Riyadh, Saudi Arabia.

Informed consent

Informed consent was obtained from all individual participants
included in the study.

References

[1] C. Yang, et al., Big Data and cloud computing: innovation opportunities and
challenges, Int. J. Digit. Earth 10 (1) (2017) 13–53.

[2] P. Raj, M. Periasamy, The convergence of enterprise architecture (EA) and cloud
computing. Cloud Computing for Enterprise Architectures, Springer, 2011,
pp. 61–87.

[3] P.-J. Maenhaut, et al., Resource management in a containerized cloud: status and
challenges, J. Netw. Syst. Manag. 28 (2020) 197–246.

L. Abualigah et al.

http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref1
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref1
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref2
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref2
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref2
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref3
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref3

Sustainable Computing: Informatics and Systems 43 (2024) 101012

16

[4] W. Khallouli, J. Huang, Cluster resource scheduling in cloud computing: literature
review and research challenges, J. Supercomput. 78 (5) (2022) 6898–6943.

[5] P. Zhang, M. Zhou, Dynamic cloud task scheduling based on a two-stage strategy,
IEEE Trans. Autom. Sci. Eng. 15 (2) (2017) 772–783.

[6] H. Chen, et al., Towards energy-efficient scheduling for real-time tasks under
uncertain cloud computing environment, J. Syst. Softw. 99 (2015) 20–35.

[7] M.A. Rodriguez, R. Buyya, A taxonomy and survey on scheduling algorithms for
scientific workflows in IaaS cloud computing environments, Concurr. Comput.:
Pract. Exp. 29 (8) (2017) e4041.

[8] F. Ramezani, et al., Task Scheduling in cloud environments: a survey of population-
based evolutionary algorithms, Evolut. Comput. Sched. (2020) 213–255.

[9] H. Singh, et al., Metaheuristics for scheduling of heterogeneous tasks in cloud
computing environments: Analysis, performance evaluation, and future directions,
Simul. Model. Pract. Theory 111 (2021) 102353.

[10] A. Farinelli, et al., A hierarchical clustering approach to large-scale near-optimal
coalition formation with quality guarantees, Eng. Appl. Artif. Intell. 59 (2017)
170–185.

[11] S. Seifhosseini, M.H. Shirvani, Y. Ramzanpoor, Multi-objective cost-aware bag-of-
tasks scheduling optimization model for IoT applications running on
heterogeneous fog environment, Comput. Netw. 240 (2024) 110161.

[12] M.H. Shirvani, A hybrid meta-heuristic algorithm for scientific workflow
scheduling in heterogeneous distributed computing systems, Eng. Appl. Artif.
Intell. 90 (2020) 103501.

[13] E.H. Houssein, A.G. Gad, Y.M. Wazery, Jaya algorithm and applications: a
comprehensive review, Metaheuristics Optim. Comput. Electr. Eng. (2021) 3–24.

[14] S. Alzoubi, et al., Synergistic Swarm Optimization Algorithm, CMES-Comput.
Model. Eng. Sci. (2023).

[15] O.O. Akinola, et al., Multiclass feature selection with metaheuristic optimization
algorithms: a review, Neural Comput. Appl. 34 (22) (2022) 19751–19790.

[16] S. Thapliyal, N. Kumar, ASCAEO: accelerated sine cosine algorithm hybridized
with equilibrium optimizer with application in image segmentation using
multilevel thresholding, Evol. Syst. (2024) 1–62.

[17] A. Amini Motlagh, A. Movaghar, A.M. Rahmani, Task scheduling mechanisms in
cloud computing: a systematic review, Int. J. Commun. Syst. 33 (6) (2020) e4302.

[18] M. Premkumar, et al., Augmented weighted K-means grey wolf optimizer: an
enhanced metaheuristic algorithm for data clustering problems, Sci. Rep. 14 (1)
(2024) 5434.

[19] L. Abualigah, et al., Boosted aquila arithmetic optimization algorithm for multi-
level thresholding image segmentation, Evol. Syst. (2024) 1–28.

[20] A. Ullah, et al., Internet of things and cloud convergence for ehealth systems:
concepts, opportunities, and challenges, Wirel. Pers. Commun. (2024) 1–51.

[21] S. Tumula, et al., An opportunistic energy-efficient dynamic self-configuration
clustering algorithm in WSN-based IoT networks, Int. J. Commun. Syst. 37 (1)
(2024) e5633.

[22] M.A. Abu-Hashem, et al., Improved black widow optimization: an investigation
into enhancing cloud task scheduling efficiency, Sustain. Comput.: Inform. Syst. 41
(2024) 100949.

