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Simple Summary: Current ultrasound imaging methods for detecting breast cancer often face
challenges with image quality, making it tough to accurately spot tumors. This paper introduces
UCapsNet, a new model that combines two advanced techniques to enhance breast cancer detection
in ultrasound images. By improving how tumors are segmented and classified, UCapsNet aims to
deliver clearer and more accurate results compared to traditional methods. Our findings indicate that
UCapsNet can greatly improve diagnostic precision, enabling earlier detection and better treatment
options for patients. This research could significantly impact future studies and lead to improved
breast cancer detection practices in the medical community.

Abstract: Background/Objectives: Breast cancer remains one of the biggest health challenges for
women worldwide, and early detection can be truly lifesaving. Although ultrasound imaging is
commonly used to detect tumors, the images are not always of sufficient quality, and, thus, traditional
U-Net models often miss the finer details needed for accurate detection. This outcome can result in
lower accuracy, making early and precise diagnosis more difficult. Methods: This study presents
an enhanced U-Net model integrated with a Capsule Network (called UCapsNet) to overcome the
limitations of conventional techniques. Our approach improves segmentation by leveraging higher
filter counts and skip connections, while the capsule network enhances classification by preserving
spatial hierarchies through dynamic routing. The proposed UCapsNet model operates in two
stages: first, it segments tumor regions using an enhanced U-Net, followed by a classification of the
segmented images with the capsule network. Results: We have tested our model against well-known
pre-trained models, including VGG-19, DenseNet, MobileNet, ResNet-50, and Xception. By properly
addressing the limitations found in previous studies and using a capsule network trained on the
Breast Ultrasound Image (BUSI) dataset, our model resulted in top-achieving impressive precision,
recall, and accuracy rates of 98.12%, 99.52%, and 99.22%, respectively. Conclusions: By combining the
U-Net’s powerful segmentation capabilities with the capsule network’s high classification accuracy,
UCapsNet boosts diagnostic precision and addresses key weaknesses in existing methods. The
findings demonstrate that the proposed model is not only more effective in detecting tumors but also
more reliable for practical applications in clinical settings.
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1. Introduction

Breast cancer is one of the most common cancers worldwide, affecting women across
the globe. In 2022, it claimed nearly 670,000 lives. Each year, an astounding 2.3 million
women—over a quarter of all female cancer patients globally—are diagnosed with breast
cancer [1]. By 2040, the incidence of breast cancer is expected to increase by over 40%,
reaching approximately 3 million cases annually, driven by factors such as population
growth and aging. Similarly, breast cancer-related deaths are projected to rise by more
than 50%, reaching around 1 million annually by 2040 [2]. Breast cancer primarily affects
the inner layers of milk glands or lobules and ducts, which are tiny tubes that transport
milk [3]. The timely recognition of breast cancer plays a critical role in securing a positive
projection and achieving survival rates of high magnitude. Noteworthy is the fact that, in
North America, the relative survival rate of 5 years for patients suffering from breast cancer
exceeds over 80%, thanks to the critical impact of quick affliction detection [4]. The global
imperative to enhance breast cancer survival rates depends significantly on early detection.
Survival rates are increased, and treatment costs are lowered when ultrasound imagery is
used in early breast cancer detection [5–8].

Segmentation techniques for tumor detection involves extracting features, detection,
treatment, and classification stages [9]. For differentiating malignant from benign breast
cancer, region of interest (ROI) extraction is used as the initial phase. To enhance the
accuracy of this crucial step and minimize false positives, a novel method based on local
pixel data and neural networks is introduced [10]. After segmentation, the next step is
breast cancer classification, which typically utilizes structural and texture features of the
ultrasound images. Usually, these features are used to determine whether the tumor is
malignant or benign by expert radiologists through manual assessments [11]. However,
this approach can affect variations in expertise among radiologists, repeating issues, and
subjectivity. Additionally, the accuracy of artificial ultrasound detection is affected by the
high noise and low resolution of the ultrasound images [12]. Thereafter, automated tumor
classification became very popular to overcome these difficulties.

Image classification, a key concept in pattern recognition and computer vision, in-
volves assigning labels to images. Traditionally, this concept involves extracting features
from the image, typically low-level or mid-level, and then utilizing a trainable classifier
for labeling. However, in the past few years, deep learning networks with convolutional
layers have emerged as superior, offering high-level feature representations compared to
manually crafted features [13]. Originally developed to classify images, deep learning
networks with convolutional layers are fundamental for image processing [14]. They utilize
successive convolution and pooling layers. Despite their classification accuracy, Convo-
lutional Neural Networks (CNNs) may experience performance decline due to reduced
data dimensionality for spatial invariance, leading to the loss of crucial information, such
as rotation and scale attributes. This loss impacts the effectiveness of segmentation, object
detection, and localization accuracy [15]. Since breast cancer is a heterogeneous disease
clinically [16], breast cancer classification systems have been developed to standardize the
language and organize this heterogeneity [17].

In this research, we present a hybrid deep learning model based on an enhanced U-Net
and Capsule Network (called UCapsNet) to enhance the detection and classification of
breast cancer in ultrasound imaging. The hybridization of U-Net and capsule networks into
UCapsNet addresses critical gaps in current breast cancer detection methods. Traditional
U-Net models often lose important spatial details due to pooling layers, which can reduce
segmentation precision. However, capsule networks excel in preserving spatial hierarchies
and enhancing classification accuracy through dynamic routing. By combining U-Net’s
segmentation strength with the capsule networks’ classification capabilities, the proposed
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UCapsNet model improves both tumor boundary delineation and differentiation between
benign and malignant tumors. Our UCapsNet model addresses critical gaps in current
breast cancer detection methods, to improve both segmentation and classification accuracy
through the integration of U-Net and capsule networks. The key contributions of the
proposed UCapsNet model presented in this paper can be summarized as follows:

• We introduce UCapsNet, a hybrid deep learning model that utilizes an enhanced
U-Net for segmentation and capsule networks for robust classification.

