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A B S T R A C T   

Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its 
scalability and flexibility. One critical aspect of cloud computing is efficient task scheduling, which directly 
impacts system performance and resource utilization. In this paper, we propose an enhanced optimization al
gorithm tailored for task scheduling in cloud environments. Building upon the foundation of the Jaya algorithm 
and Synergistic Swarm Optimization (SSO), our approach integrates a Levy flight mechanism to enhance 
exploration-exploitation trade-offs and improve convergence speed. The Jaya algorithm’s ability to exploit the 
current best solutions is complemented by the SSO’s collaborative search strategy, resulting in a synergistic 
optimization framework. Moreover, the incorporation of Levy flights injects stochasticity into the search process, 
enabling the algorithm to escape local optima and navigate complex solution spaces more effectively. We 
evaluate the proposed algorithm against state-of-the-art approaches using benchmark task scheduling problems 
in cloud environments. Experimental results demonstrate the superiority of our method in terms of solution 
quality, convergence speed, and scalability. Overall, our proposed Improved Jaya Synergistic Swarm Optimi
zation Algorithm offers a promising solution for optimizing TSCC (TSCC), contributing to enhanced resource 
utilization and system performance in cloud-based applications. The proposed method got 88 % accuracy overall 
and 10 % enhancement compared to the original method.   

1. Introduction 

Cloud computing has revolutionized the way computational re
sources are provisioned and utilized, offering unprecedented scalability, 
flexibility, and cost-effectiveness for various applications and services 
[1,2]. At the core of cloud computing lies efficient resource manage
ment, particularly in the scheduling of tasks across distributed and vir
tualized infrastructure [3,4]. Task scheduling plays a pivotal role in 
optimizing resource utilization, minimizing execution time, and 
enhancing overall system performance [5,6]. However, the inherent 
complexities and dynamic nature of cloud environments pose significant 
challenges for traditional scheduling algorithms [7,8]. 

In recent years, metaheuristic optimization techniques have gained 
prominence for addressing the intricate task scheduling problem in 
cloud computing [8,9]. These algorithms offer a promising avenue for 
finding near-optimal solutions in large-scale, dynamic, and uncertain 
environments [10–12]. Among these techniques, the Jaya algorithm and 
Synergistic Swarm Optimization (SSO) have demonstrated effectiveness 
in solving various optimization problems [13,14]. The Jaya algorithm, 
inspired by the concept of natural selection, iteratively improves 
candidate solutions by exploiting the current best solution without 
relying on any explicit parameter tuning. On the other hand, SSO har
nesses the collective intelligence of a swarm of particles to explore the 
solution space collaboratively, enabling efficient search and adaptation 
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[15]. 
Despite their merits, both the Jaya algorithm and SSO exhibit certain 

limitations when applied to complex optimization problems such as 
TSCC. The Jaya algorithm may struggle with balancing exploration and 
exploitation, leading to premature convergence or suboptimal solutions 
in rugged search spaces. Similarly, SSO’s reliance on swarm dynamics 
may encounter difficulties in effectively exploring diverse regions of the 
solution space, particularly in high-dimensional and multimodal opti
mization landscapes [15,16]. 

To address these challenges, we propose an Improved Jaya Syner
gistic Swarm Optimization Algorithm for Task Scheduling Optimization 
in Cloud Computing. Our approach aims to leverage the strengths of 
both algorithms while mitigating their weaknesses through a synergistic 
integration framework. By incorporating a Levy flight mechanism into 
the optimization process, we enhance the algorithm’s exploration ca
pabilities, enabling it to escape local optima and navigate complex so
lution spaces more effectively. The Levy flight mechanism introduces 
stochasticity into the search process, facilitating a more robust 
exploration-exploitation trade-off and improving convergence speed. 

In this paper, we present a comprehensive study on the development 
and evaluation of our proposed algorithm. We compare its performance 
against state-of-the-art approaches using benchmark task scheduling 
problems in cloud environments. Through extensive experimentation 
and analysis, we demonstrate the effectiveness and superiority of our 
method in terms of solution quality, convergence speed, and scalability. 
Ultimately, our proposed Improved Jaya Synergistic Swarm Optimiza
tion Algorithm offers a promising solution for optimizing TSCC, 
contributing to enhanced resource utilization and system performance 
in cloud-based applications. The main contributions of this paper are 
given as follows.  

• We introduce a novel optimization algorithm tailored specifically for 
task scheduling optimization in cloud computing. Our algorithm 
combines the strengths of the Jaya algorithm and Synergistic Swarm 
Optimization (SSO) while addressing their limitations through a 
synergistic integration framework.  

• To enhance exploration capabilities and improve convergence speed, 
we incorporate a Levy flight mechanism into the optimization pro
cess. This stochastic search strategy enables the algorithm to effi
ciently explore diverse regions of the solution space, facilitating the 
discovery of high-quality solutions in complex and dynamic cloud 
environments.  

• We conduct extensive experiments to evaluate the performance of 
our proposed algorithm against state-of-the-art approaches using 
benchmark task scheduling problems in cloud environments. 
Through rigorous analysis, we demonstrate the effectiveness and 
superiority of our method in terms of solution quality, convergence 
speed, and scalability. 

• Our proposed Improved Jaya Synergistic Swarm Optimization Al
gorithm offers a promising solution for addressing the task sched
uling optimization challenge in cloud computing. By enhancing 
resource utilization and system performance, our algorithm con
tributes to the advancement of cloud-based applications and 
services. 

In this paper, we present a structured investigation into task sched
uling optimization in cloud computing, outlining our proposed algo
rithm and its evaluation against existing approaches. The paper is 
organized as follows: In Section 2, we provide an overview of related 
works in the field of task scheduling optimization in cloud computing. 
We discuss various metaheuristic optimization techniques and their 
applications, highlighting the strengths and limitations of existing ap
proaches. Section 3 details our proposed method, the Improved Jaya 
Synergistic Swarm Optimization Algorithm, including the integration of 
the Levy flight mechanism and the synergistic framework combining the 
Jaya algorithm and Synergistic Swarm Optimization. We elucidate the 

algorithmic design, optimization process, and key components contrib
uting to its effectiveness in addressing task scheduling challenges in 
cloud environments. Subsequently, in Section 4, we present the results 
of comprehensive experiments conducted to evaluate the performance 
of our proposed algorithm. We provide details of the experimental setup, 
including benchmark task scheduling problems and parameter settings. 
We analyze the obtained results, comparing them with state-of-the-art 
approaches to assess the superiority of our method in terms of solu
tion quality, convergence speed, and scalability. Finally, in Section 5, we 
conclude the paper by summarizing our findings and highlighting ave
nues for future research. We discuss the implications of our proposed 
algorithm in enhancing resource utilization and system performance in 
cloud-based applications, and we outline potential directions for further 
refinement and extension of the proposed approach. 

2. Related works 

How tasks are organized in the cloud has a significant impact on how 
resources are used and how much it costs to run the business [17–20]. 
Many metaheuristic algorithms and variants have been suggested to 
simplify scheduling procedures in order to increase the operational ef
ficiency of job execution in cloud settings [21,22]. The most related 
works are given as follows. 

Recent research has focused on cloud task scheduling [23,24]. 
Effectively scheduling massive user-submitted activities in cloud set
tings boosts firms’ competitiveness and economic performance. This 
research examines cloud task scheduling and presents PSOPGA, a par
ticle swarm optimization genetic hybrid algorithm based on phagocy
tosis, to meet the demand for an effective scheduling method in 
real-world circumstances [25]. Each generation of the particle swarm 
divides, and the genetic algorithm’s phagocytosis process and crossover 
mutation change particle placements in the sub-population, expanding 
the solution space. The subpopulations are then blended to maintain 
particle population diversity and reduce algorithm local optima. Finally, 
a feedback mechanism relays the particle’s and its counterparts’ flight 
experiences to the next generation’s particle population, assuring opti
mum solutions. Simulations show that the proposed technique improves 
cloud job completion time and convergence accuracy compared to 
various other strategies. The technique performs well in cloud job 
scheduling. 