[23] X. Wang, et al., Dynamic scheduling of tasks in cloud manufacturing with multi-
agent reinforcement learning, J. Manuf. Syst. 65 (2022) 130–145.

[24] B.M.H. Zade, N. Mansouri, Improved red fox optimizer with fuzzy theory and game
theory for task scheduling in cloud environment, J. Comput. Sci. 63 (2022)
101805.

[25] X. Fu, et al., Task scheduling of cloud computing based on hybrid particle swarm
algorithm and genetic algorithm, Clust. Comput. 26 (5) (2023) 2479–2488.

[26] X. Chen, et al., A WOA-based optimization approach for task scheduling in cloud
computing systems, IEEE Syst. J. 14 (3) (2020) 3117–3128.

[27] L. Abualigah, A. Diabat, A novel hybrid antlion optimization algorithm for multi-
objective task scheduling problems in cloud computing environments, Clust.
Comput. 24 (1) (2021) 205–223.

[28] X. Wei, Task scheduling optimization strategy using improved ant colony
optimization algorithm in cloud computing, J. Ambient Intell. Humaniz. Comput.
(2020) 1–12.

[29] P. Pirozmand, et al., Multi-objective hybrid genetic algorithm for task scheduling
problem in cloud computing, Neural Comput. Appl. 33 (2021) 13075–13088.

[30] X. Huang, et al., Task scheduling in cloud computing using particle swarm
optimization with time varying inertia weight strategies, Clust. Comput. 23 (2)
(2020) 1137–1147.

[31] Z. Zhou, et al., An improved genetic algorithm using greedy strategy toward task
scheduling optimization in cloud environments, Neural Comput. Appl. 32 (2020)
1531–1541.

[32] L. Abualigah, A. Diabat, M.A. Elaziz, Intelligent workflow scheduling for Big Data
applications in IoT cloud computing environments, Clust. Comput. 24 (4) (2021)
2957–2976.

[33] K. Dubey, S.C. Sharma, A novel multi-objective CR-PSO task scheduling algorithm
with deadline constraint in cloud computing, Sustain. Comput.: Inform. Syst. 32
(2021) 100605.

[34] M. Gunduz, M. Aslan, DJAYA: A discrete Jaya algorithm for solving traveling
salesman problem, Appl. Soft Comput. 105 (2021) 107275.

[35] R. Rao, K. More, Design optimization and analysis of selected thermal devices using
self-adaptive Jaya algorithm, Energy Convers. Manag. 140 (2017) 24–35.

[36] A.M. Reynolds, C.J. Rhodes, The Lévy flight paradigm: random search patterns and
mechanisms, Ecology 90 (4) (2009) 877–887.

[37] M. Hosseini Shirvani, R. Noorian Talouki, Bi-objective scheduling algorithm for
scientific workflows on cloud computing platform with makespan and monetary
cost minimization approach, Complex Intell. Syst. 8 (2) (2022) 1085–1114.

[38] Y. Asghari Alaie, M. Hosseini Shirvani, A.M. Rahmani, A hybrid bi-objective
scheduling algorithm for execution of scientific workflows on cloud platforms with
execution time and reliability approach, J. Supercomput. 79 (2) (2023)
1451–1503.

[39] L. Guo, et al., Task scheduling optimization in cloud computing based on heuristic
algorithm, J. Netw. 7 (3) (2012) 547.

[40] F. Yiqiu, X. Xia, G. Junwei, Cloud computing task scheduling algorithm based on
improved genetic algorithm. 2019 IEEE 3rd information technology, networking,
electronic and automation control conference (ITNEC), IEEE, 2019.

[41] S.H. Jang, et al., The study of genetic algorithm-based task scheduling for cloud
computing, Int. J. Control Autom. 5 (4) (2012) 157–162.

[42] B.A. Al-Maytami, et al., A task scheduling algorithm with improved makespan
based on prediction of tasks computation time algorithm for cloud computing, IEEE
Access 7 (2019) 160916–160926.

[43] S. Gurusamy, R. Selvaraj, Resource allocation with efficient task scheduling in
cloud computing using hierarchical auto-associative polynomial convolutional
neural network, Expert Syst. Appl. (2024) 123554.

[44] I. Behera, S. Sobhanayak, Task scheduling optimization in heterogeneous cloud
computing environments: a hybrid GA-GWO approach, J. Parallel Distrib. Comput.
183 (2024) 104766.

[45] B.M.H. Zade, N. Mansouri, M.M. Javidi, A two-stage scheduler based on New
Caledonian Crow Learning Algorithm and reinforcement learning strategy for
cloud environment, J. Netw. Comput. Appl. 202 (2022) 103385.