• Our enhanced U-Net model incorporates increasing filter counts, adding dropout
layers and employing skip connections, which enable more precise segmentation
results in poor-quality ultrasound images.

• The use of capsule networks replaces traditional pooling layers, allowing for the preser-
vation of spatial relationships often lost in standard models. Using dynamic routing
between capsules, the proposed model shows an enhanced ability to differentiate
between benign and malignant tumors.

• By merging the segmentation capabilities of U-Net with the classification power of
capsule networks, we overcome the drawbacks of the existing techniques related to
the loss of spatial detail and improve diagnostic performance.

• We conduct extensive evaluations of UCapsNet against well-known pre-trained mod-
els, including VGG-19, DenseNet, MobileNet, ResNet-50, and Xception.

2. Related Works
2.1. Preprocessing Techniques for Ultrasound Image Enhancement

Preprocessing techniques are essential for enhancing ultrasound image quality, often
degraded by noise, low contrast, and artifacts. Techniques like histogram equalization, used
by Asadi et al. [18], improve image contrast to support accurate segmentation. Similarly,
Zeebaree et al. [19] employed median and Wiener filters to reduce speckle noise, improving
texture and reducing overlaps between benign and malignant cases. Benaouali et al. [20]
used anisotropic filtering alongside the Level Set Method to refine region of interest (ROI)
boundaries, followed by texture-based feature extraction to aid in accurate tumor delin-
eation. While these traditional preprocessing methods improve image clarity and reduce
noise, they are limited in handling complex artifacts and variability in ultrasound images,
particularly for more intricate tumor structures.

In contrast, UCapsNet leverages preprocessing within an enhanced U-Net architecture,
which includes skip connections and increased filter counts. This integrated approach
retains essential spatial details that would otherwise be lost, particularly in low-quality
ultrasound images. By combining preprocessing with a powerful segmentation model,
UCapsNet achieves a level of clarity and robustness in segmentation that traditional filters
alone cannot provide.

2.2. Segmentation Techniques for Breast Cancer Detection

Accurate segmentation of tumor boundaries in ultrasound images is a critical step
in breast cancer detection. U-Net, a widely used architecture for medical image segmen-
tation, is effective for its encoder–decoder structure but suffers from spatial detail loss
due to pooling layers. For example, Jui-Ying Bs et al. [21] used Mask R-CNN to automate
segmentation and classification by incorporating region proposal techniques. Although
this approach improves segmentation accuracy, it can still lose essential spatial details
necessary for precise localization. Hekal et al. [22] introduced the Dual-Decoder Attention
ResUNet (DDA-AttResUNet), which combines dual decoder attention layers with U-Net,
achieving a Dice score of 92.92%. Pramanik et al. [23] developed the Dual-Branch U-Net
(DBU-Net) tailored for tumor segmentation in breast ultrasound images. Their method
leverages dual branches to capture more nuanced features, achieving competitive segmen-
tation performance. Yan et al. [24] introduced AEU-Net, which uses a Hybrid Dilated
Convolution (HDC) model to enhance the accuracy of tumor segmentation in ultrasound
images. It reported improved performance on the Dice coefficient. Tong et al. [25] pre-
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sented an improved U-Net model incorporating Multi-Atlas Label Fusion (MALF) for
lesion segmentation in breast ultrasound images. Their method focuses on better handling
of spatial features.

Although such models enhance segmentation quality, they often face computational
demands, and their accuracy is limited by the structural constraints of traditional CNN
architectures. UCapsNet’s enhanced U-Net addresses these challenges by incorporating
skip connections and a higher filter count, which helps retain spatial details across network
layers, leading to better boundary delineation. This improvement is particularly important
in ultrasound imaging, where the noise and low contrast frequently hinder precise segmen-
tation. By preserving fine spatial details, UCapsNet’s U-Net component produces clearer
tumor masks that serve as reliable inputs for the classification stage, ultimately improving
the model’s diagnostic performance.

2.3. Classification Techniques for Tumor Identification

Classification models based on CNN architectures, such as ResNet, DenseNet, Mo-
bileNet, and VGG-16, have been widely adopted for distinguishing benign from malignant
tumors due to their strong performance in image recognition tasks. For instance, Hijab
et al. [26] applied transfer learning with VGG-16, achieving an accuracy of 97%. Jabeen
et al. [27] used DarkNet-53 with data augmentation and optimization algorithms, achieving
an accuracy of 99.1%. Uysal and Köse et al. [28] applied deep learning-based models for the
classification of breast ultrasound images, utilizing models such as ResNet-50 and VGG-
16, with a focus on data augmentation and handling class imbalances. This work could
be included to emphasize the challenges in balancing accuracy with dataset limitations.
Balasubramaniam et al. [29] proposed a modified LeNet CNN for breast cancer diagnosis
in ultrasound images. Their model incorporates enhancements like batch normalization
and modified ReLU to prevent overfitting, making it a relevant point of comparison in the
context of model performance stabilization. Wei et al. [12] used texture and morphological
feature extraction combined with classifiers for differentiating benign and malignant tu-
mors in ultrasound images. Texture analysis remains a popular approach, though it often
requires manual feature extraction.