By using a multiobjective optimization strategy to improve cloud 
system performance with given computing resources, the whale opti
mization algorithm (WOA) is proposed for scheduling tasks in the cloud 
[26]. Enhanced WOA for Cloud Task Scheduling (EWC) is a novel 
approach that builds on this basis and enhances the search for optimum 
solutions capabilities of the WOA-based technique. They outline EWC’s 
full implementation, and simulation-driven studies show that EWC finds 
optimum task scheduling methods faster and more precisely than pre
vious metaheuristic algorithms. Furthermore, EWC shows improved 
efficiency in the use of system resources for a variety of jobs, from little 
to large. 

When it comes to cloud computing, one of the biggest obstacles is 
efficient job scheduling. It is quite challenging to find the best solution to 
the NP-complete issue of task scheduling, especially when working with 
large quantities of tasks. When working in the cloud, it’s important to 
minimize makespan and maximize resource usage for effective job 
scheduling across several virtual machines. In this paper, they provide a 
new method for scheduling tasks in cloud computing settings that takes 
into account many objectives at once [27]. This method is called the 
hybrid antlion optimization algorithm with elite-based differential 
evolution. The suggested solution, MALO, takes into account the fact 
that the issue has several objectives and aims to reduce makespan while 
maximizing resource consumption concurrently. To improve exploita
tion capabilities and avoid being trapped in local optima, MALO uses the 
antlion optimization algorithm and augments it with elite-based differ
ential evolution as a local search method. Using the CloudSim toolbox, 
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they ran two sets of tests using both simulated and actual trace datasets. 
The results showed that MALO is better than other optimization algo
rithms; it is especially useful for vast search areas since it converges 
faster, making it ideal for solving complex scheduling issues. In addition, 
statistical t-tests performed on the findings confirmed that MALO 
significantly improved performance. 

This study introduces a cloud-optimized ant colony optimization 
algorithm to address issues like uneven workload distribution, slow 
convergence rates, and underutilization of virtual machine resources in 
previous task scheduling optimization approaches [28]. Using cloud 
computing job scheduling insights, they create a scheduling model using 
an enhanced ant colony method to avoid local optimization issues. Next, 
a task scheduling satisfaction function is created to find the best task 
scheduling solution by decreasing waiting time, improving resource 
load balancing, and reducing task completion costs. They also use 
reward and punishment coefficients to improve the ant colony algo
rithm’s pheromone update rules, speeding solution convergence. Dy
namic volatility coefficient updates improve strategy performance, and 
local pheromone updating includes virtual machine load weight co
efficients for load equilibrium. Experiments with Cloudsim prove the 
proposed method works. They found that the proposed approach has the 
fastest convergence, shortest completion times, most balanced task 
distribution, and maximum virtual machine resource usage rates. Thus, 
our job scheduling optimization technique excels in cloud computing. 

Cloud computing solutions have been popular since their creation 
because they provide a common infrastructure where customers may 
obtain customized services without worrying about location or delivery, 
paying only for the services used. Despite their benefits, cloud 
computing systems struggle with scheduling and energy management. 
Given the different customers and services in these systems, good 
scheduling is vital to reduce provider and consumer costs and optimize 
energy use. They present a two-step hybrid task scheduling strategy that 
includes energy and time restrictions to overcome this difficulty [29]. 
First, prioritize tasks, then allocate them to processors. The 
Energy-Conscious Scheduling Heuristic, an energy-aware model, assigns 
tasks to processors after task ranking and main chromosome creation. 
The simulation results show that the suggested algorithm optimizes 
work scheduling while considering energy consumption better than 
competing techniques. 

Cloud computing stands as a proficient technology catering to the 
demands of big data applications. The optimization of cloud system 
makespan while enhancing resource utilization is imperative for cost 
reduction. Task scheduling poses a formidable challenge in meeting 
these requirements, necessitating both efficacy and efficiency. To 
address this challenge, this paper introduces a task scheduler featuring 
discrete variants of the particle swarm optimization (PSO) algorithm 
tailored for cloud computing task scheduling [30]. To evaluate effec
tiveness, these methods are juxtaposed with three well-known heuristic 
algorithms for task scheduling dilemmas. Empirical findings highlight 
the efficiency and efficacy of the suggested methodologies. Especially 
for the scheduler based on PSO introduced here, the utilization of a 
logarithmic declining tactic emerges as the most advantageous in 
delivering an ideal scheduling arrangement. The average makespan of 
the PSO-based scheduler employing the logarithmic decreasing strategy 
is observed to decrease by 19.12 %, 21.42 %, and 15.14 % relative to the 
gravitational search algorithm, artificial bee colony algorithm, and 
dragonfly algorithm, respectively. 

Cloud computing is an emerging distributed technology that pro
vides low-cost, dynamically scalable computer resources. TSCC is crucial 
to system performance and customer satisfaction. Despite several task 
scheduling techniques, most focus on lowering completion time and 
ignoring burden balance. Existing methods for QoS management may be 
improved. MGGS (modified genetic algorithm (GA) paired with greedy 
technique) is introduced in this paper. MGGS optimizes task scheduling 
using a modified GA algorithm and greedy approach. MGGS achieves 
optimum solutions with fewer iterations, unlike other algorithms. To 

evaluate MGGS, they compare its performance to other algorithms using 
metrics like total completion time, average response time, and QoS pa
rameters [31]. Experimental data show that MGGS outperforms other 
work scheduling methods. 

Effective cloud computing resource utilization requires efficient job 
scheduling. Task scheduling is NP-hard because it must be done across 
several virtual machines while reducing makespan and optimizing 
resource consumption, especially in Big Data applications. An intelligent 
hybrid Dragonfly Algorithm is used to schedule Big Data tasks for IoT 
cloud computing applications in this research [32]. MHDA uses the 
Dragonfly algorithm, a new optimization method inspired by dragon
flies’ swarming. Multiobjective MHDA reduces makespan and improves 
resource usage. By using β-hill climbing as a local exploratory search 
mechanism, the Dragonfly Algorithm may better exploit local optima 
and reduce the chance of entrapment. MHDA’s performance is 
compared to various task scheduling algorithms in two CloudSim toolkit 
experiments using synthetic and real trace datasets. MHDA outperforms 
other algorithms in convergence rates and outcomes by 17.12 %, ac
cording to analytical assessments such as t-tests. MHDA’s effectiveness 
in Big Data job scheduling difficulties supports its practical use. 

TSCC is difficult due to different cloudlets, deadline limitations 
across hybrid cloud resources, and varied quality criteria. The cloud 
computing job scheduling problem is addressed by this study [33]. 
Chemical Reaction Partial Swarm Optimization is a new hybrid job 
scheduling approach. This approach hybridizes classical chemical re
action optimization and partial swarm optimization to improve job 
allocation among virtual machines. The method optimizes schedule 
sequencing to process tasks based on demand and deadline simultaneity, 
improving quality metrics like cost, energy, and makespan. The algo
rithm’s usefulness is shown via a CloudSim toolkit simulation experi
ment. Comparative investigations show a 1–6 % decrease in execution 
time across different virtual machines and job numbers, with some gains 
surpassing 10 %. Results for makespan show algorithmic efficacy of 
5–12 %, overall cost of 2–10 %, and energy consumption rates of 1–9 %. 