[46] Z. Zhang, et al., An efficient interval many-objective evolutionary algorithm for
cloud task scheduling problem under uncertainty, Inf. Sci. 583 (2022) 56–72.

[47] L. Abualigah, et al., The arithmetic optimization algorithm, Comput. Methods
Appl. Mech. Eng. 376 (2021) 113609.

[48] L. Abualigah, et al., Reptile Search Algorithm (RSA): a nature-inspired meta-
heuristic optimizer, Expert Syst. Appl. 191 (2022) 116158.

[49] J.O. Agushaka, A.E. Ezugwu, L. Abualigah, Dwarf mongoose optimization
algorithm, Comput. Methods Appl. Mech. Eng. 391 (2022) 114570.

[50] M. Ghasemi, et al., Optimization based on performance of lungs in body: Lungs
performance-based optimization (LPO), Comput. Methods Appl. Mech. Eng. 419
(2024) 116582.

[51] J. Bai, et al., A sinh cosh optimizer, Knowl. - Based Syst. 282 (2023) 111081.
[52] M. Ghasemi, et al., Geyser inspired algorithm: a new geological-inspired meta-

heuristic for real-parameter and constrained engineering optimization, J. Bionic
Eng. 21 (1) (2024) 374–408.

[53] Y. Sun, et al., A new wolf colony search algorithm based on search strategy for
solving travelling salesman problem, Int. J. Comput. Sci. Eng. 18 (1) (2019) 1–11.

[54] N. Rojas-Morales, M.-C.R. Rojas, E.M. Ureta, A survey and classification of
opposition-based metaheuristics, Comput. Ind. Eng. 110 (2017) 424–435.

[55] K.C. Tan, et al., Balancing exploration and exploitation with adaptive variation for
evolutionary multi-objective optimization, Eur. J. Oper. Res. 197 (2) (2009)
701–713.

[56] A. Singh, K. Deep, Exploration–exploitation balance in Artificial Bee Colony
algorithm: a critical analysis, Soft Comput. 23 (2019) 9525–9536.

L. Abualigah et al.

http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref4
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref4
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref5
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref5
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref6
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref6
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref7
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref7
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref7
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref8
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref8
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref9
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref9
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref9
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref10
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref10
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref10
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref11
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref11
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref11
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref12
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref12
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref12
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref13
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref13
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref14
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref14
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref15
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref15
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref16
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref16
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref16
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref17
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref17
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref18
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref18
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref18
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref19
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref19
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref20
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref20
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref21
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref21
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref21
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref22
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref22
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref22
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref23
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref23
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref24
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref24
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref24
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref25
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref25
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref26
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref26
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref27
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref27
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref27
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref28
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref28
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref28
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref29
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref29
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref30
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref30
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref30
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref31
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref31
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref31
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref32
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref32
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref32
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref33
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref33
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref33
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref34
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref34
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref35
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref35
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref36
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref36
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref37
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref37
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref37
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref38
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref38
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref38
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref38
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref39
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref39
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref40
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref40
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref40
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref41
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref41
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref42
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref42
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref42
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref43
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref43
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref43
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref44
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref44
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref44
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref45
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref45
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref45
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref46
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref46
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref47
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref47
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref48
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref48
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref49
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref49
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref50
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref50
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref50
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref51
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref52
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref52
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref52
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref53
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref53
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref54
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref54
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref55
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref55
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref55
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref56
http://refhub.elsevier.com/S2210-5379(24)00057-X/sbref56

	Improved synergistic swarm optimization algorithm to optimize task scheduling problems in cloud computing
	1 Introduction
	2 Related works
	3 The proposed JSSOA method
	3.1 Procedure of synergistic swarm optimization algorithm
	3.2 Procedure of Jaya algorithm
	3.3 Procedure of levy flight mechanism
	3.4 Procedure of the proposed JSSOA
	3.5 Task scheduling problem in cloud computing
	3.6 Problem formulation

	4 Results and settings
	4.1 Parameter setting
	4.2 Artificial dataset analysis
	4.3 Real dataset analysis
	4.4 Benchmark problems

	5 Conclusion and future works
	Ethical approval
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgment
	Informed consent
	References