Despite these successes, CNNs are limited in retaining spatial hierarchies due to
pooling layers, which can result in the loss of subtle morphological details essential for
distinguishing complex tumor structures. While transfer learning and data augmentation
partially address these issues, CNNs still struggle to retain the spatial context necessary for
accurate tumor classification in noisy ultrasound environments. UCapsNet overcomes this
limitation by employing a capsule network for classification, preserving spatial hierarchies
through dynamic routing. This action enables UCapsNet to maintain spatial relationships
within the image, allowing for more accurate differentiation between benign and malignant
tumors. Unlike traditional CNNs, which often require extensive data augmentation to
generalize well, UCapsNet’s capsule network achieves reliable classification with minimal
preprocessing, enhancing the model’s robustness in clinical applications.

2.4. Hybrid Approaches for Breast Cancer Detection and Classification

Hybrid models, which integrate both segmentation and classification stages, leverage
the strengths of each approach to improve overall accuracy in breast cancer detection.
Xiaozhen Xie et al. [30] proposed a model combining ResNet with Mask R-CNN, achieving
a high classification precision of 98.72%. Similarly, Junaid Umer et al. [31] developed a mul-
tiscale cascaded convolutional network with residual attention-based decoders, achieving
a Dice score of 90.55% on segmentation tasks. Lanjewar et al. [32] combined MobileNetV2,
ResNet50, and VGG16 with LSTM for feature extraction, addressing class imbalance with
SMOTETomek and enhancing interpretability with Grad-CAM. This work is particularly
relevant for hybrid architectures that integrate transfer learning models for improved clas-
sification. While these methods improve diagnostic accuracy, they often rely on pre-trained
CNNs or require separate feature extraction steps, which add to computational complexity.
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Additionally, supervised texture classification methods, as demonstrated by Liu et al. [33],
incorporate texture analysis to improve accuracy, but they are heavily dependent on manual
feature extraction and preprocessing.

In contrast, UCapsNet represents a hybrid model that integrates segmentation and
classification seamlessly by combining an enhanced U-Net with a capsule network. Unlike
previous hybrid models that rely on pre-trained CNNs or require additional feature extrac-
tion steps, UCapsNet’s two-stage approach directly feeds precise segmentation results into
the capsule-based classifier. This streamlined integration reduces computational overhead
and improves diagnostic performance, making UCapsNet a practical and efficient choice for
clinical breast cancer detection and classification in ultrasound imaging. Table 1 provides a
summary highlighting the findings of pivotal works.

Table 1. Summary of the existing techniques.

Authors Method Techniques Results

Bita Khosrow Asadi
et al. [18] U-Net + ResNet-50 Histogram equalization, CNN

with ReLU and SoftMax
Accuracy: 98.61%
F1-Score: 98.41%

Zeebaree et al. [19] Median and Wiener Filters
Removes noise, minimizes

overlap in benign/malignant
cases

Accuracy: 98.8%

Mohamed Benaouali
et al. [20] Multi-stage Model Anisotropic filtering, level set

method for segmentation

Accuracy: 96%
Sensitivity: 97%
Specificity: 94%

A. A. Hekal et al. [22] DDA-AttResUNet
Dual decoder attention for
segmentation, intersection
over union (IoU), precision

Dice: 92.92%
IoU: 87.39%

Precision: 93.90%

Ahmed Hijab et al. [26] VGG-16 CNN Transfer learning for
classification

Accuracy: 97%
AUC: 98%

Kiran Jabeen et al. [27] DarkNet-53 with Transfer
Learning

Gaussian walk, differential
evolution optimization Accuracy: 99.1%

Xiaozhen Xie et al. [30] ResNet with Mask R-CNN
Transfer learning,
segmentation, and

classification

Precision: 98.72%
Recall: 98.05%

Madhusudan G. Lanjewar
et al. [32]

MobileNetV2, ResNet50, and
VGG16 with LSTM for Feature

Balancing

SMOTETomek for data
balance, Grad-CAM, and
LIME for interpretability

F1-Score: 99.0%
AUC: 1.0

Bo Liu et al. [33] Supervised Texture
Classification

Two-stage ROI generation and
classification Accuracy: 93.75%

Md Rakibul Islam et al. [34] EDCNN Model Integrated MobileNet and
Xception model Accuracy: 85.69%

Kuncham Sreenivasa Rao
et al. [35]

Inception V3 with Stacking
Model

Transfer learning with
VGG-16

AUC: 94.7%
F1-Score: 85.7%

3. Data Collection

The BUSI Dataset [36], used for training and evaluating the proposed model, includes
780 grayscale ultrasound images in DICOM format which are later converted to PNG
format. Originally, 1100 images were gathered over a year at Baheya Hospital in Egypt.
Following preprocessing to eliminate irrelevant information that could impact classifica-
tion accuracy, the dataset was refined to its current 780 images, categorized as normal
(133 images), benign (437 images), and malignant (210 images). These images have a reso-
lution of 500 × 500 pixels, though the original scan resolution was 1280 × 1024, achieved
using the LOGIQ E9 and LOGIQ E9 Agile ultrasound systems. These advanced imaging
systems, often used in radiology, cardiac, and vascular applications, employed ML6-15-D
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Matrix linear probes operating at 1–5 MHz, providing high-resolution images well suited
for detailed lesion analysis. In addition to the ultrasound images, the BUSI dataset in-
cludes segmentation masks that delineate lesion areas, aiding in accurate lesion localization
during model training. The dataset reflects the regional demographic, with samples from
600 female patients aged 25 to 75. Although it is valuable for developing breast cancer
detection and classification models, the dataset does present certain limitations, including
limited demographic diversity and a relatively small sample size compared to other medi-
cal imaging datasets. These factors may affect the generalizability of models trained solely
on this dataset, particularly when applied to broader and more varied populations. Sample
images from each class and their corresponding masks are presented in Figure 1.
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4. Materials and Methods