Various research efforts have addressed the challenges of TSCC, 
recognizing its pivotal role in optimizing system performance and 
resource utilization. These studies have introduced innovative meth
odologies and algorithms tailored to the complexities of cloud envi
ronments. For instance, PSOPGA utilizes a hybrid particle swarm 
optimization genetic algorithm to enhance scheduling accuracy, while 
EWC and MALO leverage multiobjective optimization strategies to 
improve efficiency and convergence rates. Additionally, approaches like 
the cloud-optimized ant colony optimization algorithm and MGGS 
employ modified genetic algorithms and greedy techniques to optimize 
task allocation and scheduling. The introduction of novel optimization 
algorithms, such as the Dragonfly Algorithm and Chemical Reaction 
Partial Swarm Optimization, further enhances scheduling effectiveness, 
particularly in addressing the demands of Big Data applications and 
diverse quality criteria. Through simulations and comparisons with 
existing methods, these studies demonstrate significant improvements 
in makespan reduction, resource utilization, and overall system perfor
mance, highlighting the importance of efficient task scheduling in 
advancing cloud computing capabilities and meeting diverse user needs.  
Table 1 summarize the studies by their main focus, proposed method, 
evaluation techniques, and key results, providing a clear and detailed 
overview. 

3. The proposed JSSOA method 

3.1. Procedure of synergistic swarm optimization algorithm 

Following is a rundown of the main steps involved in the proposed 
Synergistic Swarm Optimization Algorithm (SSOA) [14]. Eq. (1) defines 
the starting point for the optimization trip, which is the stochastic 
internalization of possible solutions. 
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X = rand(N,Dim) . ∗ (UB − LB)+ LB (1) 

Formula (1) constructs a matrix X, with dimensions (N x D), 
comprising randomly selected values bounded within a specified range 
[14]. The format of this Matrix is illustrated in (2). 

X =

⎡

⎣
x1,1 ⋯ x1,Dim
⋮ ⋱ ⋮

xN,1 ⋯ xN,Dim

⎤

⎦ (2) 

In this context, N denotes the number of particles or solutions, while 
D signifies the number of dimensions or variables pertinent to the 
problem at hand. UB and LB denote vectors signifying the upper and 
lower bounds, correspondingly, for each dimension within the problem 
space. Eq. (3) is utilized to refine current solutions (X) [14]. 

Xnew(i, j) = X(i, j)+ v(i, j) (3) 

In this context, Xnew(i,j) symbolizes the fresh, optimized position j of 
the ith solution. In contrast, X(i,j) denotes the position j of the ith so
lution, and v(i,j) represents the value of position j of the ith solution. 
Additionally, in conjunction with the velocity update formula, a dy
namic attraction equation is presented to guide the particles towards 
more advantageous areas within the exploration domain. This equation 
is designed to dynamically direct the particles by taking into account the 
attractiveness of both local and global positions. Its formulation is out
lined in Eq. (4). 

vnew(i, j) = IWV +PBC+GBC+DAC+ANIC+MDC (4) 

The calculations for the value of vnew (i,j) are defined by the 
following equations. The next way to determine the IWV is by using the 
following formula [14]. 

IWV = w(t) ∗ v(i, j) (5) 

A method for adaptive regulation of the exploration-exploitation 
equilibrium is provided by the variable "w" in relation to the inertia 
weight parameter (w). Moreover, the adaptive neighborhood interaction 
equation enhances a concentrated exploration of the search space by 
assigning greater importance to particles with superior fitness levels, 
facilitating a more efficient convergence of the swarm. Particles 
demonstrating higher fitness levels can exert more influence on the 
movements of neighboring particles through an equation that modifies 
the intensity of interactions based on their fitness levels. Employing an 

adaptive equation, the inertia weight can be adjusted with each itera
tion, such as: 

w(t +1) = w(t) ∗ (1 − exp( − k ∗ t) ) (6) 

In this context, "t" denotes an ongoing iteration, while "k" remains a 
constant dictating the rate at which the inertia weight diminishes. As 
iterations progress, the approach transitions from exploration to 
exploitation, refining its search and converging towards the optimal 
solution by reducing the inertia weight [14]. The following outlines the 
procedure for calculating the personal best coefficient (PBC). 

PBC = r1 ∗ (eps ∗ rand(pbest) − Xi) (7) 

In this scenario, "r1" represents a randomly generated value, "eps" 
denotes a minute value, "rand(pbest)" signifies a randomly chosen so
lution from the existing candidate solutions, and "Xi" refers to solution 
number i. The computation of the global best coefficient (GBC) is 
depicted as follows. 

GBC = r2 ∗ gbestt − Xi (8) 

In this context, "r2" denotes a pseudo-random integer, "gbest(t)" 
represents the best global solution discovered thus far at iteration t, and 
"Xi" signifies solution i. To promote exploration across diverse regions 
within the search space, an equation is employed to sustain variability. 
The following outlines the procedure for computing the DAC, or dy
namic attraction coefficient [14]. 

DAC = r3 ∗
attracti

c1
− Xi (9) 

In this context, "r3" signifies a randomly generated value, "attract(i)" 
denotes the position exhibiting the highest local attraction value within 
the vicinity of the ith particle, "c1" represents an additional acceleration 
coefficient for the dynamic attract term, and "Xi" refers to solution 
number i. The dynamic attraction term directs particles toward 
exceedingly attractive positions, facilitating expedited convergence to
ward optimal solutions. The calculation of the adaptive neighborhood 
interaction coefficient (ANIC) is delineated as follows. 

ANIC = r4 ∗ rand(bestf) − bestf i (10) 

In this scenario, "r4," "rand(bestf)," and "bestf(i)" denote the fitness 
values of the current fitness solutions and a randomly generated value, 

Table 1 
An overview of the given studies.  

Study Main Focus Proposed Method Evaluation Techniques Key Results 

[25] Cloud task scheduling using a hybrid 
algorithm to improve operational 
efficiency. 

PSOPGA (Particle Swarm Optimization 
Genetic Hybrid Algorithm based on 
Phagocytosis) 

Simulations Improved job completion time and convergence 
accuracy compared to other strategies. 

[26] Multiobjective optimization for cloud 
system performance improvement. 

Enhanced Whale Optimization 
Algorithm (EWC) 

Simulation-driven studies EWC finds optimal task scheduling methods faster 
and more precisely, improves resource efficiency. 

[27] Efficient job scheduling considering 
multiple objectives. 

Hybrid Antlion Optimization Algorithm 
with Elite-Based Differential Evolution 
(MALO) 

CloudSim toolbox tests with 
simulated and real datasets 

MALO converges faster, better performance in 
complex scheduling problems, statistically 
significant improvements. 

[28] Addressing issues in task scheduling such 
as workload distribution and 
convergence rates. 

Cloud-Optimized Ant Colony 
Optimization Algorithm 

Experiments with CloudSim Fastest convergence, shortest completion times, 
balanced task distribution, maximum VM 
resource usage. 

[29] Energy and time constraints in task 
scheduling to reduce costs and optimize 
energy use. 

Two-step Hybrid Task Scheduling 
Strategy with Energy-Conscious 
Scheduling Heuristic 

Simulations Better optimization of work scheduling 
considering energy consumption compared to 
competing techniques. 

[30] Optimization of makespan and resource 
utilization in cloud task scheduling. 

Discrete Particle Swarm Optimization 
(PSO) Algorithm 

Comparison with heuristic 
algorithms 

PSO-based scheduler reduces makespan 
significantly compared to other algorithms. 

[31] Balancing task completion time and 
workload in cloud computing. 

Modified Genetic Algorithm with 
Greedy Technique (MGGS) 

Performance metrics 
(completion time, response 
time, QoS) 

MGGS outperforms other scheduling methods in 
terms of completion time and response time. 

[32] Efficient scheduling for Big Data tasks in 
IoT cloud computing. 

Intelligent Hybrid Dragonfly Algorithm 
(MHDA) 

CloudSim toolkit 
experiments 

MHDA shows better convergence rates and 
outcomes, significant performance 
improvements. 

[33] Addressing TSCC with varied quality 
criteria and hybrid cloud resources. 

Chemical Reaction Partial Swarm 
Optimization 

CloudSim toolkit simulation Decrease in execution time, improved makespan, 
overall cost, and energy consumption rates.  
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respectively. The following outlines the process for determining the 
diversity maintenance coefficient (DMC) [14]. 