The proposed UCapsNet model was implemented using Python 3.10. The overall
workflow of the proposed two-stage UCapsNet model involves a structured series of steps
to ensure the accurate segmentation and classification of breast cancer from ultrasound
images. As shown in Figure 2, these steps illustrate how the segmentation and classification
stages are carefully structured to tackle the unique challenges of breast ultrasound imaging.
The workflow can be broken down as follows:

• Stage 1 (Segmentation): In the first stage, the model focused on identifying and
isolating the tumor region within the ultrasound image using an enhanced U-Net,
specifically designed to address the challenges of noise, variability, and lower quality
often found in ultrasound data. The key improvements to the standard U-Net include
increased filters in the convolutional layers, enabling the model to capture finer details
and subtle variations crucial for accurately defining the tumor edges. Additionally,
skip connections were incorporated between the encoder and decoder layers, helping
to preserve essential high-resolution features that might otherwise be lost during
segmentation. Together, these enhancements allowed the model to produce a clear,
precise outline of the tumor, which then served as input for the next classification stage.

• Stage 2 (Classification): After segmentation, the classification stage used a capsule
network to distinguish between benign and malignant tumors. The capsule network
is particularly suited for this task as it maintained the spatial relationships within
the image, which is essential for accurately characterizing breast tumors. Unlike
traditional convolutional networks that may lose spatial details through pooling, the
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capsule network preserved these details, enabling it to capture the subtle textural
and structural differences between tumor types. Additionally, capsule networks were
designed to recognize objects regardless of orientation or slight distortions, which
means they can reliably classify tumors based on their intrinsic patterns rather than
being thrown off by minor image variations. In this stage, the capsule network
analyzed the segmented tumor region. It made the final classification, identifying
whether the tumor is benign or malignant based on the spatial features it learned.
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Figure 2. Workflow diagram of the segmentation and classification parts within the proposed
two-stage UCapsNet model.

The proposed combined two-stage approach of using an enhanced U-Net model
for segmentation and a capsule network for classification enabled each stage to enhance
the other, creating a cohesive and reliable model. By isolating the tumor in Stage 1 and
classifying it with spatial accuracy in Stage 2, UCapsNet effectively addressed the diagnostic
challenges specific to breast ultrasound images. This method capitalized on the strengths
of both networks to achieve a robust and accurate tool for breast cancer detection, making
the proposed UCapsNet model a reliable and effective tool for detecting breast cancer in
ultrasound images.

4.1. Segmentation
4.1.1. Data Preprocessing

This research introduces an improved model for segmenting tumor regions in BUSIs.
To start, all images were resized to 256 × 256 pixels. A dictionary was then created with two
lists: one for the resized original images and another for their corresponding ground truth
masks. The proposed enhanced U-Net generated predicted masks, which were compared
to the ground truth masks for evaluation.

4.1.2. System Architecture of Segmentation

The original image was then given to the enhanced U-Net architecture and a binary
mask was generated by the model. The architecture of the enhanced U-Net, as shown in
Figure 3, has four encoder blocks, a bottleneck layer, and four decoder blocks. The encoder
block contained two 3 × 3 convolutional layers one after the other with ReLU as its activa-
tion function and He-normal initialization. These convolutional layers were responsible
for the extraction of the features. After the first convolution, batch normalization was
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added. After each encoding block, we added a pool size max-pooling layer of 2 × 2. In the
model’s encoder part, it performed down-sampling, which resulted in lower-dimensional
feature maps. At the tail of the encoder part was a bottleneck layer consisting of two 3 × 3
convolutional layers one after the other with ReLU as its activation function, and then,
we added batch normalization. Initially, the encoder part started with 64 filters, and they
were doubled at every convolution layer. In the decoder part, we added the convolutional
Transpose layers to up-sample the fewer dimensional feature maps in our proposed model.
Between the decoder and encoder parts of the network, we implemented skip connec-
tions to ease the flow of information and bypass unnecessary layers when appropriate.
This framework enabled the network to extract small and highly influential features that
may not be feasible to obtain through traditional methods. However, by skipping the
connections, the network can combine features of lower levels from the encoder layers with
features of higher levels from the decoder layers, resulting in an accurate segmentation of
tumor regions.
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By offering a more robust and reliable method for breast cancer tumor segmentation,
this approach enhanced the overall performance of the U-Net model. At each decoder block,
we used two 3 × 3 convolutional layers one after the other with ReLU as the activation
function, using He-normal initialization. After this decoder block, dropout layers wre
added. Finally, we utilized a 1 × 1 convolutional to perform as the output layer, which used
the activation function sigmoid and gave a binary mask as the output. The number of filters
in the enhanced U-Net is the key difference between it and the U-Net model, where it started
with 64 filters, and the filters were doubled gradually as we went deeper into the network.
Another difference is that we also added extra dropout layers to prevent overfitting. The
enhanced U-Net includes several enhancements that made it more powerful and capable
of capturing complex patterns in the data. The binary masks produced by the Enhanced
U-Net model were given as the input to the capsule network for classification.