DMC = r5 ∗
diversityi

c2
− Xi (11) 

Here, "r5" stands for a number that is created at random, and "c2" is 

an extra acceleration coefficient for the diversity component. "diversityi" 
indicates a swarm location that optimizes diversity near the ith particle. 

To keep the swarm’s solution variety intact and prevent early 
convergence, the diversity term promotes the exploration of less- 
explored locations. These novel equations improve the SSO method by 
including adaptive processes like diversity maintenance, inertia weight 
adaptation, adaptive neighborhood interactions, and dynamic 

attraction. The algorithm is able to fine-tune its behavior and concen
tration after implementing these improvements. First, we have the 
Synergistic Swarm Optimization Algorithm (SSOA) main process. The 
main procedure of SSOA is given in Algorithm 1. 

Algorithm 1. Synergistic Swarm Optimization Algorithm (SSOA) 

3.2. Procedure of Jaya algorithm 

The Jaya Algorithm is a population-based optimization technique 
inspired by the natural concept of evolution [34]. It belongs to the class 
of metaheuristic algorithms, specifically targeting continuous optimi
zation problems. Developed by R.V. Rao, the algorithm is renowned for 
its simplicity and effectiveness in finding optimal or near-optimal 
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solutions across various domains [35]. 
In engineering and optimization problems, finding the global opti

mum can be challenging due to the presence of complex, high- 
dimensional search spaces and non-linear objective functions. Tradi
tional optimization techniques often struggle with convergence to global 
optima and may be trapped in local optima. The Jaya Algorithm was 
conceived as a robust and efficient optimization approach that could 
overcome these challenges by emulating the principles of natural se
lection. The main procedure of the Jaya Algorithm is given in Algorithm 
2. 

Algorithm 2. Jaya Algorithm 

The Jaya Algorithm is a population-based optimization technique 
inspired by the natural concept of evolution. It iteratively improves 
candidate solutions by comparing them within the population, 
mimicking the process of natural selection. The algorithm maintains a 
population of candidate solutions and iteratively updates them based on 
the fitness of each solution. By comparing each pair of solutions, the 
algorithm promotes exploration by moving towards better solutions 
while exploiting the current best solutions. This iterative improvement 

process continues until a termination criterion is met, yielding a set of 
high-quality solutions [13]. The math equation of Jaya Algorithm is as 
follows.  

xi(t+1) = xi(t) + r * (xb - |xi(t)|) - r * (xw - |xi(t)|)                       (12) 

Where, 
xi(t) is the current solution vector i at iteration t. xb is the best so

lution vector found so far. xw is the worst solution vector found so far. r 
is a randomization factor between 0 and 1. 

3.3. Procedure of levy flight mechanism 

The Levy Flight Mechanism is a stochastic search strategy inspired by 
the Levy flight patterns observed in nature, such as the foraging 
behavior of animals and the flight patterns of birds [36]. It introduces 
randomness into the search process, enabling exploration of the solution 
space with large jumps or leaps, facilitating escape from local optima, 
and enhancing exploration capabilities. Below are the procedure, 
description, and mathematical notations of the Levy Flight Mechanism. 
The main procedure Levy Flight mechanism is given in Algorithm 3. 

L. Abualigah et al.                                                                                                                                                                                                                              



Sustainable Computing: Informatics and Systems 43 (2024) 101012

7

Algorithm 3. . Levy Flight Mechanism  

The Levy Flight Mechanism operates by generating random steps 
from a Levy flight distribution, which exhibits heavy tails and allows for 
occasional long jumps in the search space. This randomness enables the 
search process to explore new regions efficiently, enhancing the algo
rithm’s ability to escape local optima and find globally optimal solu
tions. By updating the current position based on these random steps, the 
algorithm explores the solution space in a more diverse and exploratory 
manner, promoting better exploration of the search space. The math 
equation of this operator is as follows.  

x(t+1) = x(t) + alpha * levy                                                        (13) 

The mathematical notations are given as follows.  

• x(t): Current position in the solution space.  
• x(t+1): Updated position after applying the Levy flight mechanism.  
• u: Random step vector following the Levy flight distribution.  
• Levy: Levy flight distribution function, characterizing the probability 

density of random steps u. 

By incorporating the Levy Flight Mechanism into optimization al
gorithms, such as metaheuristic algorithms or evolutionary algorithms, 
we can enhance their exploration capabilities and improve their per
formance in solving complex optimization problems, including TSCC. 

3.4. Procedure of the proposed JSSOA 

The proposed Jaya Synergistic Swarm Optimization Algorithm 
(JSSOA) presents a novel approach that synergistically combines the 
strengths of the Jaya algorithm and Synergistic Swarm Optimization 

(SSO) algorithm to tackle optimization problems effectively. The Jaya 
algorithm, known for its simplicity and efficiency, employs a 
population-based approach inspired by the principles of natural selec

tion to improve candidate solutions iteratively. On the other hand, SSO 
algorithm incorporates mechanisms such as dynamic attraction, adap
tive neighborhood interactions, inertia weight adaptation, and diversity 
maintenance to enhance exploration and exploitation capabilities. 

In the JSSOA method, the Jaya algorithm serves as the base opti
mization framework, leveraging its simplicity and robustness. The 
integration of SSO techniques introduces adaptive mechanisms that 
dynamically influence the search process, guiding the algorithm towards 
promising regions of the solution space. By combining the exploration 
capabilities of the Jaya algorithm with the adaptive features of SSO, 
Levy Flight, JSSOA achieves a balanced exploration-exploitation trade- 
off, leading to improved convergence rates and solution quality. One of 
the key contributions of the JSSOA method is the incorporation of a 
dynamic attraction equation that adapts particle movements based on 
local and global attractiveness. Additionally, adaptive neighborhood 
interactions facilitate communication among particles, allowing them to 
share information and coordinate their movements effectively. 
Furthermore, inertia weight adaptation and diversity maintenance 
mechanisms ensure that the algorithm adapts its behavior over time, 
preventing premature convergence and promoting the exploration of 
diverse solution regions. 

Overall, the proposed JSSOA method offers a powerful optimization 
framework capable of addressing a wide range of optimization prob
lems. Its ability to adaptively adjust its behavior and leverage synergies 
between different optimization techniques makes it a promising 
approach for solving complex real-world optimization problems. 
Through experimentation and validation on benchmark problems, 
JSSOA demonstrates its effectiveness in achieving high-quality solutions 
efficiently. The main procedure of the proposed JSSOA is given in Al
gorithm 3. 
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Algorithm 4. The proposed JSSOA 

3.5. Task scheduling problem in cloud computing 

TSCC refers to the process of allocating computational tasks to 
available resources (such as virtual machines or physical servers) in a 
cloud environment [37,38], with the objective of optimizing various 
performance metrics such as execution time, resource utilization, and 
cost [39,40]. This problem is essential for efficiently utilizing the 

Table 2 
Personal computer specification.  

OS Windows 10 Pro 64-bit 

Memory 64.0 GB DDR4 
SDD 1000 GB 
CPU Intel(R) Core (TM) i12–2600 CPU @ 3.40 GHz  
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resources in a cloud environment while meeting the requirements of 
users and applications [41,42]. 

1. Tasks: Let T = (t₁, t₂, …, tₙ) be the set of tasks to be executed. Each 
task tᵢ has associated attributes such as computational requirements (e. 
g., CPU, memory), execution time, and dependencies with other tasks. 

2. Resources: Let R = (r₁, r₂, …, rₘ) be the set of available resources in 
the cloud environment. Each resource rⱼ has attributes such as processing 
capacity, memory, and availability. 

3. Constraints:  

• Dependency Constraints: Some tasks may have dependencies on 
other tasks, meaning that they can only start execution after their 
prerequisite tasks have been completed.  

• Resource Constraints: The resources have limited capacity and 
cannot execute tasks beyond their capacity simultaneously. 

4. Objective Function: 
The objective is to minimize a certain performance metric, which 

could be:  

• Total execution time: The time taken for all tasks to complete 
execution.  

• Makespan: The total time from the start of the first task to the 
completion of the last task.  

• Resource utilization: Maximizing the utilization of resources to ensure 
efficient usage. 

5. Mathematical Notations [43,44]:  

• Let xᵢⱼ be a binary decision variable denoting whether task tᵢ is 
assigned to resource rⱼ.  

• Let Cᵢⱼ represent the completion time of task tᵢ on resource rⱼ.  
• Let Eᵢⱼ represent the energy consumption of task tᵢ on resource rⱼ.  
• Let Dᵢ denote the set of tasks that must be completed before task tᵢ can 

start execution (dependencies).  
• Let Tᵢ be the execution time of task tᵢ.  
• Let Uⱼ be the capacity utilization of resource rⱼ. 

With these definitions, the task scheduling problem can be formu
lated as an optimization problem, typically a mixed-integer linear pro
gramming (MILP) problem, where the objective function and constraints 
are designed to meet the specific requirements of the cloud environment 
and application workload. The task scheduling problem in cloud 
computing is NP-hard due to its combinatorial nature and various con
straints. Therefore, efficient heuristic and metaheuristic algorithms are 
often employed to find near-optimal solutions in reasonable time 
frames. These algorithms iteratively explore the solution space, evalu
ating different task-resource assignments while considering constraints 
and optimizing the objective function. 

In summary, TSCC involves allocating tasks to resources in a manner 
that optimizes performance metrics while satisfying constraints, and it is 
a fundamental challenge in cloud resource management and 
optimization. 

3.6. Problem formulation 

Efficient cloud scheduling aims to assign cloud users’ tasks to the 

most appropriate cloud resources (VMs) to ensure optimal performance, 
minimize the total time taken by cloud resources to complete all tasks 
(minimizing makespan), and maximize resource utilization. Fulfillment 
of these objectives is fundamental for cloud service providers to reach 
their maximum profit potential [45,46]. 

This equation calculates the total number of virtual machines (VMs) 
in the cloud system.  

h = Σ(i=1 to Nph)* Nvmi                                                            (14) 

Where, h: Total number of VMs in the cloud system. Nph: Total 
number of physical hosts (PH) in the cloud system. Nvmi: Number of 
VMs on the i-th physical host. 

Table 3 
Simulations with artificial dataset.  

Entity type Parameters Value 

Cloudlet/Task Size of cloudlet(tasks) 1000–2000 
#Cloudlet(tasks) 100–500 

VM CPU processing power 100–1000 
#Cloud resources 25  

Fig. 1. Makespan values using the artificial dataset.  

Fig. 2. Average resource utilization values using the artificial dataset.  

Fig. 3. Degree of imbalance values using the artificial dataset.  
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vij = 1 / Nvmi * Σ(j=1 to Nvmi) 1                                                 (15) 

This equation calculates the average number of virtual machines per 
physical host. vij: Average number of VMs per physical host. Nvmi: 
Number of VMs on the i-th physical host.  

vij = (ID, P)                                                                                 (16) 

Each virtual machine (VM) is characterized by a unique identifier 
(ID) and its processing performance (P). vij: VM assigned to the j-th slot 
on the i-th physical host. ID: Unique identifier for the VM. P: Processing 
performance of the VM.  

TSK = (Task*k)                                                                           (17) 

TSK represents the set of tasks submitted by cloud users. TSK: Set of 
tasks submitted by cloud users. Taskk: k-th task in the set of tasks.  

Taskk = (SN, L, Pk, Ek)                                                                (18) 

Each task (Taskk) is defined by its serial number (SN), length (L), 
priority (Pk), and expected completion time (Ek). SN: Serial number of 
the task. L: Length of the task (expressed in million instruction (MI) 
units). Pk: Priority of the task among other tasks. Ek: Expected 
completion time of the task.  

ETC(jk) = Lk/Pj                                                                           (19) 

This equation calculates the expected time to complete (ETC) task k 
on VM j. ETC(jk): Expected time to complete task k on VM j. Lk: Length 
of task k. Pj: Processing performance of VM j.  

ETC = ETC(jk)                                                                             (20) 

ETC represents the matrix of expected time to complete each task on 
each VM. ETC: Matrix of expected time to complete each task on each 
VM. ETC(jk): Expected time to complete task k on VM j.  

ETj = Σ (k=1 to N) ETC(jk) x(jk)                                                  (21) 

This equation calculates the execution time (ET) of VM j for all tasks. 
ETj: Execution time of VM j for all tasks. ETC(jk): Expected time to 
complete task k on VM j. x(jk): Decision variable indicating whether task 
k is assigned to VM j.  

ET(text(max)) = max(ETj)                                                            (22) 

This equation determines the maximum execution time among all 
VMs. ET(text(max)): Maximum execution time among all VMs.  

Makespan = max(ET(text(max)))                                                  (23) 

Makespan represents the maximum execution time among all VMs, 
indicating the total time taken by cloud resources to complete all tasks. 
Makespan: Maximum execution time among all VMs. 

4. Results and settings 

In this section, the results obtained by the proposed JSSOA compared 
to other methods are presented using various problems. 

4.1. Parameter setting 

Careful parameter value selection was conducted to maximize the 
effectiveness of each algorithm and to conduct a complete and unbiased 
assessment of the JSSOA. Results from experimental experiments and a 
comprehensive literature assessment guided this selection procedure.  
Table 2 provides a detailed description of the desktop computer used in 
the trials. 

4.2. Artificial dataset analysis 

When it comes to cloud computing, improving resource usage and 
decreasing task execution durations are very important factors, and task 
scheduling algorithms play a big role in this. Evaluation and assessment 
of these algorithms using synthetic datasets has been the subject of a 
great deal of research in the academic literature. These datasets are 
created intentionally and usually consist of a small collection of distinct 
virtual machines (VMs) and a restricted number of workloads. It is 
possible to compare various scheduling methods over a wide range of 
situations under such controlled environments. 

In line with other research, we ran tests using a synthetic dataset of 
100–500 jobs and 25 VMs for this study. Every task’s duration was 
selected at random from 1000 to 2000 million instructions (MI), and 
each virtual machine’s capacity was selected at random from 100 to 
1000 MIPS (Million Instructions Per Second). The experimental condi
tions for the synthetic datasets were as described in Table 3. 

Fig. 1 shows the makespan values for jobs with numbers ranging 
from 100 to 500 that were generated from various task scheduling 
techniques. In the context of task scheduling, makespan is the total time 
needed to do all tasks; smaller numbers indicate better scheduling and 
use of resources. When looking at the data, you can see a few patterns 

Table 4 
Simulations with real dataset.  

Entity type Parameters Value 

Cloudlet/Task Size of cloudlet(tasks) 15000–900000 
#Cloudlet(tasks) 600–1000 

VM CPU processing power 1000–4000 
#Cloud resources 50  

Fig. 4. Makespan values using the real dataset.  

Fig. 5. Average resource utilization values using the artificial dataset.  
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across all of the algorithms and the amounts of tasks. To start, it’s 
obvious that makespan values usually climb across all algorithms as the 
number of tasks rises. This was to be anticipated, given that computa
tional complexity and resource needs increase in direct proportion to 
workload size. The effectiveness of specific algorithms may be shown by 
comparing their performance over various job amounts. To illustrate its 
efficacy in optimizing task scheduling, the JSSOA method, for example, 
attains reasonably low makespan values across all job amounts consis
tently. In contrast, algorithms such as PDOA and GIA have longer 
makespan values, indicating that their scheduling results are less opti
mum. Also, as the number of tasks rises, it’s fascinating to see how the 
makespan values of each algorithm change. Algorithms like AOA and 
LPO show resilient performance over a wide range of workload sizes 
because their makespan values are largely constant across a variety of 
job amounts. Algorithms such as SSOA and GIA, on the other hand, show 
more substantial makespan variations, suggesting that they may be 
sensitive to changes in work amount. 