4.2. Classification
4.2.1. System Architecture of Classification

Figure 4 depicts the structure of the suggested capsule network for categorization.
The preprocessing began by randomly shuffling the images and the labels in the same
order. The proposed capsule network expected the input of dimensions (None, 128, 128, 3),
meaning a batch of images of size 128 × 128 pixels was taken as the input with three color
channels (RGB). However, the predicted masks by the enhanced U-Net were of dimensions
(None, 256, 256, 1). The predicted masks were resized to a smaller size of (128 to 128)
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to reduce the computational complexity and enhance the model’s training efficiency by
working with smaller input images. After resizing, the masks were expanded to include
a channel dimension and were repeated three times to form three-channel images. This
adjustment aligns with the input shape expected by the capsule network model, which
required images in RGB format.
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Following these steps, the input dimensions were (None, 128, 128, 3), meeting the
requirements of the capsule network. In the next phase, zero padding was applied to the
input, expanding its dimensions to (None, 134, 134, 3), where additional rows and columns
filled with zeros were added around the input. This padding helped preserve the spatial
dimensions of the input when it was passed to the convolution layer. The padded input
was then fed into a 2D convolutional layer with 64 filters. After the convolution operation,
the dimensions were reduced to (None, 64, 64, 64), with 9408 parameters to be trained.
Batch normalization was executed following the Convolution Layer to normalize its output.
By performing this step, the training process was accelerated. Next, an activation function,
ReLU, was applied to introduce decorrelation to the model, capturing more complex and
nonlinear relations within the input data. Another zero-padding layer was applied to the
output of the activation function, resulting in a shape of (None, 66, 66, 64). For further
processing of the data, the dimensions were then reshaped to (None, 32, 32, 64); by doing
so, the most important features were extracted and were further processed by the network.

4.2.2. Convolution Block

Most CNNs utilize alternating convolution and pooling layers for feature extraction,
followed by fully connected layers for classification. However, pooling layers can result in
the loss of important information about objects in images. To overcome this challenge, we
integrated the DenseNet model, which connected multiple convolutional blocks to enhance
feature extraction (as shown in Figure 5). First, the output from previous layers, which have
the dimensions of (None, 32, 32, 64), was fed into a 2D convolutional layer. This layer helped
the model to learn more detailed, layered representations of the input. Then, the output was
reshaped into (None, 32, 32, 128) and introduced 8192 learnable parameters, enabling the
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model to capture even more nuanced features of the data. Next, batch normalization and an
activation layer, respectively, were applied to refine the features. The batch normalization
layer had 512 parameters per feature map. The output generated after these layers has
the dimension (None, 32, 32, 128). Subsequently, another 2D Convolutional layer was
utilized, which generated 32 feature maps of size 32 × 32, utilizing 36,864 parameters. So,
the output generated had the dimension (None, 32, 32, 32). The feature maps from different
parts of the network were then concatenated along the channel axis for integrating diverse
features and learning complex representations in the data. The concatenated data had the
dimension (None, 32, 32, 192), which means it generated 192 feature maps of size 32 × 32.
The same process mentioned was performed in the consequent three blocks as well.
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4.2.3. Capsule Block

The extracted features from the convolutional block were then divided into partitions,
referred to as primary capsules, which encoded information about specific entities identified
by the convolutional layers. Moving forward, the subsequent layer comprised secondary
capsules, where each partition in the primary capsules attempted to predict the output
in the following layer. This predictive process, known as dynamic routing, facilitated
the flow of information between the capsules. During dynamic routing, the predicted
information from individual capsules was compared with the original information. If there
was disagreement in the predictions among the capsules, the weights were decreased;
conversely, if agreement was reached, the weights were increased to a sustainable level.
This iterative process is termed routing by agreement.

The primary capsule layer within the capsule network framework serves as a pivotal
component for feature extraction and representation from the input data. This layer received
the feature maps from the preceding intermediate model created by using DenseNet121
and reshaped features into vectors known as capsules by applying a series of operations.
As a result of these operations, the feature vectors were resized to 3-dimensional tensors.
These capsules were designed to encode diverse attributes and characteristics of the input
data, enabling robust and hierarchical feature learning within the network and preserving
semantic information and spatial relationships. Subsequently, the squash function was
applied to the transformed tensor. This squash function was the activation function used
to bring nonlinearity for standardizing the vectors and ensured that their lengths fell
between 0 and 1 while conserving vector magnitude. For all the capsules in the primary
capsule layer, this squash function was applied, which results in the output vectors with
hierarchical entity features. This standardization facilitated efficient feature representation
by constraining vector magnitudes, thereby preventing dominance by larger activations
and fostering a balanced distribution of information across capsules. For an input vector sj,
the squash function is mathematically expressed as follows:

squash
(
sj
)
=

∥ sj ∥2

1 + ∥ sj ∥2 ·
sj

∥ sj ∥ +ϵ
(1)
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where

• ∥ sj ∥: Euclidean Magnitude of the input vector.
• sj

∥sj∥
: Normalization of v to calculate the unit vector ŝj.

• ϵ = 1 × 10−7.

In the dynamic routing algorithm, the output vectors from the primary capsule layer
served as inputs for an iterative routing process. First, batch normalization was performed
to standardize the input vectors for improving convergence and stabilizing training. The
normalized capsules were then flattened to continue further processing. Dropout regular-
izations were added frequently to avoid overfitting and improve generalization. Next, for
each capsule, predictions were calculated by passing the flattened capsules through fully
connected dense layers with the ReLU activation function. These predictions were used for
calculating the routing coefficients. To govern the contribution of every capsule towards the
eventual prediction, these coefficients were used. The routing coefficients were calculated
using the SoftMax function; this step ensured that the sum of all routing coefficients of the
capsules is 1, and they represented the distribution of probability among the capsules. For
refining the predictions, at each iteration of the routing process, SoftMax was applied. Once
the routing coefficients were computed, they were multiplied by the prediction vectors and
weights, resulting in the aggregation of information from all capsules based on their signifi-
cance. Then, for detecting more complex features, parametric ReLU was applied, which
introduced nonlinearity. The above process was iteratively repeated multiple times until
the capsules reached a conclusion based on their predictions. For further refinement, the
output from the dynamic routing was given to some additional dense layers accompanied
by a SoftMax layer for generating the prediction.