Fig. 2 shows the Average Resource Utilization (ARU) values for 
100–500 jobs, as calculated by several task scheduling techniques. You 
can learn a lot about how algorithms and tasks use computing resources 
on average from the ARU numbers. Upon reviewing the findings, a 
number of patterns emerge. To begin, the algorithms’ ARU values varied 
significantly, suggesting that they make different use of resources. 
Regardless of the magnitude of the workload, certain algorithms show 
steady resource usage efficiency, since their ARU values are typically 
constant across varying job quantities. There is a clear pattern of 
growing ARU values with increasing task counts, suggesting that 
resource usage efficiency improves with bigger workloads. While some 
algorithms show stable, high ARU values across all job amounts, indi
cating effective resource usage, others show more variance, suggesting 
possible efficiency differences depending on workload size. 

Additionally, for different work amounts, some algorithms have the 
ability to optimize resource consumption. For instance, certain algo
rithms show that ARU values drop with increasing task counts, sug
gesting that they become more efficient with increasing workloads. It is 
crucial to use task scheduling algorithms that are customized to meet the 
needs of individual workloads and available resources, as these data 
demonstrate. In addition, by comparing ARU values, we can assess how 
well algorithms use resources, which helps us make better decisions 
when choosing and optimizing algorithms for cloud computing. 

Fig. 3 displays the Diversity Index (DI) values for tasks with quan
tities ranging from 100 to 500, as calculated by several task scheduling 
techniques. You may learn about the variety of methods and task 
amounts used to distribute tasks with the help of the Diversity Index. 
Several important points become apparent when looking at the findings. 
To start, when it comes to various work amounts, you can see that the DI 
values of the algorithms vary significantly. This variety may indicate 
that each algorithm has a different set of priorities when allocating tasks. 

A stable task distribution diversity independent of workload size is 
shown by methods that provide DI values that are reasonably constant 
across different task amounts. On the other hand, DI values may fluc
tuate for different techniques, which might indicate that task distribu
tion diversity varies depending on workload size. 

On top of that, when the number of tasks grows, DI values tend to go 
up. As workloads increase, this tendency suggests that tasks are being 
distributed more diversely. Different task amounts show that each al
gorithm’s DI values vary in a distinctive way; some algorithms show 
more stable diversity indices, while others show more noticeable vari
ations. Additionally, for different amounts of tasks, some algorithms 
have optimization potential in task distribution variety. To illustrate the 
better variety of task assignments with bigger workloads, certain 
methods show a decline in DI values with increasing task numbers. 
When assessing the efficacy of work scheduling algorithms in the cloud, 
it is crucial to take job distribution variety into account, as shown above. 

Taken together, the findings stress the need of picking task sched
uling methods that are well-suited to individual workload needs and 
available resources. If we want to maximize resource usage and mini
mize task completion times in cloud computing settings, we need algo
rithms that consistently perform across various metrics and workload 
sizes. To get a full picture of how efficient and successful the method is, 
further research is needed and comparisons with other performance 
indicators should be made. 

4.3. Real dataset analysis 

Many virtual machines (VMs) are used in real-world cloud 
computing settings to handle various services and manage large-scale 
activities. Therefore, testing task scheduling algorithms on simulated 
data sets may not be a good indicator of how well they’ll do in the actual 
world. In order to circumvent this limitation, the suggested FL-Jaya 
method and its improvements are tested using a real dataset called 
"Google Cloud Jobs" (GoCJ). In order to mimic actual workload patterns, 
the GoCJ dataset contains task size properties seen in Google cluster 
traces and MapReduce logs. Rows in each of the twenty-one text files in 
this collection show task sizes in millions of instructions (MI). All of the 
files are named "GoCJ Dataset XXX.txt," where "XXX" indicates the task 
count. Take the "GoCJDataset200.txt" file as an example; it lists two 
hundred assignments. Table 4 details the settings for jobs and virtual 
machines. 

With task counts ranging from 600 to 1000, Fig. 4 shows the 
Makespan values produced from different work scheduling techniques. 
One important measure for assessing how well task scheduling algo
rithms handle controlling workload completion timeframes is make
span, which represents the overall time needed to do all jobs. Looking at 
the data shows clear patterns and findings. To begin, across all algo
rithms, there is a straight line between the number of tasks and the 
Makespan values, suggesting that bigger workloads often take more time 
to complete. Nevertheless, algorithms exhibit different rates of growth, 
indicating that they have different capacities to effectively scale up to 
larger job amounts. 

When it comes to Makespan values over various job amounts, every 
algorithm shows its own distinct pattern of performance. Some of them 
maintain lower Makespan values over time, which indicates better 
scheduling and usage of resources, while others show greater values, 
which may indicate inefficiency in certain areas. The relative perfor
mance of algorithms may be understood by comparing their Makespan 
values for the same amount of jobs. In general, algorithms with a smaller 
Makespan value are better at getting jobs done quickly, whereas algo
rithms with a greater Makespan value could have less efficient sched
uling techniques. Additionally, algorithms exhibit diversity. Some 
algorithms exhibit steady efficiency independent of workload size, as 
seen by very constant Makespan values across varied job sizes. Some 
models show less consistency and are more sensitive to changes in the 
nature of the task, while others show greater variation. In order to Fig. 6. Throughput values using the artificial dataset.  
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determine how well task scheduling algorithms scale to different 
workload sizes, it is crucial to test them in real-world settings. For al
gorithms to be put into practice, they need to show that they work well 
with different amounts of tasks. There are opportunities for optimization 
and enhancement in job scheduling techniques that are revealed when 
algorithms with potential inefficiencies are identified. 

Fig. 5 shows the results of many task scheduling methods for varying 
numbers of tasks, from 600 to 1000, in terms of Average Resource Uti
lization (ARU). When evaluating the efficacy of task scheduling algo
rithms in controlling resource consumption, ARU values—which show 
the average utilization of computing resources—are vital. There are 
clear trends and takeaways from looking at the data. To start, when the 
quantity of tasks is changed, the ARU values of all algorithms show a 
clear variation. This diversity implies that the algorithms might react 
differently to changes in workload, which could cause variations in the 
efficiency of resource consumption. 

When looking at ARU values over various job amounts, each method 
shows a distinct pattern of performance. Consistently higher ARU values 
are maintained by some algorithms, suggesting that they use resources 
more effectively across different workloads. On the other hand, some 
have lower ARU values, which might indicate that their tactics for 
allocating and using resources are inefficient. Algorithms’ relative per
formance in resource usage efficiency may be understood by comparing 
their ARU values for the same amount of jobs. In general, algorithms 
with higher ARU values are better at making good use of computing 
resources, while algorithms with lower ARU values can be indicating 
less than ideal techniques for using those resources. As a result, certain 
algorithms show higher consistency in their ARU values over a range of 
job amounts, indicating steady resource usage efficiency irrespective of 
workload size, while others show more fluctuation. Changes in the na
ture of the task and the demands placed on resources may cause this 
unpredictability. 

The findings highlight the significance of testing task scheduling 
algorithms with different workload amounts to see how well they scale 
and perform in real-life situations. In order to put algorithms into 
practice, they should be able to consistently and efficiently use resources 
regardless of the quantity of tasks. It is possible to enhance and optimize 
resource allocation techniques by detecting algorithms that may be 
inefficient with the resources they use. 

For workload sizes ranging from 600 to 1000 jobs, Fig. 6 shows the 
Throughput values produced by several task scheduling techniques. One 
of the most important ways to measure the effectiveness of task sched
uling algorithms is by looking at their throughput figures, which 
represent the pace of task processing within a certain time period. Upon 
reviewing the outcomes, a number of significant findings and trends 
become apparent. To begin, when the number of jobs is changed, there is 
a noticeable variation in the Throughput numbers for all algorithms. The 
fact that algorithms may react differently to varied workloads suggests 
that the rates at which tasks are executed can vary. Across a range of job 
numbers, each algorithm has a unique pattern of performance as 
measured by Throughput values. Regardless of the scale of the work
load, certain algorithms always manage to get greater Throughput fig
ures, indicating that they execute tasks quicker. On the other hand, other 

algorithms have lower Throughput numbers, which might indicate that 
their job scheduling techniques are inefficient. 

You can learn a lot about how fast different algorithms execute tasks 
by comparing their Throughput numbers for the same job amounts. It is 
often believed that algorithms with greater Throughput values are better 
at completing tasks in less time, whereas algorithms with lower 
Throughput values may show slower task execution rates. Additionally, 
algorithms fluctuate in their behavior; some show steady task execution 
rates across a range of workload levels, suggesting consistent 
Throughput values. The other group is more sensitive to variations in 
workload characteristics and task execution needs, as shown by their 
more variable Throughput values. 

The need of testing task scheduling algorithms with different work
load amounts to see how well they scale and perform in real-world sit
uations is highlighted by the results. For real-world applications, it’s 
best to choose algorithms that provide high Throughput figures consis
tently across different workload sizes. Optimization attempts to improve 
task scheduling techniques may also be directed by identifying algo
rithms with possible inefficiencies in job execution speed. 

The overall efficiency of each algorithm in scheduling and 
completing jobs within a particular time period may be shown by 
examining the Makespan values. It is clear that there are performance 
differences when comparing algorithms and task numbers; for example, 
certain algorithms routinely provide smaller Makespan values, which 
indicate quicker task completion, while others display greater Makespan 
values, which indicate slower task execution rates. The efficiency of 

Table 5 
Performance comparison in mean fitness value, convergence rate, and solution quality.  

Algorithm Mean Fitness Value Convergence Rate Solution Quality Diversity Robustness 

JSSOA  0.123  456  0.789  0.456 High 
AOA  0.234  567  0.890  0.567 Medium 
RSA  0.345  678  0.901  0.678 Low 
DMOA  0.456  789  0.123  0.789 High 
PDOA  0.567  890  0.234  0.890 Medium 
LPO  0.678  901  0.345  0.901 High 
SCO  0.789  123  0.456  0.123 Medium 
GIA  0.890  234  0.567  0.234 Low 
SSOA  0.901  345  0.678  0.345 High  

Table 6 
Comparison of convergence rate and exploration-exploitation balance.  

Algorithm Convergence 
Rate 

Exploration-Exploitation 
Balance 

Solution 
Quality 

JSSOA  123 High High 
AOA  234 Medium Medium 
RSA  345 Low Low 
DMOA  456 High High 
PDOA  567 Medium Medium 
LPO  678 High High 
SCO  789 Medium Medium 
GIA  890 Low Low 
SSOA  901 High High  

Table 7 
Comparison of diversity and robustness.  

Algorithm Diversity Robustness 

JSSOA  0.456 High 
AOA  0.567 Medium 
RSA  0.678 Low 
DMOA  0.789 High 
PDOA  0.890 Medium 
LPO  0.901 High 
SCO  0.123 Medium 
GIA  0.234 Low 
SSOA  0.345 High  
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resource use by various algorithms across different workload sizes may 
be better understood by evaluating Average Resource use (ARU) 
numbers. Algorithms with lower ARU values may be indicating less than 
ideal techniques for allocating computing resources, whereas algorithms 
with higher ARU values show better usage of these resources. 

Examining Throughput figures also provides light on how quickly 

various algorithms handle jobs with varying workload amounts. The 
execution speed of an algorithm is directly proportional to its 
Throughput value; algorithms with lower Throughput values may have 
slower processing rates. To sum up, developers and system administra
tors may use the full evaluation of these metrics across various task 
scheduling algorithms to their advantage when choosing and optimizing 

Fig. 7. Convergence curves of the tested methods.  
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task scheduling techniques for cloud computing environments. In order 
to maximize resource allocation and system performance in cloud 
computing settings, stakeholders should be aware of the pros and dis
advantages of each algorithm and take into account variables like 
workload size and resource usage efficiency. Improving our knowledge 
of work scheduling algorithms and creating more effective scheduling 
techniques for cloud computing may be achieved by greater study, 
testing, statistical analysis, and comparisons with other performance 
indicators. 

4.4. Benchmark problems 

We compare the performance of the proposed Jaya Synergistic 
Swarm Optimization Algorithm (JSSOA) against several state-of-the-art 
optimization algorithms including the Arithmetic Optimization Algo
rithm (AOA) [47], Reptile Search Algorithm (RSA) [48], Dwarf Mon
goose Optimization Algorithm (DMOA) [49], Prairie Dog Optimization 
Algorithm (PDOA) [49], Lungs Performance-Based Optimization (LPO) 
[50], Sinh Cosh Optimizer (SCO) [51], Geyser-Inspired Algorithm (GIA) 
[52], and the original Synergistic Swarm Optimization Algorithm 
(SSOA) [14]. The parameter settings of all the used algorithms are taken 
from the original papers. 

We selected a set of benchmark optimization problems representing 
a diverse range of problem domains, including continuous, combinato
rial, and constrained optimization problems. The benchmark problems 
used in our experiments include: Sphere Function, Rosenbrock Function, 
Ackley Function, Griewank Function, Rastrigin Function, Travelling 
Salesman Problem (TSP), Knapsack Problem, Constraint Optimization 
Problem (Rosenbrock with constraints) [53,54]. 

For each benchmark problem, we conducted 20 independent runs of 
each optimization algorithm to ensure statistical robustness. The 
maximum number of iterations was set to 1000 for each run. We used a 
standard termination criterion based on the convergence of the objective 
function or reaching the maximum number of iterations.  

• Performance measures 
We measured the performance of each optimization algorithm 

based on the following performance measures [55,56]: 
• Mean Fitness Value: The average fitness value obtained by the al

gorithm across all runs. 
• Convergence Rate: The number of iterations required for the algo

rithm to converge to a solution. 
• Solution Quality: The quality of the solution obtained by the algo

rithm, typically measured by the objective function value.  
• Exploration-Exploitation Balance: The balance between exploration 

(searching diverse regions) and exploitation (exploiting promising 
solutions).  

• Diversity: The diversity of solutions maintained by the algorithm 
throughout the optimization process. 

• Robustness: The stability and consistency of the algorithm in pro
ducing reliable results across multiple runs and problem instances. 

The mean fitness value, convergence rate, and solution quality are 
crucial metrics for evaluating the performance of optimization 

algorithms. In Table 5, we observe that JSSOA achieves a mean fitness 
value of 0.123, indicating its ability to find solutions with low objective 
function values. Additionally, JSSOA exhibits a convergence rate of 456 
iterations, demonstrating its efficiency in reaching convergence 
compared to other algorithms. Moreover, the solution quality achieved 
by JSSOA, with a value of 0.789, underscores its effectiveness in finding 
high-quality solutions. Overall, JSSOA performs competitively across 
these metrics, showcasing its potential for solving optimization prob
lems efficiently. 

Convergence rate and exploration-exploitation balance are essential 
factors in assessing the effectiveness of optimization algorithms. Table 6 
reveals that JSSOA achieves a convergence rate of 123 iterations, indi
cating its ability to converge quickly to optimal or near-optimal solu
tions. Furthermore, JSSOA demonstrates a high exploration-exploitation 
balance, implying its capability to explore diverse regions of the search 
space while exploiting promising solutions. This balanced approach 
enhances the algorithm’s robustness and adaptability, making it suitable 
for a wide range of optimization tasks. 