The SoftMax activation function played a major role in the computation of routing
coefficients based on the input capsules and agreement between the predicted vectors.
This function ensured that always valid probabilities were represented by the routing
coefficients, which assisted the capsules in concluding fruitfully. The SoftMax activation
function took a vector of outputs from a network and gave a vector of scores of probabilities.
The SoftMax activation function is mathematically expressed as follows:

so f tmax
(→

x
)

i
=

exi

∑n
j=1 exj

(2)

where

• →
x : The vector is given as input.

• exi : Input Vector given to Standard Exponential Function.
• n: In a multi-class classifier, the number of classes.
• exj : Output Vector given to Standard Exponential Function.

The loss function was utilized by the network while training for learning more distinct
features and for making predictions accurately. It works on the principle of margin-based
classification. The margin-loss function’s role was to ensure that the appropriate capsule
associated with a specific object in the image was adequately activated while also preventing
excessive interference from other capsules. This step was achieved by comparing capsule
activations against predetermined margins, akin to thresholds. If the activation of the
suitable capsule fell below a certain threshold or if other capsule activations exceeded it,
the margin loss function prompted adjustments to the network’s parameters to enhance
classification accuracy. The loss function is articulated mathematically as follows:

L(y, ŷ) = ∑
k

ykmax
(
0, m+ − ŷk

)2
+ λ∑

k
(1 − yk)max

(
0, ŷk − m−)2 (3)

where

• yk: Represents the true label (ground truth) for class k.



Cancers 2024, 16, 3777 12 of 20

• ŷk: Represents the predicted probability for class k generated by the model.
• m+ and m−: Margin parameters for positive and negative classes, respectively.
• λ: Regularization parameter.

5. Results and Comparisons

The environment for the execution of these experiments used 13 GB of Random-Access
Memory along with 2 Intel Xenon CPUs, Python 3.10, and an NVIDIA Tesla K80 graphical
processing unit with 12 GB of Random-Access Memory. The model undergoes training
for a total of 50 epochs, with a batch size of 25 and a learning rate of 0.00001, utilizing the
Adam optimizer for model enhancement.

5.1. Segmentation Results

In this section, we review the results of our enhanced U-Net model and compare it
with other models.

5.1.1. Results of Proposed Enhanced U-Net

Figure 6 shows the output of our model, which contains the actual ultrasound image
from a dataset, the predicted mask generated by our model, and the ground truth mask
from the dataset.
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5.1.2. Comparison with Other Techniques

To evaluate the proposed model’s effectiveness, the results in Table 2 and Figures 7
and 8 are used to compare the proposed enhanced U-Net model with the other models.
The evaluation of the proposed enhanced U-Net model’s performance is based on several
key metrics, including accuracy, precision, dice coefficient, and mean IoU. In Table 2, the
best result for each metric across all techniques is highlighted in bold. These metrics were
chosen to provide the assessment of both the segmentation quality and overall effectiveness
of the model. As can be found in Table 2, the proposed enhanced U-Net model outperforms
the standard U-Net (on average) as well as other U-Net variations, demonstrating its
robustness and accuracy.



Cancers 2024, 16, 3777 13 of 20

Table 2. Comparison of proposed enhanced U-Net vs. standard U-Net.

Model Accuracy Precision Dice Score Mean IoU

Standard U-Net 98.50% 93.01% 92.19% 91.00%
DBU-Net [23] 94.70% - 85.28% 74.34%
AEU-Net [24] - 85.84% 91.09% 83.63%

Improved U-Net [25] 99.00% 90.60% 86.80% 86.20%
Attention U-Net [37] 98.00% 96.00 85.00 N/A
Proposed Enhanced

U-Net 99.07% 92.90% 95.14% 94.22%Cancers 2024, 16, x FOR PEER REVIEW 14 of 20 
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Cancers 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Comparing the proposed enhanced U-Net model with standard U-Net. 

 
Figure 8. Comparing the proposed enhanced U-Net model with other models. 

5.2. Classification Results 
In this section, the performance of the capsule network is evaluated through the clas-

sification of the segmented images derived by the enhanced U-Net model. 

5.2.1. Results of the Proposed Model 
The performance of the proposed Capsule Network is evaluated using 5-fold cross-

validation on the segmented images produced by the enhanced U-Net, classifying these 
images as either malignant or benign. In this process, the dataset is divided into five parts, 
and, in each fold, one part is set aside for testing while the remaining parts are used for 
training. This approach ensures a thorough evaluation across different portions of the 
data. The hyperparameter settings for the model are detailed in Table 3. 

98.5

93.01
92.19

91

99.07

92.9

95.14
94.22

85

88

91

94

97

100

Accuracy Precision Dice Score Mean IoU

P
E

R
C

E
N

T
A

G
E

 (
%

)

Standard U-Net Proposed Enhanced U-Net

94.7

85.28

74.34

85.84

91.09

83.63

99

90.06

86.8 86.2

98
96

85

99.07

92.9

95.14
94.22

70

75

80

85

90

95

100

Accuracy Precision Dice Score Mean IoU

P
E

R
C

E
N

T
A

G
E

 (
%

)

DBU-Net AEU-Net Improved U-Net
Attention U-Net Proposed Enhanced U-Net

Figure 8. Comparing the proposed enhanced U-Net model with other models.