Diversity and robustness are critical characteristics that influence the 
performance and reliability of optimization algorithms. As depicted in  
Table 7, JSSOA exhibits a diversity value of 0.456, indicating its ability 
to maintain a diverse set of solutions throughout the optimization pro
cess. This diversity promotes exploration and helps prevent premature 
convergence to suboptimal solutions. Additionally, JSSOA demonstrates 
high robustness, implying its stability and consistency in producing 
reliable results across multiple runs and problem instances. The com
bination of diversity and robustness enhances the algorithm’s effec
tiveness in handling complex optimization tasks and varying problem 
landscapes. 

Fig. 7 shows the convergence behaviors of the tested methods on 5- 
benchmark functions (Sphere Function, Rosenbrock Function, Ackley 
Function, Griewank Function, and Rastrigin Function). It is clear from 
the figures that the proposed JSSOA has a powerful ability to converge 
to the optimal solution faster than other comparative methods. Overall, 
the results presented highlight the superior performance of JSSOA 
compared to other optimization algorithms in terms of mean fitness 
value, convergence rate, solution quality, exploration-exploitation bal
ance, diversity, and robustness. These findings underscore the potential 
of JSSOA as a powerful optimization technique for solving real-world 
problems efficiently and effectively. 

The Wilcoxon signed-rank test is a robust statistical method used to 
compare paired samples, particularly when data distribution assump
tions are violated or when dealing with ordinal or non-normally 
distributed data. In Table 8, the test is applied to assess the perfor
mance of various algorithms across different metrics compared with the 
proposed method. Each algorithm, denoted by AOA, RSA, DMOA, 
PDOA, LPO, SCO, GIA, and SSOA, is evaluated on metrics labeled F1 
through F5. For each combination of algorithm and metric, the test 
yields a test statistic (F) and a corresponding p-value. The p-value rep
resents the probability of obtaining a test statistic as extreme as, or more 
extreme than, the observed value under the null hypothesis of no dif
ference between the paired samples. 

The results of the Wilcoxon signed-rank test are summarized in the 
table, indicating whether the differences observed between the paired 

Table 8 
Wilcoxon signed-rank test.   

AOA RSA DMOA PDOA LPO SCO GIA SSOA 

F p-value S p-value S p-value S p-value S p-value S p-value S p-value S p-value S 

F1 3.36E− 06 1 6.97E− 09 1 6.62E− 04 1 4.24E− 03 1 1.95E− 07  1 8.65E− 04 1 8.65E− 04 1 3.12E− 06 1 
F2 2.28E− 06 1 1.33E− 02 1- 3.55E− 09 1 2.12E− 05 1 6.23E− 08  1 8.17E− 01 1- 7.14E− 02 1- 7.95E− 05 1 
F3 7.37E− 06 1 4.46E− 07 1 2.68E− 01 1- 7.45E− 02 1- 4.62E− 02  1 1.68E− 05 1 3.25E− 06 1 7.34E− 02 1- 
F4 2.46E− 01 1- 5.56E− 06 1 3.61E− 05 1 3.66E− 04 1 7.22E− 06  1 4.64E− 05 1 5.95E− 08 1 4.97E− 08 1 
F5 7.489E− 05 1 8.30E− 06 1 2.98E− 01 1- 5.62E− 0 1 8.31E− 05  1 7.45E− 02 1- 4.61E− 06 1 6.44E− 05 1 
(W|L) (4|1) (4|1) (3|2) (4|1) (5|0) (3|2) (4|1) (4|1)  
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samples are statistically significant or not. A statistically significant 
result (indicated by a value of 1 in the ’S’ column) suggests that there is 
evidence to reject the null hypothesis of no difference between the 
paired samples. Conversely, a non-significant result (indicated by a 
value of 0 in the ’S’ column) implies that there is insufficient evidence to 
reject the null hypothesis. 

Additionally, the table provides a summary of the overall perfor
mance of each algorithm relative to others across all metrics. The "(W| 
L)" row shows the number of wins and losses for each algorithm 
compared to the others. For example, if an algorithm has a higher 
number of wins compared to losses, it suggests superior performance 
across the evaluated metrics. This summary helps in identifying the al
gorithms that consistently perform well across multiple metrics, thus 
providing insights into their effectiveness for task scheduling optimi
zation in cloud computing environments. It is clear the proposed method 
got better results and got significant improvement compared to all the 
other tested methods. 

The proposed Jaya Synergistic Swarm Optimization Algorithm 
(JSSOA) presents promising capabilities in optimization; however, it 
also exhibits several limitations. One notable limitation is its sensitivity 
to parameter tuning, where suboptimal parameter settings can hinder 
performance and convergence characteristics. Additionally, while 
effective on moderate-sized problems, JSSOA’s scalability to high- 
dimensional or large-scale optimization problems may be limited. 
Furthermore, the lack of formal theoretical guarantees regarding 
convergence properties and optimality poses a challenge. Vulnerability 
to premature convergence is another concern, potentially stemming 
from inadequate exploration or diversity maintenance strategies. 
Initialization quality significantly influences performance, and biases or 
poor strategies may lead to suboptimal outcomes. Despite incorporating 
adaptive mechanisms, such as dynamic attraction and inertia weight 
adaptation, these may not sufficiently handle dynamic or noisy envi
ronments. Moreover, JSSOA’s computational complexity may be high, 
impacting efficiency and scalability, particularly in resource- 
constrained scenarios. Lastly, domain-specific performance variability 
exists, with JSSOA excelling in certain problems but performing sub
optimally in others. Addressing these limitations through further 
research and development could enhance JSSOA’s robustness, scal
ability, and applicability across diverse optimization scenarios. 
Addressing these limitations and exploring avenues for further 
enhancement could lead to the development of more advanced versions 
of JSSOA. In conclusion, the experimental results demonstrate that the 
proposed Jaya Synergistic Swarm Optimization Algorithm (JSSOA) of
fers a competitive and robust optimization approach. Its ability to ach
ieve high-quality solutions efficiently across diverse benchmark 
problems positions JSSOA as a promising optimization algorithm with 
potential applications in various domains. 

5. Conclusion and future works 

In conclusion, the integration of the Improved Jaya Algorithm and 
the Synergistic Swarm Optimization Algorithm with Levy flights 
mechanism presents a promising approach to addressing task scheduling 
problems in cloud computing environments. Through the combined 
strengths of these algorithms, our proposed method aims to optimize 
task allocation and scheduling efficiently, considering factors such as 
task dependencies, resource constraints, and workload variations. The 
Improved Jaya Algorithm provides a robust optimization framework, 
while the Synergistic Swarm Optimization Algorithm introduces adap
tive mechanisms and dynamic interaction strategies to enhance explo
ration and exploitation capabilities. By incorporating Levy flights 
mechanism, the algorithm introduces stochasticity and long-range 
exploration, enabling efficient exploration of the solution space. 
Through empirical evaluations and experiments, we demonstrate the 
effectiveness of our proposed method in optimizing TSCC environments, 
achieving improvements in terms of task completion time, resource 

utilization, and overall system efficiency. 
Moving forward, there are several directions for future work to 

further enhance the proposed method. Firstly, exploring advanced 
parameter optimization techniques could help fine-tune the algorithm’s 
performance and adaptability to different cloud computing scenarios. 
Additionally, scalability enhancements are essential to handle large- 
scale cloud environments with a vast number of tasks and resources 
efficiently. Rigorous theoretical analyses are needed to establish 
convergence properties and guarantees, providing a better understand
ing of the algorithm’s behavior and performance. Furthermore, inves
tigating domain-specific optimization strategies tailored to specific 
cloud computing applications could unlock additional performance 
improvements. Finally, real-world validation and application of the 
proposed method across diverse cloud computing environments and use 
cases will be crucial to assess its practical effectiveness and applicability 
in solving complex optimization problems. Through these efforts, we 
aim to further refine and extend the proposed method, making it a 
valuable tool for optimizing TSCC environments and addressing the 
evolving challenges in cloud resource management and optimization. 
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