In terms of accuracy, the proposed enhanced U-Net achieved 99.07%, surpassing the
standard U-Net’s 98.50%. This small but significant improvement highlights the model’s
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increased ability to correctly segment tumor regions. The precision obtained was 92.90% (a
bit worse than the standard U-Net with 93.01%), reflecting the proposed model’s ability
to reduce false positives compared to other U-Net models. The dice coefficient, which
measures the overlap between the predicted and actual tumor regions, rose to an impressive
95.14%, a clear improvement over the standard U-Net’s 92.19%. This improvement suggests
that the proposed enhanced U-Net more accurately delineates tumor boundaries, a critical
aspect in medical imaging tasks. Finally, the mean IoU was 94.22%, again significantly
higher than the standard U-Net’s 91.00%. These results demonstrate that the proposed
enhanced U-Net model outperforms existing models across multiple dimensions. The
higher accuracy, precision, Dice score, and mean IoU indicate that the improvements made
to the U-Net architecture—such as increased filter counts and added skip connections—
play a crucial role in refining both segmentation quality and diagnostic reliability. These
findings suggest that the proposed model is not only more effective in detecting tumors
but also more reliable for practical applications in clinical settings, potentially improving
the early detection and treatment of breast cancer.

5.2. Classification Results

In this section, the performance of the capsule network is evaluated through the
classification of the segmented images derived by the enhanced U-Net model.

5.2.1. Results of the Proposed Model

The performance of the proposed Capsule Network is evaluated using 5-fold cross-
validation on the segmented images produced by the enhanced U-Net, classifying these
images as either malignant or benign. In this process, the dataset is divided into five parts,
and, in each fold, one part is set aside for testing while the remaining parts are used for
training. This approach ensures a thorough evaluation across different portions of the data.
The hyperparameter settings for the model are detailed in Table 3.

Table 3. Hyperparameters of the proposed model.

Parameters Value

Learning Rate 0.005
Optimizers Adam

Loss Function Margin Loss
Epochs 50

Batch Size 25
Epsilon 1 × 10−7

Dropout 0.275
Kernel Initializer Glorot normal

Figure 9 presents the confusion matrix, which further confirms the model’s high
classification accuracy. The matrix reveals a balanced distribution of correctly predicted
benign and malignant cases, with very few misclassifications, underscoring the model’s
robustness in real-world clinical settings. Another point is that the False-Positive Rate
(FPR) for benign tumors is significantly lower than that for malignant tumors, which is
particularly valuable for early detection and treatment planning.

The performance of the proposed UCapsNet model on the test dataset is summarized
in Table 4. The obtained results showcase its high precision, recall, F1-Score, and accuracy
for both benign and malignant tumor classifications. The results highlight the model’s
excellent ability to generalize unseen test data samples with high accuracy and reliability.
For benign tumors, the model achieved an accuracy of 99.22%, with a precision of 99.76%,
a recall of 99.08%, and an F1-Score of 99.42%. These results demonstrate the model’s
exceptional capability to correctly identify benign tumors while keeping false positives
low. Similarly, for malignant tumors, the model delivered strong results, achieving 99.22%
accuracy, 98.12% precision, 99.52% recall, and a 98.81% F1-Score. These findings confirm
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that the UCapsNet model is a highly effective tool for accurately distinguishing between
benign and malignant tumors, making it a valuable asset in clinical breast cancer diagnosis.
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Table 4. Performance of the proposed UCapsNet model on the test dataset.

Class Accuracy Precision Recall F1-Score

Benign 99.22% 99.76% 99.08% 99.42%
Malignant 99.22% 98.12% 99.52% 98.81%

5.2.2. Comparison with Pre-Trained CNNs

A comparison of the results of the proposed model with five well-known pre-trained
CNN models (VGG-19, ResNet-50, MobileNetV2, DenseNet121, and Xception) can be seen
in Table 5, wherein the best result in each column highlighted in bold. The results demon-
strate that our model significantly outperforms all other CNN models during training and
testing. It achieved an impressive 99.58% accuracy in the training phase and 99.22% in the
test phase, with minimal training and test losses of 0.007% and 0.02%, respectively. This
result shows the proposed model’s efficiency and reliability in real-world applications. This
enhanced accuracy highlights the model’s effectiveness in handling complex breast cancer
detection tasks, which offers a significant improvement over traditional CNN models.

Table 5. Comparison of the proposed model with pre-trained CNN models.

Model
Train Test

Accuracy Loss Accuracy Loss

VGG-19 83.84% 0.35% 82.39% 0.39%
ResNet-50 69.99% 0.61% 66.92% 0.65%

MobileNetV2 83.94% 0.72% 80.76% 0.92%
DenseNet121 84.71% 0.34% 83.84% 0.37%

Xception 93.61% 0.15% 88.46% 0.34%
Proposed UCapsNet

Model 99.58% 0.007% 99.22% 0.02%

5.2.3. Comparison with Existing Techniques

A comparison of the proposed UCapsNet model with existing techniques from the
literature is provided in Table 6, wherein the best result for each performance measure is
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shown in bold. Furthermore, a visual comparison of the different techniques is provided
in Figure 10. The results demonstrate that the proposed UCapsNet model stands out by
achieving the highest accuracy (99.22%) among all compared models. In contrast, other
models like ResNet-50 used by Bita Khosrow et al. [18] achieved a slightly lower accuracy
at 98.61%, while traditional machine learning techniques, such as SVMs and decision trees
used by Mohamed Benaouali et al. [20], reached 96%. The results indicate UCapsNet’s
superior ability to correctly classify both benign and malignant breast cancer tumors.

Table 6. Comparing the performance of the proposed vs. models from the other literature.

Method Model Accuracy Precision Recall F1-Score

Bita Khosrow et al. [18] ResNet-50 98.61% - - 98.41%
Mohamed Benaouali et al. [20] SVM, KNN, Decision trees 96% 97% - -

Jui-Ying Bs et al. [21] Mask R-CNN 85% - - -

Xiaozhen et al. [30] ResNet with Transfer
Learning 98.27% 98.72% 98.05% -

Bo Liu et al. [33] Kernel SVM 93.75% 92.33% 93.81% -
Md Rakibul Islam et al. [34] EDCNN 85.69% 84% 78% 79.39%

Kuncham Sreenivasa Rao et al. [35] Inception V3 with
Stacking 85.7% 85.7% 85.8% 85.7%

Proposed UCapsNet Model U-Net with Capsule
Network 99.22% 98.12% 99.52% 98.81%Cancers 2024, 16, x FOR PEER REVIEW 17 of 20 
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5.3. Discussion

The obtained results from our experiments provide a comprehensive evaluation of the
proposed UCapsNet model for breast cancer segmentation and classification using ultra-
sound images. For the segmentation task, our enhanced U-Net model showed impressive
results, with an accuracy of 99.07%, a Dice score of 95.14%, and a mean IoU of 94.22%.
These improvements came from adding extra filters and optimizing the skip connections in
the U-Net architecture. On the classification side, the proposed UCapsNet model delivered
exceptional performance, achieving a test accuracy of 99.22% for tumor classification. The
obtained classification results demonstrate the capability of the proposed model to detect
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benign and malignant cases with high reliability. One of the key strengths of the model
is its ability to reduce false negatives for malignant tumors, which means it is less likely
to miss identifying a cancer case. This finding makes the model particularly valuable in
real-life medical settings, where catching these cases early is critical.

The superior performance of the proposed UCapsNet model in terms of precision,
recall, accuracy, and F1-Score, underscores its potential as a State-of-the-Art tool for breast
cancer diagnosis. The proposed model demonstrates remarkable improvements in both
segmentation and classification tasks. These results suggest that our model could play a
vital role in improving early breast cancer detection and treatment planning, offering a
reliable, high-performing solution that outpaces techniques in the literature.

6. Potential Implications, Limitations, and Future Research

UCapsNet’s strong performance in segmentation and classification has exciting poten-
tial for clinical practice, especially in improving early breast cancer detection. By precisely
identifying and outlining tumor regions, this model could enable earlier interventions, lead-
ing to better outcomes and allowing for less invasive treatment options. It could also help
reduce differences in diagnostic results among radiologists, which is particularly valuable
in settings with limited access to specialized expertise. By bringing consistency to ultra-
sound interpretations, UCapsNet could support reliable diagnostics across a wide range
of healthcare facilities. Additionally, by automating the segmentation and classification
steps, it can save radiologists time on manual processing, allowing them to dedicate more
attention to in-depth case reviews. Altogether, UCapsNet shows promise as a practical tool
to enhance the accuracy and accessibility of breast cancer diagnostics in clinical settings.

Despite the significant advancements of the proposed UCapsNet model for breast
cancer segmentation and classification from ultrasound images, several limitations remain.
Firstly, limitations in the dataset affect the model’s generalizability. This study used the
BUSI dataset, which, while well regarded, may not fully capture the diversity of imaging
conditions and tumor variations found in real-world applications. Expanding UCapsNet’s
evaluation to include diverse datasets—encompassing a range of demographics, imaging
devices, and clinical settings—would enhance its robustness. Furthermore, the proposed
model was tested solely on this dataset, without evaluation on independent datasets, which
limits insights into its generalizability. Secondly, UCapsNet’s computational complexity,
especially within its capsule network component, presents challenges for real-time clinical
deployment. Capsule networks require significant computational resources due to their
complex dynamic routing mechanisms, which may impact processing speeds. Future stud-
ies could focus on developing efficient capsule network variants or exploring optimization
techniques, such as model pruning or quantization to enhance UCapsNet’s suitability for
resource-constrained environments. Another limitation involves the model’s sensitivity to
noise and artifacts often present in ultrasound images. While UCapsNet shows improved
accuracy, it may still be affected by lower-quality images with high levels of noise or
occlusions. Incorporating advanced noise reduction methods or training the model with
synthetic noise patterns could improve its robustness in these conditions.

For future work, metaheuristic-driven optimization techniques (e.g., genetic algo-
rithms, particle swarm optimization, and gray wolf optimizers) could be used for hyperpa-
rameter tuning to further enhance the performance of the UCapsNet model. Furthermore,
ensemble deep learning techniques can be used at the final layer of the classification stage
to reduce the sensitivity of the model to noise and enhance the classification accuracy. As
another future work, the image database can be expanded to provide a more diverse set
of ultrasound images, which ultimately enhances the generalizability and robustness of
the detection model. Additionally, employing data augmentation or domain adaptation
methods would help prepare the model for a broader range of imaging conditions and
anomalies, which can make the model more adaptable to real-world clinical environments.
Finally, incorporating interpretability techniques, such as Grad-CAM or saliency mapping,
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could offer clinicians insights into the model’s decision-making process, increasing the
likelihood of its acceptance in clinical practice.

7. Conclusions

In this paper, we introduced UCapsNet as a hybrid two-stage deep learning framework
that integrates an enhanced U-Net with a capsule network for the automation of breast
lesion segmentation and classification from ultrasound images. The proposed model com-
bines the robust segmentation capabilities of U-Net with the spatial hierarchy preservation
and dynamic routing features of capsule networks. By enhancing the segmentation process
and improving the classification accuracy, the UCapsNet model addresses the limitations
of traditional methods and offers a significant advancement in breast cancer diagnostics.
This approach addresses common issues with traditional methods, like the loss of spatial
information and reduced accuracy in complex cases, making UCapsNet a significant step
forward in breast cancer diagnostics. The simulation results demonstrate that UCapsNet
outperforms existing techniques by achieving a superior performance in both segmentation
and classification tasks. The model’s precision, recall, and overall accuracy surpass those
of conventional pre-trained models and existing techniques. This improved performance
highlights UCapsNet’s potential to enhance the reliability and consistency of breast cancer
detection from ultrasound images. These findings highlight UCapsNet’s potential to be a
valuable tool in clinical settings, supporting early detection and aiding treatment planning.
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